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Abstract

The purpose of this note is to show how Leitmann’s equivalent problem approach ties in
with the classical notions of the Calculus of Variations, and how it can be exploited to give a
rapid and elegant approach to Weierstrass’ theory of sufficient conditions. Both fixed and free
endpoint conditions are considered.
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1 Introduction
George Leitmann has introduced a method of transforming a calculus of variations problem
into an equivalent, and possibly simpler, form (Leitmann, 1967, 2001). This method consists of
performing a coordinate transformation of the state space, followed by a transformation to an
equivalent variational problem, in the sense of Carathéodory, by subtracting a null Lagrangian,
that is, a total derivative of a function that depends on time and space. Carlson and Leit-
mann have recently pointed out that the equivalent problem takes a particularly simple form
if the coordinate transformation is furnished by a field of extremals (Carlson and Leitmann,
2008a,b); in fact, they obtain the so-called Weierstrass representation formula (see Giaquinta
and Hildebrandt, 1996, chapter 6, p. 333) with a particular simple form of the Weierstrass
excess function.

The elements of this approach are well-known. Euler himself already noted the covariance
of the Euler-Lagrange equation under coordinate transformations (see Euler, 1744, chapter IV),
Weierstrass introduced fields (Kneser, 1900; Weierstrass, 1927) and Carathéodory formulated
his “royal road” approach using equivalent variational problems (Carathéodory, 1935). It how-
ever appears that the natural idea to view the field of extremals as a coordinate transformation
is a new contribution to the classical theory.
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2 Equivalences of variational problems
George Leitmann has introduced a method of transforming a calculus of variations problem

into an equivalent, and arguably simpler, form (Leitmann, 1967, 2001), complemented by
Carlson’s discussion in (Carlson, 2002). I shall discuss his method in the context of minimising
a functional

J(x) =
∫ b

a
L(t, x, ẋ) dt. (1)

where x is a continuous and piecewise continuously differentiable vector-valued function on
the interval [a, b] ⊂ R, notation x ∈ PC1([a, b], Rm). That is, there are points a = t1 <
· · · < tn = b such that on the intervals (ti, ti+1), i = 1, · · · , n − 1, the derivative ẋ exists
and is a differentiable functions. The function L is assumed to be at least C3 on the open
set O × Rm ⊂ R× Rm × Rm.

The case of fixed boundary conditions x(a) = α and x(b) = β is investigated first; subse-
quently, the extension to free boundary conditions is made.

In this note, the derivative of a function L with respect to a variable x is indicated by Lx;
that is, Lxξ =

∑m
i=1 Lxiξ

i; a consequence of this notation is that

Lxvξη =
m∑

i=1

m∑
j=1

Lxivjξ
jηi =

m∑
j=1

m∑
i=1

Lvjxiη
iξj = Lvxηξ. (2)

Attention will be restricted to the case that the integrand L is C2, and that for fixed values of
(t, x), the map v 7→ L(t, x, v) has a positive definite Hessian matrix Lvv(t, x, v).

2.1 Two notions of equivalence. Leitmann’s notion generalises the notion of equivalent
variational problems introduced by Carathéodory Carathéodory (1935).

Let two points (a, α), (b, β) ∈ R×Rm be given, as well as an open and simply connected
set R ⊂ (a, b)× Rm which is such that (a, α) and (b, β) are contained in the closure R̄ of R,
and such that R̄ ⊂ O. Introduce the sets Rt = {x ∈ Rm | (t, x) ∈ R}, and note that Rt is open
for every t ∈ (a, b). Define

A =
{

x ∈ PC1([a, b], Rm)
∣∣∣

x(t) ∈ Rt for all t ∈ (a, b), x(a) = α, x(b) = β
}

.

Moreover, let another open set R∗ ⊂ (a, b) × Rm and a diffeomorphism Ξ be given which
maps an open set O∗ containing R∗ diffeomorphically onto O, and which is such that

Ξ(t, x) = (t, ξ(t, x)). (3)

The conditions on Ξ will be weakened somewhat in section 4. Finally, let α∗ and β∗ be such
that ξ(a, α∗) = α and ξ(b, β∗) = β, and define

A∗ =
{

y ∈ PC1([a, b], Rm)
∣∣∣

y(t) ∈ R∗
t for all t, y(a) = α∗, y(b) = β∗

}
.

