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Abstract

In the learning-to-forecast laboratory experiments in Hommes et al. (2005), three
different types of aggregate asset price behavior have been observed: monotonic
convergence to the stable fundamental steady state, dampened price oscillations
and permanent price oscillations. We present a simple behavioral 2-type heuristics
switching model explaining individual as well as aggregate behavior in the experi-
ment. Based on relative performance, agents switch between a simple trend-following
and an anchor and adjustment heuristic that differ in how much weight is given to
the long run average price level. The nonlinear switching model exhibits path de-
pendence through co-existence of a locally stable fundamental steady state and a
stable (quasi-)periodic orbits. Depending on initial states, agents coordinate indi-
vidual expectations either on a stable fundamental steady state path or on almost
self-fulfilling persistent price fluctuations around the fundamental steady state.
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1 Introduction

There are many historical examples of asset or commodity market bubbles, with exces-
sive growth of prices followed by sudden collapse. One of the first and perhaps the most
famous is the Dutch “tulipmania” in 1636-1637, when tulip bulbs hit price levels equiv-
alent to several average yearly wage salaries, before they suddenly collapsed in February
1637 (Kindleberger, 2001). More recent examples include the “dot-com” bubble in the
high tech NASDAQ stock market with its peak in May 2000 and the housing price bub-
bles in the U.S. and many other countries between 2000 and 2010. A bubble is defined
as a strong and persistent overvaluation of an asset compared to its economic “funda-
mental value”. Large bubbles and sudden market crashes are hard to reconcile with the
standard rational expectations representative agent model, which typically assumes that
prices track fundamental value. Popular explanations of the occurrence of bubbles often
rely on some form of Greenspan’s “irrational exuberance” as an amplification mechanism
after (small) fundamental shocks (e.g. Shiller, 2000).

Behavioral finance has documented an increasing list of mechanisms emphasizing the
role of investor psychology as an amplification mechanism in explaining large asset price
movements, e.g. overconfidence, wishful thinking, gambler’s fallacy, momentum trading,
trend extrapolation, belief anchoring, availability heuristics, reference dependent utility,
loss aversion, ambiguity aversion, etc. (Barberis and Thaler, 2003).

Despite their popularity in the financial press, the existence and empirical relevance
of financial bubbles and crashes is still heavily debated among academic economists.
The most important reason for the controversy may be that the “fundamental value”
of an asset is difficult to measure in real markets and depends e.g. on assumptions
about preferences and risk premia. Experiments in a controlled laboratory environment
are therefore an important complementary tool to gain insights into possible causes
and circumstances that may lead to significant and persistent price deviations from a
controlled fundamental value. A seminal contribution are the bubble experiments in
Smith et al. (1988). Subjects can buy an asset that pays a dividend 1 each period. The
market lasts 15 periods, so that fundamental value is a decreasing step function from
15 to 0. Experimental markets typically do not track the fundamental, however, but
rather start below fundamental with a price around 4 − 5, after which the price starts
to increase, then becomes overvalued reaching a maximum up to 15 or more around
period 10, and finally collapses to 0 towards the end of the experiment. There is a large
literature showing that these experimental asset market bubble and crashes are robust
w.r.t. many variations in the experimental design (see Palan, 2013 for an extensive
survey)1.

To study the role of expectations in generating bubbles and crashes, Hommes et

1Huber et al. (2012) show however that the bubbles disappear when a more accurate framing of the
fundamental value is used by describing it as the depletion of a gold mine rather than a stock market.
Dufwenberg et al. (2005) studied repeated bubble experiments with experienced and inexperienced
traders and show that bubbles disappear when (part of) the subjects become more experienced. These
results show that bubbles in experimental markets are still not fully understood and more experiments
are needed to shed light on the circumstances in which bubbles may or may not prevail.
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al. (2005) ran so-called learning-to-forecast asset pricing experiments with a constant
fundamental value and computerized optimal trading. Subjects play the role of profes-
sional forecasters and are asked to submit point forecasts for the price of a risky asset
for 50 periods. The risky asset pays an uncertain dividend in each period. Individual
forecasts feed into a standard mean-variance demand function and the price of the risky
asset, pt, is determined every period by market clearing, as an aggregation of individual
forecasts of all participants. An important feature of these experimental asset markets
is the positive feedback, that is, the higher the individual forecasts, the larger the de-
mand for the risky asset and the higher the realized market price. The fundamental
price of the risky asset is not explicitly given to the subjects, but can be computed as
the discounted sum of expected future dividends from common knowledge of the mean
dividend ȳ and the risk-free interest rate r. In the experiment, the fundamental price
becomes pf = ȳ/r = 60.

In 20 experimental markets, three different patterns of aggregate behavior have been
observed (Figure 1a-c): (i) slow and almost monotonic convergence to the fundamental
price, (ii) persistent oscillations around the fundamental value and (iii) dampened price
oscillations. Moreover, participants are able to coordinate on a common almost self-
fulfilling forecasting strategy, but this strategy can be different between sessions. Finally,
estimation of linear rules on individual forecast series showed that subjects tend to follow
simple forecasting rules (heuristics), such as trend-following and anchor and adjustment
rules, with only one or two significant lags.

