
Third Party Pricing Algorithms
and the Intensity of Competition∗

Joseph E. Harrington, Jr.
Department of Business Economics & Public Policy

The Wharton School
University of Pennsylvania
harrij@wharton.upenn.edu

3 November 2020

Abstract

This paper explores the properties of a pricing algorithm when it is designed by a
third party. The setting is one where the pricing algorithm allows a firm to condition
price on high-frequency demand information. I find that third party development of a
pricing algorithm has an anticompetitive effect even when only one firm in a market
adopts it, and the anticompetitive effect is greater when more firms adopt it.
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1 Introduction

As a result of Big Data and AI, firms can condition prices on high frequency data, tailor prices
to narrow submarkets or even individual consumers, and engage in more effective learning to
discover the most profitable pricing rules. While there are potential effi ciency benefits from
these advances, concerns have been raised about possible consumer harm. Enhanced price
discrimination fueled by customer-specific data may increase total welfare, but could result in
a transfer of surplus from consumers to firms. Automated pricing with high frequency data
could make markets more effi cient by increasing the speed of response to demand changes
but it is unclear how it will affect price competition. Learning algorithms could deliver
more profitable pricing rules but that could be because they facilitate collusion. An active
competition policy debate has arisen regarding algorithmic pricing and whether legal and
enforcement regimes are equipped to deal with the associated challenges.1 Helping to inform
this debate, there is a growing theoretical literature which identifies and investigates possible
anticompetitive effects. As later reviewed, this body of work has established reason for
concern in that supracompetitive prices can indeed arise from pricing algorithms augmented
by Big Data and AI.
One of the critical implications of Big Data and AI is that it is more attractive for a

firm to outsource pricing. By having prices driven more by data and less by the judgment of
those employees in the firm with the best soft information, pricing can be delegated to a third
party or to a third party’s pricing algorithm because the requisite information is portable.
A third party is likely to have better pricing algorithms than would be developed internally
by a firm because it has more expertise and experience, access to more data, and stronger
incentives to invest in their development (as the pricing algorithm can be licensed to many
firms). While there are then effi ciencies from using a third party, it has also been noted
that third party delegation could facilitate coordinated pricing between competitors. The
UK’s Competition & Markets Authority has expressed concern about the anticompetitive
risk when “competitors decide ... that it is more effective to delegate their pricing decisions
to a common intermediary which provides algorithmic pricing services”and notes that “[i]f
a suffi ciently large proportion of an industry uses a single algorithm to set prices, this could
result in a ... structure that may have the ability and incentive to increase prices.”2 The
German Monopolies Commission has described the concern of using a third party because it
“sells an algorithm that it knows or accepts could contribute to a collusive market outcome
[and] it is even conceivable that [they] see such a contribution as an advantage, as it makes
the algorithm more attractive for users interested in profit maximization.3 Finally, the
OECD has warned: “concerns of coordination would arise if firms outsourced the creation of
algorithms to the same IT companies and programmers. This might create a sort of ‘hub and
spoke’scenario where co-ordination is, willingly or not, caused by competitors using the same
‘hub’for developing their pricing algorithms and end up relying on the same algorithms.”4

The objective of this paper is to investigate the possible anticompetitive effects of firms

1Some of that debate can be found in Mehra (2016), Ezrachi and Stucke (2017), OECD (2017a), Deng
(2018), Harrington (2018), Gal (2019), Schwalbe (2019), and Calvano et al (2020a).

2Competition & Markets Authority (2018), pp. 26-27.
3German Monopolies Commission (2018), p. 23.
4OCED (2017), p. 27.
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using a pricing algorithm developed by a third party. The setting is one where Big Data
and AI allow price to condition on high-frequency demand information. As described above,
the existing view is that the potential for anticompetitive harm arises when two or more
competitors adopt a third party’s pricing algorithm.5 The central finding of this paper
is that supracompetitive prices occur even when only one firm adopts the third party’s
pricing algorithm. In addition to showing that average prices are higher, I also explore how
the sensitivity of price to demand compares between when a pricing algorithm is developed
externally and internally. To my knowledge, this is the first paper to examine the competitive
implications of outsourcing the design of a pricing algorithm.6

Section 2 organizes and reviews the theoretical research which explores the effect of Big
Data and AI on the intensity of competition; it should be of independent interest. The model
is described in Section 3. Section 4 delivers the paper’s main finding, and additional results
are offered in Section 5 for the case of linear demand. Section 6 puts forth a policy proposal
for consideration, and Section 7 concludes.

2 Literature Review

The literature review begins with a classification of the broad body of research and is followed
with a more detailed discussion of the most relevant papers.
The theoretical literature examining the implications of Big Data and AI for pricing can

be categorized along two dimensions: 1) the space of pricing algorithms; and 2) the criterion
for selecting a pricing algorithm. The first dimension pertains to the modelling of how
Big Data and AI enrich the feasible set of pricing algorithms. One branch of this literature
focuses on personalized pricing. Adding to the voluminous literature on price discrimination,
it allows price to condition on a customer’s history of purchases or some other customer-
specific data. A second branch, often referred to as "dynamic pricing," focuses on how Big
Data and AI allow a firm to be more informed of demand when it is setting price. This can
mean using past data to have a more accurate demand forecast or using high-frequency data
to better tailor price to current market conditions. A third branch examines how pricing
algorithms affect the way in which a firm’s price responds to competitors’prices in terms of
either the speed of response or committing to a particular response. As the first branch is
not relevant to the current paper, we’ll not discuss it further, while papers in the last two
branches are reviewed below.7

The second dimension is the modelling of how a firm selects a pricing algorithm. The
conventional approach characterizes equilibrium pricing algorithms for a well-defined game.
An alternative approach specifies a learning algorithm; that is, how past data (prices, sales,
profits) is used to identify a better performing pricing algorithm. Two classes of learning

5For example, Ezrachi and Stucke (2017) provide four general ways in which algorithms can be anticom-
petitive, and all require the pricing algorithm to be used by at least two firms in a market.

6The common agency literature covers a related distinction for it deals with the use of a third party’s
services (Bernheim and Whinston, 1985). In particular, Decarolis, Goldmanis, and Penta (2020) consider
when multiple advertisers at a sponsored search auction delegate their bid decisions to a third party.

7With regards to the first branch, a sampling of relevant papers include Acquisiti and Varian (2005),
Choudhary et al (2005), Chena and Zhang (2009), Zhang (2011), and Chen, Choe, and Matsushima (2020).
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algorithms have been considered: estimation-optimization learning and reinforcement learn-
ing. The former embodies two distinct modules. The estimation module estimates the firm’s
environment and delivers predictions as to how the firm’s price or quantity determines its
profit or revenue. More specifically for our setting, past prices and sales are used to esti-
mate a firm’s demand function (where various papers have used OLS, Maximum Likelihood,
and an artificial neural network), and thereby have an estimate of how price affects a firm’s
profit (or revenue). With that estimated environment, the optimization module selects price
to maximize profit (or revenue) using the estimated demand function, while adding some
randomness to generate experimentation. An example discussed below is Cooper, Homen-
de-Mello, and Kleywegt (2015), while den Boer (2015) provides an overview of this work.
An estimation-optimization learning algorithm separately estimates the environment and

then optimizes in the selection of an action for the estimated environment. In comparison,
reinforcement learning fuses estimation and optimization by learning directly over actions;
it seeks to identify the best action for a particular state based on how various actions have
performed in the past for that state. Its approach is model-free in that it operates without
any prior knowledge of the environment. One common method of reinforcement learning
is Q-learning. With this approach, there is a value assigned to each action-state pair (e.g.,
an action is a price and a state is a history of prices) and these values are updated based
on realized profit. Given the current collection of values and the current state, the action
is chosen which yields the highest value. Recent papers using Q-learning are Calvano et al
(2019) and Klein (2019).8 Hansen, Misra, and Pai (2020) use the Upper Confidence Bound
algorithm which, for each price, keeps track of the empirical average of the profit for that
price and the number of times it was chosen. There is an index which is increasing in the
empirical average profit and decreasing in the number of times a price was chosen. In any
period, the price with the highest index is chosen, so a price is more likely to be selected
when it has performed better and has been chosen less frequently.
Let me now turn to reviewing those papers that most directly examine how AI and

