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Abstract

This note discusses complexity models in economics. A key feature of these models

is that agents have heterogeneous expectations, disciplined by adaptive learning and

evolutionary selection. Agents adapt their rules based upon past observations and

switch between different forecasting heuristics based upon strategy performance. We

discuss how these models match empirical facts as well as laboratory experiments

with human subjects and how this approach may tame the “wilderness of bounded

rationality”.
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A paradigm shift in economics is taking place. In traditional, neoclassical economics a

representative agent who behaves perfectly rational has been the main working hypoth-

esis and mathematical analysis of simple tractable models its main focus. A problem

with this approach is that it requires unrealistically strong assumptions about individual

behavior, such as perfect knowledge and information about the economy and extremely

high computational abilities to do what is optimal. An advantage of the neoclassical re-

search program, partly explaining its success, is that rationality imposed through optimiz-

ing behavior and model consistent expectations enforces strong discipline on the modeling

framework leaving no room for market psychology and unpredictable, irrational behavior.

An alternative complexity view is now emerging, based on interaction of many het-

erogeneous agents, whose behavior is only boundedly rational. In this new behavioral

agent-based approach, computer simulation models are the main modeling framework.

An advantage is that it becomes possible to describe in detail individual behavior at the

micro level based on realistic assumptions. The Santa Fe conference proceedings Ander-

son et al. (1988) and Arthur et al. (1997a) contain many contributions within the com-

plexity view. The recent Handbook of Computational Economics (Tesfatsion and Judd

(2006)) contains many chapters describing the state of the art of agent-based economics.

There is however still an important problem with the bounded rationality research pro-

gram: it leaves too many degrees of freedom. There is only one way (or perhaps a few

ways) one can be right, but there are many ways one can be wrong. To turn the alterna-

tive view into a successful research program, one has to “tame the wilderness of bounded

rationality”.

A key feature that distinguishes economics from natural sciences is that market real-

izations depend on future expectations and, at the same time, expectations about future

developments are based on current and past realizations. An economy is an expectations

feedback system in which beliefs and realizations co-evolve. Agents are “smart” and will

2



adapt their behavior if it benefits them. If all agents are perfectly rational, in equilibrium

individual expectations and realizations must coincide on average, leading to the neo-

classical representative rational agent model. But if agents are heterogeneous and only

boundedly rational, one needs a convincing theory of heterogeneous expectations. In this

note we discuss, a simple story of heterogeneous expectations and some empirical and ex-

perimental validation. Agents can choose from a class of simple heuristics disciplined by

adaptive learning and evolutionary selection. An extensive recent survey of this approach

including many references to related work can be found in Hommes (2006).

This note is organized as follows. Section 1 describes a simple example, an asset

pricing model with heterogeneous beliefs, and illustrates how the asset price dynamics

may become unstable when expectations are driven by reinforcement learning based on

past strategy performance. Section 2 discusses the empirical validity of a simple version

of the model with two types of traders, fundamentalists and technical analysts, and how it

explains the “dot com bubble” in stock prices in the late 1990s. Section 3 discusses how

this approach matches the stylized facts of learning to forecast laboratory experiments

with human subjects. Finally, Section 4 briefly describes a future perspective.

1 An asset pricing model with heterogeneous beliefs

As a simple example of a model with heterogeneous expectations we consider the asset

pricing model with heterogeneous beliefs of Brock and Hommes (1998). This model

may be viewed as a simple stylized version of the Santa Fe artificial stock market model

introduced by Arthur et al. (1997b). Agents can invest in a risk free asset that pays a fixed

return 1+ r or in a risky asset that pays uncertain dividends yt in each period. The market
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clearing pricing equation is given by

(1+ r)pt =
H

∑
h=1

nhtEht(pt+1 +yt+1)+ εt , (1)

where pt is the price of the risky asset, nht the (time varying) fraction of trader type h,

Eht(·) the belief of type h about next period’s price plus dividend, and εt a noise term

representing e.g. a small fraction noise traders. In the special case when all agents are

rational the asset price will be equal to the rational, fundamental benchmark p∗t , given by

the discounted sum of expected future dividends

p∗t =
Et [yt+1]