The purpose of this paper is to develop a simple 2-type behavioral heuristics switching
model which is able to explain the path-dependent coordination of individual expecta-
tions on these different observed aggregate outcomes. Agents are boundedly rational
and switch between two simple forecasting heuristics based on their relative perfor-
mance. Strategy switching is thus based on an evolutionary selection mechanism. The
two forecasting heuristics are a simple trend-following rule and an anchor and adjust-
ment heuristic. Both rules extrapolate the latest observed price trend, but differ in their
anchor describing how much weight is given to the last price observation and to the long
run average price level. The nonlinear switching model exhibits path dependence through
co-existence of a locally stable fundamental steady state and a stable (quasi-)periodic
orbits. Depending on initial states, agents coordinate individual expectations either on
a locally stable fundamental steady state path or on persistent (quasi-)periodic price
fluctuations around the fundamental steady state. The fundamental steady state is the
homogeneous rational expectations outcome, while the persistent fluctuations around
the steady state are not perfect foresight solutions, but nevertheless are almost self-
fulfilling. We illustrate these intuitive results by model simulations, but also rigorously
establish path-dependence and co-existence of a locally stable fundamental steady state
and stable periodic or quasi-periodic orbits by mathematical bifurcation analysis as a
generic feature of our nonlinear behavioral switching model.

Our model builds on the adapted belief system (ABS) introduced by Brock and
Hommes (1997, 1998). In an ABS boundedly rational agents choose from a pool of fore-
casting rules and learn through evolutionary selection or reinforcement learning based
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upon relative performance. The main behavioral learning mechanism thus dictates that
agents gradually switch to better performing rules. Anufriev and Hommes (2012a) used
an ABS with 4 different forecasting rules (adaptive expectations, two trend-following
rules and an anchor and adjustment rule) to explain individual and aggregate behavior
in the asset pricing laboratory experiments in Hommes et al. (2005). Their analysis is
based on stochastic simulations and path-dependence only occur due to (small) exoge-
nous shocks. In the absence of external stochastic shocks, the 4-type model has a globally
stable fundamental steady state (Anufriev and Hommes, 2012b). In contrast, our sim-
pler 2-type behavioral model exhibits endogenous path-dependence, with co-existence of
a locally stable steady state and stable (quasi-)periodic behavior even in the absence of
any exogenous shocks.

The heterogeneous expectations models also bear similarities with the noise trader
literature (DeLong et. al., 1990). In the noise trader models one of the agents is assumed
to be perfectly rational, taking into account the presence and actions of non-rational
traders. In the ABS in Brock and Hommes (1998) typically all agents are boundedly
rational and are unable to perfectly foresee the presence, the beliefs and the actions of
non-rational traders2. Our simple 2-type model thus provides a behavioral explanation
of individual coordination and aggregate behavior. This approach fits well into the
behavioral agent-based modeling approach in finance (Arthur, 1993; Farmer and Foley,
2009; Hommes, 2006; LeBaron, 2006).

The paper is organized as follows: Section 2 briefly describes laboratory experiments
with human subjects; in Section 3 the 2-type heuristics switching model is presented.
Section 4 is devoted to the stability analysis of the steady state of the model, while
simulations are performed in Section 5 and Section 6 concludes. An appendix presents
the mathematical bifurcation analysis of the model.

2 Laboratory experiments

Hommes et al. (2005) performed a computerized learning to forecast asset pricing ex-
periments in the CREED laboratory at the University of Amsterdam. In each session 6
participants play the role of advisors, professional forecasters, to large pension funds and
have to submit point forecasts for the price of a risky asset for 50 consecutive periods.
The pension fund can invest either in a risk-free asset with real interest rate r per period
or in shares of an infinitely lived risky asset paying each period an uncertain dividend,
which is an independent and identically distributed random variable with mean ȳ. The
price of the risky asset, pt, is determined every period by a market clearing equation,
as an aggregation of individual forecasts of all participants. The exact functional form
of the market equilibrium equation was unknown to the participants, but they were in-
formed that the market exhibits positive feedback, that is, the higher their forecasts, the

2Brock and Hommes (1997) introduced heterogeneous expectations in a cobweb model with perfectly
rational versus simple naive expectations, similar to the noise trader approach. Brock and Hommes,
however, assign information costs to rational expectations and, most importantly, the fractions of both
agent types evolves endogenously over time driven by performance based evolutionary selection.
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larger the demand of the pension fund for the risky asset and the higher the realized
market price. Participants also know the values of the risk-free interest rate r = 0.05
and the mean dividend ȳ = 3, and therefore they have enough information to compute
the rational fundamental price of the risky asset pf = ȳ/r = 60. This however only
happened rarely3.

Every session of the experiment lasts 51 periods and in every period each of the six
participants provide a two-period-ahead forecast for the price of the risky asset, given
the available information which consists of past prices (up to two lags) of the risky asset
and own past predictions (up to one lag) made by the participant. The predictions of
other participants are unknown. When all six predictions for the price in period t+1 are
submitted, the market clearing price is computed, using a standard asset pricing model
with mean-variance demand and heterogeneous beliefs (Hommes et al., 2005; Brock and
Hommes, 1998):

pt =
1

1 + r
((1− nt)p̄et+1 + ntp

f + ȳ + εt), t = 0, ..., 50, (1)

where p̄et+1 = 1
6

∑6
i=1 p

e
i,t+1 is the (equally weighted) average of the six individual fore-

casts, r is the risk-free interest rate, ȳ is the mean dividend, εt is a (small) stochastic term
representing small demand/supply shocks and nt stands for a small fraction of ”robot”
traders who always submit a fundamental forecast pf . Robot traders were introduced
as a far from equilibrium stabilizing force in the experiment to prevent the occurrence
of large bubbles. The fraction of robot traders increased as the price moved away form
its fundamental equilibrium level, according to4

nt = 1− exp
(
− 1

200
|pt−1 − pf |

)
. (2)

Since prices are restricted to the interval [0, 100], the fraction of fundamental robot
traders never exceeds 0.25. At the end of each period every participant h was informed
about the realized price and his/her earnings were defined by a quadratic scoring rule5:

et,h = Max

(
1300− 1300

49
(pt − pet,h)2, 0

)
(3)

The main results of the experiments may be summarized as follows (Figure 1):

3Hommes et al. (2005) report one subject whose forecast is pe = pf = 60 in the first four periods.
Because all other subjects forecast lower prices, however, this subject changed his forecasting strategy
after four periods.

