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Abstract
Rational expectations assumes perfect, model consistency between beliefs

and market realizations. Here we discuss behaviorally rational expectations,
characterized by an observable, parsimonious and intuitive form of consistency
between beliefs and realizations. We discuss three case-studies. Firstly, a New
Keynesian macro model with a representative agent learning an optimal, but
misspecified, AR(1) rule to forecast inflation consistent with observed sample
mean and first-order autocorrelations. Secondly, an asset pricing model with
heterogeneous expectations and agents switching between a mean-reverting fun-
damental rule and a trend-following rule, based upon their past performance.
The third example concerns learning-to-forecast laboratory experiments, where
under positive feedback individuals coordinate expectations on non-rational,
almost self-fulfilling equilibria with persistent price fluctuations very different
from rational equilibria.
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1 Introduction

Traditional economics is built on the rationality paradigm. All agents are assumed

to be perfectly rational, using all available information and rationality is common

knowledge. In a perfect rational world, the population of agents is represented by

a perfectly rational representative agent, markets are in equilibrium and as a result

markets are efficient and prices reflect economic fundamentals. Agents have rational

expectations (RE), that is, expectations are model consistent, so that beliefs and mar-

ket realizations, on average, coincide optimally. The rational expectation hypothesis

(REH, Muth, 1961, Lucas, 1972) is the cornerstone of new classical economic and

financial analysis.

Behavioral economics and finance are gaining ground however and many system-

atic deviations from rationality –behavioral biases– have been documented, e.g., hy-

perbolic discounting, money illusion, ambiguity effect, loss aversion, status quo bias,

survivorship bias, etc. Some possible biases in expectation formation that have been

discussed in the literature include belief bias, anchoring, bandwagon effect, (Bayesian)

conservatism, exaggerated expectations, optimistic or pessimistic beliefs and over-

confidence. In this paper we discuss a behavioral theory of expectations, replacing

perfect model consistency by observable, more intuitive and parsimonious consistency

requirements between beliefs and realizations.

Much work has been done on boundedly rational expectations and adaptive learn-

ing (Sargent, 1993). Boundedly rational agents act as econometricians or statisticians

using an econometric forecasting model and updating the parameters over time as ad-

ditional observations become available; see, e.g., Evans and Honkapohja (2001, 2013)

and Bullard (2006) for extensive surveys and references. Part of this literature involves

studying under which conditions learning will converge to the rational expectations

equilibrium (REE). Another part of the literature studies non-rational learning equi-

libria, explaining excess volatility, as e.g. in Bullard (1994), Hommes and Sorger

(1998), Hommes and Rosser (2001) and Adam and Marcet (2011).
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This paper puts forth the notion of behaviorally rational expectations. While

adaptive learning has stressed a statistical approach to expectations and forecasts, we

stress simplicity, parsimony and an intuitive behavioral interpretation. Agents base

their expectations on simple forecasting heuristics, with the class of forecasting rules

disciplined by behavioral consistency between beliefs and market realizations. Hence,

we back off from perfect rational expectations and model consistency, but impose

a reasonable degree of observational consistencies between beliefs and realizations.

Aggregate behavior is then characterized by almost self-fulfilling behavioral learning

equilibria. A rational expectations equilibrium may arise as a special case in which

the equilibrium is perfectly self-fulfilling, but typically behavioral learning equilibria

exhibit excess volatility and may persistently deviate from the rational benchmark.

Our approach is similar in spirit to the concepts of natural expectations (Fuster et al.,

2010; Beshears et al., 2013) and smart heuristics and the adaptive toolbox (Gigerenzer

et al., 1999; Gigerenzer and Selten, 2001). A key difference however is that we impose

plausible consistency requirements between beliefs and realizations.

We discuss the concept of behavioral rationality through three case studies; more

examples may be found in Hommes (2013). The first is in macroeconomics, a New

Keynesian Philips curve (NKPC) with a representative agent learning the simplest,

but misspecified, univariate AR(1) rule to forecast future inflation in an economy that

is too complex to fully understand (Hommes and Zhu, 2013). The parameters of the

AR(1) rule are pinned down by simple and intuitive consistency requirements: the

mean and the first-order autocorrelation of the AR(1) forecasting rule coincide with

the realizations. The representative agent does not fully understand the complex

economy, but makes a mistake believing that the true economy follows an AR(1)

process. This mistake becomes self-fulfilling (Grandmont, 1998) –in terms of the

sample average and first order sample autocorrelation– when the agent learns the

optimal parameters of the simple univariate rule.

