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Abstract

The solution structure of the set of optimal solutions of the shallow
lake problem, a problem of optimal pollution management, is studied as
we vary the values of the system parameters: the natural resilience, the
relative importance of the resource for social welfare and the future dis-
count rate. We find parameter values at which qualitative changes occur.
Using theoretical results on the bifurcations of the solution structure to
infinite horizon optimization problems obtained earlier, we give a fairly
complete bifurcation analysis of the shallow lake problem. In particular,
we show how the increase of the discount rate affects the parameter re-
gions where an oligotrophic steady state, corresponding to low pollution
level, is globally stable or locally stable under optimal dynamics. Asymp-
totically, an increase of the discount rate can be offset with a proportional
increase of the relative social weight of the resource.

Key words: Optimal vector fields; Indifference points; Bifurcations;
JEL: C61, Q57

1 Introduction

A wide class of one state optimal control problems are non-convex dynamic
optimization problems with parameters. Often in such problems there exist
multiple equilibria, that may occur or disappear as the parameters vary. Among
those equilibria more than one can be optimal to converge to, depending on an
initial state of a system; it is also possible that none of the optimal paths cover
the state space completely. Therefore such dynamic optimization problems may
feature indifference states, which are initial states to more than one optimal
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solution. The difficulties with existence of multiple equilibria can make solving
non-convex optimal control problems quite complicated.

In the present paper ideas from bifurcation theory, developed in Kiseleva and
Wagener (in prep.), are used to analyze the effects of varying parameters in the
shallow lake pollution problem, introduced in Brock and Starret (2003); Mäler
et al (2003). This is an optimal pollution management problem where a social
planner faces a trade-off between interests of farmers, who indirectly benefit
from polluting the lake by using fertilizers that are washed into it, and interests
of fishermen, tourists and water companies, who benefit from high quality of the
lake water. The shallow lake model contains three parameters: b, the rate of loss
of pollutant due to sedimentation, representing biological properties of the lake;
c, the relative costs of pollution, modeling the trade-off between farmers’ and
tourists’ interests; ρ, the discount rate, representing the intertemporal rate of
substitution. The main idea of the bifurcation analysis is to study dependence of
the solution structure upon the parameters of the model. Nonconvexities in this
model exhibiting for some regions of the parameter values cause the existence of
multiple local optima of the water pollution level and thereby history-dependent
optimal pollution policies, see Brock and Starret (2003); Mäler et al (2003). In
Wagener (2003) the genesis of history-dependent optimal management policies
in the shallow lake model has been connected to the occurrence of heteroclinic
bifurcations of the associated state-control system.

In this paper we complete the bifurcation analysis of the shallow lake model.
We let system parameters vary and we study the dependence of the solution
structure on these parameters. We obtain as results two types of planar cuts
of the parameter space: first, we keep the biological properties b of a lake fixed
and let the socio-economic parameters c and ρ vary; second, we fix the discount
rate ρ and let b and c vary. This gives us a fairly complete picture of how the
optimal pollution policy for an eco-system responds to changes in the degree of
its resilience, social preferences and economic factors.

With the performed analysis we quantify the trade-off between the relative
cost of pollution c and the time discount factor ρ. In particular for several values
of b, we compute two-parameter bifurcation diagrams with respect to c and ρ
that show that if ρ is decreased, the minimal preference for the environment c
that implies that the oligotrophic solution is optimal is decreased proportionally;
this solution is characterized by high quality of the lake water and low level of
agricultural activity in the long run regardless of the initial pollution level.
Thus the oligotrophic solution can be globally optimal in a less environmentally
friendly society, if the social planner is sufficiently foresighted.

The main methodological contribution of this paper is systematic use of a
proper bifurcation analysis to study non-convex optimal control problems with
multiple equilibria. The bifurcation methodology presented in this paper allows
one to describe fully the solution structure of a parameterized optimal control
problem with multiple equilibria. It enables one to find all possible types of the
optimal solutions of such problems, all bifurcations occurring due to varying
the parameters. Moreover, bifurcation analysis enables us to in fact analyze
an infinity of optimal control models, as each point in the parameter space
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corresponds to a particular problem. A bifurcation diagram gives for each of
these particular problems the structure of the set of optimal solutions.

The main ideas of the bifurcation methodology are general and can be ap-
plied to a wide range of problems. For example, in Wagener (2005) a prob-
lem of optimal investment for firms with non-concave production function and
quadratic costs is studied. With the help of bifurcation analysis regions of the
cost function’s coefficients values are found for which there are multiple local op-
tima of the firm’s capital stock and the investment strategy is history-dependent.
In Caulkins et al (2007) a model of organizational bridge building is considered,
where multiple threshold points are found. In Steindl and Feichtinger (2004) a
more complicated problem with a four dimensional state-control space is consid-
ered, a production-inventory model with an S-shaped production function. In
this model the Hamilton-Hopf bifurcation occurring for zero discounting leads to
a family of periodic solutions. With a small perturbation of the system optimal
oscillating production processes are obtained.

More generally, the theory of bifurcations of optimal vector fields is poten-
tially relevant to any parameterized optimization problem that does not satisfy
the Arrow-Mangasarian sufficiency conditions. For such problems may exhibit
indifference threshold points1 and associated history-dependent optimal policies.

The outline of the paper is as follows. Section 2 describes the shallow lake
model. Section 3 introduces the concept of the optimal vector fields and gives
examples of optimal vector fields in the shallow lake model. Section 4 describes
different bifurcations of the optimal vector fields and their connection to the
bifurcations of a state-control system. Section 5 presents a fairly complete bi-
furcation analysis of the shallow lake system with respect to all three parameters:
the natural rate of pollutant outflow b, the relative costs of pollution c and the
discount rate ρ. Finally, Section 6 concludes.

2 The Shallow Lake model

The shallow lake problem is an optimal pollution management problem solved
by a social planner. This social planner maximizes a social utility functional,
which models conflicting interests of two types of lake users: farmers and “water
users”, such as tourists, water companies and fishermen. Farmers get benefits
from using fertilizers that contain phosphorus; the phosphorus runs off the fields
and is eventually washed into the lake. Surplus of phosphorus in water causes
growth of aquatic plants that fill the entire water column or that concentrate
much of their biomass in the upper water layer. When these plants become
dominant the bottom vegetation, which stabilizes the sediment, collapses due
to light limitation. As a result surface waves can stir up the sediment - the lake
is shallow - and the lake becomes turbid. The drop of water quality leads to
losses for the lake users.

The shallow lake model consists of two parts: the pollution dynamics and
the social welfare functional. We start with describing the dynamics. Let x(t)

1Also called Skiba points.
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be proportional to the amount of phosphorus in the lake at time t. The value of
x(t) may change due to the input of more phosphorus due to farming activities,
u(t), as well as due to sedimentation and the internal biological processes of
production of phosphorus. Mäler et al proposed in Mäler et al (2003) to model
the pollution dynamics of a shallow lake as

ẋ = u− bx+
x2

1 + x2
, x(0) = x0, (1)

where b ≥ 0 is the coefficient that is proportional to the rate of loss of phosphorus
due to sedimentation, and where the last term models the biological production
process. For more detailed analysis and the biological background of equation
(1) see Scheffer (1998).

