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Abstract

We examine nonlinear coupling among a number of important climatological vari-
ables, 0'13C, 6'®0 and insolation, using mutual information and redundancy. The
coupling among these variables is found to vary over different climatological eras.
The dependence between 6'>C and 6'80 is of particular strength in more recent
samples. Tests for Granger causality suggest that §'%0 has an effect on 6'3C whereas
the reverse is not the case.
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1 Introduction

In the last decades several nonlinear methods for the analysis of time se-
ries have been developed, including methods for estimating dynamical invari-
ants such as correlation dimension, correlation entropy and Lyapunov expo-
nents (for an overview see e.g. Diks [2]). The application of the Grassberger—
Procaccia algorithm to palaeoclimatic time series led to controversies about
the existence of a low-dimensional “climatic attractor” (see Ruelle [15] for
an early review). Analysis of one of the longest and most reliable records
(ODP 659, see Section 3 for a description of the data) yielded the somewhat
unsatisfactory conclusion that at least five climate variables are acting [8]. In-
vestigating higher values would necessitate time series lengths of at least one
order of magnitude above the current capacity.

One of the disadvantages of chaos analysis is that the assumptions underlying
it (deterministic time series without observational noise) are not realistic for

Preprint submitted to Elsevier Preprint 21 September 2000



measured palaeoclimatic data. Therefore we analyze the ODP 659 record by
means of mutual information and redundancy, which do not require those
assumptions, and have already been applied successfully to time series from
very different origins, such as meteorology and physiology [10].

This paper is organized as follows. In the next section two information the-
oretical concepts, mutual information and its generalization, redundancy, are
introduced. In Section 3 we present our analysis of the ODP 659 data and
describe the stationary bootstrap used to estimate confidence intervals. In
Section 4 we introduce an information theoretical test for Granger causality
and apply it to the data to obtain some insights into the causal nature of the
dependence between the different variables. A short geological interpretation
is included.

2 Mutual Information and Redundancy

Consider two stochastic variables X and Y with joint probability density func-
tion (pdf) fxy(x,y), and marginal pdf fx(z) and fy(y) respectively. The
mutual information of X and Y is given by

I(X,Y) = // Fx (2, y) 1og%dxdy. (1)

The mutual information can be considered a nonlinear analogue of the corre-
lation between X and Y. Intuitively, the mutual information is the amount
of information contained in one of the two variables about the other variable.
The mutual information is symmetric, nonnegative and equal to zero if and
only if X and Y are independent [3].

Redundancy is the extension of mutual information to higher-dimensional
cases. For the random variable X = (Xj,..., Xj/), with joint pdf fx(x) and
marginal pdfs fx,(z;), for i =1,..., M, the redundancy is defined as

fx (%) <
/fx x) log le( )d . (2)

This concept of redundancy was used by Palus [9] in a time series context.
Like the mutual information, the redundancy is nonnegative, and zero if and
only if the X; are independent.

Palus, Albrecht and Dvoiédk [11] determined the redundancy of multivariate
Gaussian random variables, which enables one to define “linear redundancies”



in terms of the covariance matrix of the random variables. The linear redun-
dancy function is given by

1M 1M
L(X) = 3 Zlog i — 5 Zlogai, (3)
i=1 i=1

where the ¢; are the diagonal elements (variances) and o; the eigenvalues of
the M x M covariance matrix C of X. For M = 2 this can be written [3] as

L(X,Y) =~ log(1 — 7). (1

where p is the correlation between X and Y.

Prichard and Theiler [13] proposed generalizations of entropy, mutual informa-
tion and redundancy, by expressing them in terms of generalized correlation
integrals C,(¢). For the mutual information and the redundancy, they give

I,(X,Y;e) =1log Cy(X,Y;€) —log Cy(X; €) — log Cy (Y €), (5)
M

Ry(X;€) =log Cy(X;€) — D log Cy(Xis€) (6)
i=1

respectively. These forms enable convenient estimation by means of plug-in
estimates of C;. The choice ¢ = 2, the value which will be used throughout
this paper, is particularly convenient since the estimation of the correlation
integral for ¢ = 2 is straightforward. The correlation integral of a random
variable X with associated probability measure ux is

Co(Xs ) = // O(e — [lx = yIDdpux(x)dux (v), (7)

where ©(-) is the Heaviside function,

0 if s <0
O(s) = , (8)
1 if s > 0.