4Similar experiments without fundamental robot traders, resulting in much more unstable price be-
havior characterized by large bubbles and crashes, have been done in Hommes et al. (2008).

5In the learning-to-forecast experiments subjects were paid by forecasting performance. Bao et al.
(2014) recently ran learning-to-forecast and learning-to-optimize experiments, where subjects not only
forecast but also engage in trading activities and are (partly) paid by realized profits or utility. In these
learning-to-optimize experiments similar results with price oscillations around the fundamental, bubbles
and market crashes are obtained.
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(a) (Almost) monotonic con-
vergence

(b) Persistent oscillations (c) Dampening fluctuations

Figure 1: Learning-to-forecast laboratory experiments (Hommes et al., 2005). Price
time series (upper part), individual predictions of 6 participants (lower part) and forecasting
errors (inner frame) of laboratory experiments. In 20 markets three different types of aggregate
behaviour were observed (Figure 1a-c): almost monotonic convergence, persistent oscillations
with almost constant amplitude, dampened oscillations;

• human subjects tend to follow simple forecasting rules (heuristics), based upon
recent past observations, such as trend-following and anchor and adjustment rules;

• participants are able to coordinate on a common almost self-fulfilling prediction
strategy, but this strategy can be different between sessions;

• realized asset prices are significantly different from the homogeneous rational fun-
damental price in all sessions.

• the system exhibits path dependence as across 20 markets three different price
patterns were observed (Figure 1a-c): slow and almost monotonic convergence,
persistent oscillations with almost constant amplitude, dampened oscillations.

3 Two type heuristics switching model

The general setup of the evolutionary selection or heuristics switching model follows
Brock and Hommes (1997) and Anufriev and Hommes (2012a). There exists a pool of
simple forecasting rules (e.g. adaptive or trend-following heuristics) commonly available
to the agents, who select rules from this pool. At every time period these heuristics
give forecasts for next period’s price, and the realized market price is an aggregation of
these individual forecasts. Moreover the fractions of agents using different forecasting
heuristics are changing over times, because individuals are learning based on evolutionary
selection: the better a forecasting rule performed in the recent past, the higher will be the
fraction of agents adopting that rule. Hence, the realized market price and the fractions
of the forecasting heuristics co-evolve in a dynamic process with mutual feedback.

Let I denote a set of I heuristics which agents can use for price prediction. In the
beginning of period t every rule i ∈ I gives a two period-ahead point prediction for the
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price pt+1. This prediction is described by a deterministic function fi of the available
information set:

pei,t+1 = fi(pt−1, pt−2, . . . ; p
e
i,t, p

e
i,t−1, . . .). (4)

Notice that (4) is a 2-period ahead forecasting rule as pt is unknown yet when the
individual forecasts pei,t+1 are formed. The price in period t is computed on the basis
of these predictions, and it is given by the market clearing price equation (1) of the
previous section (we recall it for convenience):

pt =
1

1 + r

(
(1− nt)pet+1 + ntp

f + y + εt
)
, (5)

where pet+1 denotes the average of the individual forecasts, pf is the rational fundamental
price, r(= 0.05) is the risk free interest rate, y(= 3) is the mean dividend, εt is the
stochastic term associated with small demand/supply shocks and nt represents the time-
varying share of fundamental robot traders as described by Equation (2). Recall that
the fraction of robot traders increases in response to the deviations of the asset price
from its fundamental level according to (2) and that the fundamental price is set to
pf = y/r = 3/0.05 = 60.

The average pet+1 in (5) is a population weighted average of the different forecasting
rules:

pet+1 =
I∑
i=1

ni,tp
e
i,t+1. (6)

The fraction of each heuristic, ni,t, evolves over time and depends on the past relative
performance, with more successful heuristics attracting more followers. The performance
measure of a forecasting heuristic is based on its squared forecasting error. More pre-
cisely, the performance measure of heuristic i up to (and including) time t− 1 is

Ui,t−1 = −(pt−1 − pei,t−1)2 + ηUi,t−2. (7)

The parameter η represents the memory of the agents, measuring the relative weight
that each agent gives to past forecasting errors. If η = 0, the impact of each heuristic is
completely determined by the most recent forecast error; for 0 < η ≤ 1 all past predic-
tion errors affect the fraction of heuristic i, with exponentially declining weights.
Given the performance measure, the fraction of agents using heuristic i is updated ac-
cording to a discrete choice model with a-synchronous updating (Hommes et al. 2005
and Diks et al. 2005):

ni,t = δni,t−1 + (1− δ)exp(βUi,t−1)