1+ r
+

Et [yt+2]
(1+ r)2 + · · ·

This fundamental benchmark is nested as a special case within the general heterogeneous

agent model. In the case of IID dividends with mean ȳ, the fundamental price becomes

constant, p∗ = ȳ/r. Assuming that the beliefs about future dividends are correct (e.g.

because they can be inferred from past observations of the exogenous dividend process),

the model can be rewritten in deviations xt = pt− p∗ from the fundamental and simplifies

to:

(1+ r)xt =
H

∑
h=1

nhtEhtxt+1 + εt . (2)

Strategy choice follows an evolutionary selection principle, that is, “strategies that have

performed better attract more followers”. This can be modeled in several ways, but we

follow Brock and Hommes (1997) where the fractions of belief type h are determined by

the discrete choice model (a random utility model)

nht =
eβUh,t−1

Zt−1
, (3)
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where Zt−1 = ∑ j eβU j,t−1 is normalization factor and Uh,t−1 measures the past performance

or fitness (e.g. realized profits, forecasting performance, etc.) of strategy h. The parameter

β is the intensity of choice measuring the sensitive of agents to differences in strategy

performance. In the extreme case β = 0, agents behave randomly and all fraction types

are fixed with equal weights; at the other extreme, β = ∞, all agents immediately switch

to the best predictor (the “neoclassical limit”).

Which ones out of an ocean of possible forecasting rules will agents use? In a real

market, it seems unlikely that many agents will coordinate on a very complicated rule.

Therefore, we use simple rules, such as linear rules with only one time lag (written in

deviations xt−1 = pt−1− p∗ from the fundamental):

fht = p∗+ghxt−1 +bh,

where gh is a trend parameter and bh a bias parameter. Another simple rule not using any

fundamental price information is the trend extrapolating rule

fht = pt−1 +gh(pt−1− pt−2),

which simply extrapolates the last price change. So far, the parameters in the forecasting

rules have been fixed, but one can introduce adaptive learning to learn the parameters

over time. For example, agents may update forecasting parameters by sample average

or by employing a recursive ordinary least squares scheme (OLS-learning), as additional

observations become available (see e.g. Evans and Honkapohja (2001) for an extensive

treatment of adaptive learning in macroeconomics and Sargent (2007) for a recent discus-

sion of the importance of learning in macroeconomics and monetary policy).

Figure 1 shows simulations of the price fluctuations in an example with four belief

types, including fundamentalists and trend followers, and fitness given by last period’s
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Figure 1: Chaotic (top) and noisy chaotic (bottom) time series of asset prices (in deviations from
the fundamental price) in and example with four trader types. Prices fluctuate irregularly around
the benchmark fundamental price (which corresponds to 0). Parameters are: g1 = 0, b1 = 0;
g2 = 1.1, b2 = 0.2; g3 = 0.9, b3 =−0.2 and g4 = 1.21, b4 = 0, r = 0.1 and β = 90.

realized profits. When the intensity of choice is small, the steady state is typically stable

and the asset prices converges to the fundamental benchmark. Intuitively this may be un-

derstood by observing that for small intensity of choice, agents are more or less randomly

distributed over the different strategies, and as a result the average forecast is close to

the fundamental enforcing convergence to the fundamental price. In contrast, when the

intensity of choice is large agents typically coordinate on a common strategy and the dy-

namics destabilizes. In particular, coordination on a trend following strategy may occur,

leading to persistent price deviations from fundamental. Indeed the asset pricing dynam-

ics in Figure 1 is characterized by irregular switching between phases of close to the

fundamental price fluctuations with fundamentalists dominating the market and phases of

temporary bubbles when trend following strategies dominate the market. Excess volatility

and temporary bubbles are driven by short run profit opportunities. The noisy simulation

illustrates that even in this simple model the start and burst of the temporary bubbles are

highly unpredictable.
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Figure 2: Time series of the log of S&P 500, 1871-2003 and the benchmark fundamental
for a dividend process with constant growth rate.

2 Empirical validation

How relevant are these bubble and crash dynamics to real financial market data? We

briefly discuss the estimation of a simple version of the model with two types of agents,

using yearly S&P 500 data; see Boswijk et al. (2007) for a detailed analysis.