The second case study is an asset pricing model with heterogeneous expectations
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and agents choosing between a mean-reverting fundamental rule and a trend-following

rule (Boswijk et al., 2007; Hommes and in’t Veld, 2013). Switching between strate-

gies is endogenous, based upon the relative past performance of the rules. Hence,

agents believe that the market may switch between a mean-reverting and an explo-

sive phase and this belief becomes self-fulfilling when switching behavior is driven by

profitability.

The third example concerns learning-to-forecast laboratory experiments in pos-

itive and negative feedback systems (Bao et al., 2012). Negative feedback systems

are rather stable and individuals quite easily learn to coordinate on the perfectly

self-fulfilling REE. In contrast, under positive feedback almost self-fulfilling equilibria

arise in the laboratory markets.

A common finding is that in positive feedback markets aggregate behavior is not

well described by perfectly self-fulfilling rational equilibrium. Instead, individuals

coordinate their expectations on almost self-fulfilling equilibria, very different from

exact self-fulfilling equilibria, with excess volatility and persistent price fluctuations

deviating significantly from perfect rationality.

The paper is organized as follows. Section 2 discusses the New Keynesian Philips

curve with a representative behaviorally rational agent. Section 3 discusses an asset

pricing model with fundamentalists versus trend-extrapolators. Section 4 discusses

individual and aggregate behavior in laboratory experiments under positive and neg-

ative feedback. Finally, Section 5 concludes.

2 A New Keynesian Philips curve

We consider the New Keynesian Philips curve (NKPC) with inflation driven by an

exogenous AR(1) process yt for the firm’s real marginal cost or the output gap. In-

flation and the output gap (real marginal cost) evolve according to (e.g. Woodford,
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2003; Lansing, 2009)  πt = δπet+1 + γyt + ut,

yt = a+ ρyt−1 + εt,
(1)

where πt is the inflation at time t, πet+1 is the subjective expected inflation at date t+1

and yt is the output gap or real marginal cost, δ ∈ [0, 1) is the representative agent’s

subjective time discount factor, γ > 0 is related to the degree of price stickiness in the

economy and ρ ∈ [0, 1) describes the persistence of the AR(1) driving process. ut and

εt are i.i.d. stochastic disturbances with zero mean and finite absolute moments with

variances σ2
u and σ2

ε , respectively. We refer to ut as a markup shock, which is often

motivated by the presence of an uncertain, variable tax rate and to εt as a demand

shock, that is uncorrelated with the markup shock.

Agents are boundedly rational and do not know the exact form of the actual law

of motion (1). As in Hommes and Zhu (2013), we assume that agents do not recognize

that inflation πt is driven by an exogenous stochastic process yt for marginal costs or

output gap. Although agents may observe yt they do not realize or they do not believe

that the state of the economy is determined by the exogenous process yt. Instead

agents only use past observations πt−1, πt−2, · · · , and a simple linear model to forecast

the future state of the economy (i.e. inflation), whose structure and complexity they

do not fully understand. We focus on the simplest case where agents’ perceived law

of motion (PLM) is a simple, parsimonious univariate AR(1) process. Hommes and

Zhu (2013) follow the idea of a self-fulfilling mistake (Grandmont, 1998) imposing

consistency requirements on the parameters of the AR(1) rule, as explained below,

so that the mistake becomes self-fulfilling.

If agents believe that inflation πt follows a univariate AR(1) process, and try to

learn its parameters α and β, the implied actual law of motion (ALM) becomes πt = δ[αt + β2
t (πt−1 − αt)] + γyt + ut,

yt = a+ ρyt−1 + εt.
(2)

We assume that agents use sample autocorrelation learning (SAC-learning; Hommes
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and Sorger, 1998) to learn the parameters α and β. That is, for any finite set of

observations {π0, π1, · · · , xt}, the sample average is given by

αt =
1

t+ 1

t∑
i=0

πi, (3)

and the first-order sample autocorrelation coefficient is given by

βt =

∑t−1
i=0(πi − αt)(πi+1 − αt)∑t

i=0(πi − αt)2
. (4)

Hence αt and βt are updated over time as new information arrives. SAC-learning has

a simple behavioral interpretation, since the sample average and first order autocor-

relation coefficient –the persistence of a time series– may be “guestimated” from an

observed time series.

