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Summary. A simple nonlinear structural model of endogenous belief heterogeneity
is proposed. News about fundamentals is an IID random process, but nevertheless
volatility clustering occurs as an endogenous phenomenon caused by the interaction
between different types of traders, fundamentalists and technical analysts. The belief
types are driven by adaptive, evolutionary dynamics according to the success of
the prediction strategies as measured by accumulated realized profits, conditioned
upon price deviations from the rational expectations fundamental price. Asset prices
switch irregularly between two different regimes — periods of small price fluctuations
and periods of large price changes triggered by random news and reinforced by
technical trading — thus, creating time varying volatility similar to that observed in
real financial data.
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1 Introduction

Volatility clustering is one of the most important ‘stylized facts’ in finan-
cial time series data. Whereas price changes themselves appear to be unpre-
dictable, the magnitude of those changes, as measured e.g. by the absolute or
squared returns, appears to be predictable in the sense that large changes tend
to be followed by large changes — of either sign — and small changes tend to be
followed by small changes. Asset price fluctuations are thus characterized by
episodes of low volatility, with small price changes, irregularly interchanged
by episodes of high volatility, with large price changes. This phenomenon
was first observed by Mandelbrot [40] in commodity prices.3 Since the pio-
neering papers by Engle [15] and Bollerslev [5] on autoregressive conditional
heteroskedastic (ARCH) models and their generalization to GARCH models,
volatility clustering has been shown to be present in a wide variety of finan-
cial assets including stocks, market indices, exchange rates, and interest rate
securities.4

In empirical finance, volatility clustering is usually modeled by a statisti-
cal model, for example by a (G)ARCH model or one of its extensions, where
the conditional variance of returns follows a low order autoregressive process.
Other approaches to modeling volatility clustering and long memory by statis-
tical models include fractionally integrated GARCH or similar long memory
models, e.g. [24], [4], [6], and multi-fractal models [41], [42]. Whereas all these
models are extremely useful as a statistical description of the data, they do
not offer a structural explanation of why volatility clustering is present in
so many financial time series. Rather the statistical models postulate that
the phenomenon has an exogenous source and is for example caused by the
clustered arrival of random ‘news’ about economic fundamentals.

The volatility of financial assets is a key feature for measuring risk under-
lying many investment decisions in financial practice. It is therefore important
to gain theoretical insight into economic forces that may contribute to or am-
plify volatility and cause, at least in part, its clustering. The need for an
equilibrium theory and a possible relation with technical trading rules and
overreaction was e.g. already suggested in [36], p. 176: ‘. . . ‘the stock market
overreaction’ hypothesis, the notion that investors are subject to waves of op-
timism and pessimism and therefore create a kind of ‘momentum’ that causes
prices to temporarily swing away from their fundamental values,’ and ‘. . . , a
well-articulated equilibrium theory of overreaction with sharp empirical impli-
cations has yet to be developed.’ More recent work in behavioral finance has
also emphasized the role of ‘market psychology’ and ‘investor sentiment’ in
financial markets; see e.g. [49], [48], and [27] for recent surveys.

3 [40], pp. 418—419 notes that Houthakker stressed this fact for daily cotton prices,
at several conferences and private conversation.

4 See, for example, [45] or [8] for further discussion of ‘stylized facts’ that are
observed in financial data.
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In this paper we present a simple nonlinear structural equilibrium model
where price changes are driven by a combination of exogenous random news
about fundamentals and evolutionary forces underlying the trading process
itself. Volatility clustering becomes an endogenous phenomenon caused by
the interaction between heterogeneous traders, fundamentalists and technical
analysts, having different trading strategies and expectations about future
prices and dividends of a risky asset. Fundamentalists believe that prices will
move towards its fundamental rational expectations (RE) value, as given by
the expected discounted sum of future dividends.5 In contrast, the technical
analysts observe past prices and try to extrapolate historical patterns. The
chartists are not completely unaware of the fundamental price however, and
condition their technical trading rule upon the deviation of the actual price
from its fundamental value. The fractions of the two different trader types
change over time according to evolutionary fitness, as measured by accumu-
lated realized profits or wealth, conditioned upon price deviations from the
RE fundamental price.

The heterogeneous market is characterized by an irregular switching be-
tween phases of low volatility, where price changes are small, and phases of
high volatility, where small price changes due to random news are reinforced
and may become large due to trend following trading rules. Volatility clus-
tering is thus driven by heterogeneity and conditional evolutionary learning.
Although our model is very simple, it is able to generate autocorrelation pat-
terns of returns, and absolute and squared returns similar to those observed
in daily S&P 500 data.

Recently, closely related heterogeneous agent models generating volatility
clustering have been introduced e.g. in [35], [38], [39], [32], and [14]. An inter-
esting feature of our model is that, due to heterogeneity in expectations and
switching between strategies, the deterministic skeleton (i.e. the model with
exogenous shocks shut off to zero) of our evolutionary model is a nonlinear
dynamical system exhibiting (quasi)periodic and even chaotic fluctuations in
asset prices and returns. Nonlinear dynamic models can generate a wide va-
riety of irregular patterns. In particular, our nonlinear heterogeneous agent
model exhibits an important feature naturally suited to describe volatility
clustering, namely coexistence of attractors. This means that, depending upon
the initial state, different types of long run dynamical behavior can occur. In
particular, our evolutionary model exhibits coexistence of a stable steady state
and a stable limit cycle. Hence, depending on initial conditions of the market,
prices will either settle down to the locally stable fundamental steady state
price, or converge to a stable cycle, fluctuating in a regular pattern around

5 As a special case we will discuss an example where traders do not believe that
prices move towards a fundamental value, but believe that markets are efficient
and (since the fundamental value is held constant in our model) that fluctuations
are completely random. Thus, they believe that the last observed price is the best
predictor for the future price.
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the fundamental steady state price. In the presence of dynamic noise, the
market will then switch irregularly between close to the fundamental steady
state fluctuations, with small price changes, and periodic fluctuations, trig-
gered by technical trading, with large price changes. It is important to note
that coexistence of attractors is a structurally stable phenomenon, which is
by no means special for our conditionally evolutionary systems, but occurs
naturally in nonlinear dynamic models, and moreover is robust with respect
to small perturbations.