Define the operator X : A∗ → A by setting (Xy)(t) = ξ(t, y(t)), and note that X maps A∗

bijectively onto A.
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Definition 2.1
Let Ξ, A and A∗ be as above. The functionals J : A → R and J∗ : A∗ → R, where

J(x) =
∫ b

a
L(t, x, ẋ) dt and J∗(y) =

∫ b

a
L∗(t, y, ẏ) dt, (4)

are Leitmann equivalent (by Ξ) if there is a C1 function S∗ : O∗ → R such that the equation

L(t, ξ, ξt + ξyẏ) = L∗(t, y, ẏ) + S∗
t (t, y) + S∗

y(t, y)ẏ (5)

holds identically in (t, y, ẏ) ∈ O∗ × Rm.
The two functionals are Carathéodory equivalent, if equation (5) holds with Ξ being the

identity map. �

We have the following well-known theorem (Carathéodory, 1935; Leitmann, 2001; Carl-
son, 2002); in the context of this note, the proof bears repeating.

Theorem 2.1
If J and J∗ are Leitmann equivalent by Ξ, then a minimiser ȳ of J∗ gives rise to a minimiser
x̄ of J by setting x̄(t) = ξ(t, ȳ(t)).

Proof
Let the function ȳ minimise J∗ over A∗. Note that x̄ = Xȳ; we want to show that x̄ min-
imises J over A. For this, pick any x ∈ A, and let y = X−1x. Compute:

J(x) =
∫ b

a
L(t, x, ẋ) dt =

∫ b

a

(
L∗(t, y, ẏ) +

d
dt

S∗(t, y)
)

dt

= J∗(y) + S∗(b, β∗)− S∗(a, α∗) ≥ J∗(ȳ) + S∗(b, β∗)− S∗(a, α∗)

=
∫ b

a

(
L∗(t, ȳ, ˙̄y) +

d
dt

S∗(t, ȳ)
)

dt = J(x̄).

As x was chosen arbitrarily, it follows that J(x) ≥ J(x̄) for all x ∈ A. �

2.2 Equivalence of the equivalences. Given J(x) =
∫ b
a L(t, x, ẋ) dt and a continuously

differentiable function ξ(t, x) such that ξ(t, .) is a diffeomorphism, introduce

L̂(t, y, ẏ) = L
(
t, ξ(t, y), ξt(t, y) + ξy(t, y)ẏ

)
, (6)

and consider the corresponding variational problem of minimising Ĵ(y) =
∫ b
a L̂(t, y, ẏ). Let

moreover J∗(y) =
∫ b
a L∗(t, y, ẏ) dt. As

L(t, x, ẋ) = L̂(t, y, ẏ) (7)

it follows immediately that Leitmann equivalence by Ξ of J and J∗ is the same thing as
Carathéodory equivalence of Ĵ and J∗.

3 Simple variational problems
The point of Leitmann’s method is that by taking appropriate coordinates, the transformed

problem is particularly easy to solve (see Carlson and Leitmann, 2008a). This extends Cara-
théodory’s “royal road” approach to field theory, which I shall sketch briefly.
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3.1 The royal road of Carathéodory. In the “royal road” approach, the equivalent prob-
lem is required to satisfy the following. For every pair (t, x), there is a vector v(t, x) such
that ẋ = v(t, x) minimises

ẋ 7→ L∗(t, x, ẋ). (8)

Moreover, the minimum should be equal to 0. If this is the case, it follows immediately that
the integral curves of the differential equation

ẋ = v(t, x) (9)

satisfy J∗(x) = 0, and that this is indeed the smallest value possible; that is, the integral curves
of (9) are absolute minimisers of J .