Zt−1
, (8)

where Zt−1 =
∑I

i=1 exp(βUi,t−1) is a normalization factor so that
∑I

i=1 ni,t = 1. If δ = 0
the updating rule reduces to the discrete choice model with synchronous updating. The
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more general case 0 < δ < 1, gives some persistence in the fraction of rule i, reflecting
the fact that not all participants update their rule in every period or at the same time.
For this reason δ can be seen as the average per period fraction of agents who stick
to previous forecasting rule. Hence, for 0 < δ < 1 in each period a fraction 1 − δ of
individuals update their rule according to the well known discrete choice model, used
for example in Brock and Hommes (1997). β represents the intensity of choice and
measures how sensitive agents are to differences in strategy performance: the higher
β, the faster individuals will switch to more successful rules. For β = 0, the result is
an equal distribution of forecasting rules among individuals; in the other extreme case
β → ∞, the fraction 1 − δ who updates its heuristic switches immediately to the most
successful predictor.

To keep the model as simple as possible, but rich enough to explain the different
aggregate price patterns observed in the experiments, we select only two forecasting
heuristics. These simple rules are among the ones estimated on the individual forecasts
in the experiments. A behavioral interpretation underlies each heuristic.

The first heuristic is a simple trend following rule (TR). It extrapolates a trend that
can be weak or strong depending on what value is assigned to the parameter g:

pe1,t+1 = pt−1 + g(pt−1 − pt−2). (9)

This rule means that agents predict the last observed price level plus a multiple of the
last observed price change (g > 0). The 4-type heuristics switching model of Anufriev
and Hommes (2012a, 2012b) had two trend-following rules, a weak and a strong trend-
following rule with coefficients g = 0.4 and g = 1.3.

The second rule is slightly more sophisticated. First conisder a trend-following rule
that uses a more sophisticated anchor, a weighted average of the long-run equilibrium
price level pavt−1 and the last observed price pt−1:

pet+1 = mpavt−1 + (1−m)pt−1 + l(pt−1 − pt−2), (10)

where pavt−1 is the sample average of all past prices, i.e. pavt−1 = 1
t

∑t−1
j=0 pj . Following

Kahnemann and Tversky (1973), Tversky and Kahnemann (1974), this rule is called
learning anchoring and adjustment heuristic (LAA), since it uses an anchor mpavt−1 +
(1 − m)pt−1, defined as a weighted average between the last observed price and the
sample mean of all past prices, and extrapolates the last price change (pt−1 − pt−2) by
a factor l. The parameter m represents the weight assigned to the long run sample
average. In the 4-type heuristics switching model of Anufriev and Hommes (2012a) an
anchor and adjustment rule with coefficients m = 0.5 and l = 1 is used.

Including the sample average pavt−1 of all past prices in one of the forecasting rules
would lead to a dynamic model of very high dimension. Therefore, we use simpler, but
closely related anchoring and adjustment heuristic (A&A):

pe2,t+1 = mpf + (1−m)pt−1 + l(pt−1 − pt−2), (11)

where the sample average pavt−1 has been replaced by the fundamental price level pf . The
rule (11) is a simple AR(2) rule and such rules have successfully been estimated, with
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almost the same coefficients, m ≈ 0.5 and l ≈ 1, for a number of subjects in Hommes et
al. (2005). For tractability we use the anchor and adjustment rule (11) as our second
forecasting rule, as an approximation of (10).

From a behavioral perspective, there is an important difference between the trend
following rules in (9) and (10-11). The pure trend extrapolation rule (9), with the
last observed price pt−1 as its anchor, always predicts an increase of the price after an
observed increase in the last period. In contrast, with an anchor giving more weight
to the observed fundamental equilibrium level of prices, rules (10) or (11) are able to
predict turning points of observed price fluctuations when the price moves away from
its long run equilibrium level. Anufriev and Hommes (2012a) explained the observed
permanent price oscillations in the experiment through coordination on the LAA rule in
their 4-type heuristics switching model simulations.

All these rules are first order heuristics in the sense that they only use the last
observation, i.e. the last price, the last forecast and the last price change. Both rules
(9) and (11) can be collected into one general rule with two lags:

pi,t+1 = (1− βi,1 − βi,2)pf + βi,1pt−1 + βi,2pt−2, i = 1, 2. (12)

The trend extrapolating rule (9) is obtained for β1,1 = 1 + g and β1,2 = −g, whereas the
anchoring and adjusting rule (11) is obtained setting β2,1 = m+ l and β2,2 = −l.

To understand the dynamical behaviour, it is important to consider the deterministic
skeleton of the model, where we fix the noise εt ≡ 0 in the pricing equation (5):

pe1,t+1 = pt−1 + g(pt−1 − pt−2)
pe2,t+1 = mpf + (1−m)pt−1 + l(pt−1 − pt−2)
nt = 1− exp

(
− 1

200 |pt−1 − p
f |
)

Ui,t−1 = −(pt−1 − pei,t−1)2 + ηUi,t−2 i = 1, 2

ni,t = δni,t−1 + (1− δ) exp(βUi,t−1)
Zt−1

i = 1, 2

pt = 1
1+r

(
(1− nt)(n1,tpe1,t+1 + n2,tp

e
2,t+1) + ntp

f + y
)

(13)

We will show that this simple nonlinear switching model with 2-types can explain the
three types of observed aggregate behavior in Figure 1 for suitable and empirically rele-
vant parameter values. Moreover, for a given, fixed set of empirically relevant parameter
values, the 2-type model can explain path dependent coordination of expectations on ei-
ther a stable fundamental steady state or persistent fluctuations around the fundamental
steady state.
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4 Stability Analysis of Fundamental Steady State