Whereas the fundamentalists have some ‘rational valuation’ of the risky
asset, the technical analysts use a simple extrapolation rule to forecast asset
prices. An important critique from ‘rational expectations finance’ upon het-
erogeneous agent models using simple habitual rule of thumb forecasting rules
is that ‘irrational’ traders will not survive in the market. Brock and Hommes
[9], [11] have discussed this point extensively and stress the fact that in an
evolutionary framework technical analysts are not ‘irrational,’ but they are in
fact boundedly rational, since in periods when prices deviate from the RE fun-
damental price, chartists make better forecasts and earn higher profits than
fundamentalists. See also the survey in [28] or the interview with William
Brock in [52].

We would like to relate our work to some other recent literature. Agent
based evolutionary modeling of financial markets is becoming quite popu-
lar and recent contributions include the computational oriented work on the
Santa Fe artificial stock market [3], [35], the stochastic multi-agent models
of Lux and Marchesi [38], [39], genetic learning in Arifovic and Gencay [2],
the multi-agent model of Youssefmir and Huberman [53], and the evolutionary
markets based on out-of-equilibrium price formation rules by Farmer and Joshi
[16].6 Another recent branch of work concerns adaptive learning in asset mar-
kets. Timmermann [50], [51] e.g. shows that excess volatility in stock returns
can arise under learning processes that converge (slowly) to RE. Routledge
[47] investigates adaptive learning in the Grossman-Stiglitz model [25] where
traders can choose to acquire a costly signal about dividends, and derives
conditions under which the learning process converges to RE.7 An important
characteristic that distinguishes our approach is the heterogeneity in expecta-
tion rules, with time varying fractions of trader types driven by evolutionary
competition. These adaptive, evolutionary forces can lead to endogenous asset

6 An early example of a heterogeneous agent model is [54]; other examples include
[18], [30], [12], [7], and [37].

7 In [47], the fraction of informed traders is fixed over time. De Fontnouvelle [17]
investigates a Grossman-Stiglitz model where traders can choose to buy a costly
signal about dividends, with fractions of informed and uninformed traders chang-
ing over time according to evolutionary fitness. [17] is in fact an application of
the Adaptive Rational Equilibrium Dynamics (ARED) framework of Brock and
Hommes [9], which is also underlying our heterogeneous agent asset pricing model,
to the Grossman-Stiglitz model leading to unpredictable (chaotic) fluctuations in
asset prices.
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price fluctuations around the (stable or unstable) benchmark RE fundamental
steady state, thus creating excess volatility and volatility clustering.

We view our model as a simple formalization of general ideas from behav-
ioral finance, where markets are populated by different agents using trading
strategies (partly) based on ‘psychological heuristics.’ In our framework the
fractions of trading strategies change over time driven by evolutionary fit-
ness, such as profits and wealth, conditioned upon market indicators.8 In
such a heterogeneous boundedly rational world simple trading strategies sur-
vive evolutionary competition. A convenient feature of our model is that the
traditional benchmark rational expectations model is nested as a special case
within the heterogeneous framework. Our model thus provides a link between
the traditional theory and the new behavioral approach to finance.

The paper is organized as follows. Section 2 presents the conditional evolu-
tionary asset pricing model with fundamentalists and technical analysts. The
dynamics of the deterministic skeleton of the model is discussed in section 3.
In section 4 we compare the time series properties of the model, in particular
the autocorrelation patterns of returns, squared returns, and absolute return
with those of daily S&P 500 data. Finally, section 5 presents some concluding
remarks.

2 A Heterogeneous Agents Model

Our nonlinear model for volatility clustering will be a standard discounted
value asset pricing model with two types of traders, fundamentalists and
technical analysts. The model is closely related to the Adaptive Belief Sys-
tems (ABS), that is, the present discounted value asset pricing model with
heterogeneous beliefs and evolutionary learning introduced by [11]. However,
our technical analysts condition their price forecasts upon the deviation of the
actual price from the rational expectations fundamental price, similar to the
approach taken in the Santa Fe artificial stock market in [3] and [35].

Agents can either invest their money in a risk free asset, say a T-bill, that
pays a fixed rate of return r, or they can invest their money in a risky asset,
for example a large stock or a market index traded at price p t (ex-dividend)
at time t, that pays uncertain dividends yt in future periods t, and therefore
has an uncertain return. Wealth in period t+ 1 of trader type h is given by

Wh,t+1 = (1 + r)Wh,t + (pt+1 + yt+1 − (1 + r)pt)zht, (1)

where zht is the demand of the risky asset for trader type h. Let Eht and Vht
denote the ‘beliefs’ (forecasts) of trader type h about conditional expectation
and conditional variance. Agents are assumed to be myopic mean-variance
maximizers so that the demand zht for the risky asset by type h solves

8 [23] and [44] provide recent empirical evidence for the existence of different trader
types in the market and that their impact on the market changes over time.
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max
zht

{Eht[Wh,t+1]− a

2
Vht[Wh,t+1]}, (2)

where a is the risk aversion parameter. The demand zht of type h for the risky
asset is then given by

zht =
Eht[pt+1 + yt+1 − (1 + r)pt]

aVht[pt+1 + yt+1 − (1 + r)pt]
=

Eht[pt+1 + yt+1 − (1 + r)pt]

aσ2
, (3)

where the beliefs about conditional variance Vht[pt+1 + yt+1− (1+ r)pt] = σ2

are assumed to be constant over time and equal for all types.9 Let zs denote
the supply of outside risky shares per investor, assumed to be constant, and
let nht denote the fraction of type h at date t. Equilibrium of demand and
supply yields