From the identity

L∗(t, x, ẋ) = L(t, x, ẋ)− St(t, x)− Sx(t, x)ẋ, (10)

the above conditions imply Carathéodory’s fundamental equations

L∗(t, x, ẋ) = L(t, x, ẋ)− St(t, x)− Sx(t, x)ẋ = 0,

L∗
v(t, x, ẋ) = Lv(t, x, ẋ)− Sx(t, x) = 0,

if ẋ = v(t, x) minimises v 7→ L∗(t, x, v). Introducing the costate p = Lv(t, x, ẋ) and the
Hamilton function

H(t, x, p) = max
ẋ
{pẋ− L(t, x, ẋ)}, (11)

it follows that the fundamental equations are equivalent to the well-known relations

p = Sx(t, x), St + H(t, x, Sx) = 0; (12)

the second of these is the Hamilton-Jacobi equation. The point of Carathéodory’s approach is
that if the Hamilton-Jacobi equation can be solved, then the transformation to the equivalent
system is possible, and absolute minimisers are obtained.

3.2 The Tao of Leitmann. Leitmann’s approach simplifies the original variational problem
by choosing the transformation ξ as the inverse of a rectifying transformation of a field of
extremals of the initial minimisation problem. In the Leitmann approach the Hamilton-Jacobi
equation is also solved, but only implicitly.

By definition, extremals are solutions of the Euler-Lagrange equation

Lx −
d
dt

Lv = 0. (13)

As a differential equation of order 2m, the general solution x = x(t, c) depends on 2m param-
eters, the integration constants c = (c1, · · · , c2m).

Assume that there is a value c = c̄ such that the extremal x̄(t) = x(t, c̄) satisfies the
boundary conditions x(a) = α, x(b) = β. Let Y ⊂ Rm be a simply connected open set. Any
map c : Y → R2m defines an m-parameter subfamily ξ of extremals

ξ = ξ(t, y) = x(t, c(y)). (14)
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The subfamily ξ embeds the extremal x0 if c(ȳ) = c̄ for some ȳ ∈ Y .
To introduce the notion of a field of extremals, define first the covectors

η = η(t, y) = Lv(t, ξ(t, y), ξt(t, y)). (15)

Technically speaking, the element (ξ, η) is a point in the cotangent bundle T ∗Rm; for the
purposes of this note T ∗Rm = Rm × Rm, but in the following I shall be using the bundle
notation. Assuming that the vectors vi = (ξyi , ηyi), i = 1, · · · ,m are linearly independent for
all y, then the set

Ft =
{

(x, p) ∈ T ∗Rm
∣∣∣ x = ξ(t, y), p = η(t, y), y ∈ Y

}
(16)

is for every t ∈ [a, b] an m-dimensional submanifold of T ∗Rm. Note that the tangent space
to Ft at a point (x0, p0) = (ξ(t, y0), η(t, y0)) is spanned by

vj =
(
ξyj (t, y0), ηyj (t, y0)

)
, j = 1, · · · ,m. (17)

If ω = dp ∧ dx is the canonical 2-form (see Arnol’d, 1989), then

ω(vi, vj) = ηyiξyj − ηyjξyi .

Carathéodory uses the older “Lagrange bracket” notation [yi, yj ] instead of ω(vi, vj). Recall
that a submanifold M ⊂ T ∗Rm is called Lagrangian, if ω = 0 on M; that is, Ft is Lagrangian
if all Lagrange brackets vanish identically on Ft. Actually, the vanishing of the Lagrange
brackets has only to be verified for a single value of t.

Theorem 3.1
If Ft0 is Lagrangian, then Ft is Lagrangian for all t.

For completeness sake, the proof of this theorem is given in the appendix.

Definition 3.1
Let ξ : [a, b] × Y → Rm be a m-parameter subfamily of extremals. The family ξ defines an
extremal field of the minimisation problem, if

1. for t ∈ (a, b), the map y 7→ ξ(t, y) is a diffeomorphism from Y onto its image; that is
det ξy(t, y) 6= 0 for all (t, y) ∈ (a, b) × Y and ξ(t, y1) 6= ξ(t, y2) for any t ∈ (a, b). In
particular, no extremals of the family intersect.

2. The manifold Ft is Lagrangian for some t ∈ [a, b]; or, equivalently, all Lagrange brackets
vanish identically in t.

In this note, a field is called regular, if ξ(t, .) is a C2 diffeomorphism onto its image. �

In the following, typically R∗ ⊂ (a, b) × Y and R ⊂ Ξ((a, b) × Y ); that is, the fields
of extremals t 7→ ξ(t, y) with y ∈ Y covers R. Note moreover that the region R∗ is simply
connected, as it is the diffeomorphic image of the simply connected set R.