The dynamics described by (13) can be re-written in deviations from the fundamental
price, setting

x1,t = pt − pf , x2,t = x1,t−1, x3,t = x1,t−2, x4,t = x1,t−3

and plugging the two heuristics (9) and (11) into the price equation (5). This leads
to the following 7-dimensional system consisting of two equations describing the evolu-
tion of performance measures U1,t−1 and U2,t−1, one describing the fraction n1,t of the
first forecasting heuristic, one equation describing the price dynamics and three more
equations used to take lagged price deviations into account:



U1,t−1 = ηU1,t−2 − (x1,t−1 − (1 + g)x3,t−1 + g · x4,t−1)2

U2,t−1 = ηU2,t−2 − (x1,t−1 − (m+ l)x3,t−1 + l · x4,t−1)2

n1,t = δn1,t−1 + 1−δ
Zt−1

exp (β[−(x1,t−1 − (1 + g)x3,t−1 + gx4,t−1)2 + ηU1,t−2])

x1,t = exp(− 1
200
|x1,t−1|) 1

1+r

(
[δn1,t−1 + 1−δ

Zt−1
exp
(
β
[
−(x1,t−1 − (1 + g)x3,t−1 + gx4,t−1)2+

ηU1,t−2]
)]
((1 + g)x1,t−1 − gx2,t−1)+

+[δn2,t−1 + 1−δ
Zt−1

exp
(
β
[
−(x1,t−1 − (m+ l)x3,t−1 + lx4,t−1)2+

ηU2,t−2]
)]
((m+ l)x1,t−1 − lx2,t−1)

)
x2,t = x1,t−1

x3,t = x2,t−1

x4,t = x3,t−1

It is straightforward to check that the fundamental steady state is a fixed point of
the map, with pt ≡ p∗ = pf (i.e. x1 = x2 = x3 = x4 = 0), the fraction of robot traders
nt ≡ 0 and the fractions of both heuristics n∗1 = n∗2 = 0.5. We investigate its local
stability. The Jacobian matrix J of the system at the steady state is given by

Js =



η 0 0 0 0 0 0
0 η 0 0 0 0 0

βη(1−δ)
4 −βη(1−δ)

4 δ 0 0 0 0

0 0 δpf

1+r
(1+g+m+l)

2(1+r)
−g−l
2(1+r) 0 0

0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0


This Jacobian matrix has eigenvalues equal to 0 and η (both of multiplicity 2), δ (of
multiplicity 1) and the remaining two eigenvalues are the roots of the characteristic
polynomial of the matrix

Jλ =

[
(1+g+m+l)

2(1+r)
−g−l
2(1+r)

1 0

]
Since η and δ are supposed to be smaller than 1, they do not determine a change in

the stability of the system. We also assume δ 6= 1, so that the impact of the heuristics
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varies over time and η < 1 which means agents take into account their past perfor-
mances. For these reasons the local stability conditions are completely determined by
the eigenvalues of Jλ and the coefficients of forecasting heuristics are the main driving
forces. Nevertheless the parameters η and δ affect the speed of convergence, being eigen-
values of the Jacobian matrix. Furthermore the local stability is not influenced by the
intensity of choice β. Hence, the fundamental steady state of the asset pricing model is
locally stable if all the eigenvalues of Jλ lie inside the unit circle. When the heuristic
coefficients are specified, the eigenvalues of Jλ can be computed. Let

P(λ) = λ2 − 1 + g +m+ l

2(1 + r)
λ+

g + l

2(1 + r)
(14)

be the characteristic polynomial of Jλ. The stability region of the fixed point is deter-
mined by the following conditions (see e.g. Medio and Lines 2003):

P(1) = 1− Tr +Det > 0

P(−1) = 1 + Tr +Det > 0

Det < 1

Figure 2 depicts the stability region in the parameter space (m, g + l). The steady

Figure 2: Local stability of the fundamental steady-state. Stability region (grey color)
in the (m, g + l) parameter space. The fundamental steady state pf becomes unstable through
a Neimark-Sacker bifurcation along the horizontal line g + l = 2R.

state of the switching model is locally stable when g+l
2 < R, that is, when the average

extrapolation coefficient is smaller than R. The fundamental steady state undergoes
a Neimark-Sacker (NS henceforth) bifurcation, with complex eigenvalues on the unit
circle, when g+l

2 = R6.

6A straightforward computation shows that the NS-bifurcation is the only bifurcation that can desta-
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Moreover it is important to stress that in a nonlinear model, even if the fundamental
steady state is locally stable, other attractors, such as a stable cycle or a quasi-periodic
orbit, may co-exist. Hence the local stability properties of the fundamental steady state
do not imply global stability.

5 Model simulations and path dependence

The heuristics switching mechanism matches individual forecasting behavior as well as
aggregate market outcomes in the laboratory experiments. The simulations in Figure 3
show that the simple 2-type heuristics-switching model can replicate the three different
aggregate market outcomes, i.e. monotonic convergence to the equilibrium, dampened
oscillations and persistent oscillations. At the same time, the forecasts of the two heuris-
tics are well coordinated (middle panels), consistent with the coordination of individual
expectations in the experiment (see Figure 1). The right panels in Figure 3 illustrate
which of the two forecasting rules dominates in each of the three cases.