The second part of the shallow lake model is the social welfare functional.
Society in this model consists of lakes users of two types: farmers, who benefit
from polluting the lake, and water users, who bear losses when the pollution
level increases. The farmers’ benefits, or the farmers’ utility, is assumed to be
an increasing concave function of u, taken here as2 log u. The costs of pollution,
or the disutility of the water users, is assumed to increase quadratically with
the pollution level. Thus the social welfare at time t is log u(t)− cx2(t), where
c is a nonnegative parameter which models the relative cost of pollution.

The total welfare is given by

B[u] =
∫ ∞

0

(
log u− cx2

)
e−ρt dt, (2)

where ρ is a discount factor and x is defined by (1). The optimal control problem
of the social planner is to find the dumping control u∗ that maximizes the social
welfare functional B given the initial level of pollution x0 and the pollution
dynamics (1). A solution to this optimization problem is a pair (x̃, ũ), such
that ũ is an admissible control, by which we mean ũ is piecewise continuous and
ũ(t) ≥ 0 ∀t ≥ 0, and x̃ continuous and piecewise continuously differentiable, (1)
is satisfied and B(ũ) ≥ B(u) if (x, u) satisfies (1).

The standard way of solving such a problem is to introduce the current value
Hamiltonian

H(x, p, u) = log u− cx2 + p

(
u− bx+

x2

1 + x2

)
, (3)

which has to be maximized with respect to the control variable u ∈ R+. The
additional variable p ∈ R is called the co-state and represents the shadow costs of
pollution. According to Pontryagin’s Maximum Principle, if u : [0,∞)→ (0,∞)
is an optimal solution, then p(t), x(t) and u(t) satisfy three conditions:

1) u(t) maximizes the function h(u) = H(x(t), p(t), u) for each t. In the
shallow lake model this implies the following one-to-one correspondence

2Results that we obtain in this paper are expected to be fairly robust to the choice of this
utility function.
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between the costate p and the control u

u = U(p) = −1
p
, (4)

defining the so-called maximized Hamiltonian

H(x, p) = H(x, p, U(p)). (5)

2) x(t) and p(t) are solutions of the reduced canonical system
ẋ =

∂H
∂p

(x, p)

ṗ = ρp− ∂H
∂x

(x, p)
(6)

3) the transversality condition

lim
t→∞

e−ρtp(t) = 0 if lim inft→∞x(t) > 0. (7)

is satisfied3.

Using (5) and (4) the system (6) reads as
ẋ = −1

p
− bx+

x2

1 + x2

ṗ = 2cx+ p

(
ρ+ b− 2x

(1 + x2)2

)
.

(8)

The system (8) is called the shallow lake system. Due to the one-to-one
correspondence (4) between the costate p and the control u the shallow lake
system (8) can be rewritten in the state-control form

ẋ = u− bx+
x2

x2 + 1

u̇ = −
(
ρ+ b− 2x

(x2 + 1)2

)
u+ 2cxu2.

(9)

The shallow lake system (9) is a system of parameterized differential equa-
tions. Typically in such systems changing the value of the parameters may
cause qualitative changes of the solution structure: equilibria may lose stability,
new equilibria or attracting sets may appear, etc. Such qualitative changes of
the solution structure due to smooth variations of the parameters are called
bifurcations. Some bifurcations of the dynamical system (9) affect the optimal
pollution policy and consequently the long run pollution level x under the opti-
mal policy. Therefore knowledge of bifurcation values of the system parameters

3For trajectories such that limt→∞ x(t) = 0 the transversality condition is given by
limt→∞ e−ρtp(t) ≥ 0.
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can shed light upon the long run behavior of the system (9) when the optimal
policy is applied.

In the next section we recall the notion of optimal vector fields, which de-
scribe the state dynamics under the optimal policy. Also we study correspon-
dence between bifurcations of the optimal vector fields and bifurcations of the
dynamical system (9).

3 Optimal vector fields in the shallow lake model

This section shortly presents, in an improved form, the results of the bifurcation
analysis of the shallow lake system obtained in Wagener (2003) and combines
them with the concept of optimal vector fields.

Solutions to the problem of maximizing (2) subject to (1) for fixed x(0) = x0

can be represented as a set of initial costates P(x0) ⊂ R such that if p0 ∈ P(x0)
then (x(0), p(0)) = (x0, p0) is an initial condition to an optimal trajectory
(x(t), p(t)) in the state-costate space. Then pair (x(t), u(t)) = (x(t), U(p(t)))
solves the optimal control problem of the social planner. The set-valued function
P(x) is called the optimal costate rule. The corresponding set-valued function
U(x) = {U(p) : p ∈ P(x)} is called the optimal policy rule.

For problems with one-dimensional state spaces and infinite time horizons
the points (x0, p0) with p0 ∈ P(x0) are usually situated on the stable manifolds
of a steady state of the state-costate system. If P(x0) contains more that one
element, then the state is an indifference state. It follows from the principle of
optimality that P(x(t)) is single-valued for all t > 0.

Definition 3.1. The multivalued vector field

XOpt(x) =
∂H
∂p

(x,P(x))) , (10)

is called the optimal vector field.4

The notion of optimal vector field is general and not restricted to the shallow
lake problem, see Kiseleva and Wagener (in prep.). The optimal vector field
determines the direction and the speed of the state flow under the optimal policy.
Optimal state trajectories are solutions of

ẋ(t) = XOpt (x(t)) , x(0) = x0. (11)

Remember though that the optimal policy and consequently the optimal vector
field depend upon the system parameters. Hence they may bifurcate when the
parameters are varied.

The main result of Wagener (2003) is the bifurcation diagram of the shallow
lake system with respect to the parameters b and c for the fixed value of the
discount rate ρ = 0.03. However this bifurcation diagram is incomplete, as

4Boltyanski in Boltyanski (1966) names these vector fields “synthesized”.
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there are bifurcation curves missing. In this paper we present the complete
version of it in Figure 1(a), which shows the parameter plane (b, c) divided into
four regions, labeled respectively: Unique equilibrium, Oligotrophic, Region of
history dependence and Eutrophic. Those regions correspond to four different
types of solutions of the shallow lake problem, differring in number of equilibria
of the state-control system (9) as well as the long run pollution level under
the optimal policy. In Figures 1(b)-1(h) we give phase portraits of the state-
control system (9) for different values of the parameters. Optimal trajectories
are represented by thick curves, other trajectories by solid curves. In the upper
parts of the phase diagrams the phase plots of the optimal vector fields are given.
Attractors of the optimal vector fields are represented by bullets, indifference
thresholds by black squares. Later, in Figures 2-6, we denote repellers of the
optimal vector fields as circles. We keep these notations throughout the paper.