Big Data affects market competition. The first four papers consider the impact of AI and
Big Data on the propensity or extent of collusion. Firms interact in an infinitely repeated
price game where pricing algorithms can arbitrarily condition on the history of past prices.
Salcedo (2015) modifies the canonical perfect monitoring setting to allow for commitment
to and observability of pricing algorithms. A pricing algorithm is a finite automaton which
maps price histories into the set of feasible prices. A firm’s pricing algorithm is a state
variable in that it can be changed only during stochastic revision opportunities. At such
an opportunity, a firm is assumed to know its rival’s pricing algorithm. Thus, in selecting
its pricing algorithm at a revision opportunity, a firm recognizes it will be committed to it
until the next revision opportunity and, should its rival have a revision opportunity in the
meantime, that rival will observe the firm’s pricing algorithm and know it is committed to it.
A striking result is derived: under certain conditions, all subgame perfect equilibria result
in prices close to monopoly prices. However, a word of caution, for this result is erected on
the untenable assumption that a firm observes a rival’s pricing algorithm. The presumption

8Earlier papers using Q-learning in an environment where multiple firms choose prices or quantities
include Tesauro and Kephart (2002), Xie and Chen (2004), Waltman and Kaymak (2008), Dogan and Güner
(2015), and Hilsen (2016).
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is that past price data would allow a firm to "decode" its rival’s pricing algorithm, though
that cannot generally be possible (e.g., when the number of observations are fewer than the
number of states in the finite automaton).
Miklós-Thal and Tucker (2019) considers a duopoly with homogeneous goods where there

is one consumer type with fixed demand. A consumer’s maximum willingness-to-pay (WTP)
can take two possible values and is iid over time. In each period, firms receive a common
signal of the WTP prior to choosing price. There are two possible signals and ρ ≥ 1/2 is
the probability that the signal is accurate. The influence of Big Data and AI are captured
by a higher value of ρ; hence, a firm has better demand information when it chooses price.
The analysis focuses on grim trigger strategy equilibria under perfect monitoring. A higher
value of ρ has two counteracting effects on the maximal collusive equilibrium price. More
accurate demand information allows the cartel to better predict the joint profit-maximizing
price which increases the collusive value and thus makes collusion less diffi cult. However,
more accurate demand information also increases the maximal deviation profit by better
informing a prospective deviator when deviation profit is high, which makes collusion more
diffi cult. When the discount factor is suffi ciently high, more accurate demand forecasting
harms consumers. When the discount factor is suffi ciently low, it is possible for consumers
to benefit from firms being better informed of demand.
Closely related in motivation is O’Connor and Wilson (2019) which also considers the

implications of enhanced demand forecasting though under imperfect monitoring. Without
Big Data and AI, demand is affected by two unobservable demand shocks. With Big Data
and AI, one of those demand shocks is observed so price can condition on that shock. As
with Miklós-Thal and Tucker (2019), the deviation payoff is higher because of the improved
demand information which makes collusion harder, but monitoring is more effective which
makes collusion easier. The net effect on prices is ambiguous.
The final paper that explore the implications of Big Data and AI for collusion is Calvano

et al (2020b). This paper assumes each firm uses Q-learning to discover its pricing algorithm.
The central question is whether collusive pricing rules can emerge under Q-learning and, if
so, how robust a phenomenon it is. For the infinitely repeated price game with differentiated
products, they find it is quite common for prices to converge to levels well above static
Nash equilibrium levels. Furthermore, pricing algorithms evolve to having properties of
collusive pricing rules.9 For example, one pricing algorithm that emerged has firms settle on
a supracompetitive price and, in response to a rival undercutting it, firms’prices significantly
drop and then gradually climb back up to supracompetitive levels. The paper consider many
variants of the basic model in concluding that collusion is a robust outcome of Q-learning.
Firms whose pricing algorithms are determined by a general form of reinforcement learning
can learn to collude.
The remaining papers show how Big Data and AI can result in supracompetitive prices

under static optimization. In Brown and MacKay (2020), the profit function is fixed and
known, and they focus on the implications of firms being able to respond more rapidly to
rivals’prices. In the context of a duopoly game with differentiated products, firms can be

9“Collusion is when firms use history-dependent strategies to sustain supracompetitive outcomes through
a reward-punishment scheme that rewards a firm for abiding by the supracompetitive outcome and punishes
it for departing from it.”Harrington (2017), p. 1.
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heterogeneous in the frequency with which they can change price. For example, one firm may
be able to change price every hour, while the other firm can only change price once a day.
This heterogeneity introduces commitment in that the firm which is locked into its price over
a longer period is effectively a price leader with respect to its rival. Allowing firms to choose
their pricing technologies, firms are shown to select different frequencies because creating a
leader-follower relationship yields higher prices and profits for both firms compared to when
they simultaneously choose prices (which, by the model’s timing structure, occurs when
they choose the same frequency). So as to ensure itself of being the follower (which is more
profitable than being a leader), one of the firms chooses the most rapid pricing technology.
By allowing firms to commit to a pricing frequency, Big Data and AI produce higher prices.
Cooper, Homen-de-Mello, and Kleywegt (2015) and Hansen, Misra, and Pai (2020) con-

sider a duopoly setting with differentiated products, where firms do not know their demand
or profit functions and are endowed with a learning algorithm. The only available data to a
firm are its own past prices and profits which means, in estimating the relationship between
its price and profit, the firm has a misspecified model that does not take account of the other
firm’s price. With an omitted variable that is endogenous to what the pricing algorithm does,
estimates will be biased. For example, if, when a firm raises its price, the other firm also
happens to raise its price then the firm’s demand will be estimated to be less price-elastic
than it actually is. Underestimating the price elasticity of demand would cause firms to set
higher prices than would be achieved for a full-information equilibrium. Both papers find
that this misspecification results in supracompetitive prices. Cooper, Homen-de-Mello, and
Kleywegt (2015) assumes prices are set optimally given an OLS-estimated demand curve.
Hansen, Misra, and Pai (2020) view it as a multi-armed bandit problem where a pricing
algorithm is chosen to minimize statistical regret (i.e., the difference between average profit
achieved with the algorithm and ex-post optimal profit). They find that when the signal-
to-noise ratio for sales is high (i.e., sales are relatively more responsive to price changes
than to demand shocks), firms’prices are supracompetitive and positively correlated. It is
when learning results in a high positive correlation that a firm finds a high price relatively
profitable because the rival also tends to set a high price.
The current paper focuses on how Big Data and AI allow price to condition on high-

frequency demand information and, therefore, the market setting is along the lines of Miklós-
Thal and Tucker (2019) and O’Connor and Wilson (2019). Like Brown and MacKay (2020),
the current paper has the implication that Big Data and AI result in higher frequency price
changes. However, price changes are more frequent in Brown and MacKay (2020) because
Big Data and AI make it feasible, while here it is because information is arriving at a higher
frequency and thus makes it optimal. The singular feature of the current paper is the source
of the pricing algorithm. All preceding research assumes the pricing algorithm is designed
to benefit the firm and, therefore, it could have been developed internally. In this paper’s
model, the pricing algorithm is designed to benefit the third party which, as we’ll see in the
next section, implies it is designed with a different objective.
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3 Model

3.1 Market

Consider a duopoly with differentiated products.10 Firm i’s demand function is Di(p1, p2, a) :
<2

+ × A where pi is the price of firm i ∈ {1, 2} . The variable a ∈ A ≡ [a, a] is a demand
shifter where a < a. Assume symmetric demand functions:

D1(p′, p′′, a) = D2(p′′, p′, a) ∀(p′, p′′, a). (1)

Given symmetry, assumptions on firms’demand functions can be stated with respect to firm
1. D1 is assumed to be twice continuously differentiable in (p1, p2, a) and, when D1 > 0, is
increasing in p1, decreasing in p2, and increasing in a. Furthermore, ∂D1 (p1, p2, a) /∂p1 is
non-decreasing in p2 and a. These assumptions are summarized here:

∂D1 (p1, p2, a)

∂p2

,
∂D1(p1, p2, a)

∂a
> 0 >

∂D1 (p1, p2, a)

∂p1

(2)

∂2D1 (p1, p2, a)

∂p1∂p2

,
∂2D1 (p1, p2, a)

∂p1∂a
≥ 0. (3)

Firms have a common constant marginal cost c ≥ 0 so a firm’s profit function is:

π1 (p1, p2, a) ≡ (p1 − c)D1(p1, p2, a). (4)

π1 (p1, p2, a) is assumed to be strictly concave in p1:

∂2π1 (p1, p2, a)

∂p2
1

= 2
∂D1 (p1, p2, a)

∂p1

+ (p1 − c)
∂2D1 (p1, p2, a)

∂p2
1

< 0. (5)

By (2), π1 (p1, p2, a) is decreasing in p2 and increasing in a. From (3), it follows:

∂2π1 (p1, p2, a)

∂p1∂p2

=
∂D1 (p1, p2, a)

∂p2

+ (p1 − c)
∂2D1 (p1, p2, a)

∂p1∂p2

> 0 (6)

∂2π1 (p1, p2, a)

∂p1∂a
=
∂D1(p1, p2, a)

∂a
+ (p1 − c)

∂2D1(p1, p2, a)

∂p1∂a
> 0. (7)

Assuming (p−c)D1(p, p, a) is strictly concave in p, the joint profit-maximizing price exists
and is unique:

pM (a) ≡ arg max
p

(p− c)D1(p, p, a).

Further assume pM (a) is non-decreasing in a. Firm demand is assumed to be positive for a
wide range of price pairs:

D1(pM (a) , c, a) > 0 ∀a ∈ A.
10While the paper’s insight is robust to there being more than two firms, the analysis becomes more

complex.
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Thus, a firm charging the joint profit-maximizing price has positive demand when the rival
firm prices at cost. However, demand is zero when price is high enough:

∃pmax such that D1(p, p, a) = 0 ∀a ∈ A,∀p > pmax. (8)

Note that (8) implies: D1(pmax, p2, a) = 0 ∀p2 ≤ pmax. Without loss of generality, we can
restrict price to [c, pmax] .
In defining the advantage that comes from a third party’s pricing algorithm, we first need

to define the environment that a firm faces when it is pricing on its own. In that situation,
the demand variable a is assumed to be unobservable to the firm at the time that price is
chosen. One can imagine that a is some demand shock that occurs at a higher frequency
than the pricing decision so that price cannot condition on it. When deciding on price, firms
have common beliefs on a given by the continuously differentiable cdf F : A → [0, 1] with
mean µ and variance σ2. Define ψ as the best response function under this informational
assumption:

ψ (p2) ≡ arg max
p1∈[c,pmax]

∫
π1 (p1, p2, a)F ′(a)da.

Given π1 (p1, p2, a) is strictly concave in p1, then so is
∫
π1 (p1, p2, a)F ′(a)da and thus ψ (p2)

exists and is uniquely defined. The symmetric Nash equilibrium is: pN = ψ
(
pN
)
. In the

absence of a third party providing a pricing algorithm, firms will then price at pN .

3.2 Third Party Pricing Algorithm Design Problem

The third party provides a pricing algorithm which allows a firm to condition its price
on the high-frequency demand state a and thus be able to engage in "dynamic pricing".
Let φ (·) : A → [c, pmax] denote a generic pricing algorithm.11 In modelling the design
of the pricing algorithm, several simplifying assumptions are made. First, the third party
cannot design the algorithm so that it conditions on whether another firm in the market
also uses it. Clearly, such a feature could promote collusive pricing and possibly run afoul of
antitrust/competition laws.12 Second, the third party’s objective in designing the algorithm
is to maximize the algorithm’s performance. The motivation is that the future demand for the
algorithm will be enhanced when it has been shown to perform better for those who adopted
it. While this is a heuristic for the third party, it is a plausible one for taking account of how
future demand is impacted by the pricing algorithm’s design. Third, the focus is on the third
party’s design decision which means we do not consider the licensing fee it charges a firm
for use of the pricing algorithm. Fourth, the adoption decision is exogenous and stochastic;
conditional on one firm adopting the pricing algorithm, β denotes the probability that both
firms adopt the algorithm. As this is an initial investigation into the implications of a third
party supplying a pricing algorithm, the last three assumptions are meant to simplify the
analysis so as to gain some initial insight. In Section 5, this insight is explained to be robust
to endogenizing adoption and the licensing fee.
11Implicitly, the pricing algorithm also conditions on the firm’s other parameters. I only make explicit its

dependence on the high frequency demand state.
12Bernheim and Whinston (1985) show that a third party providing marketing services can generate the

collusive solution though it requires a third party’s contract to condition on how many firms in market use
that third party’s services.
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Let us now characterize the objective function of the third party. In adopting the pricing
algorithm φ (·), suppose firm 1 expects firm 2 to price at: i) p2 when firm 2 does not adopt
the pricing algorithm; and ii) φ (·) when firm 2 does adopt the algorithm. In that case, a
firm’s expected profit from adopting the pricing algorithm is

(1− β)

∫
π1 (φ (a) , p2, a)F ′(a)da+ β

∫
π1 (φ (a) , φ (a) , a)F ′(a)da. (9)

(9) measures the performance of the pricing algorithm, and the assumption is that the third
party designs φ (·) to maximize its performance.
A strategy profile for this game is a pair (φ (·) , p) : Φ× [c, pmax] where Φ is the space of

functions from A to [c, pmax] . φ (·) is the pricing algorithm designed by the third party and p
is the price a firm sets when it does not adopt the pricing algorithm and its rival does adopt
it. The extensive form is:

• Stage 1: Third party designs the pricing algorithm in order to maximize the expected
profit of a firm that adopts it.

• Stage 2: Nature determines how many firms adopt the pricing algorithm.

• Stage 3: Nature determines demand state variable a and reveals it to the firm(s) with
the pricing algorithm.

— If both firms adopted the pricing algorithm then they price according to the
pricing algorithm.

— If one firm adopted the pricing algorithm then it prices according to the pricing
algorithm and the other firm chooses price to maximize its expected profit given
the other uses the pricing algorithm.

— If no firms adopted the pricing algorithm then firms simultaneously choose price
to maximize expected profit given the other firm’s price.

In the last scenario, equilibrium has both firms price at pN . Our analysis will focus on the
design of the pricing algorithm and its implications for prices when one or both firms adopt
the pricing algorithm.
Before moving on, it is worth noting that this formulation does not require the third party

to know a firm’s cost and demand function when it is developing the pricing algorithm. The
third party can design a pricing algorithm so that it is tunable with respect to cost and
demand parameters. If a firm knew its cost and demand parameters then the third party
would construct the software so the firm would input the appropriate values. If a firm did
not know its demand parameters then, as reviewed in Section 2, some pricing algorithms
augment an optimization module with an estimation module to learn demand. The pricing
algorithm characterized in this paper would be the product of the optimization module after
the estimation module derived demand estimates. This description does presume estima-
tion is conducted prior to price being chosen, while actual estimation-optimization learning
algorithms have estimation occurring in real time along with optimization. The pricing al-
gorithm derived here can then be thought of as the long-run pricing algorithm after the
demand parameters have been learned.
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4 General Case

A Nash equilibrium pricing algorithm-price pair
(
φ̂ (·) , p̂

)
is defined by:

φ̂ (·) = arg max
φ(·)∈Φ

(1− β)

∫
π1 (φ (a) , p̂, a)F ′(a)da (10)

+β

∫
π1 (φ (a) , φ (a) , a)F ′(a)da

p̂ = arg max
p∈[c,pmax]

∫
π2

(
φ̂ (a) , p, a

)
F ′(a)da.