The correlation integral is usually estimated from a sampled M-dimensional
time series {x(j)};y:1 as the fraction of distances smaller than e:

Coose) = =gy 3 20 Ole= G —x®l)- )



3 Data Analysis

The data we consider consist of the oxygen isotope (§'¥0), carbon isotope
(6'3C) and dust flux records from the Ocean Drilling Program (ODP) Site
659, located on the Cape Verde Plateau west of Africa [16]. The covered time
interval is the past 5000 ka (1 ka = 1000 years). The delta notation refers to
the relative deviation of isotope ratios from a reference standard (PDB). For
example,

(lgo/IGO)sample - (ISO/IGO)PDB

680[%o vs. PDB] =
| ] (**0/1%0)ppp

x 1000, (10)

and an analogous definition gives §'3C in terms of *C and '2C.

The §'80 values are reliable recorders of global ice volume; §'3C values reflect
mainly the strength of formation of North Atlantic Deep Water (NADW)—
also an important climate variable but with a slightly less global influence [14].
The ODP 659 dust flux records changes in Sahelian aridity [16]. During our
data analysis it became clear that the results involving the dust flux variable
were difficult to interpret. For clarity of the presentation of the results, the
dust flux is no longer considered in this paper. Instead, in the analysis we
include the time series of solar insolation at 60 °N [1] which is regarded as the
major external forcing of Plio-/Pleistocene climate.

We divide the ODP 659 time interval into four distinctive climatic periods:
The oldest, IV, from 5000 to 3585 ka ago, saw already climate variability, but
not as strong as the glaciation of the Northern Hemisphere which came in the
late Pliocene (period III), from 3585 to 2625 ka. Period II covers 2470-937 ka,
a time of gradual cooling and additional build-up of ice in early Pleistocene.
Then, the Mid-Pleistocene Climate Transition occurred, a relatively abrupt
increase of global ice volume [7], which led to late Pleistocene ice ages (period
[), since 892 ka, with large glacial-interglacial amplitudes. The number N of
observations is 216, 301, 179 and 266 for periods I, II, III and IV, respectively.

3.1 Redundancies

For each period, the time series were linearly detrended and then rescaled to
zero mean and unit variance. The original time series had only small trends
within each of the selected climatic regimes. Note that the multivariate mea-
surements on the sediment core were made at equally spaced depths. Because
sedimentation is not a constant process, the ODP 659 time series are not
equally spaced. However, due to the respective climatic regime, within each



§13C, 6180, insol. | §13C, 680 613C, insol. 680, insol.
I 0.26 0.16 0.00 0.09
IT 0.10 0.08 0.01 0.00
I11 0.10 0.08 0.02 -0.01
Iv 0.05 0.01 0.02 0.01

Table 1

Estimated redundancies (e = 1) for the triple and the three pairs of variables in the
four different climatic periods. The increase in redundancy for the triple appears to
be attributable to the increase in redundancy between 6'2C and §'80.

of the four periods the coefficient of variation of the time spacing, that is, the
standard deviation of the time spacing divided by the average time spacing,
is always less than about 50%. Because of the unequal sampling, the con-
struction of delay vectors from the scalar time series, as is common practice
in chaos analysis, can no longer be justified. Hence, we avoid the calculation
of redundancies my means of delay vectors as in Palus [9], and examine the
system using the multivariate data instead.

Table 1 shows the estimated redundancy of the full joint 3-variate time series
as well as for all pairs in the four different geological periods. For the scale
parameter we chose ¢ = 1 (which amounts to one standard deviation of the
time series considering the rescaling) throughout. The increase in redundancy
among the three climate variables suggests that the dependence between them
has increased slowly over geologic time. From the mutual information calcu-
lated for the pairs of variables, it appears that the increase in coupling in the
full 3-variate time series is mainly due to the increase in coupling between
513C and 6'80. In period I, some additional coupling comes from the relation
between 680 and insolation.