Unique equilibrium

For the values of the parameters b and c in this region the state-control system
(9) has a unique equilibrium. It is a saddle, see Figure 1(b) and 1(h). The graph
of the optimal solution is always situated on the stable manifold of this saddle5.
The long run pollution level depends then on the values of the parameters c and
b, changing within the region.

Multiple equilibria

In cases with multiple equilibria of the state-control system (9) there are always
two saddles, denoted as P = (xP , uP ) and Q = (xQ, uQ). The steady state pol-
lution level xP in P is significantly lower than the pollution level xQ in Q; they
are called oligotrophic and eutrophic steady states of the lake, respectively. The
oligotrophic steady state corresponds to a high level of water services and a low
level of agricultural activities, whereas the eutrophic steady state corresponds
to a high level of agricultural activities and a low level of water services.

It has been proved in Wagener (2003) that the optimal solution of the social
planner optimization problem is situated on the stable manifold of one of the
saddles. In the case with multiple equilibria of (9) the social planner has to
choose whether to “jump” to the stable manifold of the oligotrophic equilibrium
P or to the stable manifold of the eutrophic equilibrium Q. Regarding to the
choice of the social planner the following three cases are possible:

- the oligotrophic steady state is globally optimal; independently of the
initial pollution level of the lake the social planner steers the lake to the
clean equilibrium P ;

- the eutrophic steady state is globally optimal; independently of the initial
pollution level of the lake the social planner steers the lake to the turbid
equilibrium Q;

5For the proof see Wagener (2003).
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- the oligotrophic steady state and the eutrophic steady state are locally
optimal; the long run pollution level depends on the initial level of pollu-
tion.

Oligotrophic region In the oligotrophic case the optimal trajectory is the
stable manifold of the saddle P , and the optimal policy is a smooth continuous
function of the state, see Figure 1(c). The optimal policy steers the lake to
the clean equilibrium P independently of the initial level of the pollution; the
clean steady state is globally optimal. The one-dimensional phase diagram of
the optimal vector field is drawn in the upper part of the Figure 1(c); it has one
attractor, denoted by a bullet.

Eutrophic region In the eutrophic case, see Figure 1(g), the optimal tra-
jectory is the stable manifold of the saddle Q. Regardless of the initial level
of pollution, the optimal policy steers the lake to the turbid equilibrium. The
optimal vector field, drawn in the upper part of the Figure 1(g), has a unique
attractor with the whole state space as a basin of attraction; the turbid steady
state is globally optimal.

Note that in both cases, oligotrophic and eutrophic, the optimal vector field
is single-valued for all initial states.

Region of history dependence History-dependent solutions are distinguished
from the other ones by the presence of threshold values of the initial pollution
level: if the initial pollution level is below that threshold level then the olig-
otrophic steady state is optimal, whereas if the initial pollution level is above
that threshold level then the eutrophic steady state is optimal. The type of
history-dependent solution is determined by the type of the threshold point
which can be either a repeller or an indifference point6.

Indifference points are initial states x = x∗0 for which the social planner is
indifferent between steering the lake to the clean or to the turbid state; for these
states there exist two optimal controls u∗1 and u∗2, both maximizing the social
welfare functional (2). In the case when the threshold is an indifference point
the optimal policy is a smooth single-valued function everywhere, except from
a point where it takes two values. That point is the indifference point. The
optimal vector field is also multivalued at that point. The indifference point in
Figure 1(e) is marked by a black square.

In the case when the threshold is a repeller the optimal policy is a smooth
function; it as well as the optimal vector field is everywhere single-valued. This
case is not showed in Figure 1, it will be illustrated in the next section.

Threshold points separate two basins of attraction of the optimal dynam-
ics: the states below that point constitute the basin of attraction of the clean
equilibrium, and the states above that point constitute the basin of attraction
of the turbid equilibrium. Note that the indifference point lies in both basins,

6Indifference points are also called Skiba points, DNS points or DNSS points. For the
naming see Grass et al (2008) p.238.
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Figure 1: Figure 1(a) shows the bifurcation diagram of the shallow lake system
in the (b, c)-parameter space for ρ = 0.03. Dashed lines represent saddle-node
bifurcation curves, separating the region of parameters for which there is a
unique equilibrium in the system from the region of multiple equilibria. Solid
lines indicate heteroclinic bifurcation curves. Phase portraits of state-control
system and of the optimal vector fields are given for b = 0.65 and selected values
of c. Optimal trajectories are represented by thick curves, other trajectories are
represented by solid curves. Optimal solutions are always situated on the stable
manifold of one of the saddles. In the upper parts of the phase diagrams the
phase plots of the optimal vector fields are drawn. Attractors of the optimal
vector fields are denoted by bullets, indifference points by squares.
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whereas the repeller lies in neither of them. The history-dependent pollution
policy steers the lake to the clean equilibrium only if the lake is initially not
very polluted, otherwise it steers the lake to the turbid equilibrium.

One can see from Figure 1 that in all cases except the history-dependent
case the optimal vector field has only one attractor, whereas in the history-
dependence case it has two attractors and one threshold point. Those optimal
vector fields correspond to different values of the parameter c, hence as the
parameter c varies the optimal vector field undergoes a bifurcation. Since the
optimal vector fields depend upon the optimal policies, bifurcations of the op-
timal vector fields are connected with bifurcations of the state-control system.

In the next section the classification of bifurcations of optimal vector fields
is shortly recalled from Kiseleva and Wagener (in prep.) and their connections
to the bifurcations of the state-control space are studied.

4 Bifurcations of optimal vector fields

In this section we describe the codim 1 and codim 2 bifurcations of one-dimensional
optimal vector fields that occur in the shallow lake problem. Recall that the
codimension of a bifurcation is the number of parameters which must be varied
for the bifurcation to occur. This corresponds to the codimension of the param-
eter set for which the bifurcation occurs within the full space of parameters. We
shall illustrate these bifurcations by referring to the relevant parts of Figure 1.

4.1 Indifference-attractor bifurcation

First we describe the indifference-attractor (IA) bifurcation. When the optimal
vector field passing through this bifurcation, an attractor and an indifference
point of the optimal vector field are created. In the state-control space this cor-
responds to the unstable manifold of one of the saddles and the stable manifold
of the other saddle changing their relative positions, going through a heteroclinic
bifurcation.
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Figure 2: The indifference-attractor bifurcation. Legend as in Figure 1.
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The situation is illustrated in Figures 1(g)-1(f)-1(e). Blow-ups in the vicinity
of the left saddle P are shown in Figure 2. Before the bifurcation, the stable
manifold W s

Q of the right saddle Q “covers” P , meaning that there exists w
such that (xP , w) ∈W s

Q. Hence W s
Q is the optimal trajectory, see Figure 2(a).

This is the same situation as in Figure 1(g). At the bifurcation the left part of
the stable manifold W s

Q coincides with the right part of the unstable manifold
Wu
P ; the manifolds form what is called a heteroclinic connection of the two

saddles, see Figure 2(b) and Figure 1(f). After the bifurcation, the trajectory P
is optimal, and all optimal state trajectories starting in a neighborhood around
xP converge towards xP , see Figure 2(c) and compare to Figure 1(e). The
length of these neighborhoods is bounded on the right by an indifference point,
from which the system can optimally go to either xP or xQ.