Equivalently, (10) can be represented as:

φ̂ (a) = arg max
p∈[c,pmax]

(1− β)π1 (p, p̂, a) + βπ1 (p, p, a) ,∀a ∈ A (11)

p̂ = arg max
p∈[c,pmax]

∫
π2

(
φ̂ (a) , p, a

)
F ′(a)da.

Implicit in this equilibrium approach are some informational assumptions warranting
discussion. First, a firm knows whether its rival adopted the pricing algorithm. That seems
reasonable as it could be inferred from a firm’s high-frequency price changes. Second, a
firm who did not adopt the pricing algorithm knows the properties of the pricing algorithm.
Though a strong assumption, it is consistent with standard assumptions made in oligopoly
models. As shown in Section 5 for when demand is linear, it is suffi cient for a firm to know the
expected price charged by a firm using the pricing algorithm rather know than the algorithm
itself. Given the empirical distribution on a rival’s price, a firm would have an estimate in
the form of the average price.

Theorem 1 An equilibrium
(
φ̂ (·) , p̂

)
exists.13

Proofs are in Appendix A.
In assessing the effect on price levels from the adoption of a third party pricing algorithm,

there are two effects at work. First, a firm that uses the pricing algorithm conditions its
price on the high-frequency demand state. Effectively, it is able to engage in third-degree
price discrimination. Second, the pricing algorithm is designed to maximize the algorithm’s
performance while recognizing it may be competing against itself. When β = 0, this second
effect is neutralized as, when designing the algorithm, the third party does not consider that
more than one firm in a market may adopt it. Theorem 2 shows that prices are increasing
in β which means third party development leads to higher prices when the prospect of the
pricing algorithm facing itself in the market is given more weight in the design process.14

Theorem 2 If |a− a| is suffi ciently small then, for the minimal equilibrium, φ̂ (·) and p̂ are
increasing in β.

13As existence is established using the Tarski Fixed Point Theorem, it is also the case that there exists a
minimal and maximal equilibrium.
14For technical reasons, the result is shown when the demand variation is not too great, though that is

not believed to be a necessary condition.
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In response to a higher probability that the pricing algorithm will compete against itself,
the third party programs the pricing algorithm to price higher; that is, if β is higher than
φ̂ (a) is higher for any value of a. The third party designs the pricing algorithm to be less
aggressive because that will enhance its performance in the event that both competitors adopt
the pricing algorithm. In responding to a higher price by a rival with the pricing algorithm, a
non-adopting firm also prices higher - p̂ is increasing in β - because it anticipates (or learns)
that its rival prices higher due to having adopted the pricing algorithm. While these effects
are straightforward in light of the structure of the model, the next section will show they
deliver a finding which runs contrary to existing understanding about the potential harm of
third party pricing algorithms.

5 Linear Demand Case

5.1 Model and Benchmark

In order to derive some further properties of equilibrium, let us assume linear demand:

D1(p1, p2; a) = a− bp1 + dp2

where b > d ≥ 0 and a − (b − d)c > 0. As a benchmark, the Nash equilibrium price
when neither firm conditions on the high-frequency demand state is pN = µ+bc

2b−d , where µ
is the expected value of a.15 As a second benchmark, suppose both firms condition price
on the high-frequency demand state but without the assistance of the third party; thus,
the pricing algorithm is internally developed. In that situation, the Nash equilibrium price
is pN (a) = a+bc

2b−d , and again the expected equilibrium price is µ+bc
2b−d . In fact, the expected

equilibrium price is µ+bc
2b−d for both firms regardless of how many firms use an internally-

developed pricing algorithm.

5.2 Equilibrium Prices

It is derived in Appendix B that the unique solution to (11) is:

φ̂(a) = γ̂ + θ̂a (12)

=
µ(1− β)d(2 (b− βd) + d) + c(b− βd) (4b(b− βd) + 2bd(1− β))

(b− βd) (8b(b− d) + 2d(1− β)(4b− d))
+

(
1

2(b− βd)

)
a

p̂ =
µ(2(b− βd) + d) + c(2b+ d)(b− βd)

4bβ(b− d) + (4b2 − d2)(1− β)
. (13)

Given that average price is pN = µ+bc
2b−d in the absence of a third party developer, we can

see that the firm without the pricing algorithm is pricing higher:

p̂− pN = β

(
d2

2b− d

)(
µ− (b− d)c

4bβ(b− d) + (4b2 − d2)(1− β)

)
> 0. (14)

15That pN is the equilibrium price does presume |a− a| is not too large so that firms’demands are always
positive at a price of pN .
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Next note that, on average, the firm with the pricing algorithm prices higher than the firm
without the pricing algorithm:

γ̂ + θ̂µ− p̂ =
βd (µ− (b− d)c)

4bβ(b− d) + (4b2 − d2)(1− β)
> 0. (15)

(14)-(15) imply γ̂ + θ̂µ > pN . In sum, when the third party takes into account that its
pricing algorithm may compete against itself (β > 0), average price of both firms is higher
compared to competitive prices in the absence of the third party provision of a pricing
algorithm, whether firms do or do not internally develop pricing algorithms. Furthermore,
(15) implies average market price is higher when both firms adopt the pricing algorithm
compared to when one firm adopts it. This is summarized as Property 1.

Property 1: If β > 0 then: i) when at least one firm adopts the pricing algorithm, both
firms’average prices are higher compared to the competitive solution without third
party provision of the pricing algorithm; and ii) the average market price is higher
when more firms adopt the third party’s pricing algorithm.

Property 1 runs contrary to existing understanding in that it shows a third party’s pricing
algorithm results in supracompetitive prices even when only one firm in a market adopts it.
Recall that the pricing algorithm was prohibited from conditioning on the ex post adoption
decisions. This restriction reflects the expressed concern of competition authorities that,
when competitors adopt a pricing algorithm from the same third party, they could be de-
signed to communicate and coordinate on higher prices. Our analysis shows that, under such
a prohibition, the third party will ex ante design the pricing algorithm to be less competitive
in order to take into account the possibility of competitors adopting it. Outsourcing pricing
to a third party raises average prices.
Outsourcing of a firm’s pricing rule also affects price variability. First, let us consider

the sensitivity of average price to the average demand state, which is measured by µ. There
could be predictable changes in µ such as higher demand during the holiday season. Without
third party provision, a firm’s average price is pN whether or not it internally develops the
pricing algorithm. It is straightforward to show:

∂
(
γ̂ + θ̂µ

)
∂µ

=
2b+ d(1− β)

4b(b− βd)− d2(1− β)
= 1

2b− d =
∂pN

∂µ
as β = 0

∂p̂

∂µ
=

2(b− βd) + d

4bβ(b− d) + (4b2 − d2)(1− β)
= 1

2b− d =
∂pN

∂µ
as β = 0,

which delivers Property 2.16

Property 2: If β > 0 then, when at least one firm adopts a third party’s pricing algorithm,
both firms’average prices are more sensitive to the average demand state compared to
when firms do not use a third party’s pricing algorithm.