In all simulations in Figure 3 the anchor and adjustment rule is fixed, with m =
0.5 and l = 1, but the trend-rule has different trend-extrapolating coefficients. For
a very weak trend-extrapolation coefficient g = 0.1 (top panels) (almost) monotonic
convergence to the fundamental steady state occurs, with the fractions of the two rules
both approaching 50%. For a somewhat larger trend-extrapolation coefficient g = 0.5
oscillations around the fundamental price occur, through overshooting due to an initially
dominating trend-following rule. These oscillations are dampened however, with the
fractions of the two rules approaching 50% in the long run.

In the presence of strong trend-followers (g = 1.06) persistent oscillations around the
fundamental price occur (Figure 3, bottom panels). The two forecasting rules are coordi-
nated, consistent with experimental data, but the anchor and adjustment rule performs
better than the trend-following rule especially around turning points. The fractions of
the two rules also oscillate (with very small amplitude), with the anchor and adjust-
ment rule clearly dominating, because it performs better along the price oscillations. In
particular, because the anchor and adjustment rule uses a more cautious anchor (with
more weight to the equilibrium level) it is able to predict turning points of the price
oscillations much better than the pure trend-following rule which clearly overshoots (un-
dershoots) at high (low) price levels and turning points. Our 2-type model thus explains
persistent oscillations through coordination of about 80% of the population on an almost
self-fulfilling anchor and adjustment rule.

Figure 4 shows simulations of the 2-type heuristics switching model with all param-
eters of both forecasting rules fixed, but with different initial prices. The trend param-
eters g = 1.06 and l = 1.035 and the anchor parameter m = 0.5 have been fixed close
to empirically relevant and some of the individual estimated AR(2) forecasting rules in
Hommes et al. (2005) and the 4-type switching model of Anufriev and Hommes (2012a).

bilize the fundamental steady state, as eigenvalues +1 and −1 can not arise. See Gaunersdorfer et al.
(2008) and Hommes (2013) for a detailed discussion of Neimark-Sacker bifurcation in a similar asset
pricing model with heterogeneous expectations.
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Figure 3: Coordination of forecasting heuristics in model simulations. Heuristic switch-
ing model simulations (Left), predictions of the two forecasting heuristics in the evolutionary
switching model (Middle) and fractions of trend following (TR; blue) and anchoring and ad-
justing rule (A&A; green) (Right). Benchmark parameters are β = 0.4, η = 0.7, δ = 0.9 and
m = 0.5. Almost monotonic convergence is obtained for g = 0.1, l = 1 (top panels), dampening
oscillations for g = 0.5, l = 1 (central panels) and persistent fluctuations for g = 1.06, l = 1
(bottom panels).
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Figure 4: Path dependence in heuristic switching model. Prices (left) for the 2-type
heuristics switching model and fractions of the two forecasting heuristics (right), the trend fol-
lowing (TR, blue lines) and the learning anchoring and adjusting (A&A, green lines) rules.
The heuristics switching model exhibits path dependence for parameter values g = 1.06, l =
1.035,m = 0.5, β = 0.4 and η = δ = 0, with a locally stable fundamental steady state co-existing
with stable (quasi-)periodic price oscillations. For the initial state p0 = p1 = 58.5 prices con-
vergence to the fundamental steady state 60 (top panel, LHS), with the fractions of the two
forecasting rules almost constant and balanced, very close to 50% (top panel, RHS). For the
initial state p0 = p1 = 52 (bottom panel, LHS) prices exhibit persistent (quasi-)periodic oscil-
lations, with time-varying fractions of the two forecasting rules, but the learning anchoring and
adjusting heuristic dominating over the trend-following heuristic (bottom panel, RHS). Since
η = δ = 0, i.e. no memory and synchronous updating, the fluctuations in fractions are much
faster than in the simulations of Figure 3.
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The 2-type heuristics switching model exhibits path dependence, with a locally stable
fundamental steady state co-existing with stable (quasi-)periodic price oscillations. For
an initial state p0 = p1 = 58.5 prices converge to the fundamental steady state 60 (Fig-
ure 4, top panel LHS), with the fractions of the two forecasting rules almost constant
and balanced, very close to 50% (top panel, RHS). For the initial state p0 = p1 = 52
(bottom panel, LHS) prices exhibit persistent (quasi-)periodic oscillations, with time-
varying fractions of the two forecasting rules (bottom panel, RHS). Along the price
cycles the learning anchoring and adjusting heuristic performs better and dominates
over the trend-following heuristic (bottom panel, RHS), but during the upswings and
downswings the trend-following rule gets more followers thus sustaining and amplifying
the price oscillations. Our simple 2-type heuristic switching model provides a stylized,
behavioral explanation of path-dependent coordination on either a stable fundamental
steady state or a stable periodic oscillation. In the presence of exogenous shocks the
system may then switch between these different types of behaviour.

These simulations illustrate path dependence in our model, a result that is established
rigorously in Appendix A. To keep this analysis tractable we fix the parameters η =
δ = 0, so there is no memory in the performance measure and strategy updating is
synchronous7. Using advanced mathematical tools from bifurcation theory Appendix A
shows rigorously that path-dependence with co-existence of a locally stable fundamental
steady state and a stable periodic cycle is a generic feature of our simple 2-type behavioral
heuristics switching model8.