4.2 Indifference-repeller bifurcations

The second bifurcation to be described is the indifference-repeller bifurcation.
This bifurcation is not illustrated in Figure 1; the indifference-repeller bifur-
cation curves are not visible there, since they are located in the very corner
between the two dashed curves. They become visible in blow up, that is shown
in Figure 14.

There are two types of indifference-repeller bifurcations. In both cases an
indifference point of the optimal vector field changes into an unstable steady
state; however the corresponding changes of the state-control space follow dif-
ferent scenarios.
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Figure 3: The indifference-repeller bifurcation of type one. Legend as in Figure
1.

Figure 3 displays the scenario of an indifference-repeller bifurcation of type
one, denoted as “IR1”, in a neighborhood of the central repelling steady state
S = (xS , uS) of the state-control system. This state has two positive eigenvalues
0 < λu < λuu. To the largest eigenvalue, a unique one-dimensional manifold is
associated, the so-called strong unstable manifold Wuu

S : this is the trajectory
that approaches S at the rate eλ

uut as t→ −∞. The strong unstable manifold
Wuu
S is represented in Figure 3 by the curve with two arrows. At the bifurcation,
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the relative positions of the strong unstable manifold Wuu
S and the stable man-

ifold W s
Q change. Before the bifurcation, Figure 4.2, the manifold W s

Q “covers”
S, which is then not optimal. But W s

Q does not cover all of the state space and
hence there is an indifference point close to xS . After the bifurcation the steady
state S, though repelling, is optimal. The corresponding state xS , while not an
indifference point any more, is still a threshold point: in every neighborhood of
xS there are optimal trajectories tending to different long-term steady states.
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Figure 4: The indifference-repeller bifurcation of type two. Legend as in Figure
1.

Figure 4 displays the scenario of an indifference-repeller bifurcation of type
two, denoted as “IR2”, in a neighborhood of the central repelling steady state
S = (xS , uS) of the state-control system. Before the bifurcation the steady
state S has two complex eigenvalues λ1,2 = µ± iα with positive real parts µ > 0.
The stable manifolds W s

Q and W s
P of the saddles Q and P are spiraling from

the source S, giving rise to an indifference point close to xS , see Figure 4(a).
At the bifurcation the eigenvalues of the steady state S become equal and real.
The steady state itself becomes a degenerate node and all trajectories move
away from S in the direction of a unique eigenvector, see Figure 4(b). After the
bifurcation the steady state S has two real positive eigenvalues 0 < λu < λuu

and the unique eigenvector splits up into two eigenvectors eu and euu. Almost
all the trajectories move away from S in the direction of the eigenvector eu;
again the steady state S itself, though repelling, is an optimal trajectory, see
Figure 4(c).

4.3 Other bifurcations

Optimal vector fields can also undergo “standard” saddle-node “SN” and cusp
“C” bifurcations, which are associated to saddle-node and cusp bifurcations of
the state-control system. However, not all bifurcations of the state-control sys-
tem imply bifurcations of the optimal vector field. As an example consider the
saddle-node bifurcation of the state-control system illustrated in Figures 1(b)-1(c).
Though two new equilibria appear, the structure of the optimal control strate-
gies does not change, and the stable manifold of the saddle P remains the
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Figure 5: The saddle-node bifurcation of the optimal vector field. Legend as in
Figure 1.

optimal trajectory. Consequently, the optimal vector field does not bifurcate.
We therefore call this bifurcation of the state-control system inessential to the
optimal vector field. A bifurcation of the state-control system that changes the
optimal vector field will be called essential.

The same scenario is represented in Figures 1(g) and 1(h), but with the
stable manifold of the saddle Q as the optimal trajectory. An example of a
saddle-node bifurcation of the state-control system implying saddle-node bifur-
cation of the optimal vector field is depicted in Figure 5. The state-control
system undergoes a standard saddle-node bifurcation: as a parameter changes a
saddle and an unstable node are created. After the bifurcation the stable man-
ifolds of two saddles are connected to the central repelling steady state. The
optimal trajectories are then the two stable manifolds and all three equilibria.
In particular, the repelling equilibrium of the state-control system corresponds
to a repeller of the optimal vector field.
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Figure 6: The indifference-saddle-node bifurcation: the phase plot at bifurcation
(right) and bifurcation curves emerging from the “ISN” point (left). Legend as
in Figure 1.

More complicatedly, we can have the situation that at a saddle-node bifur-
cation of the state-control system the strongly unstable manifold of the bifur-
cating steady state coincides with the stable manifold of the non-bifurcating
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saddle. This gives rise to what we call in Kiseleva and Wagener (in prep.) an
indifference-saddle-node bifurcation “ISN”; it is a codimension two bifurcation,
typically occurring only if there are two or more system parameters. From such
a point indifference-attractor, indifference-repeller, saddle-node and inessential
saddle-node curves emanate, see Figure 6.

Another codimension two bifurcation is the double-indifference-repeller bi-
furcation “DIR”, when two conditions are satisfied: the repeller S is a degenerate
node and the stable manifold of one of the saddles P or Q is connected to the
unique eigenvector of S. The optimal trajectories are both stable manifolds
of the saddles P and Q and the repeller S. The optimal vector field has two
attractors separated by a repeller. This situation is drawn in Figure 7, where
the stable manifold of Q is connected to the unstable manifold of S.

DIR

IR1

IR2

x

u

W
s

P

W
uu

S

W
s

Q

S

W
S

u

Figure 7: The double-indifference-repeller bifurcation: the phase plot at bi-
furcation (right) and bifurcation curves emerging from the “ISN” point (left).
Legend as in Figure 1.