A first-order Stochastic Consistent Expectations Equilibrium (SCEE) (α∗, β∗) is an

equilibrium for which the mean and first-order autocorrelation of the implied actual

law of motion (2) exactly coincide with α∗ and β∗ respectively. Hommes and Zhu

(2013) prove the following proposition:

Proposition. In the case that 0 < ρ < 1 and 0 ≤ δ < 1, there exists at least one

nonzero first-order stochastic consistent expectations equilibrium (SCEE) (α∗, β∗) for

the New Keynesian Philips curve (2) with α∗ = γa
(1−δ)(1−ρ) = π∗.

The sample mean α∗ = γa
(1−δ)(1−ρ) = π∗ exactly coincides with the RE sample

mean, and therefore along a SCEE inflation is unbiased in the long run. The inflation

persistence, as measured by the first-order autocorrelation β∗ is typically much larger

than the RE persistence (which equals ρ, the autocorrelation of the exogenous driving

force). Moreover, Hommes and Zhu (2013) show that for the New Keynesian Philips

curve (1) multiple SCEE may coexist. Coexistence of multiple SCEE is illustrated in

Figure 1. The first-order autocorrelation coefficient F (β) of the implied ALM (2) is

given by

F (β) = δβ2 +
γ2ρ(1− δ2β4)

γ2(δβ2ρ+ 1) + (1− ρ2)(1− δβ2ρ) · σ2
u

σ2
ε

. (5)
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Figure 1a illustrates that, for empirically plausible parameter values, F (β) has

three fixed points β∗
1 ≈ 0.3066, β∗

2 ≈ 0.7417 and β∗
3 ≈ 0.9961. Hence, we have co-

existence of three first-order SCEE (α∗, β∗). Figures 1b and 1c illustrate the time

series of inflation along the coexisting SCEE. Inflation has low persistence along the

SCEE (α∗, β∗
1), but very high persistence along the SCEE (α∗, β∗

3). The time series

of inflation along the high persistence SCEE in Figure 1c has in fact similar persis-

tence characteristics and amplitude of fluctuation as in empirical U.S. inflation data.

Furthermore, Figure 1c illustrates that inflation in the high persistence SCEE has

much stronger persistence than REE inflation, where the first-order autocorrelation

coefficient of REE inflation equals ρ = 0.9, significantly less than β∗
3 = 0.9961.

Figure 2 illustrates the inflation dynamics in the Keynesian Philips curve under

constant gain SAC-learning1. In the case of multiple equilibria, time-varying param-

eter estimates make it possible that a sequence of shocks moves the economy from

one equilibrium to another. As shown in Branch and Evans (2010), a real-time con-

stant gain learning formulation in an asset pricing model is capable of reproducing

regime-switching asset returns and volatilities. Figure 2 illustrates these switches be-

tween different basins of attraction, where other parameters are taken as in Figure 1.

The inflation πt clearly exhibits regime switching, with the autocorrelation coefficient

βt switching between phases of high persistence with near unit root behaviour and

phases of low persistence with close to 0 autocorrelation and the variance estimator

Rt =
1

t+ 1

t∑
i=0

(πt − αt)2, (6)

switching between phases of high and low volatility.

This simple example illustrates the occurrence of almost self-fulfilling equilibria,

with behaviorally rational expectations, in a representative agent framework. The

1Hommes and Zhu (2013) derive the recursive constant gain version of SAC-learning. Under SAC-

learning, the “gain”, i.e., the change in the updating of the parameter values αt and βt converges to 0

because of the 1/t terms averaging over the entire past. In the constant gain version of SAC-learning

the term 1/t is replaced by a parameter κ representing the constant gain.
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Figure 1: (a) The first-order autocorrelation β∗ of the SCEE correspond to the

three intersection points of F (β) in (5) (bold curve) with the perceived first-order au-

tocorrelation β (dotted line); (b) time series of inflation in low-persistence SCEE

(α∗, β∗
1) = (0.03, 0.3066); (c) times series of inflation in high-persistence SCEE

(α∗, β∗
3) = (0.03, 0.9961) (bold curve) and time series of REE inflation (dotted curve).

