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Abstract

We address a consistency problem in the commonly used nonparametric test for Granger
causality developed by Hiemstra and Jones (1994). We show that the relationship tested is not im-
plied by the null hypothesis of Granger non-causality. Monte Carlo simulations using processes
satisfying the null hypothesis show that, for a given nominal size, the actual rejection rate may
tend to one as the sample size increases. Our results imply that evidence for nonlinear Granger
causality reported in the applied empirical literature should be re-interpreted.
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1 Introduction

Consider a strictly stationary and weakly dependent bivariate time series process{(Xt, Yt)}, t ∈ Z.
By definition,Y is strictly Granger (1969) causingX if the conditional distribution ofXt, given the
past observationsXt−1, Xt−2, . . . andYt−1, Yt−2, . . ., differs from the conditional distribution ofXt,
given the past observationsXt−1, Xt−2, . . . only. Intuitively,Y is a Granger cause ofX if adding past
observations ofY to the information set increases the knowledge on the distribution of current values
of X. Note that although the definition concerns conditional distributions given an infinite number of
past observations, in practice tests are usually confined to finite orders inX andY .

Several recent empirical studies report results for the Hiemstra and Jones (1994) test; a non-
parametric test for Granger non-causality against general (linear and non-linear) alternatives. Ev-
idence for causality is reported by e.g. Abhyankar (1998), Silvapulla and Moosa (1999), and Asi-
makopouloset al. (2000). Okunevet al. (2002) report inefficiencies in Australian real estate and
stock market prices. In this note we argue that the Hiemstra-Jones test does not provide a solid basis
for conclusions of this type.

Initially, our interest was raised by the fact that, for some data sets, counter-intuitive results are
obtained from the Hiemstra-Jones test and conventional tests of the same null hypothesis against linear
Granger causality. Even if there is strong evidence for linear Granger causality, the Hiemstra-Jones
test can fail to detect causality, or suggest that there is less causality than under the null hypothesis of
no Granger causality (c.f. large negative values of test statistics reported in Brooks and Henry, 2000).

As an illustration we consider the test results presented in Table 1. We simulated 10000 obser-
vations from a bivariate data generating process (to be described in more detail later) with strong
linear Granger causality fromY to X and applied linear and nonlinear Granger causality tests in both
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Null Hypothesis: Linear test H-J test
F-stat P-value Z-stat P-value

Y does not Granger CauseX 176.34 0.0000 −0.05 0.5204
X does not Granger CauseY 2.64 0.1043 −6.79 1.0000

Table 1: Example test results for a simulated bivariate time series of length 10000.

directions for one lag. The linear test for Granger causality indicates strong evidence in support of
the hypothesis that{Yt} Granger causes{Xt}. However, the Hiemstra-Jones test fails to detect the
evident linear causal relation. Although this result may be counter-intuitive, it is not alarming in the
sense that it merely indicates a lack of power of the Hiemstra-Jones test. However, the analysis pre-
sented in the following sections shows that this lack of power is in fact caused by an inconsistency
which can lead to the much more severe problem of over-rejection.

2 The Hiemstra-Jones test

Following Hiemstra and Jones (1994), we letF (Xt|It−1) denote the conditional probability distri-
bution of Xt given the information setIt−1, which consists of anLx-length lagged vector ofXt,
sayXLx

t−Lx
≡ (Xt−Lx , Xt−Lx+1, . . . , Xt−1), and anLy-length lagged vector ofYt, sayYLy

t−Ly
≡

(Yt−Ly , Yt−Ly+1, . . . , Yt−1). Hiemstra and Jones consider testing, for a given pair of lagsLx andLy,
the following relationship:

H0 : F (Xt|It−1) = F (Xt|It−1 −YLy

t−Ly
). (1)

That is, the null hypothesis of interest states that taking the vector of pastY -values out of the infor-
mation set does not affect the distribution of currentX-values.

Adopting the notation used by Hiemstra and Jones, we denote them-length lead vector ofXt by
Xm

t , so that we can summarize the vectors defined so far, fort ∈ Z, as:

Xm
t = (Xt, Xt+1, . . . , Xt+m−1), m = 1, 2, . . .

XLx
t−Lx

= (Xt−Lx , Xt−Lx+1, . . . , Xt−1), Lx = 1, 2, . . .

YLy

t−Ly
= (Yt−Ly , Yt−Ly+1, . . . , Yt−1), Ly = 1, 2, . . ..