H∑
h=1

nht
Eht[pt+1 + yt+1 − (1 + r)pt]

aσ2
= zs, (4)

where H is the number of different trader types.
In the case of zero supply of outside risky assets, i.e. z s = 0,10 the market

equilibrium equation may be rewritten as

(1 + r)pt =
H∑
h=1

nhtEht(pt+1 + yt+1). (5)

In a world where all traders are identical and expectations are homogeneous
the arbitrage market equilibrium equation (5) for the price pt of the risky
asset reduces to

(1 + r)pt = Et(pt+1 + yt+1), (6)

where Et denotes the common conditional expectation of all traders at the
beginning of period t, based on a publically available information set F t such
as past prices and dividends. The arbitrage equation (6) states that today’s
price of the risky asset must be equal to the sum of tomorrow’s expected price
and expected dividend, discounted by the risk free interest rate. It is well
known that in a world where expectations are homogeneous, where all traders
are rational, and where it is common knowledge that all traders are rational,
the fundamental rational expectations equilibrium price, or the fundamental
price is

p∗t =
∞∑
k=1

Et(yt+k)

(1 + r)k
, (7)

9 [19] analyzes the case with time varying beliefs about variances and shows that
— in the case of an IID dividend process — the results are quite similar to those
with constant ones. Therefore we concentrate on this simple case.

10 In the general case one can introduce a risk adjusted dividend y#t+1 = yt+1−aσ2zs

to obtain the market equilibrium equation (5), as in [8].
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given by the discounted sum of expected future dividends. We will focus on
the simplest case of an IID dividend process yt with mean Et(yt+1) = ȳ, so
that the fundamental price is constant and given by11

p∗ =
∞∑
k=1

ȳ

(1 + r)k
=

ȳ

r
. (8)

It is important to note that so-called speculative bubble solutions, growing
at a constant rate 1 + r, also satisfy the arbitrage equation (6) at each date.
In a homogeneous, perfectly rational world the existence of these speculative
bubbles is excluded by the transversality condition

lim
t→∞

E(pt)

(1 + r)t
= 0,

and the constant fundamental solution (8) is the only solution of (6) satisfying
this condition. Along a speculative bubble solution traders would have perfect
foresight, but prices would diverge to infinity. In a homogeneous, perfectly
rational world traders realize that speculative bubbles cannot last forever and
therefore, they will never get started.

In the asset pricing model with heterogeneous beliefs, market equilibrium
in (5) states that the price pt of the risky asset equals the discounted value of
tomorrow’s expected price plus tomorrow’s expected dividend, averaged over
all different trader types. In such a heterogeneous world, temporary bubbles
with prices deviating from the fundamental, may arise, when the fractions of
traders believing in those bubbles is large enough. Notice that, within our
heterogeneous agents equilibrium model (5) the standard present discounted
value model is nested as a special case. In the nested RE benchmark, asset
prices are only driven by economic fundamentals. In contrast, the heteroge-
neous agent model generates excess volatility driven by evolutionary com-
petition between different trading strategies, leading to unpredictability and
volatility clustering in asset returns.

In order to complete the model, we have to be more precise about traders’
expectations (forecasts) about future prices and dividends. For simplicity we
focus on the case where expectations about future dividends are the same for
all traders and given by

Eht(yt+1) = Et(yt+1) = ȳ, (9)

for each type h. All traders are thus able to derive the fundamental price
p∗ = ȳ/r in (8) that would prevail in a perfectly rational world. Traders
nevertheless believe that in a heterogeneous world prices will in general deviate
from their fundamental value. We focus on a simple case with two types of
traders, with expected prices given respectively by12

11 Notice that in our setup, the constant benchmark fundamental p∗ = ȳ/r could
easily be replaced by another, more realistic time varying fundamental price p∗t .

12 For example, [18] and [31] have been using exactly the same fundamental and
chartist trader types.
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E1t[pt+1] ≡ pe1,t+1 = p∗ + v(pt−1 − p∗), 0 ≤ v ≤ 1, (10)

E2t[pt+1] ≡ pe2,t+1 = pt−1 + g(pt−1 − pt−2), g ≥ 0. (11)

Traders of type 1 are fundamentalists, believing that tomorrow’s price will
move in the direction of the fundamental price p∗ by a factor v. Of special
interest is the case v = 1, for which

E1t[pt+1] ≡ pe1,t+1 = pt−1. (12)

We call this type of traders EMH-believers, since the naive forecast of the
last observed price as prediction for tomorrow’s price is consistent with an
efficient market where prices follow a random walk. Trader type 2 are simple
trend followers, extrapolating the latest observed price change. The market
equilibrium equation (5) in a heterogeneous world with fundamentalists and
chartists as in (10)—(11), with common expectations on dividends as in (9),
becomes

(1 + r)pt = n1t(p
∗ + v(pt−1 − p∗)) + n2t(pt−1 + g(pt−1 − pt−2)) + ȳ, (13)

where n1t and n2t represent the fraction of fundamentalists and chartists,
respectively, at date t. At this point we also would like to introduce (additive)
dynamic noise into the system, to obtain

(1+ r)pt = n1t(p
∗+ v(pt−1− p∗)) +n2t(pt−1+ g(pt−1− pt−2)) + ȳ+ εt, (14)

where εt are IID random variables representing the fact that this deterministic
model is in fact too simple to capture all dynamics of a financial market.
Our model can at best be only an approximation of the real world. One can
interprete this noise term also as coming from noise traders, i.e., traders,
whose behavior is not explained by the model but considered as exogenously
given (see, for example, [34]).