If ξ(t, y) is a regular field, then the inverse of (t, x) = Ξ(t, y) is a rectifying transformation
of the field; see figure 1, where any extremal x(t) = ξ(t, y) corresponds to a constant value
of y. Figure 1 suggests strongly that if to transform the problem a field ξ is used that embeds
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(a) Field of extremals
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(b) Rectified field of extremals

Figure 1: Taking for the Leitmann transformation the inverse of a rectifying transforma-
tion of a field of extremals that embeds an extremal satisfying the boundary conditions,
the equivalent Leitmann problem simplifies.

an extremal satisfying the boundary conditions, then the equivalent variational problem has to
have simple solutions.

To make this precise, let

L̂(t, y, ẏ) = L(t, ξ(t, y), ξt(t, y) + ξy(t, y)ẏ), (18)

and expand this expression in the last argument around ξt(t, y). Taylor’s theorem yields that

L̂(t, y, ẏ) = L(t, ξ, ξt) + Lv(t, ξ, ξt)ξyẏ + `(t, y, ẏ)ẏ2, (19)

where

`(t, y, ẏ) =
1
2
Lvv(t, ξ, ξt + ϑξyẏ)ξ2

y (20)

for 0 < ϑ = ϑ(t, y) < 1.
Introduce the functions

s0(t, y) = L(t, ξ, ξt),

and

si(t, y) = Lv(t, ξ, ξt)ξyi = ηξyi , i = 1, · · · ,m.

The following observation goes back to Beltrami and Hilbert (Giaquinta and Hildebrandt,
1996, p. 396).

Theorem 3.2
There is a C2 function S∗(t, y) such that

S∗
t = s0, S∗

yi
= si, i = 1, · · · ,m. (21)
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Proof
This is an integrability statement; since the domain of definition R∗ of ξ is simply connected,
the function S∗ exists if the implied mixed partials of S∗ are equal. We have

s0
yi

= Lxξyi + Lvξtyi , si
t =

(
d
dt

Lv

)
ξyi + Lvξyit;

si
yj

= ηyiξyj + ηξyiyj .

The equation

s0
yi
− si

t =
(

Lx(t, ξ, ξt)−
d
dt

Lv(t, ξ, ξt)
)

ξyi = 0. (22)

holds by virtue of t 7→ ξ(t, y) satisfying the Euler-Lagrange equation.
Moreover

si
yj
− sj

yi
= ηyiξyj − ηyjξyi + η(ξyiyj − ξyjyi) = 0,

by the vanishing of the Lagrange brackets and the equality of mixed partial derivatives. �

Combining this result with equation (19) yields that there is a C2 function S∗ = S∗(t, y)
such that

L(t, ξ, ξt + ξyẏ) = S∗
t + S∗

y ẏ + `(t, y, ẏ)ẏ2.

Remark that solving the Hamilton-Jacobi equation in the Carathéodory approach reduces to
integrating Ṡ = L along extremals. As in the Leitmann approach the extremals are rectified,
this equation is equivalent to S∗

t (t, y) = L̂(t, y, 0).
It is a corollary to theorem 3.2 that if Ξ is taken to be the inverse of a rectifying trans-

formation of a regular field of extremals, then the original variational problem is Leitmann
equivalent, by Ξ, to a problem that can be solved by inspection.

Theorem 3.3
Assume that there is a regular field ξ of extremals of J =

∫ b
a Ldt that covers R, and that the

associated map Ξ(t, y) = (t, ξ(t, y)) is a diffeomorphism on an open set O∗ containing R∗.
Then J is Leitmann equivalent by Ξ to

J∗(y) =
∫ b

a
`(t, y, ẏ)ẏ2 dt. (23)

Proof
This is a direct corollary of theorem 3.2. �

Recall the assumption that L is regular, that is, that v 7→ Lvv(t, x, v) is positive definite for
all (t, x) ∈ R.

Theorem 3.4
Under the same assumptions as in theorem 3.3, if ξ embeds an extremal x̄ in the form x̄(t) =
ξ(t, ȳ), with constant ȳ, then x̄ is the unique minimiser of J in A.
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Proof
By inspection from theorem 3.3. �

To summarise: if ξ can be taken as the inverse of a regular rectifying transformation of a
field that embeds an extremal satisfying the boundary conditions, the original variational prob-
lem is Leitmann equivalent to a problem whose minimum can be determined by inspection.