(2)

A crucial claim made by Hiemstra and Jones (1994) without proof, states that the null hypothesis
given in Eq. (1) implies, for allε > 0:

P
(
‖Xm

t −Xm
s ‖ < ε

∣∣∣‖Xlx
t−Lx

−XLx
s−Lx

‖ < ε, ‖Yly
t−Ly

−YLy

s−Ly
‖ < ε

)
= P

(
‖Xm

t −Xm
s ‖ < ε

∣∣∣‖Xlx
t−Lx

−XLx
s−Lx

‖ < ε
)

,
(3)

whereP (A|B) denotes the conditional probability ofA givenB, and‖ ·‖ the supremum norm, which
for a d-dimensional vectorx = (x1, . . . , xd)T is given by‖x‖ = supd

i=1 |xi|. Equation (3) states
that the conditional probability that two arbitrarym-length lead vectors of{Xt} are within distance
ε, given that the corresponding laggedLx-length lag vectors of{Xt} areε-close, is the same as when
in addition one also conditions on theLy-length lag vectors of{Yt} beingε-close.

For an observed bivariate time series{(Xt, Yt)}, t = 1, . . . , T , the Hiemstra-Jones test consists
of choosing a value forε (typical values are between0.5 and1.5 after normalizing the time series to
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unit variance), and testing (3) by estimating the conditional probabilities as ratios of unconditional
probabilities. Using the notation

C1(m + Lx, Ly, ε) = P (‖Xm+Lx
t−Lx

−Xm+Lx
s−Lx

‖ < ε, ‖YLy

t−Ly
−YLy

s−Ly
‖ < ε),

C2(Lx, Ly, ε) = P (‖XLx
t−Lx

−XLx
s−Lx

‖ < ε, ‖YLy

t−Ly
−YLy

s−Ly
‖ < ε),

C3(m + Lx, ε) = P (‖Xm+Lx
t−Lx

−Xm+Lx
s−Lx

‖ < ε),
C4(Lx, ε) = P (‖XLx

t−Lx
−XLx

s−Lx
‖ < ε),

(4)

equation (3) can be expressed as

C1(m + Lx, Ly, ε)
C2(Lx, Ly, ε)

=
C3(m + Lx, ε)

C4(Lx, ε)
. (5)

Upon denoting the U-statistics estimators of the probabilities in (4) with an additional indexn, where
n = T + 1−m−max(Lx, Ly), Hiemstra and Jones show that, under (3):

√
n

(
C1(m + Lx, Ly, ε, n)

C2(Lx, Ly, ε, n)
− C3(m + Lx, ε, n)

C4(Lx, ε, n)

)
a∼ N(0, σ2(m,Lx, Ly, ε)), (6)

with σ2(m,Lx, Ly, ε) as given in their appendix. One-sided critical values are used, based on this
asymptotic result, rejecting when the observed value of the test statistic in (6) is too large.

3 A counter-example

In this section we show that equation (3) is not, in general, implied by the null hypothesis given in
(1). The left hand side of equation (3) under the null can be either smaller or larger than the right hand
side. To emphasize the relevance to econometrics and financial time series analysis, we focus on a
class of bivariate time series processes with conditional heteroskedasticity. The starting point is a first
order process{Xt} with conditional heteroskedasticity

Xt ∼ N(0, g(Xt−1)), (7)

whereg(·) is some positive function, such that{Xt} is stationary and ergodic (e.g. ifg(Xt−1) =
a + bX2

t−1 with a > 0 and0 < b < 1, Xt is a stable ARCH(1) process). Next consider a process
{Yt}, which is instantaneously driven by{Xt} via:

Yt−1 ∼ N(0, h(Xt−1)), (8)

whereh(·) is again a non-negative function, and whereYt−1 is taken to be conditionally independent
of Xt given Xt−1. In the particular case whereh(s) = g(s) for all s, Xt andYt−1 are identically
distributed, conditionally onXt−1. Clearly,Y is not Granger-causingX. A single lagged valueXt−1

fully determines the distribution ofXt, so that equation (1) holds for allLx, Ly = 1, 2, . . ..
Next we show thatg(·) andh(·) can be chosen in such a way that equation (3) does not hold for

any positive value ofε. A convenient first step is to rephrase equation (3) as

P
(
‖Xm

t −Xm
s ‖ < ε, ‖Yly

t−Ly
−YLy

s−Ly
‖ < ε

∣∣∣‖Xlx
t−lx

−XLx
s−Lx

‖ < ε
)

= P
(
‖Xm

t −Xm
s ‖ < ε

∣∣∣‖Xlx
t−lx

−XLx
s−Lx

‖ < ε
)

× P
(
‖Yly

t−Ly
−YLy

s−Ly
‖ < ε

∣∣∣‖Xlx
t−lx

−XLx
s−Lx

‖ < ε
)