The market equilibrium equation (14) represents the first part of the
model. The second, conditionally evolutionary part of the model describes
how the fractions of fundamentalists and technical analysts change over time.
The basic idea is that fractions are updated according to past performance,
conditioned upon the deviation of actual prices from the fundamental price.
Agents are boundedly rational in the sense that most of them will choose the
forecasting rule that performed best in the recent past, conditioned upon de-
viations from the fundamental. Performance will be measured by accumulated
realized past profits. Note that realized excess returns per share over period t
to period t+ 1, can be computed as

Rt+1 = pt+1 + yt+1 − (1 + r)pt = pt+1 − p∗ − (1 + r)(pt − p∗) + δt+1, (15)

where δt+1 = yt+1 − ȳ, Et(δt+1) = 0. In the general case where the dividend
process yt is not IID, δt+1 is a martingale difference sequence w.r.t. Ft. This
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term represents intrinsic uncertainty about economic fundamentals in a fi-
nancial market, in our case unexpected random news about future dividends.
Thus, realized excess returns (15) can be decomposed in an EMH-term δ t and
a speculative endogenous dynamic term explained by the theory represented
here.

The first, evolutionary part of the updating of fractions of fundamentalists
and technical analysts is described by the discrete choice probabilities13

ñht = exp[βUh,t−1]/Zt−1, h = 1, 2 (16)

where Zt−1 =
∑2

h=1 exp[βUh,t−1] is just a normalization factor such that the
fractions add up to one. Uh,t−1 measures the evolutionary fitness of predictor
h in period t− 1, given by accumulated realized past profits as discussed be-
low. The key feature of (16) is that strategies or forecasting rules are ranked
according to their fitness and the higher the ranking, the more traders will fol-
low that strategy. The parameter β is called the intensity of choice, measuring
how fast the mass of traders will switch to the optimal prediction strategy. In
the special case β = 0, both fractions ñht will be constant and equal to 1/2.
In the other extreme case β =∞, in each period all traders will use the same,
optimal strategy.

We assume that traders use observed data for evaluating their prediction
rules. Thus, a natural candidate for evolutionary fitness is accumulated realized
profits,14 as given by

Uht := Rtzh,t−1 + ηUh,t−1

= (pt + yt − (1 + r)pt−1)
Eh,t−1[pt + yt − (1 + r)pt−1)

aσ2
+ ηUh,t−1

=
1

aσ2
(pt + yt − (1 + r)pt−1)(peh,t + ȳ − (1 + r)pt−1) + ηUh,t−1. (17)

The first term defines realized excess return of the risky asset over the risk free
asset times the demand for the risky asset by trader type h. The parameter η,
0 ≤ η ≤ 1+ r, in the second term is a memory parameter measuring how fast
past fitness is discounted for strategy selection. In the extreme case η = 0,
fitness equals realized net profit in the previous period. In the case with infinite
memory, i.e. η = 1, fitness equals accumulated realized net profits over the
entire past. In the intermediate case 0 < η < 1, the weight given to past

13 The discrete choice probabilities coincide with the well known ‘Gibbs’-probabi-
lities in interacting particle systems in physics. Discrete choice probabilities can
be derived from a random utility model when the number of agents tends to
infinity. See [43] and [1] for an extensive discussion of discrete choice models and
applications in economics.

14 [21] analyze the model with risk adjusted realized profits or, equivalently, utilities
derived from realized profits, as performance measure. The results are very similar
to the model presented here, showing the robustness of the dynamic behavior of
the model w.r.t. the evolutionary fitness measure.
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realized profits decreases exponentially with time. Notice also that for η =
1+ r fitness (17) coincides exactly with the hypothetical accumulated wealth
(1) of a trader who always would have used trading strategy h. It should
be emphasized that the key feature of this evolutionary mechanism is that
traders switch to strategies that have earned more money in the recent past.
The memory parameter simply measures the weight given to past earnings for
strategy selection.

In the second step of updating of fractions, the conditioning on deviations
from the fundamental by the technical traders is modeled as

n2t = ñ2t exp[−(pt−1 − p∗)2/α], α > 0 (18)

n1t = 1− n2t. (19)

According to (18) the fraction of technical traders decreases more, the further
prices deviate from their fundamental value p∗. As long as prices are close
to the fundamental, updating of fractions will almost completely be deter-
mined by evolutionary fitness, that is, by (16)—(17). But when prices move far
away from the fundamental, the correction term exp[−(pt−1− p∗)2/α] in (18)
becomes small, representing the fact that more and more chartists start be-
lieving that a price correction towards the fundamental price is about to occur.
Our conditional evolutionary framework thus models the fact that technical
traders are conditioning their charts upon information about fundamentals,
as is common practice in real markets. A similar approach is for example in
[13]. The conditioning of their charts upon economic fundamentals may be
seen as a ‘transversality condition’ in a heterogeneous agent world, allowing
for temporary speculative bubbles but not for unbounded bubbles; see [28] for
a discussion of this point.

The timing of the coupling between the market equilibrium equation (14)
and the conditional evolutionary selection of strategies in (16)—(19) is im-
portant. The market equilibrium price pt in (14) depends upon the fractions
nht. The notation in (16), (18) and (19) stresses the fact that these fractions
depend upon past fitnesses Uh,t−1, which in turn depend upon past prices
pt−1 and dividends yt−1 in periods t − 1 and further in the past. After the
equilibrium price pt has been revealed by the market, it will be used in evo-
lutionary updating of beliefs and determining the new fractions nh,t+1. These
new fractions nh,t+1 will then determine a new equilibrium price pt+1, etc. In
the adaptive belief system, market equilibrium prices and fractions of different
trading strategies thus coevolve over time.

3 Model dynamics

The noisy conditional evolutionary asset pricing model with fundamentalists
versus chartists is given by (14), (16)—(19). In this section, we briefly discuss
the dynamical behaviour of the deterministic skeleton of the model, where
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the noise terms δt and εt are both set equal to zero. Understanding of the
dynamics of the underlying deterministic skeleton will be useful when we
discuss the time series properties of the stochastic model in section 4.