16The first property follows from:
∂(γ̂+θ̂µ)

∂µ = ∂pN

∂µ when β = 0 and
∂2(γ̂+θ̂µ)
∂µ∂β

2bd(2b+d)

(d2β+4b2−d2−4bdβ)2 > 0, and

the second property from: ∂p̂
∂µ =

∂pN

∂µ when β = 0 and ∂2p̂
∂µ∂β =

(2b+d)d2

(4b(b−dβ)−d2(1−β))2 > 0.
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This property is another implication of the softening of price competition with the third
party’s pricing algorithm. In response to stronger demand, a firm raises its price but is
constrained by losing demand to the other firm. However, the third party’s pricing algorithm
is designed to implicitly value the other firm’s profit (as captured by β) in which case the
latter effect is less constraining; hence, price rises more in response to stronger demand.
Comparing external and internal development of pricing algorithms with regards to price

sensitivity of price to the high-frequency demand state yields ambiguous results. The source
of that ambiguity comes from two counteracting effects. We have already noted one effect,
which is that the third party’s pricing algorithm is less aggressive which tends to make
price more responsive to the demand state. A second effect is that the third party’s pricing
algorithm is prevented from conditioning on whether the other firm also adopted the pricing
algorithm, and thus whether the other firm is also conditioning its price on a. In contrast,
a firm which internally develops its pricing algorithm can have it depend on whether or not
its rival is also conditioning price on the high-frequency demand state. When its rival also
has internally developed a pricing algorithm, this will make a firm’s price more sensitive to
the demand state. Given the rival’s price is higher when the demand state is higher then
this firm’s price will be higher due to strategic complements. This second effect tends to
make price more responsive to the demand state when the pricing algorithm is internally
developed.
To see these effects at work, let us begin by considering when only one firm adopts in

which case the second effect is absent. When only one firm adopts, the internally developed
pricing algorithm is γ̂ + θ̂a when β is set at zero.17 Next note

∂(γ̂ + θ̂a)/∂a

∂β
=

d

2 (b− dβ)2 > 0. (16)

Given that external development allows for β > 0, (16) implies price sensitivity is greater
under external development.
Next consider when both firms have an algorithm that conditions price on the high-

frequency demand state. Price is still more sensitive with outsourcing but now only when
β > 1/2.

∂φ̂(a)

∂a
=

1

2b− 2βd
T 1

2b− d =
∂pN(a)

∂a
as β T 1

2
.

The two effects are at work here. First, the firm that internally develops it conditions on
its rival having also done so. This leads to more price sensitivity compared to external
development which only assigns probability β to the rival also conditioning its price on the
high-frequency demand state. Second, the externally-sourced pricing algorithm is also taking
into account how price affects the rival’s profit because that will (probabilistically) affect the
pricing algorithm’s performance. The second effect dominates the first effect when the third
party attaches suffi cient weight to the prospect of adoption by both firms.

Property 3: Third party development results in a pricing algorithm that is more sensitive
to the high-frequency demand state when: i) one firm adopts the pricing algorithm;

17The pricing algorithm is (2b−d)(a+bc)+d(µ+bc)
2b(2b−d) , which is a best response to the non-adopting firm using

µ+bc
2b−d .
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or ii) both firms adopt the pricing algorithm and β > 1/2. Otherwise, internal de-
velopment results in a pricing algorithm that is more sensitive to the high-frequency
demand state.

5.3 Robustness to Endogenizing Adoption and the Licensing Fee

The main insight of this paper is that the third party’s pricing algorithm softens price compe-
tition because a third party designs the algorithm to maximize the algorithm’s performance.
This result relies on the third party assigning positive probability to more than one firm in
the market adopting its pricing algorithm; that is, β > 0 so the third party believes its pricing
algorithm might face itself in the market. The analysis has treated adoption as exogenous
and ignored the third party’s licensing fee. In this section, I show that if an equilibrium with
endogenous adoption and licensing fee exists then it must have β > 0.18

For some model of adoption, let us suppose, to the contrary, that there is an equilibrium
in which at most one firm adopts so the third party sets β = 0 when designing the pricing
algorithm. In that case, the pricing algorithm is

φ̂(a) =
(2b− d)(a+ bc) + d (µ+ bc)

2b(2b− d)

and, in the event one firm does adopt, the non-adopting firm’s price is

p̂ =
µ+ bc

2b− d.

I will first show that, in the absence of any licensing fee, adopting the pricing algorithm is
always profitable for a firm.
If the rival firm does not adopt the pricing algorithm, the expected profit from not

adopting is∫ (
µ+ bc

2b− d − c
)(

a− (b− d)

(
µ+ bc

2b− d

))
F ′(a)da =

b (µ− (b− d)c)2

(2b− d)2 ,

and from adopting is∫ (
(2b− d)(a+ bc) + d (µ+ bc)

2b(2b− d)
− c
)
×(

a− b
(

(2b− d)(a+ bc) + d (µ+ bc)

2b(2b− d)

)
+ d

(
µ+ bc

2b− d

))
F ′(a)da

=
b (µ− (b− d)c)2

(2b− d)2 +
σ2

4b
.

Hence, adoption is optimal and the incremental expected profit gain is σ2

4b
> 0, where recall

σ2 is the variance of the high-frequency demand state a.

18It is left to future research to prove existence and characterize such an equilibrium.
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If the rival firm adopts the pricing algorithm, the expected profit from not adopting is∫ (
µ+ bc

2b− d − c
)(

a− b
(
µ+ bc

2b− d

)
+ d

(
(2b− d)(a+ bc) + d (µ+ bc)

2b(2b− d)

))
F ′(a)da

=
b (µ− (b− d)c)2

(2b− d)2

and from adopting is∫ (
(2b− d)(a+ bc) + d (µ+ bc)

2b(2b− d)
− c
)
×(

a− (b− d)

(
(2b− d)(a+ bc) + d (µ+ bc)

2b(2b− d)

))
F ′(a)da

=
b (µ− (b− d)c)2

(2b− d)2 +
(b+ d)σ2

4b2
.

Hence, adoption is optimal and the incremental expected profit gain is (b+d)σ2

4b2
> 0. Adoption

is then a dominant strategy. Also note that the incremental expected profit from adoption
is higher when the other firm adopts the pricing algorithm:

(b+ d)σ2

4b2
>
σ2

4b
⇔ d > 0. (17)

If the third party were to design the pricing algorithm based on β = 0 and firms had
accurate expectations on the profits from adopting the pricing algorithm then, as long as the
licensing fee charged by the third party is not too high, both firms would adopt the pricing
algorithm because it yields higher expected profits irrespective of the rival firm’s adoption
decision. That would contradict β = 0. If the third party charges the same licensing fee to
all firms then, given the incremental expected profit from adoption is higher when the other
firm adopts (as shown in (17)), either the fee is set so that both firms adopt or neither firm
adopts. Clearly, the former is preferable for the third party.
I conclude that an equilibrium for a model which endogenizes adoption and the licens-

ing fee would result in β > 0 in which case the anticompetitive effect from third party
development of the pricing algorithm is present.