,

(9)
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obtained by rewriting equation (3), which is of the formP (A|B,C) = P (A|B), in the formP (A,C|B) =
P (A|B)P (C|B). As Hiemstra and Jones we focus on the casem = 1 (one-step lead vectors of{Xt}).
In that case we find forLy = 1:

P
(
|Xt −Xs| < ε, |Yt−1 − Ys−1| < ε

∣∣∣‖Xlx
t−lx

−XLx
s−Lx

‖ < ε
)

= P
(
|Xt −Xs| < ε

∣∣∣‖Xlx
t−lx

−XLx
s−Lx

‖ < ε
)

× P
(
|Yt−1 − Ys−1| < ε

∣∣∣‖Xlx
t−lx

−XLx
s−Lx

‖ < ε
)

.

(10)

The difference between the left and right hand sides can be expressed as a conditional covariance

D = Cov
(
I(|Xt −Xs| < ε), I(|Yt−1 − Ys−1| < ε)

∣∣∣‖Xlx
t−lx

−XLx
s−Lx

‖ < ε
)

, (11)

whereI(·) denotes the indicator function which is one if the inequality in its argument holds and zero
otherwise.

Although for given values ofXt−1 andXs−1, Xt−Xs andYt−1−Ys−1 are independent normally
distributed random variables (with variancesV = g(Xt−1)+g(Xs−1) andW = h(Xt−1)+h(Xs−1),
respectively) the condition in equation (11) does not fixXt−1 andXs−1, so that the covariance need
not be zero. We obtain

D = Cov
(
I
(
|Z1|

√
V < ε

)
, I
(
|Z2|

√
W < ε

))
, (12)

whereZ1 andZ2 are standard normal random variables, independent of each other and(V,W ), and
V andW are the conditional variances ofXt − Xs andYt−1 − Ys−1, given‖Xlx

t−lx
−XLx

s−Lx
‖ < ε,

which are jointly distributed according to

(V,W ) ∼ (g(Xt−1) + g(Xs−1), h(Xt−1) + h(Xs−1))
∣∣∣‖Xlx

t−lx
−XLx

s−Lx
‖ < ε. (13)

SinceZ1 andZ2 are independent, and independent of(V,W ), the expectations with respect to those
variables can be taken. If we define

r(s) = E (I (|Z| < s)) = P (|Z| < s), for Z ∼ N(0, 1), (14)

we obtain
D = Cov

(
r(ε/

√
V ), r(ε/

√
W )

)
. (15)

Depending on the joint distribution ofV andW , D can be either negative, zero, or positive. The
most problematic case isD > 0, since the one-sided Hiemstra-Jones test will then tend to over-reject.
Clearly, if eitherV or W is degenerate (i.e. with probability one takes only one specific value), the
covariance is zero andD = 0. The caseD > 0 thus requiresV andW to be non-degenerate random
variables. Let us focus onV first. The fact thatV can have a non-degenerate distribution follows
from the existence of stationary ARCH(1) processes with time varying conditional variance. If for
such non-degenerateV we defineW in such a way that it is positively correlated withV , thenD > 0.
An obvious example would be to takeg(s) = h(s) for all s, which impliesW = V . In that case one
findsD = Var(r(ε/

√
V )) > 0.

Further analytic results, which are beyond the scope of this paper, indicate that also for processes
of a different form than that in equations (7) and (8) but which also satisfy the null hypothesis,D
typically is nonzero. These results also suggest some ways of reducing the bias, which we hope to
prove useful in future work on alternative tests. The fact that the sizes reported in the bootstrap study
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Figure 1: Simulated size of the Hiemstra-Jones test (ε = 1, Lx = Ly = 1) for the bivariate ARCH process
given in equation (17) as a function of the time series length (nominal size 0.05). Number of realizations: 1000
for n < 10000, and 500, 100 for n = 10000 and 20000 respectively.

by Diks and DeGoede (2001) were close to nominal is related to the relatively small sample sizes used
there.

The data generating process for the time series used to generate Table 1 was:

Xt ∼ N
(
0.2Yt−1, 1 + 0.4X2

t−1

)
Yt−1 ∼ N

(
0, (1 + 0.4X2

t−1)
−1
)
.

(16)

The resulting time series processes are stationary and exhibit conditional heteroskedasticity. Clearly,
{Yt} linearly Granger causes{Xt}. At the same time there is contemporaneous nonlinear dependence
between{Yt} and{Xt}. There is a negative bias in the Hiemstra-Jones test statistic introduced by
the negative dependence between the conditional variance ofYt−1 andXt givenXt−1. This destroys
power in the Granger non-causality test fromY to X and leads to smaller test statistics than expected
under the null in the test of Granger non-causality fromX to Y .