3.3 Example. As an example, consider the problem to minimise

J(x) =
∫ 1

−1

(
ẋ2 − x2

)
dt,

subject to the boundary conditions x(−1) = x(1) = 1.
The Euler-Lagrange equation for this problem reads as

ẍ + x = 0.

The general solution to this differential equation is x(t) = c1 cos t + c2 sin t; the single solu-
tion x̄ that satisfies the boundary conditions is obtained by setting c1 = 1/ cos 1 and c2 = 0.

A field of extremals embedding x̄ is given by ξ(t, y) = y cos t. Transforming the functional
by Ξ(t, y) = (t, y cos t) leads to

Ĵ(t, y, ẏ) =
∫ 1

−1

(
ẏ2 cos2 t− y2 cos 2t− yẏ sin 2t

)
dt,

with transformed boundary conditions y(−1) = y(1) = 1/cos 1. The function S reads as

S(t, y) = −y2

2
sin 2t.

The functional J is seen to be Leitmann equivalent, and the functional Ĵ is seen to be Cara-
théodory equivalent, to

J∗(y) =
∫ 1

−1
`(t, y, ẏ)ẏ2 dt =

∫ 1

−1
ẏ2 cos2 t dt.

Note that ` > 0 for t ∈ (−1, 1). By inspection, we see that the function ȳ(t) = 1/cos 1 is the
unique minimiser of J∗, and consequently

x̄(t) =
cos t

cos 1

is the unique minimiser of J .

4 Boundary conditions
In this section different types of boundary conditions are considered.
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4.1 Fixed endpoints. Consider again the fixed endpoint problem to minimise J , where

J(x) =
∫ b

a
L(t, x, ẋ) dt, x(a) = α, x(b) = β.

Recall the idea of a central field: this is a family of extremals that all pass through a single
point (a, α). Such a family obviously embeds any extremal satisfying the boundary conditions.
Moreover, it has automatically the field property.

Theorem 4.1
Let Y ⊂ Rm be an open simply connected set, and let ξ : (a, b)×Y → Rm be an m-parameter
family of extremals such that for t ∈ (a, b), the map y 7→ ξ(t, y) maps Y diffeomorphically
onto its image, and with the property that for all y ∈ Y :

lim
t↓a

ξ(t, y) = α.

Then ξ is a field of extremals; it is called the central field around (a, α).

Note that Ξ : R∗ → R cannot be extended diffeomorphically to an open set O∗ contain-
ing R∗, since y 7→ ξ(t, y) fails to be one-to-one if t = a. Therefore, the definitions of the
sets A and A∗ and the definition of Leitmann equivalence have to be adapted.

The new definitions of A and A∗ are

A =
{

x ∈ PC1((a, b), Rm)
∣∣∣ x(t) ∈ Rt for all t ∈ (a, b),

lim
t↓a

x(t) = α, lim
t↑b

x(t) = β

}
,

and

A∗ =
{

y ∈ PC1((a, b), Rm)
∣∣∣ y(t) ∈ R∗

t for all t ∈ (a, b),

lim
t↓a

ξ(t, y(t)) = α, lim
t↑b

ξ(t, y(t)) = β

}
.

The sharper version of Leitmann and Carathéodory equivalence is given in the following
definition.

Definition 4.1
Let Ξ, A and A∗ be as introduced in this section. Moreover, let Ra = {(a, α)} and Rb =
{(b, β)}. The functionals J : A → R and J∗ : A∗ → R, where

J(x) =
∫ b

a
L(t, x, ẋ) dt and J∗(y) =

∫ b

a
L∗(t, y, ẏ) dt, (24)

are Leitmann equivalent (by Ξ) if there is a continuous function

S : R ∪Ra ∪Rb → R

such that S is C1 on R and such that if S∗(t, y) = S(t, ξ(t, y)), the equation

L(t, ξ, ξt + ξyẏ) = L∗(t, y, ẏ) + S∗
t (t, y) + S∗

y(t, y)ẏ (25)
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holds identically in (t, y, ẏ) ∈ R× Rm.
The two functionals are Carathéodory equivalent, if equation (25) holds with Ξ being the

identity map. �

Theorem 2.1 still holds if in the proof the quantities S∗(a, α∗) and S∗(b, β∗) are replaced
by limt↓a S∗(t, y(t)) = S(a, α) etc.