5 Bifurcating optimal vector fields of the shal-
low lake system

This section studies the dependence of the optimal vector fields upon the system
parameters: the natural rate of sedimentation b, the relative weight of ecological
services c and the discount rate ρ. We apply the bifurcation analysis described
in the previous section to compute two-parameter bifurcation diagrams. Such
a diagram is a partition of the parameter plane into 2D regions of structural
stability of a dynamical system, 1D bifurcation curves and bifurcation points.
Different regions of the parameter-plane correspond to qualitatively different
types of the solution structure of the dynamical system. In the shallow lake sys-
tem the solution structure defines the type of the optimal solution and therefore
the type of the optimal vector field. Hence different regions of bifurcation di-
agrams correspond to structurally different optimal solutions and structurally
different optimal vector fields. Moreover we distinguish between bifurcation
curves of the shallow lake system itself and bifurcation curves of the optimal
vector fields.
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5.1 No discounting case

We begin with considering the shallow lake model without discounting, i.e.
ρ = 0 in (6). In this case, we use overtaking optimality7 as our optimality
criterion. Recall that an admissible control u∗ is called overtaking optimal if,
for any admissible control u, there is a T (u) such that for every T ≥ T (u)

BT (u) ≤ BT (u∗),

where

BT (u) =
∫ T

0

(
log u− cx2

)
e−ρt dt.

and where x satisfies (1).
For ρ = 0 the shallow lake system becomes Hamiltonian. Then trajectories

of (8) are level curves of the maximized Hamiltonian H(x, p) given in (5) and
steady states are critical points of H(x, p). Due to the one-to-one state-costate
correspondence (4) the level curves of H(x, p) correspond to the level curves of
H(x,−1/u) in the state-control space (x, u).

For solutions on the stable manifolds of P or Q we have

BT (u) = H(P )T + o(T ) as T →∞

and
BT (u) = H(Q)T + o(T ) as T →∞.

Since optimal solutions converge to either P or Q overtaking optimality is de-
termined by the values H(P ) = log uP − cx2

P and H(Q) = log uQ − cx2
Q. More

precisely, the trajectory converging to P will be preferable in the sense of over-
taking optimality if H(P ) > H(Q) and vice versa.

Figure 8 shows the bifurcation diagram of the shallow lake system (9) for
ρ = 0. Due to the fact that the system is Hamiltonian there is only one curve
of heteroclinic bifurcations, which ends at the cusp point “C”. The vertical
branch of the indifference-attractor bifurcation curve “IA” is located on the
straight line b = 1/2 and separates two regions: the oligotrophic region and
the region of history-dependent optimal policies. However the corresponding
bifurcation scenario in the state-control space is different from the one described
in Section 4.

Let us compare phase plots of the shallow lake system (9) for b = 0.6 and
b = 0.4 while other parameters are held fixed ρ = 0, c = 0.5.

First we fix b = 0.6. In this case the shallow lake system has three equi-
libria with non-zero control: two saddles and one center, see Figure 9(left).
Since the only candidates for the optimal solution are the stable manifolds of
the two saddles P and Q, we have to compare the values H(P ) and H(Q)
and choose the largest one. Note that the stable manifold of P covers the
whole state space, therefore it can be presented as a smooth continuous func-
tion u = wsP (x) with the property H(x,wsP (x)) = H(P ). Since for (x, u) such

7For a detailed discussion of this criterion see Grass et al (2008).
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Figure 8: Bifurcation diagram of the shallow lake system for ρ = 0.

that u < bx− x2/(1 + x2) we have that ∂H(x, u)/∂u < 0, we conclude that
H(P ) = H(xQ, wsP (xQ)) > H(Q) and the stable manifold of P is the optimal
trajectory, see Figure 9(left).
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Figure 9: Phase plots of the shallow lake system for ρ = 0, c = 0.5, b = 0.6(left),
b = 0.5(middle) and b = 0.4(right). Solid lines represent invariant manifolds of
the two saddles P and Q, dashed lines represent the isoclines ẋ = 0 and u̇ = 0.
The optimal solution is represented by thick curves.

Now let us fix b = 0.4. Recall that for b < 1/2 the shallow lake system is
irreversible, meaning that the lower heteroclinic connections of the saddles are
impossible. For this value of b the shallow lake system has two equilibria with
non-zero control: the two saddles P and Q. The only candidates for the optimal
solution are their stable manifolds. The stable manifold of the oligotrophic
saddle P does not cover the whole state space. In fact, it covers the interval
[0, x̂], where x̂ =

(
1−
√

1− 4b2
)
/(2b) is the smallest positive x-coordinate of

intersection of the isocline ẋ = 0 and the axis u = 0. If the initial level of
pollution x(0) ≥ x̂ then it is not possible to steer the lake to the oligotrophic
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steady state. In order to find the optimal trajectory let us compare the values
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Figure 10: Average value flows corresponding to the optimal solutions of
the shallow lake model for ρ = 0, c = 0.5 and b = 0.6(left), b = 0.5(middle),
b = 0.4(right). In case of history-dependent optimal policy the value function is
discontinuous.

H(P ) and H(Q). Analogously to the case b = 0.6 we compare these values for
x located in the left neighborhood of x = x̂. We conclude that H(P ) > H(Q)
implying that the stable manifold of P is the optimal trajectory. However
the corresponding optimal policy is available only for x < x̂, and for x ≥ x̂ the
optimal solution lies on the stable manifold of Q, see Figure 9(right). The point
x = x̂ in this case is called an irreversibility threshold. In Figure 9 we denote
this point by a black triangle.

It is important to note here that in case of no discounting the value function
corresponding to the optimal solution is infinite. Instead we consider the average
value flows

v = lim
T→∞

1
T
BT (u) = H(u∞).

The average value flows corresponding to the optimal solutions are discontinuous
if ρ = 0 and (b, c) take values in the “Region of history dependence”. Figure
10 shows the average value flows for the three types of the optimal solution
presented in Figure 9. For b = 0.5 and b = 0.4 they are discontinuous at the
irreversibility threshold point.

5.2 Weight of ecological services versus discounting

Now we fix the value of the decay rate b and we take the relative economic weight
of pollution c and the discount rate ρ as bifurcation parameters. This kind of
analysis allows us to study the dependence of the optimal pollution policy upon
social preferences, while the biological properties of the lake are assumed to be
given. The bifurcation diagram, given in Figure 11, displays the results of a
“comparative dynamics” analysis of the system, as it indicates how the total
solution structure changes with the parameters. All the curves in Figure 11
are bifurcations curves of the shallow lake system, but as we mentioned above
some bifurcations of the state-control system are irrelevant to the optimal vector
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Figure 11: The bifurcation diagram of the shallow lake system in the (c, ρ)-
parameter space for b = 0.65. Solid lines represent bifurcation curves of the
optimal vector field, dashed lines represent bifurcation curves of the state-control
system, that are not bifurcation curves of the optimal vector field.

field. To distinguish such irrelevant bifurcation curves we draw them as dashed
curves. The solid bifurcation curves represent curves of essential bifurcations,
that is, bifurcations of the optimal vector field. In Figure 11 essential curves
divide the parameter space into three separate regions. In the outer region,
the optimal vector field XOpt has a unique global attractor. For parameters
taking values in the lower inner region, XOpt has two attractors, separated by
an indifference point. In the small upper inner region, there are again two
attractors but separated by a repeller. All three steady states are engaged in
the cusp bifurcation which marks the point with the largest value ρ̄(b) of ρ in
the inner region, which is the supremum of values of ρ such that the optimal
vector field can have three equilibria.