Figure 5 further illustrates the path-dependence by a 2-dimensional bifurcation di-
agram in the (l,m) parameter plane. The vertical line l = 1.04 denotes the Neimark-
Sacker (NS) bifurcation curve l = 2R−g; on the left (right) of this line, the fundamental
steady state is locally stable (unstable). Different colors in Figure 5 refer to stable
periodic cycles of different periods. The purple region corresponds to parameter combi-
nations (l,m) for which a stable 10 cycle exists. This is remarkably close to the period
10-12 of persistent oscillations in the lab experiments (see Figure 1b). The region of the
stable 10-cycle extends to the left of the NS bifurcation curve (the vertical line l = 1.04),
showing co-existence of a locally stable fudamental steady state and a (locally) stable
period 10 cycle. The point A in Figure 5 corresponds to the simulations of Figure 4 with
l = 1.035 and g = 1.06 and lies in the path dependence region where the locally stable
fundamental steady state coexists with an attracting closed curve with stable (quasi-
)periodic behavior. The point on the vertical line l = 1.04 labeled m∗ is a so-called
Chenciner bifurcation point and plays an important role in the mathematical analysis
proving generic existence of path-dependence in the heuristics switching model (see the
mathematical appendix A).

7For η = δ = 0 the dimension of the system is reduced from 7 to 4.
8Gaunersdorfer et al. (2008) consider a similar 2-type asset pricing model with fundamentalists versus

trend-followers exhibiting such path-dependence and use the model to explain clustered volatility, that
is, irregular switching between a quiet phase with prices close to fundamental and a more volatile phase
with large price oscillations. Heterogeneity and strategy switching thus explains clustered volatility (cf.
e.g. Lux and Marchesi, 1999).
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Figure 5: Bifurcation diagram in the (l,m) parameter plane showing path depen-
dence. Other parameters are fixed at g = 1.06, δ = 0, η = 0 and β = 0.4. The vertical line
l = 1.04 denotes the Neimark-Sacker (NS) bifurcation curve l = 2R − g. On the left (right) of
this line, the fundamental steady state is locally stable (unstable). Different colors refer to stable
periodic cycles of different periods. The point A corresponds to the simulations of Figure 4 with
l = 1.035, m = 0.5 and g = 1.06 and lies in the path dependence region where the locally stable
fundamental steady state coexists with an attracting closed curve with stable (quasi-)periodic
behaviour. When the vertical line is crossed to the right the fundamental steady state is desta-
bilized either via a supercritical (for m > m∗) or subcritical (for m < m∗) NS bifurcation. The
point labeled m∗ is a Chenciner bifurcation point and proves the existence of a path-dependence
region (see the Appendix).

6 Conclusions

Traditional finance assumes that all agents have rational expectations. On the other hand
laboratory experiments with human subjects have shown that agents do not forecast ra-
tionally, but follow simple forecasting heuristics (rules of thumb) that may sometimes
lead them to the rational fundamental benchmark and at other times agents may co-
ordinate on destabilizing trend-following strategies leading to recurrent market bubbles
and crashes. We have presented a simple behavioral heuristics switching model explain-
ing path dependent coordination of individual forecasting as well as aggregate market
behavior.
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The model is made up with two simple but different forecasting rules, each of which
can generate its own type of dynamics. In every period the forecasting strategy is se-
lected among the population of heuristics and agents adapt their selection over time,
based on the relative performance of the heuristics. This evolutionary selection mecha-
nism exhibits path dependence and may either enforce convergence to the fundamental
price, with the two strategies balanced, close to 50%, or it may lead to persistent price
oscillations around the fundamental value with the fractions of both strategies evolving
continuously over time. Similar price oscillations are characteristic of real markets and
our model thus provides, at least qualitatively, an explanation of stylized facts, such as
volatility clustering –switching between calm and turbulent market phases– observed in
real financial markets.

What drives these results? A key feature is the positive feedback in the system and
the existence of almost self-fulfilling equilibria. Positive feedback is characteristic of
near-unit root systems and –because the discount factor 1/(1 + r) is indeed very close
to 1– the price generating equation (1) follows a near-unit root process. What the lab
experiments in Hommes et al. (2005) then have shown is that agents may coordinate
on an oscillatory pattern of almost self-fulfilling equilibria. Our simple 2-type model
shows that such patterns can be the path dependent outcomes of a simple evolutionary
learning process selecting among trend-following and anchor and adjustment heuristics.

If the evolutionary interaction of boundedly rational agents with different trading
strategies extols volatility, there are important consequences for regulatory policy in
financial markets. Good or bad news in the markets can be amplified by the evolution-
ary mechanism. Since we are embedded in an increasingly globalized financial world,
small changes in fundamentals in one country may generate changes in asset prices of
other countries. Policy may avoid coordination on almost self-fulfilling oscillations by
transparency about market fundamentals promoting coordination on underlying funda-
mentals. Another stabilizing policy could be to weaken the positive feedback in the
financial system –e.g. through increasing the risk free interest rate and thus moving
the discount factor away from unit root– in order to make coordination on almost self-
fulfilling equilibria less likely. More behavioral models are needed in order to address
the important question of how policy could stabilize the system and avoid coordination
on non-rational, but almost self-fulfilling aggregate outcomes.
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Appendix

A Mathematical Appendix on Path Dependence

With fixed parameter values, the 2-type model can explain path dependent coordination
on either a locally stable fundamental steady state or an attracting closed invariant curve
for different initial states, as illustrated in Figure 4. In this mathematical appendix we
show analytically that path dependence is a generic feature of our nonlinear behavioral
model. The main argument relies on the occurrence of a so-called degenerate Neimark-
Sacker or Chenciner bifurcation in the model, implying path dependence due to the
existence of a region in the parameter space where a local stable steady state and an
attracting invariant curve with (quasi-)periodic dynamics co-exist. Advanced bifurcation
tools may not be very familiar to economists, but we stress that a Chenciner bifurcation
is not special at all, but rather a generic phenomenon of nonlinear systems with two
or more parameters. In this appendix we sketch the main mathematical arguments
for path-dependence. Kuznetsov (2004) presents a detailed mathematical overview of
advanced bifurcation theory, including the Chenciner and other generic bifurcations of
nonlinear systems.