Empirically plausible parameter values are: δ = 0.99, γ = 0.075, a = 0.0004, ρ = 0.9,

σε = 0.01 [εt ∼ N(0, σ2
ε)], and σu = 0.003162 [ut ∼ N(0, σ2

u)], so that σ2
u

σ2
ε

= 0.1.
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Figure 2: New Keynesian Philips curve under constant gain learning with gain

parameter κ = 0.008. Top panel: inflation πt and sample average αt; Middle panel:

first-order autocorrelation coefficient βt, switching between high and low persistence;

Bottom panel: variance estimator Rt switching between high and low volatility.

representative agent makes a mistake and does not fully recognize the complex struc-

ture of the economy. Instead, the agent uses the simples univariate AR(1) forecasting

rule. By learning, the mistake becomes self-fulfilling in terms of the two most impor-

tant observable statistics, the sample average and first-order autocorrelation, which

may also be “guestimated” from observed time series.
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3 A behavioral asset pricing model

We consider a stylized yet microfounded asset pricing model with heterogeneous be-

liefs and the estimation of a 2-type model on S&P500 data. A detailed derivation

may be found in Brock and Hommes (1998). Investors can choose between a risk

free asset paying a fixed return r and a risky asset (say a stock) paying stochastic

dividends. We assume that investors have perfect knowledge of the exogenous cash

flow process, and thus know the ‘fundamental value’ of the risky asset, but differ in

their beliefs about the price of the asset in the short run. Denote Yt as the dividend

payoff, Pt as the asset price and zh,t as the number of shares bought by investor i.

Wealth in period t+ 1 for trader type h is given by

Wh,t+1 = (1 + r)Wh,t + (Pt+1 + Yt+1 − (1 + r)Pt)zh,t, (7)

Let Eh,t and Vh,t denote the “beliefs” or forecasts of trader type h about conditional ex-

pectation and conditional variance. Agents are assumed to be myopic mean-variance

maximizers so that the demand zh,t of type h is

zh,t =
Eh,t[Pt+1 + Yt+1 − (1 + r)Pt]

aVh,t[Pt+1 + Yt+1 − (1 + r)Pt]
=
Eh,t[Pt+1 + Yt+1 − (1 + r)Pt]

aσ2
, (8)

where a is the risk aversion and, for simplicity, the conditional variance Vh,t = σ2 is

assumed to be equal and constant for all types. In the case of zero supply of outside

shares the market clearing price is given by

Pt =
1

1 + r

H∑
h=1

nh,tEh,t[Pt+1 + Yt+1], (9)

where nh,t denotes the time-varying fraction of trader type h and Eh,t[Pt+1 + Yt+1]

denotes the beliefs about the future price and the future dividend by investor type h.

The dividend process follows a geometric random walk with drift:

log Yt+1 = µ+ log Yt + νt+1, νt+1 ∼ IID(0, σ2
ν). (10)

Investors have correct beliefs about dividends and estimate the constant growth rate

g ≡ eµ+
1
2
σ2
ν by averaging over log(Yt+1

Yt
). Therefore the agents have model-consistent
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beliefs about the exogenous dividend process: Ei,t[Yt+1] = (1 + g)Yt. This assump-

tion has the convenient feature that the model can be written in deviations from a

benchmark fundamental.

In the special case where all agents have rational expectations about prices, the

price equals its RE fundamental value given by the discounted sum of all future

expected dividends2:

P ∗
t =

1 + g

r − g
Yt. (11)

Hence, under RE the price-to-dividend ratio is constant and given by

P ∗
t

Yt
=

1 + g

r − g
≡ δ∗. (12)

Fig. 3 illustrates the S&P500 stock market index, the price-to-dividend ratio δt ≡

Pt/Yt and the fundamental value P ∗
t . The S&P500 index clearly exhibits excess

volatility, a point already emphasized in the seminal paper of Shiller (1981). Boswijk

et al. (2007) estimated a 2-type model using yearly S&P500 data from 1871-2003.

More recently Hommes and in’t Veld (2013) updated the estimation of the 2-type

model using quarterly data 1950Q1-2012Q3, using the updated data set of Shiller

(2006).