6 Policy Proposal

It is clear that a third party’s pricing algorithm should be prohibited from being able to
recognize when another firm is using the same pricing algorithm. If that was allowed then
pricing algorithms could be programmed to "communicate" with each another and coordinate
on setting higher prices. The analysis of this paper shows that such a prohibition is not
enough to avoid anticompetitive effects. For if ex post recognition is prohibited then the
third party will ex ante design the pricing algorithm to take into account the possibility that
it will face itself in the market. As a third party wants to enhance the performance of its
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pricing algorithm, it will design it to soften price competition and, consequently, prices are
higher even when only one firm adopts the pricing algorithm.
One possible policy response is to prohibit a firm from adopting a third party’s pricing

algorithm. Such a policy is not only extreme but its welfare implications are unclear and
diffi cult to assess. While the prohibition would intensify price competition - as we showed
average prices are higher with the third party’s pricing algorithm - it would also prevent
a firm from engaging in third-degree price discrimination. Prohibiting price discrimination
could either raise or lower welfare, depending on the particular market conditions.19 If third-
degree price discrimination reduced welfare then prohibiting the supply of pricing algorithms
by a third party would increase welfare by avoiding the softening of price competition as
well as preventing price discrimination. However, it is generally beyond an antitrust or
regulatory agency to determine with confidence when price discrimination reduces welfare
which is why they have generally not been given such authority. A prohibition on pricing
algorithms developed by a third party is excessive and inappropriate.
A more viable policy is to prohibit more than one firm in a market from using a pricing

algorithm developed by the same third party. This prohibition would cause the third party
to set β = 0 when developing the pricing algorithm, in which case it would no longer be
designed to soften price competition. Thus, the adoption of the pricing algorithm would
not be anticompetitive. However, there are some drawbacks of this policy. If there is only
one third party supplier then this policy would limit one firm in a market to engaging
in third-degree price discrimination; again, we are back to regulating the extent of price
discrimination with its ambiguous welfare effects. Furthermore, the policy’s implementation
would face the challenge of defining the market so that competitors could be identified.
Of course, while market definition can be diffi cult, it is a common exercise performed in
the context of merger evaluation and other antitrust issues. On the positive side, this policy
would incentivize other third parties to develop pricing algorithms, in which case the benefits
of dynamic pricing would be delivered without the anticompetitive effect coming from a single
third party supplier.
While it has its advantages and disadvantages, a prohibition on competitors adopting a

pricing algorithm from the same third party seems to be a plausible option worthy of further
examination.

7 Concluding Remarks

This paper is the first to explore the competitive implications of a third party developing a
firm’s pricing algorithm. While a firm would design its pricing algorithm to maximize the
firm’s performance, a third party will design it to maximize the algorithm’s performance.
This consideration was shown to result in the third party’s pricing algorithm softening com-
petition with higher prices and, contrary to existing understanding, this anticompetitive
effect does not require multiple competitors to adopt it. The pricing algorithm is designed
under the restriction that it cannot condition on the ex post adoption decisions of firms
because of the expressed concern of competition authorities that, when competitors adopt

19See, for instance, Varian (1989), Bergemann, Brooks, and Morris (2015), and Cowan (2016).
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a pricing algorithm from the same third party, the algorithm could be designed to commu-
nicate and coordinate on higher prices. Consequently, the third party will ex ante design
around that restriction by making the pricing algorithm less competitive in order to take
into account the possibility of the algorithm competing against itself.
Even before the development of this theory of harm, commentators have noted the chal-

lenge faced by competition authorities in responding to anticompetitive effects coming from
firms independently using a third party’s pricing algorithm or services. For the European
Union, it has been noted:

If the software developer decides to use the algorithm in an anticompetitive way
to manipulate the market of the software users without their knowledge, neither
of them is likely to be found liable under Article 101(1) TFEU.20

The Antitrust Division of the U.S. Department of Justice sees a similar lack of liability in
the United States:

[I]ndependent adoption of the same or similar pricing algorithms is unlikely to
lead to antitrust liability even if it makes interdependent pricing more likely. For
example, if multiple competing firms unknowingly purchase the same software to
set prices, and that software uses identical algorithms, this may effectively align
the pricing strategies of all the market participants.21

The legal challenge is that competitors’ prices are coordinated without them necessarily
having an illegal agreement. Our analysis showed that it is even more challenging than
imagined because supracompetitive prices can emerge when only one firm adopts a third
party’s pricing algorithm. There is then a disconcerting loophole in antitrust/competition
law.
In conducting this initial investigation, some simplifying assumptions were made. In

particular, firms’adoption decisions were assumed to be exogenous and the focus was on
the design of the pricing algorithm and not how it was priced by the third party. While the
paper’s main finding was explained to be robust to those assumptions, other questions will
require developing a model of adoption and allowing the third party to choose both design and
price. For example, what determines how widespread is adoption of a third party’s pricing
algorithm? That can only be addressed by deriving the demand curve for pricing algorithms
and the third party’s licensing fee. What is the effect of competition among third party
providers? In comparing different design-fee options offered by third parties, adoption again
will need to be endogenized. Having introduced multiple third party providers, we can also
investigate the proposal to prohibit a third party from supplying more than one firm. Does it
encourage third parties to incur the fixed cost of development or does it reduce competition
among third parties and result in higher licensing fees? Research could also consider the
third party development of pricing algorithms for another Big Data dimension: customer-
specific data. How do personalized pricing algorithms differ when developed externally by a
third party rather than internally by the firm? These are some of the many open questions
related to the effect on market competition from the outsourcing of pricing algorithms.
20Marx, Ritz, and Weller (2019), p. 7.
21OECD (2017b), p. 6.
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8 Appendix A: Proofs

8.1 Proof of Theorem 1

(11) can be cast as the following fixed-point problem. Define φ̃ (a, p̃) to be the optimal price
for the pricing algorithm given demand state a and the other firm prices at p̃ when it does
not adopt the pricing algorithm:

φ̃ (a, p̃) = arg max
p∈[c,pmax]

(1− β)π1 (p, p̃, a) + βπ1 (p, p, a) . (18)

Next define ϕ(p̃) as the optimal price for a firm that did not adopt the pricing algorithm
given the other firm did adopt it and the pricing algorithm is φ̃ (·, p̃):

ϕ(p̃) = arg max
p2∈[c,pmax]

∫
π2

(
φ̃ (a, p̃) , p2, a

)
dF (a). (19)

An equilibrium price for the non-adopting firm is then a fixed point to ϕ, p̂ = ϕ(p̂), and the
equilibrium pricing algorithm is the best response to that price, φ̂ (a) = φ̃ (a, p̂) . The plan
is to prove ϕ : [c, pmax] → [c, pmax] is increasing and, therefore, a fixed point exists (Tarski,
1955).
As an initial step, let us show φ̃ (a, p̃) is continuous and increasing in p̃. Given π1 (p, p̃, a)

and π1 (p, p, a) are both strictly concave in p then (1− β)π1 (p, p̃, a) + βπ1 (p, p, a) is strictly
concave in p.22 That property, along with continuity of (1− β)π1 (p, p̃, a) + βπ1 (p, p, a) in p̃,
imply its optimum φ̃ (a, p̃) is continuous in p̃. Next note, by strict concavity,

∂ ((1− β)π1 (p, p̃, a) + βπ1 (p, p, a))

∂p
T 0 as p S φ̃ (a, p̃) . (20)

Given ∂ ((1− β)π1 (p, p̃, a) + βπ1 (p, p, a)) /∂p is increasing in p̃ by (6) then: if p′′ > p′ then

∂ ((1− β)π1 (p, p′′, a) + βπ1 (p, p, a))

∂p
> 0 ∀p ≤ φ̃ (a, p′)

which implies φ̃ (a, p′′) > φ̃ (a, p′) . Hence, φ̃ (a, p̃) is increasing in p̃.
With this property, the next step is show ϕ is increasing. Given ∂π2 (p1, p, a) /∂p2

is continuous and increasing in p1 and φ̃ (a, p̃) is continuous and increasing in p̃, then

∂π2

(
φ̃ (a, p̃) , p, a

)
/∂p2 is continuous and increasing in p̃. Hence,

∫ ∂π2

(
φ̃ (a, p̃) , p, a

)
∂p2

F ′(a)da

is continuous and increasing in p̃. Given
∫
π2 (p1, p2, a)F ′(a)da is strictly concave in p2 then∫ ∂π2

(
φ̃ (a, p̃) , p2, a

)
∂p2

F ′(a)da T 0 as p2 S ϕ(p̃).

22This is the only place where we need strict concavity rather than strict quasi-concavity.
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Evaluate it at p̃ = p′,

∫ ∂π2

(
φ̃ (a, p′) , p2, a

)
∂p2

F ′(a)da T 0 as p2 S ϕ(p′).