The union of the two inner regions is the region where there are multiple
long-term steady states: we might also call it the region of history-dependence.
Consider what happens when we fix ρ = 0.05 and decrease c from c = 1 to-
wards c = 0. If c is large, it is always optimal to steer the lake towards a clean
”oligotrophic” long-term steady state. Then at c ≈ 0.61, we enter the region of
history-dependence: if the lake is initially sufficiently clean, it is still optimal
to steer it towards a clean state. However, if the lake is initially already too
polluted, this is not worthwhile any more. Finally, at c ≈ 0.54, the basin of at-
traction of the oligotrophic state collapses, and we enter the region where there
is again a single long-term optimal steady state, but now a polluted ”eutrophic”
one.

Increasing the discount rate ρ has the same effect as decreasing the economic
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weight of the lake c. This is according to our intuition, since both increasing
the discount rate and decreasing the weight of the stock-damage term in the
utility functional decreases the importance attached to long-term effects. For
parameters in the region ρ > ρ̄, there is always a single, globally attracting
steady state, which depends continuously on c and ρ > ρ̄.

Effects of varying the natural rate of decay The parameter space can be
divided into four regions, according to the values of b: b ∈ Ii, i = 1, . . . 4, where
I1 = [0, 1/2], I2 = (1/2, b∗1], I3 = (b∗1, b

∗
2), I4 = [b∗2,+∞), with

b∗1 =

(
75− 43

√
3
)√
−3 + 2

√
3

8
(
−161 + 93

√
3
) ≈ 0.5505, (12)

b∗2 =
3
√

3
8
≈ 0.6495. (13)

For b ∈ I4, the regeneration function g(x) = −bx+ x2/(1 + x2) in the state
dynamics equation ẋ = u − g(x) is monotonic. In this case, to every constant
loading level ū, satisfying ū = g(x̄) there corresponds a unique pollution level x̄,
and x̄ depends continuously on ū. For b ∈ I1∪I2∪I3 the regeneration function is
not monotonic, and there catastrophic jumps in the pollution level are possible
as the constant level ū gradually increases, see Mäler et al (2003) and Wagener
(2009). However for b ∈ I2 ∪ I3 catastrophic shifts in the pollution can be
reversed by decreasing ū sufficiently, while for b ∈ I1 they are not reversible as
the self-cleaning ability of the lake is insufficient for these values of b.

Figure 12 displays the bifurcation diagram of the shallow lake system for
b = 0.55. With a decrease in b the saddle-node bifurcation lines move away
from each other, expanding the lower region of history-dependence. We can
show that the upper region of history-dependence is unbounded, because there
does not exist a cusp point for b ≤ b∗1. For the proof see Appendix A. This
implies that the region where the optimal vector field XOpt has a unique global
attractor is now separated into two regions. It can be shown that for any
nonnegative value ρ = ρ∗ of the discount rate the pollution level is lower for
(c, ρ∗) in the right lower region than for (c, ρ∗) from the left upper region. Note
also that for any positive value of the parameter c there exists a value of the
discount rate ρ such that the shallow lake system ends up in an equilibrium
with a relatively high pollution level.

Finally let us consider the case of an irreversible system, b ∈ I1. In Figure 13
the bifurcation diagram of the shallow lake system for b = 0.45 is displayed. One
can immediately notice that the saddle-node bifurcation curve corresponding
to the genesis of the eutrophic equilibrium, that is the right “SN” curve in
Figure 12, and the indifference-attractor bifurcation curve corresponding to the
lower heteroclinic connection of the saddles, that is the right “IA” curve in
Figure 12, are absent in Figure 13. The disappearance of the “SN” curve is
explained by the following proposition.

Proposition 5.1. The saddle-node bifurcation curves in the (b, c)−plane that
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correspond to the genesis of the eutrophic equilibrium have a vertical asymptote
b = 1/2 for any positive value of ρ.

Proof. See Appendix B.

A more detailed discussion of this fact is given in the next subsection. The
disappearance of the “IA” curve can be explained by the impossibility of a
lower heteroclinic connection of the two saddles. Recall that if the system is
reversible it is possible to steer the lake to the clean equilibrium P starting
in a neighborhood of the polluted one Q, as in Figure 1(d). However in case
of irreversibility the stable manifold of P cannot be connected to the unstable
manifold of Q.

Therefore, for b < 1/2, the eutrophic equilibrium is not involved in any
saddle-node bifurcation, meaning that it always exists, nor in any indifference-
attractor bifurcation, meaning that it is always locally optimal. This explains
why there is only one saddle-node bifurcation curve and only one indifference
attractor bifurcation curve in Figure 13.

5.3 Weight of ecological services versus natural rate of
decay: the discounted case

Figure 14 shows the bifurcation diagram of the optimal vector field XOpt for
ρ = 0.03 and its blow up near the cusp point “C”. The indifference-repeller
bifurcation curves “IR1” and “IR2” are situated in the very corner between
the saddle-node bifurcation curves “SN”. The “IR1” curves are almost coin-
ciding with these in the vicinity of the “ISN” points, see Figure 14(right). As
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Figure 14: The bifurcation diagram of the optimal vector field XOpt in the
(b, c)−plain for ρ = 0.03 (left) and its blow up near the cusp point (right).

ρ increases the “ISN” points move away from the cusp point “C” along the
saddle-node bifurcation curves.

21



In fact there exist three saddle-node bifurcation curves of the shallow lake
system in Figure 14(left): two of them meet at the cusp point “C”. The third
one exists only for large values of the parameter c; therefore we do not see it
in Figure 14. However when ρ increases it moves down, as shown in Figure 15,
where it appears in the upper left-hand corner.
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Figure 15: Bifurcation diagram of the shallow lake system with respect to the
parameters b and c for ρ = 0.245.

Figure 15 displays the bifurcation diagram in the (b, c)−plane for ρ = 0.245.
For this value of ρ the bifurcation curves divide the parameter plane into three
regions that correspond to qualitatively different optimal vector fields. The
inner region, which is bounded by two “IR1”, one “IR2” and one “IA” curve,
corresponds to a history-dependent solution with an indifference point as a
threshold. This region, together with two others that are located between “SN”
and “IR1”, “IR2” curves, and that correspond to a history-dependent solution
with a repeller as a threshold, form a region that we call a region of history
dependence. The outer region is called the region of uniqueness. In the region
of history dependence the optimal vector field XOpt has two attractors separated
by either a repeller or an indifference point, implying history dependence of the
long run pollution level under the optimal policy. In the region of uniqueness
the optimal vector field XOpt has a unique attractor. The bifurcation diagram
can be interpreted as follows. Assume that relative cost of pollution c is high,
which implies relatively low phosphorus loading. If the natural outflow of the
pollutant in a lake is a fast process, i.e. b is high, then the lake is able to sustain
low phosphorus loading for any initial level of pollution. But if b is low then the
pollutant accumulates in the water, and even an initially clean lake is not able
to remain clean in presence of constant phosphorus loading. Now assume that
relative cost of pollution c is low, then the initial state of a lake does not affect
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its long run pollution level due to heavy phosphorus loading.
For the critical parameter value ρ = 1/4 the saddle-node bifurcation curves

which exist for b ≤ 1/2 meet each other, see Figure 16(left), and for ρ > 1/4
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Figure 16: Bifurcation diagram of the shallow lake system in the parameter
plane (b, c) for ρ = 0.25(left) and for ρ = 0.251(right).

they split again but in a different manner, see Figure 16(right), giving rise to
a separate saddle-node bifurcation curve, the dashed curve in the low left-hand
corner in Figure 16(right). These bifurcations are irrelevant to the optimal
vector field, as it is a curve of saddle-node bifurcations of the state-control
system (9) which do not cause any bifurcations of the optimal vector field XOpt.