Given a central field ξ around (a, α), and using again theorem 3.2, the problem to min-
imise J(x) is seen to be Leitmann equivalent by ξ to the problem to minimise

Ĵ(y) = S(b, β)− S(a, α) +
∫ b

a
`(t, y, ẏ)ẏ2 dt,

subject to the single boundary condition

lim
t↑b

ξ(t, y(t)) = β.

In other words, the transformation has changed an optimisation with to fixed boundary con-
ditions into one with only a single fixed boundary condition. Assuming that y 7→ ξ(b, y) is
invertible, and that ξ(b, β∗) = β, the boundary condition can be written as

y(b) = β∗.

Theorem 4.2
Let J =

∫ b
a L(t, x, ẋ) dt with L regular on R, and let ξ be a regular central field covering R.

If y 7→ ξ(t, y) is a diffeomorphism for t = b and if ȳ is such that

ξ(b, ȳ) = β, (26)

then the function x̄(t) = ξ(t, ȳ) is the unique minimiser of J .

Proof
Since ξ is central field, we have for all y that

lim
t↓a

ξ(t, y) = α and lim
t↓a

ξy(t, y) = 0. (27)

By equation (21), it follows that limt↓a S∗
y(t, y) = 0 and that S∗(a, y) = C does not depend

on y. It follows that the function S : R ∪ {(a, α), (b, β)} → R is a well-defined continu-
ous function if we set S(t, ξ(t, y)) = S∗(t, y) on R∗; in particular S(a, α) = C. Invoking
theorem 3.2, it is seen that J is Leitmann equivalent to minimising

J∗(y) = S(b, β)− C +
∫ b

a
`(t, y, ẏ)ẏ2 dt. (28)

As S(b, β) − C does not depend on y, it is seen by inspection that J∗ is minimised if ẏ = 0,
that is y(t) = ȳ for all t. �
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4.2 Single free endpoint. Consider next the free endpoint problem to minimise

J(x) =
∫ b

a
L(t, x, ẋ) dt, x(a) = α, x(b) free.

It is obvious how to change the definitions of the sets A and A∗. In the definition of Leitmann
equivalence, the set Rb has now to be taken as R̄ ∩ {b} × Rm. A simple modification of the
proof of theorem 4.2 yields

Theorem 4.3
Let J =

∫ b
a L(t, x, ẋ) dt with L regular on R, and let ξ be a regular central field covering R.

Let S∗ = S∗(t, y) be the function whose existence has been proved in theorem 3.2.
If y 7→ ξ(b, y) is a diffeomorphism, and if ȳ minimises y 7→ S∗(b, y), then x̄(t) = ξ(t, ȳ)

minimises J .

Proof
The only difference to the proof of theorem 4.2 is that equation (28) now reads as

J∗(y) = S∗(b, y(b))− S(a, α) +
∫ b

a
`(t, y, ẏ)ẏ2 dt. (29)

It is clear that this integral is minimised if y(t) is always equal to a constant ȳ, implying ẏ = 0,
and that the value of that constant should minimise y 7→ S∗(b, y). �

Note that since Sy = Lv, the familiar necessary transversality condition Lv = 0 follows as
a corollary.

4.3 Endpoint on a manifold. The extension to the case of a fixed initial point (a, α) and
an endpoint located on some manifold is straightforward.

Let

J(x) =
∫ b

a
L(t, x, ẋ) dt,

and let ξ be a central field of L through the point (a, α). Moreover, let Γ be an embedded
submanifold of R × Rm that is contained in the boundary of R, and assume that ξ covers an
open set U such that R ∪ Γ ⊂ U . Let Γ∗ = Ξ−1(Γ) be the diffeomorphic image of Γ under
the inverse of Ξ.

The problem is to minimise J over

A =
{

x ∈ PC1((a, b), Rm)
∣∣∣ x(t) ∈ Rt for all t ∈ (a, b),

lim
t↓a

x(t) = α, (b, x(b)) ∈ Γ}.