Using the pricing equation (14) it follows easily that the unique steady
state price level is the fundamental price, i.e. p = p∗. Since both forecasting
rules (10) and (11) yield the same forecast at the steady state, the steady state
fractions must satisfy n∗1 = n∗2 = 0.5. The model thus has a unique steady
state where price equals its fundamental value and fractions of the two types
are equal.

In order to investigate the stability of the steady state it is useful to rewrite
the model in terms of lagged prices. The actual market price pt in (14) depends
on lagged prices pt−1 and pt−2 and on fractions n1t and n2t. According to (16)
these fractions depend on the fitness Uh,t−1, which by (17) depend on pt−1,
pt−2, Uh,t−2 and the forecasts peh,t−1. Finally, the forecasts p

e
h,t−1 depend on

pt−3 and pt−4. We thus conclude that the market price pt in (14) depends
upon four lagged prices pt−j , 1 ≤ j ≤ 4, and the fitnesses Uh,t−2, so that
the system is equivalent to a six dimensional (first order) dynamical system.
A straightforward computation shows that the characteristic equation for the
stability of the steady state is given by (see [20] for details)15

λ2(η − λ)2
(
λ2 − 1 + g + v

2(1 + r)
λ+

g

2(1 + r)

)
= 0. (20)

Thus, the eigenvalues of the Jacobian are 0, η (both of multiplicity 2) and the
roots λ1, λ2 of the quadratic polynomial in the last bracket. Note that these
roots satisfy the relations

λ1 + λ2 =
1 + g + v

2(1 + r)
and λ1λ2 =

g

2(1 + r)
. (21)

Also note that the eigenvalues 0 and η always lie inside the unit circle. Thus,
the stability of the steady state is determined by the absolute values of λ1
and λ2.

The fundamental value p∗ is a unique steady state, which is locally stable
if the trend chasing parameter g < 2(1+r). That is, if price does not differ too
much from the fundamental value, it will converge towards it. As g is increased,
the steady state is destabilized by a Hopf bifurcation16 at g = 2(1 + r) and a
stable invariant ‘circle’ with periodic or quasiperiodic dynamics (stable limit

15 [22] present a detailed mathematical analysis of the deterministic skeleton of a
slightly different version of the model, where the fitness measure is defined by risk
adjusted past realized profits. The dynamics of the model presented here is very
similar and in particular, the local stability analysis of the steady state is exactly
the same.

16 A bifurcation is a qualitative change in the dynamics when parameters change.
See, for example, [33] for an extensive mathematical treatment of bifurcation
theory.
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cycle) emerges. The invariant circle may undergo bifurcations as well, turning
into a strange (chaotic) attractor. This means, if trend chasing parameter g
is large enough price will not settle down at the fundamental value but will
fluctuate around it.

But even when trend chasing is weak (i.e. g < 2(1 + r)) price needs not
converge to the fundamental value. There exists a region in parameter space
for which two attractors, a stable steady state and a stable (quasi)periodic
cycle or even a chaotic attractor, coexist (see figure 1, in this example the
dynamics on the ‘circle’ which surrounds the fundamental steady state is
quasiperiodic). Thus, it depends on the initial price if price will converge to
the fundamental value or not.17 18

So our nonlinear evolutionary system exhibits coexistence of a locally sta-
ble fundamental steady state and (quasi)periodic as well as chaotic fluctua-
tions of asset prices and returns. When buffeted with dynamic noise, in such a
case irregular switching occurs between close to the fundamental steady state
fluctuations and (quasi)periodic fluctuations triggered by technical trading.

In the next section we analyze time series properties of the model buf-
feted with noise and present an example where the endogenous fluctuations
in returns is characterized by volatility clustering.

4 Time Series Properties

We are interested in the statistical properties of time series generated by our
model and how they compare with those of real data. In particular, we are
interested in the autocorrelation structure of the returns, and absolute and
squared returns generated from the heterogeneous agents market equilibrium
model (14), (16), (17)—(19). Returns are defined as relative price changes,

rt =
pt+1 − pt

pt
. (22)

We focus on a typical example in which strong volatility clustering occurs,
with ‘EMH-believers’ (v = 1 in (10)) and technical traders. In the absence of

17 As a technical remark, [22] show that the mathematical generating mechanism for
these coexisting attractors is a so-called Chenciner or degenerate Hopf bifurcation
(see [33], pp. 404—408). Any (noisy) model with two coexisting attractors produces
some form of volatility clustering. We emphasize that the Chenciner bifurcation
is not special, but it is a generic phenomenon in nonlinear dynamic models with
at least two parameters.

18 Coexistence of attractors is a generic, structurally stable phenomenon, occurring
for an open set of parameter values. When the stable cycle disappears and the
system has a strange (chaotic) attractor intermittency occurs. Recent mathemat-
ical results on homoclinic bifurcations have shown that strange attractors are
persistent in the sense that they typically occur for a positive Lebesgue measure
set of parameter values, see e.g. [46] for a mathematical treatment.
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random shocks (εt ≡ δt ≡ 0), there are two coexisting attractors in the exam-
ple, a locally stable fundamental steady state and an attracting quasiperiodic
cycle, as illustrated in figure 1.19 Depending upon the initial state, the system
will settle down either to the stable fundamental steady state or to the stable
cycle.

Fig. 1. Top panel: Left figure: phase space projection of prices pt for deterministic
skeleton without noise, where pt is plotted against pt−1: coexisting limit cycle and
stable fundamental steady state p∗ = 1000 (marked as a square). Right figure:
corresponding time series along the limit cycle. Bottom panel: Time series of prices,
returns, and fractions of trend followers. Parameter values: β = 2, r = 0.001, v = 1,
g = 1.9, ȳ = 1, α = 1800, η = 0.99, aσ2 = 1, δt ≡ 0 and εt ≡ 0.