The region of history-dependent optimal policies shrinks and moves up as the
discount factor ρ increases, see Figure 17. One can see that the right boundary of
this region hardly moves, whereas the left boundary moves quickly as ρ increases.
This fact can be explained as follows. Assume the natural rate of decay to be
small, i.e. b ≤ 1/2, meaning that the lake accumulates most of the pollutant
coming in. With an increase in ρ the social planner becomes more myopic. The
more myopic optimal policy allows for heavier pollutant loading. Thus, due to
the low self-cleaning ability of the lake and the heavy phosphorus loading, the
pollution level rapidly converges to a high steady level regardless of its initial
value. However, if c is high enough, i.e. the society is sufficiently concerned
about the ecosystem quality, the optimal policy becomes history-dependent,
and thereby the initial state of the lake determines its long run pollution level.
To see this, note that the saddle-node curves that band the region of history-
dependence on the left have an asymptote b = 0; this is proved in Appendix B.
This implies that for any 0 < b ≤ 1/2 and ρ > 0 there is a value of c, possible
large, such that (b, c, ρ) is in the region of history-dependence.

6 Concluding remarks

This paper applies the tools of exploring dynamic optimization problems with
multiple equilibria to the shallow lake model. These tools, the notion of optimal
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Figure 17: Regions of history-dependent optimal policy for different values of
the discount rate ρ.

vector fields and the theory of bifurcating optimal vector fields, has been intro-
duced and described in Kiseleva and Wagener (in prep.). The present paper
illustrates how they work for a particular optimization problem. These tools
however can be applied to a wide class of economic problems.

With the help of the proper bifurcation analysis we have succeeded to com-
plete the analysis of the shallow lake model started in Wagener (2003). We have
built the full picture of all possible qualitatively different optimal pollution poli-
cies depending on the type of an eco-system, social preferences and economic
factors. Moreover we have computed boundaries of the regions in the parame-
ter space that correspond to different types of optimal policies. Each point in
the parameter space determines a particular optimization problem. A certain
type of the optimal solution corresponds to a point in a particular region, and
an intermediate degenerate situation between two types of the optimal solution
corresponds to a point on a boundary.

Roughly speaking there are three types of the optimal solution: 1) steering a
system to an equilibrium level regardless of its initial state; 2) steering a system
to either of two existing equilibria depending on its initial state; 3) steering
a system to either of the two equilibria unless the initial state is not at its
intermediate steady state level. The last two types of the optimal solution are
called history-dependent optimal policies.

The two types of history-dependent optimal policies are distinguished only
by the type of the threshold point: it is either an indifference point or a repeller
of the optimal vector field. In the shallow lake model, in the first case if the
initial pollution level is at the threshold value then the social planner is free to
decide which equilibrium, oligotrophic or eutrophic, the lake will be steered to;
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both policies are optimal. In the second case the threshold pollution level is
a repelling equilibrium level; thus the optimal policy keeps that pollution level
once started there, otherwise it steers the pollution level away from it.

Another important contribution of the present paper to the analysis of the
shallow lake model is ascertained trade-off between social preferences and eco-
nomic factors. It can be seen from the bifurcation diagrams with respect to
the two parameters: c, relative costs of pollution, and ρ, the discount factor,
see Figures 11-12. A decrease in c may radically change the long run pollution
level. In order to keep it at the same value the social planner has to become
less myopic, ρ has to be decreased proportionally.

A Asymptotic behavior of the cusp curve in the
parameter space

In this Appendix we prove that the projections of the cusp bifurcation curve onto
the (b, c)− and (b, ρ)−planes have the vertical asymptote b =

(√
9 + 6

√
3
)
/8

and its projection onto (c, ρ)−plane has the asymptote ρ = Kc + L, where K
and L are given by (20)-(21).

The shallow lake system in state-control form is given by the following system
of differential equations

ẋ = u− bx+
x2

x2 + 1

u̇ = −
(
ρ+ b− 2x

(x2 + 1)2

)
u+ 2cxu2.

(14)

By solving the following system
u− bx+

x2

1 + x2
= 0

−
(
ρ+ b− 2x

(x2 + 1)2

)
u+ 2cxu2 = 0

for u > 0 we obtain the manifold of equilibria of the system (14) in the cartesian
product R× R3 of state space and parameter space

s(x; b, c, ρ) = −
(
ρ+ b− 2x

(x2 + 1)2

)
+ 2cx

(
bx− x2

1 + x2

)
= 0. (15)

From the definition of cusp bifurcation it follows that the cusp bifurcation curve
is a solution of the following system s(x; b, c, ρ) = 0

sx(x; b, c, ρ) = 0
sxx(x; b, c, ρ) = 0.

(16)

We want to solve the system (16) with respect to the parameters b, c and ρ to
obtain an explicit expression for the cusp curve in the parameter space. For
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that we need to check solvability of (16) with respect to the parameters. The
Jacobian of (16) is given by

∂(s, sx, sxx)
∂(b, c, ρ)

= −8cx2(−3 + 6x2 + x4)
(1 + x2)3

.

For c > 0, x > 0 and x 6=
√

2
√

3− 3, which is the only positive root of the
equation −3 + 6x2 + x4 = 0, the system (16) can be solved with respect to b, c
and ρ. Therefore the cusp bifurcation curve can be parameterized as the image
of the map

Υ : x 7→ (bcusp(x), ccusp(x), ρcusp(x)),

where

bcusp(x) =
−3x− 8x3 + 9x5 + 6x7

(1 + x2)2(−1− 10x2 + 15x4)
(17)

ccusp(x) =
1 + 10x2 − 15x4

x2(1 + x2)(−3 + 6x2 + x4)
(18)

ρcusp(x) =
2x

(1 + x2)3
− 5x

(1 + x2)2
+

15x
4(1 + x2)

− bcusp(x) +
x3

4
ccusp(x) (19)

All the parameters in the model are assumed to be nonnegative; the inequalities
bcusp(x) ≥ 0, ccusp > 0 and ρcusp ≥ 0 imply that x ∈ (x̄1, x̄2), where

x̄1 =
√

2
√

3− 3 ≈ 0.68, which is the root of the equation 3− 6x2 − x4 = 0,

x̄2 ≈ 0.8233, which is a root of the equation ρcusp = 0.