In deviations from the fundamental value xt ≡ δt − δ∗ , the 2-type model can be

rewritten as:

xt =
1

R∗ (n1,tE1,t[xt+1] + n2,tE2,t[xt+1]), R∗ ≡ 1 + r

1 + g
. (13)

Notice that the asset pricing model has positive expectations feedback, that is, real-

ized price deviation increases (decreases) when (average) expected deviation increases

(decreases). The simplest form of heterogeneity occurs when belief types are linear

in the last observation:

Eh,t[xt+1] = φhxt−1. (14)

2This solution is known as the Gordon model (Gordon, 1962).
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Figure 3: Top panel: Time series of S&P500, its fundamental value P ∗
t in (11) and the one-

step ahead forecast of the 2-type model; Second panel: price-to-dividend ratio δt, its (constant)
fundamental δ∗ in (12) the one-step ahead forecast of the 2-type model; Third panel: estimated
fraction n1,t of fundamentalists, and Fourth panel: the corresponding time varying market sentiment
φt in (21)
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Two types, h = 1, 2, are sufficient to capture the essential difference in agents’ behav-

ior: fundamentalists believe the price will return to its fundamental value (0 ≤ φ1 < 1)

and chartists believe that the price (in the short run) will move away from the fun-

damental value (φ2 > 1).

The fractions of the two types are updated with a multinomial logit model as in

Brock and Hommes (1997), with intensity of choice β:

nh,t+1 =
eβUh,t∑H
j=1 e

βUj,t
. (15)

The performance measure Uh,t is a weighted average of past profits πh,t and past

fitness Uh,t−1, with memory parameter ω:

Uh,t = (1− ω)πh,t + ωUh,t−1, (16)

with profits, up to a constant factor, given by

πh,t = zh,t−1Rt = (φhxt−2 −R∗xt−1)(xt −R∗xt−1), (17)

where R∗ = (1 + r)/(1 + g). The econometric form of the endogenous strategy

switching model is an AR(1)- model with a time-varying coefficient:

R∗xt = ntφ1xt−1 + (1− nt)φ2xt−1 + εt R∗ =
1 + r

1 + g
, (18)

where εt is an i.i.d. error term. Combining equations (15), (16) and (17), fractions

depend nonlinearly on past realisations:

n1,t =(1 + exp[β(φ1 − φ2)
t−4∑
j=0

[ωi(1− ω)xt−3−j(xt−1−j −R∗xt−2−j)]])
−1, (19)

n2,t =1− n1,t. (20)

The estimated parameter values in Hommes and in’t Veld (2013) are:3

3In this estimation the intensity of choice β = 1 has been fixed. Estimating the β-parameter

is hard and yields non-significant results, probably due to the relatively small sample size. At the

same time the coefficients φ1 and φ2 are significantly different from each other and therefore β is

non-zero. See Hommes and in’t Veld (2013) for bootstrap analyses and an extensive discussion.
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• φ1 = 0.953: type 1 therefore are fundamentalists, expecting mean reversion of

the price towards its fundamental value;

• φ2 = 1.035: type 2 are trend extrapolators, expecting the price deviation from

fundamental to increase by 3.5% per quarter;

• ω = 0.816: implying almost 20% weight is given to the most recent profit

observation and about 80% to past profitability.

Define the market sentiment as

φt =
ntφ1 + (1− nt)φ2

R∗ (21)

Figure 3 also shows time series of estimated fractions of fundamentalists and the

market sentiment. The fraction of fundamentalists varies considerably but gradually

(due to memory) over time, with values between 0.25 and 0.9 until the 1990s, and

more extreme values ranging from close to 0 to almost 1 after the dot com bubble.

The switching model offers an intuitive explanation of the dot com bubble as being

triggered by economic fundamentals (good news about a new internet technology)

subsequently strongly amplified by trend-following behavior. Estimates of the market

sentiment φt vary between 0.96 and 1 until the 1990s, showing near-unit root behavior.

During the dot com bubble the market sentiment φt exceeds 1 for several quarters

and therefore the market is temporarily explosive. During the financial crisis the

market is mainly dominated by fundamentalists indicating that the financial crisis

has been reenforced by fundamentalists who expected a correction of asset prices

back to fundamentals.

In this behavioral asset pricing model with heterogeneous beliefs, agents switch

between a mean-reversion and a trend-following strategy based upon realized prof-

itability. Strategy switching driven by profitability leads to an almost self-fulfilling

equilibrium with bubbles and crashes triggered by shocks (“news”) to economic fun-

damentals amplified by endogenous switching between trend-following and fundamen-

talist’s strategies.
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4 Laboratory Experiments

In this section we consider Learning-to-Forecast Experiments (LtFE) with human

subjects; a survey of these experiments is given in Hommes (2011). Subjects have

to forecast a price, whose realization depends endogenously on their average fore-

cast. The main goal of these experiments is to study how individual expectations

are formed, how these interact and which structure emerges at the aggregate level.