The time series of the deterministic skeleton of prices, returns, and frac-
tions of EMH believers along the cycle, as shown in the bottom pannel of fig-
ure 1, yield important insight into the economic mechanism driving the price
movements. Prices start far below the fundamental price p∗ = 1000. Since
the trend followers condition their trading rules upon the deviation from the
fundamental price, the market will be dominated by EMH believers. Prices
will slowly increase in the direction of the fundamental and the fraction of

19 The memory parameter for all simulations in this paper is η = 0.99, so that for the
strategy selection decision past realized profits are slowly discounted. Simulations
with other memory parameters yield similar results.
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trend followers starts increasing. As the fraction of trend followers increases,
the increase in prices is reinforced and trend followers earn a lot of money,
which in turn causes the fraction of trend followers to increase even more, etc.
At some critical phase from periods 283—288 prices rapidly move to a higher
level. During this phase returns increase and volatility jumps to a high value,
with a peak around period 286. As the price level moves to a high level of
about 1070 far above the fundamental price p∗ in period 288, the fraction of
trend followers drops to a low level of about 0.08, so that the market becomes
dominated by EMH believers again. Prices decrease and move slowly in the
direction of the fundamental price again20 with small negative returns close to
zero and with low volatility. Thereafter, the fraction of trend followers slowly
increases again, finally causing a rapid decrease in prices to a value of about
930, far below the fundamental, in period 640. Prices slowly move into the di-
rection of the fundamental again to complete a full price (quasi)cycle of about
700 periods. The price cycle is thus characterized by a period of small changes
and low volatility when EMH-believers dominate the market, and periods of
rapid increase or decrease of prices with high volatility. The periods of rapid
change and high volatility are triggered by technical trading; the conditioning
of their charts upon the fundamental prevents the price to move too far away
from the fundamental and leads to a new period of low volatility.

Adding dynamic noise to the system destroys the regularity of prices and
returns along the cycle and leads to an irregular switching between phases of
low volatility, with returns close to zero, and phases of high volatility, initiated
by technical trading. Figure 2 compares time series observations of the same
example buffeted with dynamic noise with daily S&P 500 data.21

Prices in our evolutionary model are highly persistent and close to having
a unit root.22 In fact, simulated price series including only a sample size of

20 In the case where all agents are EMH believers, the market equilibrium equation
without noise (13) reduces to pt = (pt−1+rp∗)/(1+r), which is a linear difference
equation with fixed point p∗ and stable eigenvalue 1/(1+r), so that prices always
move slowly into the direction of the fundamental. Notice also that when all agents
are EMH believers, the market equilibrium equation with noise (14) becomes
pt = (pt−1 + rp∗ + εt)/(1 + r), which is a stationary AR(1) process with mean
p∗ and root 1/(1 + r) close to 1, for r small. Hence, in the case when all traders
believe in a random walk, the implied actual law of motion is very close to a
random walk and EMH-believers only make small forecasting errors which may
be hard to detect in the presence of noise.

21 The noise level was chosen high enough to destroy the regularity in the price
series such that autocorrelations in returns become insignificant for lags higher
than one. But the noise should also not be too high in order not to destroy the
structure imposed by the deterministic part of the model.

22 For v = 1 and r = 0 the characteristic polynomial of the Jacobian at the steady
state has an eigenvalue equal to 1. Note that the Jacobian of a linear difference
equation yt = α0+

∑L

k=1
αkyt−k has an eigenvalue 1 if and only if the time series

yt = α0 +
∑L

k=1
αkyt−k + εt has a unit root equal to 1.
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Fig. 2. Daily S&P 500 data (left panel; prices: 07/11/1996—05/10/2000, returns:
08/17/1961—05/10/2000) compared with data generated by our model (right panel),
with dynamic noise εt ∼ N(0, 102) and other parameters as in figure 1: price series
(top panel) return series (middle panel), and autocorrelation functions of returns,
absolute returns, and squared returns (bottom panel).

1000 observations look ‘similar’ to real price series and the null hypothesis
of a unit root is not rejected, though the series is generated by a stationary
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model.23 24 The model price series exhibits sudden large movements, which
are triggered by random shocks and amplified by technical trading. (Notice
the big price changes between periods 650 and 750 in the right top panel when
prices are close to the fundamental p∗ = 1000, similar to the big changes in
the deterministic model, cf. figure 1.) When prices move too far away from
the fundamental value 1000, technical traders condition their rule upon the
fundamental and switch to the EMH-belief. With many EMH believers in the
market, prices have a (weak) tendency to return to the fundamental value.
As prices get closer to the fundamental, trend following behavior may become
dominating again and trigger another fast price movement. However, in con-
trast to the deterministic version of the model these big price movements do
not occur regularly.

The middle panel of figure 2 compares return series of the S&P 500 over
40 years (where the October 1987 crash and the two days thereafter have been
excluded25) with return series including 10000 observations generated by our
model. The simulated return series is qualitatively similar to the S&P 500
daily return series and exhibits clustered volatility.

Table 1 shows some descriptive statistics for both return series. The means
and medians of both return series are close to 0 and the range and standard de-
viations are comparable in size. The S&P 500 returns have negative skewness,
which is not the case in our example.26 This should not come as a surprise,
because our simple stylized model is in fact symmetric around the fundamen-
tal steady state equilibrium, since both type of traders behave symmetrically
with respect to high or low prices and with respect to positive or negative
changes in prices. Finally, both return series show excess kurtosis, though
the kurtosis coefficient of our example is smaller than the coefficients for the
S&P 500 returns. This may be due to the fact that in our simple evolutionary
system chartists’ price expectations are always conditioned upon the same
distance function of price deviations from the fundamental price, i.e. upon

23 For the price series presented in figure 2 test statistics for the simulated series are:
Augmented Dickey-Fuller: −0.8237 (S&P 500: −1.1858), Phillips-Perron: −0.8403
(S&P 500: −1.2238). The MacKinnon critical values for rejection of the hypothesis
of a unit root are: 1%: −3.4396, 5%: −2.8648, 10%: −2.5685.