For x ∈ (x̄1, x̄2) the functions bcusp(x), ccusp(x) and ρcusp(x) are monotone
functions satisfying the following properties

b(x̄1) =
1
8

√
9 + 6

√
3 ≈ 0.5505,

lim
x↓x̄1

c(x) = +∞,

lim
x↓x̄1

ρ(x) = +∞.

That proves that the projection of the cusp bifurcation curve Υ both on (b, c)
and (b, ρ)-planes has a vertical asymptote b =

(√
9 + 6

√
3
)
/8.

In order to prove that the projection of the cusp bifurcation curve on the
(c, ρ)-plane has an inclined asymptote we compute the following limits

K = lim
x↓x̄1

ρ(x)
c(x)

=
1
4

(
2
√

3− 3
) 3

2
, (20)

L = lim
x↓x̄1

(ρ(x)−Kc(x)) =
1
4

√
2
√

3− 3. (21)

That proves that the cusp bifurcation curve has the asymptote in (c, ρ)−plane,
given by

ρ = Kc+ L. (22)
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Figure 18: The cusp bifurcation curve and its asymptote in the parameter space
(b, c, ρ).

B Asymptotic behavior of the saddle-node bi-
furcation curves in the (b, c)−plane

In this Appendix we prove that the saddle-node bifurcation curves in the (b, c)−plane
have two vertical asymptotes b = 0 and b = 1/2.

We now write the shallow lake system in state-control form as
ẋ = f(x, u; b, c, ρ) = u− bx+

x2

x2 + 1

u̇ = g(x, u; b, c, ρ) = −
(
ρ+ b− 2x

(x2 + 1)2

)
u+ 2cxu2.

(23)

Saddle-node bifurcations occur for points that are solutions of the following
system  f(x, u; b, c, ρ) = 0

g(x, u; b, c, ρ) = 0
D(x, u; b, c, ρ) = 0

(24)

where D(x, u; b, c, ρ) = det (∂(f, g)/∂(x, u)). It can be shown that the system
(24) can always be solved with respect to the parameters b, c and ρ and the
saddle-node bifurcation surface can be parameterized as image of the map

Γ : (x, u) 7→ (bsn(x, u), csn(x, u), ρsn(x, u)).
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Solving (24) yields

bsn(x, u) =
x2 + u(1 + x2)
x(1 + x2)

(25)

csn(x, u) =
3x2 − 1

(1 + x2)(2u− x2 + 4ux2 + x4 + 2ux4)
(26)

ρsn(x, u) =
2x

(1 + x2)2
+ 2uxcsn(x, u)− bsn(x, u) (27)

Intersection of the saddle-node bifurcation surface with the plane ρ = ρ0 can be
computed by solving the following equation

ρsn(x, u) = ρ0 (28)

with respect to u for ρ0 > 0. (28) is formally equivalent to a quadratic equation
in u. Let us denote solutions of (28) as û1(x, ρ0) and û2(x, ρ0). Then the
intersection of the saddle-node surface Γ(x, u) with the plane ρ = ρ0 is defined
as the two following curves

γ1 :x 7→ Γ(x, û1(x, ρ0)),
γ2 :x 7→ Γ(x, û2(x, ρ0)).

We want to determine the vertical asymptotes in the (b, c)−plane of the saddle-
node curves γ1(x) and γ2(x), in other words we want to find x∗ ≥ 0 such that

lim
x→x∗

bsn(x, ûi(x, ρ0)) = b∗ <∞, (29)

lim
x→x∗

csn(x, ûi(x, ρ0)) =∞, (30)

lim
x→x∗

ρsn(x, ûi(x, ρ0)) = ρ0. (31)

As x converges to x∗ csn diverges to infinity, but bsn and ρsn have finite limits;
the equation (27) implies that either x∗ = 0 or limx→x∗ ûi(x) = 0 or both
together have to hold.

Let us consider the three possible cases:

• x∗ = 0 and limx→x∗ ûi(x) 6= 0

Together with (25) this implies that limx→∗ bsn(x, ûi) =∞, contradicting
(29).

• limx→x∗ ûi(x) = 0 and x∗ > 0

Together with (26) and (30) this implies that x∗ = 1. The solution of (28)
for x ≈ x∗ can be written as

− for ρ0 < 1/4

û1(x) =
(

1
4
− ρ0

)
−
(
ρ0 +

1
4(1− 4ρ0)

)
(x− 1) + o

(
(x− 1)2

)
, (32)

û2(x) =
ρ0

1− 4ρ0
(x− 1) + o((x− 1)2). (33)
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− for ρ0 > 1/4

û1(x) =
ρ0

1− 4ρ0
(x− 1) + o((x− 1)2), (34)

û2(x) =
(

1
4
− ρ0

)
−
(
ρ0 +

1
4(1− 4ρ0)

)
(x− 1) + o

(
(x− 1)2

)
. (35)

For ρ0 < 1/4
lim
x→x∗

û1(x) = 1/4− ρ0 > 0,

contradicting the assumption. Hence we leave the solution û1(x) out for
ρ0 < 1/4. This implies that

lim
x→x∗

bsn(x, u2(x)) = bsn(1, 0) = 1/2.

For ρ0 > 1/4
lim
x→x∗

û2(x) = 1/4− ρ0 > 0,

contradicting the assumption. Hence we leave the solution û2(x) out for
ρ0 > 1/4. This implies that

lim
x→x∗

bsn(x, u1(x)) = bsn(1, 0) = 1/2.

For ρ = 1/4
lim
x→x∗

û1(x) = lim
x→x∗

û2(x) = 0,

implying that

lim
x→x∗

bsn(x, u1(x)) = lim
x→x∗

bsn(x, u2(x)) = bsn(1, 0) = 1/2.

• limx→x∗ ûi(x) = 0 and x∗ = 0

The solutions of the equation (28) for x ≈ x∗ can be written as

û1(x, ρ0) =
1
2
x2 − 1

2ρ0
x3 + o(x4),

û2(x, ρ0) = −ρ0x+
1

2ρ0
x3 + o(x4).

Since limx→x∗ bsn(x, û2(x)) = −ρ0 and since we do not allow the param-
eter b to be negative, we are interested only in the solution û1(x) which
gives the second asymptote of the saddle-node bifurcation curve γ1(x):

lim
x→x∗

bsn(x, û1(x)) = 0.

The analysis given above implies that the saddle-node bifurcation curves γi(x)
have the vertical asymptotes b = 0 and b = 1/2 for any ρ0 > 0. Moreover, it can
be proven that the saddle-node bifurcation curves have no other asymptotes in
the (b, c)−plane.
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