It follows from
∫ (

∂π2

(
φ̃ (a, p̃) , p, a

)
/∂p2

)
F ′(a)da being increasing in p̃ that: if p′ > p′′

then ∫ ∂π2

(
φ̃ (a, p′′) , p2, a

)
∂p2

F ′(a)da > 0 ∀ p2 < ϕ(p′)

which implies ϕ(p′′) > ϕ(p′). Hence, ϕ(p̃) is increasing in p̃.
Given ϕ is increasing on a compact set, it has a fixed point by the Tarski Fixed Point

Theorem. �

8.2 Proof of Theorem 2

By Theorem 1 in Milgrom and Roberts (1994), if ϕ is increasing in p̃ and β then the minimal
and maximal fixed points of ϕ are increasing in β. Unfortunately, I have not been able to
generally establish that ϕ is increasing in β which prevents use of that theorem. However,
the same end can be achieved through a bit of work. The proof strategy has three steps,
where recall pM(a) is the joint profit-maximizing price which is non-decreasing in a.

1. If |a− a| is suffi ciently small then the minimal equilibrium has p̂ < pM(a). (Note:
p̂ < pM(a) implies p̂ < pM(a)∀a ∈ [a, a] .)

2. If φ̃ (a, p̃) < pM(a) then φ̃ (a, p̃) is increasing in β. By step 1, φ̃ (a, p̂) < pM(a) ∀a ∈ [a, a]

when |a− a| is suffi ciently small which then implies φ̃ (a, p̃) is increasing in β around
an equilibrium.

3. If φ̃ (a, p̃) is increasing in β then p̂ and φ̂ (·) are increasing in β.

Lemma 3 If |a− a| is suffi ciently small then the minimal equilibrium has p̂ < pM(a).

The proof strategy is to show, when |a− a| is suffi ciently small, ϕ
(
pN(a)

)
> pN(a) and

ϕ
(
pM(a)

)
< pM(a). Given ϕ is increasing, there exists a fixed point in

(
pN(a), pM(a)

)
and,

therefore, p̂ < pM(a).
Assume |a− a| is suffi ciently small so the Nash equilibrium price for the highest demand

state is less than the joint profit-maximizing price for the lowest demand state: pN(a) <
pM(a). Consider p̃ = pN(a) and let us show ϕ

(
pN(a)

)
> pN(a) when |a− a| is suffi ciently

small. Define the full-information Nash equilibrium:

∂π1

(
pN(a), pN(a), a

)
∂p1

= 0.
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Let us show that if p̃ = pN(a) then the marginal expected profit for the third party objective
is increasing for prices not exceeding pN(a):

∂
(
(1− β)π1

(
p, pN(a), a

)
+ βπ1 (p, p, a)

)
∂p

(21)

= (1− β)
∂π1

(
p, pN(a), a

)
∂p1

+ β

(
∂π1 (p, p, a)

∂p1

+
∂π1 (p, p, a)

∂p2

)
> 0

∀p ≤ pN(a), ∀a ∈ [a, a] .

To prove (21), first note that

∂π1

(
p, pN(a), a

)
∂p1

= 0 as p 5 pN(a).

Given ∂2π1/∂p1∂a > 0, it follows

∂π1

(
p, pN(a), a

)
∂p1

≥ 0 ∀p ≤ pN(a),∀a ≥ a. (22)

Given pN(a) < pM(a)
(
≤ pM(a)∀a

)
then

∂π1 (p, p, a)

∂p1

+
∂π1 (p, p, a)

∂p2

> 0 ∀p ≤ pN(a),∀a. (23)

(22) and (23) imply (21). By strict concavity, it follows from (21) that the optimum to the
third party’s objective exceeds pN(a): φ̃

(
a, pN(a)

)
> pN(a)∀a ∈ [a, a] .

Given
∂π2

(
pN(a), pN(a), a

)
∂p2

= 0,

∂2π2/∂p2∂a > 0 implies
∂π2

(
pN(a), pN(a), a

)
∂p2

> 0,∀a > a. (24)

Given ∂2π2/∂p2∂p1 > 0, (24) implies

if p > pN(a) then
∂π2

(
p, pN(a), a

)
∂p2

> 0,∀a > a. (25)

Given φ̃
(
a, pN(a)

)
> pN(a), (25) implies:

∫ a

a

∂π2

(
φ̃
(
a, pN(a)

)
, pN(a), a

)
∂p2

dF (a) > 0. (26)

From (26) and strict concavity, we have: ϕ
(
pN(a)

)
> pN(a).
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Next consider p̃ = pM(a) and let us show ϕ
(
pM(a)

)
< pM(a) when |a− a| is suffi ciently

small. Consider the first derivative of the objective function for the firm with the pricing
algorithm when p̃ = pM(a) and evaluate it at p = pM(a):

Γ (a) ≡ (1− β)
∂π1

(
pM(a), pM(a), a

)
∂p1

+ β

(
∂π1

(
pM(a), pM(a), a

)
∂p1

+
∂π1

(
pM(a), pM(a), a

)
∂p2

)

= (1− β)
∂π1

(
pM(a), pM(a), a

)
∂p1

.

Since

Γ (a) = (1− β)
∂π1

(
pM(a), pM(a), a

)
∂p1

< 0

then φ̃
(
a, pM(a)

)
< pM(a). By continuity, Γ (a) < 0 for a ' a which implies: φ̃

(
a, pM(a)

)
<

pM(a) ∀a ∈ [a, a] when |a− a| is suffi ciently low.
Given pM(a) is non-decreasing in a, it follows: φ̃

(
a, pM(a)

)
< pM(a) ∀a ∈ [a, a] . I want

to show: ∫ a

a

∂π2

(
φ̃
(
a, pM(a)

)
, pM(a), a

)
∂p2

F ′(a)da < 0 (27)

which, by strict concavity, would imply ϕ
(
pM(a)

)
< pM(a). φ̃

(
a, pM(a)

)
< pM(a) and

∂2π2/∂p2∂p1 > 0 imply

∂π2

(
φ̃
(
a, pM(a)

)
, pM(a), a

)
∂p2

<
∂π2

(
pM(a), pM(a), a

)
∂p2

. (28)

Thus, if
∂π2

(
pM(a), pM(a), a

)
∂p2

< 0 (29)

then
∂π2

(
φ̃
(
a, pM(a)

)
, pM(a), a

)
∂p2

< 0. (30)

Given
∂π2

(
pM(a), pM(a), a

)
∂p2

< 0 (31)

then, by continuity of ∂π2/∂p2 in p1 and a, if a ' a then (31) implies (29) and, therefore,
(30) holds. In sum, if |a− a| is suffi ciently small then

∂π2

(
φ̃
(
a, pM(a)

)
, pM(a), a

)
∂p2

< 0 ∀a ∈ [a, a] . (32)

It follows that (27) is true. Hence, if p̃ = pM(a) then, for |a− a| is suffi ciently small,
φ̃
(
a, pM(a)

)
< pM(a). By (27) and strict concavity, the optimal value of p2 is less than

pM(a); that is, ϕ
(
pM(a)

)
< pM(a).

In sum, if |a− a| is suffi ciently small then ϕ
(
pN(a)

)
> pN(a) and ϕ

(
pM(a)

)
< pM(a)

which implies there is a fixed point in
(
pN(a), pM(a)

)
. �
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Lemma 4 If φ̃ (a, p̃) < pM(a) then φ̃ (a, p̃) is increasing in β.

The first-order condition for

φ̃ (a, p̃) = arg max
p

(1− β)π1 (p, p̃, a) + βπ1 (p, p, a) ,∀a ∈ A

is:

(1−β)
∂π1

(
φ̃ (a, p̃) , p̃, a

)
∂p1

+β

∂π1

(
φ̃ (a, p̃) , φ̃ (a, p̃) , a

)
∂p1

+
∂π1

(
φ̃ (a, p̃) , φ̃ (a, p̃) , a

)
∂p2

 = 0,

which is equivalent to

−
∂π1

(
φ̃ (a, p̃) , p̃, a

)
∂p1

=

(
β

1− β

)∂π1

(
φ̃ (a, p̃) , φ̃ (a, p̃) , a

)
∂p1

+
∂π1

(
φ̃ (a, p̃) , φ̃ (a, p̃) , a

)
∂p2

 .