24 Notice that for price series with only 1000 observations the assumption of a sta-
tionary fundamental value seems quite reasonable. Whereas, if we would like to
compare longer price series with real data we have to replace our IID dividend
process by a non-stationary dividend process, e.g. by a geometric random walk.
We intend to study such non-stationary evolutionary systems in future work.

25 The returns for these days were about −0.20, +0.05, and +0.09. In particular,
the crash affects the autocorrelations of squared S&P 500 returns, which drop to
small values of 0.03 or less for all lags k ≥ 10 when the crash is included.

26 Skewness statistics are not significant nor of the same sign for all markets. Nev-
ertheless, some authors examine the skewness in addition to excess kurtosis. [26]
argue that skewness may be important in investment decisions because of induced
asymmetries in realized returns.



A Nonlinear Model for Volatility Clustering 17

the weighted distance (p2t−1 − p∗)2/α as described by (18). Nevertheless, our
simple stylized evolutionary model clearly exhibits excess kurtosis.

Table 1. Descriptive statistics for returns shown in figure 2. (**) null hypothesis
of normality rejected at the 1% level.

S&P 500 Simulation

Mean 0.000348 0.000076
Median 0.000214 0.000028
Maximum 0.051152 0.065194
Minimum −0.082789 −0.070051
Std. Dev. 0.008658 0.011038
Skewness −0.187095 (**) 0.044317
Kurtosis 8.512094 (**) 5.579890 (**)

We next turn to the time series patterns of returns fluctuations and the
phenomenon of volatility clustering. In real financial data autocorrelation
functions (ACF) of returns are roughly zero at all lags. For high frequen-
cies they are slightly negative for individual securities and slightly positive
for stock indices. Autocorrelations functions of volatility measures such as ab-
solute or squared returns are positive for all lags with slow decay for stock
indices and a faster decay for individual stocks. This is the well-known stylized
fact known as volatility clustering.

Figure 2 (bottom panel) shows autocorrelation plots of the first 50 lags of
the return series and the series of absolute and squared returns. Both return
series have significant, but small autocorrelations at the first lag (ρ1 = 0.092
for the S&P 500 and ρ1 = 0.099 for our example). For the S&P 500 the
autocorrelation coefficient at the second lag is insignificant and at the third
lag slightly negative significant (ρ2 = 0.005, ρ3 = −0.025), whereas in our
simulation the autocorrelation coefficient is small but significant at the second
lag (ρ2 = 0.070) and insignificant for the third lag (ρ3 = 0.007). For all higher
order lags autocorrelations coefficients are close to zero and almost always
insignificant. Our noisy conditional evolutionary model thus has almost no
linear dependence in the return series.27

The bottom panel in figure 2 also shows that for the absolute and squared
returns the autocorrelations coefficients of the first 50 lags are strongly sig-
nificant and positive. Although our model is only six dimensional it is able to
generate apparent long memory effects. Table 2 reports the numerical values

27 [10] calibrate their evolutionary asset pricing model to ten years of monthly IBM
prices and returns. They present (noisy) chaotic time series with autocorrelations
of prices and returns similar to the autocorrelation structure in IBM prices and
returns. In particular, the noisy chaotic return series have (almost) no significant
autocorrelations. However, these series do not exhibit volatility clustering, since
there are no significant autocorrelations in squared returns.
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of the autocorrelation coefficients at the first 5 lags, which are comparable in
size for both series.

Table 2. Autocorrelations of the absolute and squared returns shown in figure 2.

S&P 500 Simulation

lag n |rt| r2t |rt| r2t

1 0.179 0.190 0.193 0.219
2 0.158 0.144 0.156 0.123
3 0.153 0.133 0.147 0.127
4 0.164 0.126 0.131 0.112
5 0.186 0.122 0.124 0.098

Finally, we estimate a simple GARCH(1,1) model on the return series.28

As is well known, for many financial return series the sum of the ARCH(1)
coefficient γ1 and the GARCH(1) coefficient γ2 is smaller than but close to
unity, representing the fact that the squared error term in the return equation
follows a stationary, but highly persistent process. The estimated parameters
are given in table 3.

Table 3. GARCH(1,1) estimations for the returns shown in figure 2.

γ1 γ2 γ1 + γ2

S&P 500 0.069 0.929 0.998
Simulation 0.034 0.963 0.997

Our conditional evolutionary model thus exhibits long memory with long
range autocorrelations and captures the phenomenon of volatility clustering.

Let us finally briefly discuss the generality of the presented example. In
order to get strong volatility clustering, the parameter v = 1 (or v very close
to 1) is important, but the results are fairly robust with respect to the choices
of the other parameter values.29 We find volatility clustering also for para-
meters where the fundamental value is a globally stable steady state. For
parameter values close to the region where a stable steady state and a stable
limit cycle coexist, price paths only converge slowly towards the fundamental
value and look similar to price paths converging to a limit cycle. Especially,

28 The estimations are done with EViews.
29 As mentioned above, for v = 1 the system is close to having a unit root and

prices are highly persistent (cf. footnotes 22 and 23). [20] presents an example of
strong volatility clustering for v = 0.9 for shorter time series. However, the null
hypothesis of a unit root is clearly rejected.
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when the system is buffeted with dynamic noise it is difficult to decide if
parameters are chosen in or out of the global stability region.

In general, when 0 ≤ v < 1 volatility clustering becomes weaker, and
sometimes also significant autocorrelations in returns may arise. The fact that
v = 1 or v very close to 1 (so that type 1 are EMH-believers or fundamen-
talists adapting only slowly into the direction of the fundamental), yields the
strongest volatility clustering results may be understood as follows. When
EMH-believers dominate the market asset prices are highly persistent and
mean reversion is weak, since the evolutionary system is close to having a unit
root (see footnote 20). Apparently, the interaction between unit root behav-
ior far from the fundamental steady state with relatively small price changes
driven only by exogenous news, and larger price changes due to amplification
by trend following rules in some neighborhood around the fundamental price
yields the strongest form of volatility clustering. We emphasize that all these
results have been obtained for an IID dividend process and a corresponding
constant fundamental price p∗. Including a non-stationary dividend process
and accordingly a non-stationary time varying fundamental process p∗t may
lead to stronger volatility clustering also in the case 0 ≤ v < 1. We leave this
conjecture for future work.