Set also

A∗ =
{

y ∈ PC1((a, b), Rm)
∣∣∣ y(t) ∈ R∗

t for all t ∈ (a, b),

lim
t↓a

ξ(t, y(t)) = α, Ξ(b, y(b)) ∈ Γ
}

.
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Theorem 4.4
Under the given hypotheses, let S∗ = S∗(t, y) be the function whose existence has been proved
in theorem 3.2.

If (t̄, ȳ) ∈ Γ∗ minimises S∗ over Γ, then x̄(t) = ξ(t, ȳ) defined on (a, t̄) minimises J
over A.

Proof
In this case equation (28) reads as

J∗(y) = S∗(b, y(b))− S(a, α) +
∫ b

a
`(t, y, ẏ)ẏ2 dt, (30)

where (b, y(b)) ∈ Γ∗. It is clear that this integral is minimised if y(t) is always equal to
a constant ȳ, implying ẏ = 0, and that the value of that constant should minimise S∗(t, y)
restricted to Γ∗. �

4.4 Double free endpoint. Finally consider the problem of minimising

J(x) =
∫ b

a
L(t, x, ẋ) dt,

with free endpoint conditions on both sides. The modifications of the definitions of A, A∗, Ra

and Rb are left to the reader.

Theorem 4.5
Let Y ⊂ Rm be an open simply connected set, and let ξ : (a, b)×Y → Rm be an m-parameter
family of extremals such that for t ∈ (a, b), the map y 7→ ξ(t, y) maps Y diffeomorphically
onto its image, and with the property that for all y ∈ Y :

lim
t↓a

η(t, y) = 0.

Then ξ is a field; I shall call it the field that is transversal at t = a.

Proof
The proof is analogous to that of theorem 4.1, except that instead of ξyi = 0 here ηyi(a, y) = 0
for all y and all i. �

Theorem 4.6
Let J =

∫ b
a L(t, x, ẋ) dt with L regular on R, and let ξ be a regular field, transversal at t = a,

covering R. Let S∗ = S∗(t, y) be the function whose existence has been proved in theo-
rem 3.2.

If y 7→ ξ(b, y) is a diffeomorphism, and if ȳ minimises y 7→ S∗(b, y), then x̄(t) = ξ(t, ȳ)
minimises J .

Proof
The proof is parallel to the proof of theorem 4.3, with some modifications. Since ξ is a transver-
sal field, we have for all y that

lim
t↓a

Sy(t, y) = Lv = 0. (31)
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It follows that S(a, y) = C does not depend on y. To minimise J is therefore equivalent to

J∗(y) = S(b, y(b))− C +
∫ b

a
`(t, y, ẏ)ẏ2 dt. (32)

This integral is clearly minimised by a constant function y(t) = ȳ such that ȳ minimises y 7→
S(b, y). �

A Proof of theorem 3.1
Proof
Compute

d
dt

ω(vi, vj) =
d
dt

(
ηyiξyj − ηyjξyi

)
(33)

= ηyitξyj + ηyiξyjt − ηyjtξyi − ηyjξyit.

To evaluate this expression, the quantities ηyi and ηtyi have to be determined. Deriving equa-
tion (15) with respect to yi yields

ηyi = Lvxξyi + Lvvξtyi . (34)

Since ξ = ξ(t, y) is a family of extremals, the equation

Lx(t, ξ, ξt)−
d
dt

Lv(t, ξ, ξt) = Lx(t, ξ, ξt)−
d
dt

η(t, y) = 0 (35)

holds identically in y. Deriving with respect to yi and rearranging terms yields

ηtyi = Lxxξyi + Lxvξtyi . (36)

Substitution of (34) and (36) into (33) yields

d
dt

ω(vi, vj) = (Lxxξyi + Lxvξtyi) ξyj + (Lvxξyi + Lvvξtyi) ξyjt (37)

−
(
Lxxξyj + Lxvξtyj

)
ξyi −

(
Lvxξyj + Lvvξtyj

)
ξyit

=Lxvξtyiξyj + Lvxξyiξyjt − Lxvξtyjξyi − Lvxξyjξyit = 0.

The last equality holds by virtue of equation (2). �
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