(33)
Consider the cross-partial derivative:

∂2 ((1− β)π1 (p, p̃, a) + βπ1 (p, p, a))

∂p∂β
=
∂π1 (p, p, a)

∂p1

+
∂π1 (p, p, a)

∂p2

− ∂π1 (p, p̃, a)

∂p1

,

evaluate it at p = φ̃ (a, p̃), and use (33):

∂2
(

(1− β)π1

(
φ̃ (a, p̃) , p̃, a

)
+ βπ1

(
φ̃ (a, p̃) , φ̃ (a, p̃) , a

))
∂p∂β

=
∂π1

(
φ̃ (a, p̃) , φ̃ (a, p̃) , a

)
∂p1

+
∂π1

(
φ̃ (a, p̃) , φ̃ (a, p̃) , a

)
∂p2

−
∂π1

(
φ̃ (a, p̃) , p̃, a

)
∂p1

,

=

∂π1

(
φ̃ (a, p̃) , φ̃ (a, p̃) , a

)
∂p1

+
∂π1

(
φ̃ (a, p̃) , φ̃ (a, p̃) , a

)
∂p2

( 1

1− β

)
. (34)

If φ̃ (a, p̃) < pM(a) then, by strict concavity of π1 (p, p, a) + π2 (p, p, a),

∂π1

(
φ̃ (a, p̃) , φ̃ (a, p̃) , a

)
∂p1

+
∂π1

(
φ̃ (a, p̃) , φ̃ (a, p̃) , a

)
∂p2

> 0

which, along with (34), implies

∂2
(

(1− β)π1

(
φ̃ (a, p̃) , p̃, a

)
+ βπ1

(
φ̃ (a, p̃) , φ̃ (a, p̃) , a

))
∂p∂β

> 0. (35)

Suppose β = β′. By strict concavity of (1 − β′)π1 (p, p̃, a) + β′π1 (p, p, a) in p and that
φ̃ (a, p̃, β′) is the optimum, it follows:

∂ ((1− β′)π1 (p, p̃, a) + β′π1 (p, p, a))

∂p
= 0 as p 5 φ̃ (a, p̃, β′) . (36)
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Using (35), we have

∂2
(

(1− β′)π1

(
φ̃ (a, p̃, β′) , p̃, a

)
+ β′π1

(
φ̃ (a, p̃, β′) , φ̃ (a, p̃, β′) , a

))
∂p∂β

> 0. (37)

(36)-(37) imply ∃ε > 0 such that

∂ ((1− β′ − ε)π1 (p, p̃, a) + (β′ + ε)π1 (p, p, a))

∂p
< 0 ∀ p ≤ φ̃ (a, p̃, β′)

which implies φ̃ (a, p̃, β′ + ε) > φ̃ (a, p̃, β′). Hence, if φ̃ (a, p̃) < pM(a) then φ̃ (a, p̃) is increas-
ing in β. �

From Lemmas 3 and 4, it follows: if |a− a| is suffi ciently small then there is a minimal
equilibrium with p̂ < pM(a) and ∃ε > 0 such that φ̃ (a, p̃) is increasing in β ∀p̃ < p̂ + ε.

Suppose |a− a| is suffi ciently small and let
(
φ̂ (·, β′) , p̂(β′)

)
be a minimal equilibrium when

β = β′. As it is a minimal equilibrium then

ϕ(p̃, β′) = p̃ as p̃ 5 p̂(β′). (38)

Recall that

ϕ(p̃, β) = arg max
p2

∫
π2

(
φ̃ (a, p̃, β) , p2, a

)
F ′(a)da

which means, by strict concavity,

∫ ∂π2

(
φ̃ (a, p̃, β) , p2, a

)
∂p2

F ′(a)da T 0 as p2 S ϕ(p̃, β). (39)

Given p̃ < p̂(β′) implies ϕ(p̃, β′) > p̃ by (38), it follows from (39):

if p̃ < p̂(β′) then
∫ ∂π2

(
φ̃ (a, p̃, β′) , p2, a

)
∂p2

F ′(a)da > 0 ∀p2 ≤ p̃(< ϕ(p̃, β′)).

Hence, ∫ ∂π2

(
φ̃ (a, p̃, β′) , p̃, a

)
∂p2

F ′(a)da = 0 as p̃ 5 p̂(β′). (40)

As ∂π2/∂p2 is increasing in p1 and φ̃ (a, p̃, β) is increasing in β ∀p̃ < p̂ (β′) + ε (where ε > 0

and small) then ∂π2

(
φ̃ (a, p̃, β) , p2, a

)
/∂p2 is increasing in β ∀p̃ < p̂ (β′) + ε. Hence, if

β′′ > β′ then

∫ ∂π2

(
φ̃ (a, p̃, β′′) , p̃, a

)
∂p2

 >

∫ ∂π2

(
φ̃ (a, p̃, β′) , p̃, a

)
∂p2

 ∀p̃ < p̂ (β′) + ε. (41)
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(40)-(41) imply

∫ ∂π2

(
φ̃ (a, p̃, β′′) , p̃, a

)
∂p2

F ′(a)da > 0 ∀ p̃ ≤ p̂(β′), (42)

and, therefore, p̂ (β′′) > p̂ (β′). The minimal equilibrium is then increasing in β. Given
φ̂ (a, β) = φ̃ (a, p̂ (β) , β) and φ̃ (a, p̃, β) is increasing in p̃ and β then p̂ (β′′) > p̂ (β′) implies(

φ̂ (a, β′′) =
)
φ̃ (a, p̂ (β′′) , β′′) > φ̃ (a, p̂ (β′) , β′)

(
= φ̂ (a, β′)

)
.

Therefore, φ̂ (a, β′′) > φ̂ (a, β′) . �

9 Appendix B: Solving for the Equilibrium in the Lin-
ear Demand Case(

φ̂ (·) , p̂
)
are defined by:

φ̂ (a) = arg max
p1

(1− β)(p1 − c) (a− bp1 + dp̂) + β(p1 − c)(a− (b− d)p1), ∀a ∈ A (43)

p̂ = arg max
p2

∫
(p2 − c)

(
a− bp2 + dφ̂ (a)

)
F ′(a)da. (44)

Using the first-order condition to solve (43) yields:

p1 =
(b(1− β) + β(b− d))c+ d(1− β)p̂

2(b− dβ)
+

(
1

2(b− dβ)

)
a = γ (p̂) + θa (45)

where

γ (p̂) ≡ (b(1− β) + β(b− d))c+ d(1− β)p̂

2(b− dβ)

θ ≡ 1

2(b− dβ)
.

Turning to (44), I can use (45) and the expectation of a so as to represent the objective
function as

(p2 − c)(µ− bp2 + d(γ (p̂) + θµ)).

Maximizing it yields the optimum:

p2 =
µ+ bc+ d(γ (p̂) + θµ)

2b
. (46)

Using (45)-(46), p̂ is defined as the fixed point:

p̂ =
µ+ bc+ d(γ (p̂) + θµ)

2b
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which yields:

p̂ =
µ(2b− d+ 2(1− β)d) + c(b− βd)(2b+ d)

4b2 − d2 − β(4b− d)d
. (47)

Finally, insert (47) into (45) and re-arrange:

φ̂(a) = γ̂ + θ̂a

=
µ(1− β)d(2 (b− βd) + d) + c(b− βd) (4b(b− βd) + 2bd(1− β))

(b− dβ) (8b(b− d) + 2d(1− β)(4b− d))
+

(
1

2(b− βd)

)
a

Note that this solution is valid as long as |a− a| is not too great, so firms’demands are
always positive at the equilibrium prices.
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