5 Concluding Remarks

We have presented a nonlinear structural model for volatility clustering. Fluc-
tuations in asset prices and returns are caused by a combination of ran-
dom news about economic fundamentals and evolutionary forces. Two typical
trader types have been distinguished. Traders of the first type are fundamen-
talists (‘smart money’ traders), believing that the price of an asset returns
to its fundamental value given by the discounted sum of future dividends or
‘EMH-believers,’ believing that prices follow a random walk. Traders of the
second type are chartists or technical analysts, believing that asset prices are
not solely determined by fundamentals, but that they may be predicted in
the short run by simple technical trading rules based upon patterns in past
prices, such as trends or cycles. The fraction of each of the two types is de-
termined by an evolutionary fitness measure, given by accumulated profits,
conditioned upon how far prices deviate from their fundamental value. This
leads to a highly nonlinear, conditionally evolutionary learning model buffeted
with noise.

The time series properties of our model are similar to important stylized
facts observed in many real financial series. In particular, the autocorrelation
structure of the returns and absolute and squared return series of our noisy
nonlinear evolutionary system are similar to those observed in daily S&P 500
data, with little or no linear dependence in returns and high persistence and
long memory in absolute and squared returns. Although the model is simple,
it captures the first two moments of the distribution of real asset returns. Our



20 Andrea Gaunersdorfer and Cars Hommes

model thus might serve as a good starting point for a structural explanation
— by a tractable model — of further stylized facts in finance, such as cross
correlation between volatility and volume.

The generic mathematical mechanism generating volatility clustering is
the coexistence of a stable fundamental steady state and a stable (quasi)perio-
dic cycle. But there is also a strikingly simple economic intuition of why the
phenomenon of volatility clustering should in fact be expected in our con-
ditionally evolutionary system. When EMH-believers dominate the market
prices are highly persistent, changes in asset prices are small and only driven
by news, returns are close to zero and volatility is low. As prices move towards
the fundamental, the influence of trend followers gradually increases, which
reinforces the price trend. When trend followers start dominating the market,
a rapid change in asset prices occurs with large (positive or negative) returns
and high volatility. The price trend cannot persist forever, since prices cannot
move away too far from the fundamental because technical traders condition
their charts upon the fundamental. In the noisy conditionally evolutionary
system both, the low and the high volatility phases, are persistent and the
interaction between the two phases is highly irregular. The nonlinear interac-
tion between heterogeneous trading rules in a noisy environment thus causes
unpredictable asset returns and at the same time volatility clustering and the
associated predictability in absolute and squared returns.

Our model is also able to explain empirical facts like ‘fat tails,’ i.e. it gen-
erates excess kurtosis in the returns. This is due to the fact that the model
implies a decomposition of returns into two terms, one martingale difference
sequence part according to the conventional EMH theory, and an extra specu-
lative term added by the evolutionary theory. The heterogeneity in the model
thus creates excess volatility.

However, because of the simplicity of the model there are also some short-
comings compared to real financial data, which we would like to discuss briefly.
Our model does not generate return series which exhibit strong skewness. This
is due to the fact that our agents use trading rules which are exactly sym-
metric with respect to the constant fundamental value of the risky asset. As
a consequence, the evolutionary model is also symmetric with respect to the
fundamental price. Another shortcoming is that our model is stationary and
therefore it is not able to generate long growing price series. By replacing our
IID dividend process by a non-stationary dividend process, e.g. by a geomet-
ric random walk, prices will also rapidly increase, similar to real series. We
intend to study such non-stationary models within the presented framework
in future work.30

Other important topics for future work are concerned with the welfare
implications and the wealth distribution of our heterogeneous agents economy.
What can be said about the total wealth in a multi-agent financial market
where prices may (temporary) deviate from their fundamental compared to

30 [29] contains some simulations of the model with a non-stationary fundamental.
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the RE benchmark? How will wealth be distributed among traders? What
would be an optimal investment strategy, a fundamentalists strategy, a trend
following strategy or a switching strategy, in such a heterogeneous world?
Notice that these are nontrivial questions, because although the number of
trading types or strategies is only two in our setup, an underlying assumption
of the discrete choice model for strategy selection is that the number of traders
in the population is large, in fact infinite. To investigate wealth dynamics one
thus has to keep track of the wealth distribution over an infinite population
of traders. One could of course consider hypothetical wealth generated by a
trader always sticking to the same type or strategy, but in our evolutionary
world the majority of traders switch strategy in each time period based upon
accumulated realized profits in the recent past. Addressing these important
issues is beyond the scope of the present paper, but we plan to study welfare
implications and wealth dynamics in future work.

In our model excess volatility and volatility clustering are created or rein-
forced by the trading process itself, which seems to be in line with common
financial practice. If the evolutionary interaction of boundedly rational, spec-
ulative trading strategies amplifies volatility, this has important consequences
for risk management and regulatory policy issues in real financial markets.
Our model predicts that ‘good’ or ‘bad’ news about economic fundamentals
may be amplified by evolutionary forces. Small fundamental causes may thus
occasionally have big consequences and trigger large changes in asset prices.
In the time of globalization of international financial markets, small shocks in
fundamentals in one part of the world may thus cause large changes of asset
prices in another part of the world. Our simple structural model shows that a
stylized version of this theory already fits real financial data surprisingly well.
Our results thus call for more financial research in this area to build more re-
alistic models to asses investors’ risk to speculative trading and evolutionary
amplification of changes in underlying fundamentals.
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