Figure 2 shows the logs of yearly S&P 500, 1871-2003, and a benchmark fundamental

price based on dividends with a constant growth rate g. This is the standard Gordon model

and the fundamental benchmark is given by

p∗t =
1+ r
r−g

yt ,

where g is the growth rate of dividends and r is the required rate of return for investors to

hold the risky asset (given by the sum of the risk premium to hold stocks and the risk free

interest rate). The corresponding fundamental price to cash flow ratio δ ∗t = p∗t
yt

= 1+r
r−g = m

is constant along the fundamental (the right plot in Figure 2 allows for one jump in the

fundamental in 1950, due to a jump in the risk premium; see e.g. Fama and French

(2002)). Figure 2 shows that the realized price-dividend ratio shows large swings around

the fundamental benchmark, fluctuating between 10 and 30 for more than a century, rising

to unprecedented values of almost 90 in the 1990s, and coming down to values below 60
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in recent years.

There are two competing views concerning the explanation of swings in price-to-cash

flows. Some attribute them to rational responses to macroeconomic fundamentals, while

others judge that irrational swings in investor sentiment play a significant role. Shiller

(2001) gives a lucid description of both views, stressing the relevance of psychological

factors.

Boswijk et al. (2007) estimated a simple two-type model of the form

R∗xt = ntφ1xt−1 +(1−nt)φ2xt−1 + εt , (4)

where R∗ = (1 + r)/(1 + g), xt = δt −m is the deviation of the price-to-cash flow from

the fundamental, nt and (1− nt) are the fractions of the two types (depending on past

realized profits) and φhxt−1, h = 1,2, are the forecasts of the two types of next period’s

deviation from the fundamental (only the first lag was significant). The estimation results

yield significant estimates φ1 = 0.76 and φ2 = 1.14, implying that type 1 are fundamen-

talists believing in mean reversion of the price towards its fundamental value, while type

2 are trend followers, believing that the price bubble will continue. Figure 3 shows the

time variation of the estimated fraction nt of fundamentalists. Significant heterogeneity

with strategy switching and large fluctuations in the fractions of both types occur. In par-

ticular, one observes a low fraction of fundamentalists for 5 or 6 subsequent years in the

late 1990s. The average coefficient φt = {ntφ1 +(1− nt)φ2}/R∗ in Figure 3 shows that

market sentiment fluctuates considerably over the years, with average traders believing in

explosive asset prices in the late 1990s. This simple model explains the “dot com bub-

ble” in the late nineties as being triggered by fundamentals, in the form of good news (a

new technology) about the economy, and strongly amplified by trend following strategies

based on reinforcement learning driven by short run profits.

The PD-ratio has come down to values below 60 in recent years, and one may ask
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Figure 3: Time series of the estimated fraction nt of fundamentalists (left panel) and
average market sentiment φt = {ntφ1 +(1−nt)φ2}/R∗ (right panel).
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Figure 4: Quantiles of 2000 simulated predictions of the PD-ratio for the nonlinear evo-
lutionary switching model (left) and the linear, representative agent model (right). Both
models are estimated using data until 2003 and then predict up to 5 years ahead.
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the question: Will the bubble resume? Figure 4 shows predicion of both the nonlinear

model with strategy switching and the linear model with a representative fundamental-

ist, believing in average mean reversion. Clearly the nonlinear switching model predicts

much larger swings in price-to-cash flow fluctuations of asset prices than its linear, repre-

sentative agent counterpart.

3 Learning to Forecast Experiments

Laboratory experiments with human subjects are well suited to discipline the “wilderness

of bounded rationality”. In laboratory markets with carefully controlled market funda-

mentals one can investigate which behavioral rules are more likely to be used by human

subjects in different market environments. In this section we briefly discuss laboratory

experiments on expectations formation in the asset pricing framework of the previous

sections. We address the following questions:

• How do boundedly rational agents form expectations and how do they learn in a

heterogeneous world?

• How do individual forecasting rules interact and what is the aggregate outcome of

individual interaction?

• Will coordination occur, even when there is limited market information?

• Does learning enforce convergence to rationality?