Will agents coordinate on a common forecast and will the price converge to the ratio-

nal expectations benchmark or will other, almost self-fulfilling behaviorally rational

equilibria arise?

As already noted in Muth’s classical paper introducing rational expectations, a

crucial feature for aggregation of individual expectations, is whether the deviations

of individual expectations from the rational forecast are correlated or not. To quote

Muth (1961, p.321, emphasis added):

“Allowing for cross-sectional differences in expectations is a simple matter, because

their aggregate affect is negligible as long as the deviation from the rational forecast

for an individual firm is not strongly correlated with those of the others. Modifications

are necessary only if the correlation of the errors is large and depends systematically

on other explanatory variables”.

Laboratory experiments are well suited to study correlation of individual expecta-

tions in a controlled environment. It turns out that the type of expectations feedback,

positive or negative, is crucial. In the case of positive (negative) feedback, an increase

(decrease) of the average forecast, causes the realized market price to rise (fall). Posi-

tive feedback seems particularly relevant in speculative asset markets. If many agents

expect the price of an asset to rise they will start buying the asset, aggregate demand

will increase and so, by the law of supply and demand, the asset price will increase.

High price expectations then become self-fulfilling leading to high realized asset prices.

In markets where the role of speculative demand is less important, e.g. in markets
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for non-storable commodities, negative feedback may play a more prominent role.

For example in a supply-driven commodity market, if many producers expect future

prices to be high they will increase production which, according to the law of supply

and demand, will lead to a lower realized market price.

Heemeijer et al. (2009) investigate how the expectations feedback structure af-

fects individual forecasting behaviour and aggregate market outcomes by considering

market environments that only differ in the sign of the expectations feedback, but

are equivalent along all other dimensions. The realized price is a linear map of the

average of the individual price forecasts pei,t of six subjects. The (unknown) price

generating rules in the negative and positive feedback systems were respectively:

pt = 60− 20

21
[(

6∑
i=1

1

6
pei,t)− 60] + εt, negative feedback (22)

pt = 60 +
20

21
[(

6∑
i=1

1

6
pei,t)− 60] + εt, positive feedback (23)

where εt is an exogenous random shock to the pricing rule. The only difference

between (22) and (23) is the sign of the slope of the linear map, 20/21 ≈ +0.95 resp.

−20/21 ≈ −0.954.

Heemeijer et al. (2009) consider positive and negative feedback systems with small

IID shocks εt ∼ N(0, 0.25). Here we focus on the more recent experiments of Bao et al.

(2012), with large permanent shocks to the fundamental price level. More precisely,

these shocks have been chosen such that, both in the negative and positive feedback

treatments, the fundamental equilibrium price p∗t changes over time according to:

p∗t = 56, 0 ≤ t ≤ 21,

p∗t = 41, 22 ≤ t ≤ 43,

p∗t = 62, 44 ≤ t ≤ 65.

(24)

4In both treatments, the absolute value of the slopes is 0.95, implying in both cases that the

feedback system is stable under naive expectations.
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The purpose of these experiments was to investigate how the type of expectations

feedback may affect the speed of learning of a new steady state equilibrium price,

after a relatively large unanticipated shock to the economy.

Figure 4 shows for positive and negative feedback the average price behavior (top

panels), realized prices in all groups (middle panels) and an example of individual

forecasts in a positive as well as a negative feedback group (bottom panels). Aggregate

behaviors under positive and negative feedback are strikingly different. Negative

feedback markets tend to be rather stable, with price converging quickly to the new

(unknown) equilibrium level after each unanticipated large shock. In contrast, under

positive feedback prices are sluggish, converging only slowly into the direction of the

fundamental value and subsequently overshooting it by large amounts.

Figure 5 reveals some other striking features of aggregate price behavior and in-

dividual forecasts. The top panel shows the time variation of the median distance to

the RE benchmark price over all (eight) groups in both treatments. For the negative

feedback treatment, after each large shock the distance spikes, but converges quickly

back (within 5-6 periods) to almost 0. In the positive feedback treatment after each

shock the distance to the RE benchmark shows a similar spike, but falls back only

slowly and does not converge to 0. The bottom panel shows how the degree of het-

erogeneity, that is, the median standard deviation of individual forecasts, changes

over time. For the positive feedback treatment after each large shock heterogeneity

decreases very quickly and converges to (almost) 0 within 3-4 periods. Under positive

feedback, individuals thus coordinate expectations quickly, but they all coordinate on

the “wrong”, i.e., a non-RE price. In the negative feedback treatment heterogeneity is

more persistent, for about 10 periods after each large shock. Persistent heterogeneity

stabilizes price fluctuations and after convergence of the price to its RE fundamental

individual expectations coordinate on the correct RE price.