For analytical tractability, we restrict our analysis to the case of no memory in the
performance measure (η = 0) and synchronous strategy updating (δ = 0), so that the
dimension of the system in Section 4 reduces from 7 to 4. The parameter space is

P = {(β, g,m, l, R) : β > 0, g > 0, 0 < m < 1, l > 0, R > 1}

Recall from Section 4 that the fundamental steady state may become unstable due to
a Neimark-Sacker bifurcation at g + l = 2R. Generally a steady state loses stability
through a Neimark-Sacker (NS henceforth) bifurcation when its Jacobian matrix has
two complex eigenvalues lying on the unit circle with all other eigenvalues inside the
unit circle. Two kind of NS bifurcations can be distinguished:

• supercritical when, immediately after the bifurcation, the unstable steady state
is surrounded by an attracting closed curve corresponding to periodic or quasi-
periodic dynamics;

• subcritical when, immediately before the bifurcation, the stable equilibrium is sur-
rounded by a repelling closed curve which shrinks and at the bifurcation merges
with the fixed point leaving a repelling focus.

Which NS bifurcation, supercritical or subcritical, occurs depends on the sign of the so-
called first Lyapunov coefficient of the normal form. When the first Lyapunov coefficient
vanishes, i.e. equals 0, a degenerate NS or Chenciner bifurcation occurs. The Chenciner
bifurcation is a generic phenomenon in two or higher dimensional nonlinear systems with
two or more parameters. More precisely, non-degenerate NS bifurcations are generic in
two or higher dimensional nonlinear systems with a single parameter. For two-parameter
systems one generically can find a pair of parameters for which the Lyapunov coefficient
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in the normal form of the NS bifurcation vanishes and the NS bifurcation then becomes
degenerate (i.e. a Chenciner bifurcation).

In the 2-D bifurcation diagram of our 2-type switching model in Figure 5 the Chenciner
bifurcation point is labeled m∗, lying on the NS-bifurcation curve (the vertical line
l = 1.04, with g fixed at g = 1.06). Bifurcation theory implies that close to a Chenciner
bifurcation point, there exists a path dependence region in the parameter space, where
a locally stable steady state co-exists with an attracting invariant curve. Figure 5 shows
the path dependence region in the lower left corner, where e.g. part of the purple region
to the left of the NS-bifurcation vertical line l = 1.04 shows co-existence of a locally
stable steady state and a stable 10-cycle. The point labeled A in Figure 5 corresponds
to our simulations of path dependence in Figure 4.

We further study the locus of the degenerate NS (Chenciner) bifurcation points in
the parameter plane in our 2-type switching model. As we said above the NS bifurcation
manifold is given by

H = {(β, g,m, l, R) ∈ P :
g + l

2
= R}.

Figure 6 shows the locus of the Chenciner bifurcation points in the (m, g) parameter
plane. The vertical axis plots the parameter g (black) and l (grey), with g + l = 2R
so that each point is a NS bifurcation point. The horizontal axis plots the parameter
m. The figure illustrates for which pair of parameters (m, g) the NS bifurcation is
subcritical (SUB) or supercritical (SUPER). The curve in Figure 6 corresponds exactly
to the points where the NS bifurcation is degenerate, i.e. a Chenciner bifurcation. The
point on the curve for m = m∗ ≈ 0.747 corresponds to the Chenciner bifurcation point
labeled m∗ in Figure 5. The figure shows that for relatively small g values the steady
state loses stability through a subcritical NS bifurcation. When g is sufficiently large the
NS bifurcation can be either subcritical or supercritical, the latter arising as m increases.

The sharp and sudden change in the dynamical behavior of the system associated
with the subcritical NS bifurcation may be furthermore accompanied by a so-called
crater bifurcation (see Kuznetsov (2004, pp.418-422); Kind (1999) and Agliari et al.
(2005, 2006)): two invariant closed curves, one repelling and one attracting, appear
surrounding the fixed point when it is still stable. This occurrence is related to the
concept of corridor stability as developed by Leijonhufvud (1973). Large shocks do
not lead to a totally unstable dynamic but result in permanent, wide and bounded
oscillations, and can be observed in the present model after the occurrence of the NS
bifurcation.
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SUB SUPER

Figure 6: Plot of the locus of degenerate NS (Chenciner) bifurcation points. The
curve marks the transition from a subcritical (SUB) to a supercritical (SUPER) bifurcation.
On the horizontal axis we have reported m values, while on the vertical axis both g (black color)
and l (gray color) values are displayed, such that g + l = 2R (i.e. the parameter are at NS
bifurcation values). Other parameter values are: δ = 0, η = 0, β = 0.4 and R = 1.05. Points on
the curve are the Chenciner bifurcation points: for empirically relevant parameters g (and l), it
is possible to compute the corresponding Chenciner point m∗ that delimits the path dependence
region.
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