Hommes et al. (2005) performed learning to forecast experiments in an asset pricing

framework similar to that used in Sections 1 and 2. Six human subjects have to forecast

the price of a risky asset for 50 periods, and their payment is inversely related to their

forecasting errors. There is expectations feedback, since the realized market price is de-

termined by aggregation of individual forecasts. After all individual make a forecast, the
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computer computes a market clearing price derived from standard mean-variance maxi-

mization demand functions using the individual forecasts as inputs. Since subjects only

forecast and trading is completely computerized, agents may be viewed as rational op-

timizers, given their individual forecasts. Such a laboratory environment thus produces

“clean data” on expectations, and one can test various expectations hypotheses. Except

for the six subjects, there is a 7th robot trader in the market, who always predicts the fun-

damental price and whose weight increases (from 0 to at most 0.2) when prices deviate

more from fundamental.

Subjects thus have limited information about the market. They are told that they are

advisors to a pension fund, which will invest more in the risky asset, when the subject

makes a higher forecast. They also know that the asset price is determined by market

clearing. From the qualitative market information, subjects should be able to understand

that the asset market exhibits positive feedback, that is, higher forecasts lead to higher re-

alized market prices. Subjects also know the interest rate r = 0.05 and the mean dividend

ȳ = 3, and could use these to compute the fundamental price p f = ȳ/r = 60. Furthermore

in forecasting pt+1, they know past realized prices (up to pt−1), their own past forecasts

(up to pe
t,h) and their own earnings (up to et−1,h). However, subjects do not know market

equilibrium equations, the forecasts of others and the number of pension funds in the mar-

ket. The information in these experiments is therefore similar to what is often assumed in

models with boundedly rational traders.

The (unknown) price generating process is given by

pt =
1

1+ r

(
(1−nt)

pe
t+1,1 + · · ·+ pe

t+1,6

6
+nt p f + ȳ+ εt

)
, (5)

where nt is the share of robot traders given by

nt = 1− exp
(− 1

200 |pt−1− p f |), (6)
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pe
t+1,h, 1≤ h≤ 6, are the individual forecasts and εt is a small noise term. If all subjects

would forecast rationally and use the fundamental price of 60 as their individual forecast,

the realized market prices would be close to 60 with small random fluctuations around it.

This is perhaps not what one would expect right from the start in a market with limited

information, but an interesting question is whether the market price will at least converge

to the fundamental price. It is useful to briefly mention to other homogeneous agents

benchmarks. If all subjects would use naive expectations, that is, use the last price ob-

servation to forecast pe
t+1 = pt−1, starting say with an initial forecast of 50, then realized

market prices will converge monotonically to the fundamental price 60. If on the other

hand all subjects use a simple trend extrapolation rule

pe
t+1 = (pt−1 +60)/2+(pt−1− pt−2), (7)

then prices will fluctuate around the fundamental for 50 periods (about six oscillations).

One may wonder how individual subjects would arrive at such a rule, but remarkably

estimation of the forecasting rules showed that a number of individuals use a rule very

similar to (7).

Figure 5 shows some typical outcomes of realized prices (left panel) and individual

forecasts (right panel). Three qualitatively different patterns are observed: (i) monotonic

convergence, (ii) permanent oscillations, and (iii) dampened oscillations. Monotonic con-

vergence is very similar to what would happen if all subjects use a naive forecast. The

permanent oscillations are similar to what would happen if all subjects use a simple lin-

ear AR2 rule such as (7). In the third case of dampened oscillations a strong price trend

emerges in the beginning of the experiment, but the strong trend gets weaker and reverses

when prices deviate too much from their fundamental value. Another striking feature of

the experiment is that in all cases there is strong coordination on a common prediction

rule, as illustrated in the right panel of Figure 5. Coordination however is path dependent,
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Figure 5: Three typical outcomes of realized prices (left panel) and individual forecasts
(right panel) of the learning to forecast laboratory experiments: (i) monotonic conver-
gence, (ii) permanent oscillations, and (iii) dampened oscillations.

since different qualitative outcomes are observed in different markets.

Estimation of individual prediction rules shows that for most subjects (more than 90%)

forecasting is well explained by a simple linear model with no more than three lags in

prices and individual forecasts. In fact, for a majority of subjects (more than 50%) a

simple rule with only one or two lags fits the forecasting behavior very well. Some simple

rules that have been estimated include:

• adaptive expectations pe
t+1 = w pt−1 +(1−w) pe

t (in converging groups);

• linear rules pe
t+1 = α +β1 pt−1 +β2 pt−2 (in oscillating groups)

• trend-extrapolating rules pe
t+1 = pt−1 + γ (pt−1− pt−2) (in oscillating groups).