One may summarize these results in saying that in the positive feedback treatment

individuals quickly coordinate on a common prediction, but that coordination on the
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Figure 4: Positive feedback (left panels) and negative feedback (right panels) experi-

mental data. Top panels: The average realized price averaged over all eight groups;

Middle panels: the market prices for eight different groups; Bottom panels: predic-

tions of six individuals in group P8 (left) and group N8 (right) plotted together with

fundamental price (dotted lines).
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Figure 5: Positive/Negative feedback markets with large shocks. These plots illus-

trate price discovery (top panel) and coordination of individual expectations (bottom

panel). The top panel shows the median absolute distance to RE fundamental price,

while the bottom panel shows the median standard deviation of individual predic-

tions. In positive feedback markets coordination is quick, but on the “wrong”, i.e.

non-RE, price.
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“wrong” non-fundamental price occurs. As a result price behavior is very different

from the perfect rational expectations equilibrium price. On the other hand, in the

negative feedback treatment coordination is much slower, heterogeneity is more per-

sistent but price convergence is quick. Stated differently, positive feedback markets

are characterized by quick coordination and slow price discovery, while negative feed-

back markets are characterized by slow coordination, more persistent heterogeneity

and quick price discovery. Notice also that under positive feedback, coordination on

a non-RE-fundamental price is almost self-fulfilling, with small individual forecast-

ing errors. The positive feedback market is thus characterized by coordination on

almost self-fulfilling equilibria with prices very different from the perfectly rational

self-fulfilling equilibrium5. Similar results have been obtained in laboratory experi-

ments in other market settings, including a New Keynesian macro framework (Adam,

2007; Pfajfar and Zakelj, 2009; Assenza et al., 2012) and in a Lucas asset pricing

model (Asparouhova et al., 2013).

Heuristic Switching Model (HSM)

Bao et al. (2012) fit a simple, behavioral heuristics switching model to the experi-

mental data to explain both individual micro and aggregate macro behavior. Their

model is a modification of Anufriev and Hommes (2012), who fitted an extension of

the heterogeneous expectations model of Brock and Hommes (1997) to asset pricing

experiments. The key feature of the model is that the subjects choose between a

number of simple heuristics depending upon their relative performance. To keep it

5Wagener (2013) uses the same experimental data and shows weak individual rationality (i.e.

unbiased forecast errors without autocorrelations) for both the negative and positive feedback treat-

ments, but strong rationality (i.e. prices converge to the homogeneous REE price) only under

negative feedback.
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simple, the model only uses four rules6. An adaptive expectation (ADA) rule:

pet+1,1 = pet + 0.85(pt − pet,1). (25)

A contrarian rules (CTR) given by:7

pet+1,2 = pt − 0.3(pt − pt−1). (26)

A trend extrapolating rule (TRE) given by:

pet+1,2 = pt + 0.9(pt − pt−1). (27)

The coefficients of the first three rules are the medians of the estimated individual

linear rules in Bao et al. (2012). The fourth rule is called an anchoring and adjustment

heuristic (A&A) (Tversky and Kahneman, 1974):

pet+1,4 = 0.5(pavt + pt) + (pt − pt−1). (28)

The rule uses a time varying anchor, 0.5(pavt + pt), which is the average of the last

price and the sample mean of all past prices, and extrapolates the last price change

pt− pt−1. Because of its flexible time-varying anchor, the A&A rule was successful in

explaining persistent oscillations in asset pricing experiments (Anufriev and Hommes,

2012).

Subjects switch between these rules depending upon their relative performance.