Simulations

To illustrate the effect of a positive covariance in equation (15) we imposedV andW to be equal (see
eq. 13) by takingg(Xt−1) = h(Xt−1) = 1 + 0.4X2

t−1. We simulated the resulting bivariate ARCH
process,

Xt ∼ N(0, 1 + 0.4X2
t−1)

Yt−1 ∼ N(0, 1 + 0.4X2
t−1),

(17)

and calculated the rejection rates (at nominal size0.05) of the Hiemstra-Jones test for the null hypoth-
esis thatY does not Granger causeX.

Figure 1 shows the rejection rates found as a function of the time series lengthn. The actual size
of the test is close to the nominal size of0.05 only for the short time series of100. The size increases
with the lengthn of the time series, and is close to one already for time series of length5000.

4 Case study

In practice the test is usually applied after filtering out seasonalities, linear structure, and (G)ARCH
structure. Although this may lead to smaller rejection rates due to whitening of the data, it does not

5



Procedure n = 1000 n = 10000
Z-stat P-value Z-stat P-value

Raw data 3.183796 0.0007 7.893391 0.0000
GARCH(1,1) 1.689628 0.0455 5.823490 2.9E-9
GARCH(1,1) & AR(1) 2.362784 0.0091 4.932293 4.1E-7
Correct model 1.323609 0.0928 0.082326 0.4672

Table 2: Results of the control for the data structure in case study

affect our conclusion in typical cases where the model specification is not known to be correct. To
illustate this point we mimic a typical empirical study relying on the Hiemstra-Jones test by investi-
gating an artificial bivariate process of the form

Xt ∼ N(−2Xt−1e
−X2

t−1 , 1 + 0.4X2
t−1)

Yt−1 ∼ N(−2Xt−1e
−X2

t−1 , 1 + 0.4X2
t−1).

(18)

The process (18) satisfies the null hypothesis thatY does not Granger causeX. TheX-series
exhibits nonlinear AR(1) dependence in the mean and ARCH(1) structure, whileY is instanteneuosly
driven by X through the mean and variance. Time series of 1000 and 10000 observations were
considered for the study.

As mentioned above, a researcher usually controls the data for some structure. The univari-
ate GARCH(1,1) model is a popular choice in financial time series. For both series we apply the
GARCH(1,1) filter with two different mean specifications. First, we consider a simple model with
constant mean. Thereafter, also AR(1) structure typical in financial studies is included in the mean
equation. Table 4 summarizes the results of the Hiemsta-Jones tests after the above procedures. The
results for the raw data and the residuals of the correctly specified model are included for reference.
The test on the raw data strongly rejects the null hyposesis while it holds, as a result of the bias.
Controlling for GARCH(1,1) with constant mean reduces the bias, but because of misspecification
does not remove it completely. Adding AR(1) to the mean equation worsens the bias compared to
the former procedure when the series length is 1000. This suggests that removing (G)ARCH and AR
structure without knowledge of the correct model class may not correct the test and consequently,
produce unreliable results. The test on the residuals of the correctly specified model leads to an
anticipated result since the residual series by construction are practically independent, in which case
equation (3) holds. In that sense the Hiemstra-Jones test performed on the residuals may be considered
as a model specification test.

5 Conclusions

The analytic and numerical evidence presented in this note clearly show that equation (3), which is
the relationship tested in the Hiemstra-Jones test, is not generally compatible with the null hypothesis
stated in equation (1). This indicates that rejections of the null hypothesis reported in the empirical
literature may be spurious. A simulated empirical study shows that our main conclusion remains valid
also for studies which corrected for AR and (G)ARCH structure.

One might still argue, correctly, that the Hiemstra-Jones test is a valid test of the relationship
given in equation (3). In fact one might even go one step further and take equation (3) as a definition
of Granger causality, which is exactly the approach taken in the original test by Baek and Brock
(1992). Although one can indeed test (3) using the Hiemstra-Jones test, the interpretation involves
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some subtleties. A problem with this approach is that it is hard to find out in detail exactly which
subclasses of data generating processes satisfy the null hypothesis. Although it is easy to give some
sufficient conditions for (3) to hold for allε (for example,{Xt} and{Yt} being independent) it is
surprisingly difficult to formulate necessary conditions in terms of the data generating process.

Finally, our results suggest that, since for{Xt} and {Yt} independent (3) holds for allε, the
Hiemstra-Jones test can still be used as a model specification test by applying it to the residuals of an
estimated model for the data generating process. However, in that case the Hiemstra-Jones test is used
as a test for independence rather than conditional independence.
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