In order to explain these experiments Anufriev and Hommes (2007) recently developed a

heuristics switching model. There are a number of simple heuristics and in the beginning
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agents choose heuristics randomly. Agents evaluate the past performance of these heuris-

tics based on forecasting accuracy, and subsequently tend to switch to more successful

heuristics. Figure 6 shows simulations of the heuristics switching model reproducing the

three different patterns observed in the laboratory experiments.

The four forecasting heuristics used in the simulations are adaptive expectations, a

weak and a strong trend-extrapolating rule and an anchoring and adjustment heuristic

pe
4,t+1 = 0.5 pav

t−1 +0.5 pt−1 +(pt−1− pt−2), (8)

where pav is the sample average of all past prices. This rule uses an anchor (the average

of the last observed price and the sample average) and extrapolates a trend from there.

Following the terminology of Tversky and Kahneman (1974), it may be viewed as a fore-

casting anchoring and adjustment heuristic.

The price dynamics in hte heuristics switching model is given by

pt =
1

1+ r f

((
n1,t pe

1,t+1 +n2,t pe
2,t+1 +n3,t pe

3,t+1 +n4,t pe
4,t+1

)×

× (1−nt)+ p f nt + ȳ+ εt

)
.

(9)

The fractions nh,t , 1≤ h≤ 4, of the 4 heuristics are determined by a discrete choice model

with asynchronous updating

ni,t = δ ni,t−1 +(1−δ )
exp(β Ui,t−1)

∑4
i=1 exp(β Ui,t−1)

, (10)

with the fitness measure given by (minus) squared prediction errors, i.e.

Ui,t−1 =−(
pt−1− pe

i,t−1
)2 +η Ui,t−2. (11)
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Figure 6: Simulations of the heuristics switching model. Prices (Left) for laboratory
experiments (red) and evolutionary model (green). Fractions (Right) of four forecasting
heuristics: adaptive expectations (ADA, purple), weak trend followers (WTR, green),
strong trend followers (STR, blue) and anchoring adjustment heuristic (A&A, red). The
simulations only differ in initial price forecasts and initial distribution of strategies.
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The parameter η ∈ [0,1] represents the memory strength in the fitness measure, the param-

eter δ ∈ [0,1] represents the inertia of traders’ switching behavior (in each period, only

a fraction 1− δ of traders will switch strategy) and the parameter β ≥ 0 is the intensity

of choice as before. The fraction nt of robot traders evolves according to (6), as in the

experiment.

The only difference in the simulations of Figure 6 are the initial price forecasts and

the initial distribution over the four heuristics. Trends in realized market prices are more

likely when the initial fractions of the weak and strong trend followers are sufficiently

large. Interestingly, the anchoring and adjustment heuristic is important in keeping the

fluctuations alive, since in both the permanent and the dampened oscillatory cases their

fractions becomes large (more than 80%). Coordination of individual forecasts on simple

forecasting heuristics thus explains the three different observed aggregate market out-

comes. Oscillations may be triggered by initial prices and small random shocks, are

reinforced when the initial fraction of weak and strong trend heuristics is relatively large

and may be sustained by the anchoring adjustment heuristic.

4 Concluding Remarks

We have discussed a simple theory of heterogeneous market expectations, in which bounded

rationality is disciplined through simple heuristics, adaptive learning and evolutionary se-

lection. This theory matches important stylized facts in financial market, such as excess

volatility and (temporary) bubbles and crashes. In particular, coordination on trend fol-

lowing strategies, driven by experience based reinforcement learning, may strongly am-

plify a rise or decline in asset prices triggered by fundamental news. As we have seen,

the theory matches for example the “dot com” bubble in stock prices in the late 1990s.

The theory is also consistent with learning to forecast laboratory experiments with human

subjects and explains observed path-dependent stable and unstable outcomes. In particu-
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lar, laboratory experiments confirm that coordination on simple trend following strategies

may occur and lead to persistent deviations from fundamental and fluctuations in asset

prices.

In future work the theory should be tested in different market environments. Complex-

ity models in economics are often based on heterogeneous expectations, and a satisfactory

theory of heterogeneous expectations is therefore necessary for a successful research pro-

gram on bounded rationality, complexity, agent based economics and evolution.
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