The performance of heuristic h, h ∈ {1, 2, 3, 4} is measured by the squared prediction

error8:

Ut,h = −(pt − pet,h)2 + ηUt−1,h, (29)

6Anufriev et al. (2013) fit a HSM with two heuristics, adaptive expectations versus a trend-

following rule, to the positive-negative expectations feedback experiments of Heemeijer et al. (2009).
7Anufriev and Hommes (2012) used two different trend following rules in their model, a weak and

a strong trend following rule, to describe asset pricing experiments with positive feedback. Because

of the negative feedback treatment in Bao et al. (2012), one trend-following rule was replaced by

a contrarian rule, i.e. with a negative coefficient (−0.3) which is able to detect (short run) up and

down price oscillation characteristic for negative feedback markets.
8The participants in the experiment were also paid according to the quadratic prediction errors.
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and nh,t is the fraction of the agents using heuristic h in the whole population. The

parameter η ∈ [0, 1] shows the relative weight the agents give to past errors compared

to the most recent one. When η = 0, only the most recent performance is taken into

account, and when η > 0, all past errors matter for the performance.

nt,h = δnt−1,h + (1− δ) exp(βUt−1,h)∑4
i=1 exp(βUt−1,i)

. (30)

The parameter δ ∈ [0, 1] reflects the inertia with which participants stick to their

rule. When δ = 1, the agents simply do not update. When δ > 0, each period a

fraction of 1− δ participants updates their weights. The parameter β ≥ 0 represents

the “sensitivity” to switch to another strategy. The higher the β, the faster the

participants switch to more successful rules in the recent previous periods. When

β = 0, the agents will put equal weight on each rule. When β = +∞, all agents who

update switch to the most successful rule.

Figure 6 shows realized market prices and the one-period ahead simulated market

prices (top panels), together with the evolution of the fractions of the four strategies

of the heuristics switching model (bottom panels) for a typical group of the nega-

tive feedback (left panels) and the positive feedback treatment (right panels). The

heuristics switching model matches the aggregate behavior of both positive and nega-

tive feedback quite nicely and provides an intuitive, behavioral explanation why these

different aggregate patterns occur. In the negative feedback market, trend following

strategies perform poorly and the contrarian strategy quickly dominates the market

(more than 70% within 20 periods) enforcing quick convergence to the RE bench-

mark after each large shock. In contrast, in the positive feedback treatment, the

trend following strategy performs well and dominates the market (with more than

50% trend-followers after 10 periods). The survival of trend following strategies in

the positive feedback markets causes persistent deviations from the RE steady states,

overreaction and persistent price fluctuations.

The difference in aggregate behavior in these experiments is thus explained by

the fact that trend-following rules are successful in a positive feedback environment
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Figure 6: Experimental and simulated prices using HSM model in one typical group

from the positive (top left, group P8) and negative feedback treatment (bottom left,

group N8) respectively. Experimental data (blue squares) and one-step ahead simu-

lated prices from the HSM model (red circles) almost coincide. The right panels show

the evolution of the four market heuristics in the positive (top right) and negative

feedback treatments (bottom right). The trend following rule dominates in the posi-

tive feedback markets, while the contrarian rule dominates in the negative feedback

markets. Parameters are: β = 0.4, η = 0.7, δ = 0.9, as in Anufriev and Hommes

(2012).
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amplifying price oscillations and persistent deviations from the rational equilibrium

benchmark price, while the same trend-following rules are driven out by the contrar-

ian rule in the case of negative feedback. Coordination of individual expectations

on trend-following rules and almost self-fulfilling equilibria in a positive expectations

feedback environment has a large aggregate effect with realized market prices deviat-

ing significantly from the perfectly self-fulfilling RE benchmark.

5 Conclusions

Behaviorally rational expectations are characterized by an intuitive, plausible and

easily observable form of consistency between forecasts and market realizations. Be-

haviorally rational expectations are almost, but not necessarily exactly, self-fulfilling.

Parsimony is an important and attractive feature of behavioral rationality as sim-

plicity makes coordination on an almost self-fulfilling equilibrium more likely as a

description of aggregate macro behavior. Agents make mistakes, as their beliefs are

only an approximation of complex reality. But in equilibrium, the mistake becomes

self-fulfilling and it is not easy for agents to improve upon their individual forecasting.

We have presented a simple theoretical case study -a first-order consistent expecta-

tions equilibrium in a macro NKPC–, an empirical case study –a 2-type asset pricing

model with (almost) self-fulfilling bubbles and crashes amplified by agents’ switching

between mean-reverting and trend-following beliefs–, and an experimental case-study

–positive and negative feedback experiments. Positive expectations feedback is a com-

mon feature of these case-studies, leading to coordination of individual expectations

on almost self-fulfilling equilibria very different from exactly self-fulfilling equilibria.

A simple and intuitive behavioral heuristics switching model explains these data well

both at the micro and macro level.
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