3.2 Cross redundancies

To examine the relation between §'3C and §'%0 in more detail, we determined
the mutual information of both time series as a function of the delay (termed
cross redundancy in Prichard and Theiler [13]). The cross redundancy at lag
[ of two simultaneously measured time series {35(])};21 and {y(j)};.\r:1 is

Iy(z(7), y(G +1)). (11)

Prichard and Theiler [13] showed that the linear redundancy is the same for
all ¢ (see Eq. 3), which suggests that a qualitative comparison of the cross
redundancy and the linear cross redundancy can be used as a qualitative test
for linearity.
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Fig. 1. Estimated cross redundancies (solid lines) and linear cross redundancies
(dashed lines) as a function of the lag (in sample intervals) in the four different
periods. The dotted lines indicate the 95% quantiles for the cross-redundancy in
the absence of dependence. The cross-redundancies were estimated with ¢ = 1.

Figure 1 shows the estimated cross redundancy function for each pair of vari-
ables in periods I,..., IV. The dotted lines indicate the 97.5% quantiles ob-
tained using 4000 stationary bootstrap replications, under the assumption
that no causal relations exist between the two time series (both time series
are bootstrapped independently).



The stationary bootstrap [12] is a resampling scheme developed for weakly
dependent stationary time series. Given an observed time series, {z(j)},, a
bootstrap time series {z*(j)}7, is constructed as follows. The first element
x*(1) is randomly selected from x(1),...,z(N). The consecutive points are
generated as follows: Let x*(j) = x(k), say, then with probability (1 — P),
with P small, the successor of z*(j) is taken to be the successor of z(k) in
the original time series, that is, 2*(j + 1) = z(k + 1), and with probability P,
z*(j 4+ 1) is a randomly chosen element of the original time series. Periodic
boundary conditions are imposed to ensure that z(N) has a successor, x(1).
Note that this resampling scheme is equivalent to a bootstrap in which ran-
dom blocks from the original time series are concatenated, with geometrically
distributed block lengths. Intuitively, for small P, the bootstrap preserves de-
pendence in the time series up to lags of the order of the mean block length,
1/P. For the pairs of time series studied here, we generated bootstrap time
series independently. As this destroys any existing dependence among the two
time series, it can be considered as generating new realizations under the
null hypothesis that the two time series are independent. Therefore, the ob-
tained confidence interval can be interpreted as the confidence interval under
the null hypothesis of independence of the respective time series (while the
dependence structure in the time series themselves is preserved). We used
P = 0.05 throughout. This choice appears to be a reasonable trade-off be-
tween the mean block length (1/P = 20) and the expected number of blocks
(PN ~10).

Considering the uncertainty introduced by the uneven time spacing, the esti-
mated quantiles should be regarded as a rough indication of the true quantiles.
The probability that the estimated mutual information exceeds this level is
about 2.5% in the case when there is no dependence between the random vari-
ables. Note that the the quantiles have a minimum for lag zero, and increase
for lags further from zero. This results from the decrease of the overlapping
part of two time series when the lag is increased, which increases the statistical
fluctuations.

For comparison, Figure 1 also shows the estimated linear redundancy func-
tion (dotted lines, see Eq. 3), which is the mutual information based on the
assumption that the time series are jointly Gaussian. Many of the statistically
significant peaks in the redundancy functions are strongly reduced or absent
in the linear redundancy function, suggesting that these peaks are the result
of nonlinear dependence. We regard this as an a posterior: justification for the
use of nonlinear dependence measures rather than linear correlation.

In several panels, for example for §'3C and §'®0O in period III and somewhat
in periods [ and II, an asymmetry can be observed in the mutual information
with respect to changing the sign of the lag. For positive lags there are practi-
cally no statistically significant estimates of the mutual information, whereas



the mutual information is significantly larger than zero for several negative
lags. Because the mutual information is merely a (nonlinear) measure for cor-
relation, these asymmetries do not contain sufficient information to decide
which variable is driving which. The next section deals with this question in
more detail.

4 Granger Causality

So far, by using nonlinear correlation measures, we have only examined depen-
dence between the climatological variables. However, we would like to obtain
some insights into the nature of the couplings that bring about the observed
dependence. For example, if there is nonlinear dependence between two vari-
ables, this might be because the first variable is driving the second, or the
second is driving the first, or both (feedback).

The aim of this section is to examine the causal relationships between the
variables by testing for Granger causality [4]. We design a test for the following
null hypothesis:

Hy : Y is not a Granger cause of X. (12)

This well-known concept in econometric theory is based on predictability. In-
tuitively, Y is a Granger cause of X if past values of Y can improve predictions
of future values of X. More formally, Y is a Granger cause of X if future val-
ues of X, conditionally on past values of X and Y, are distributed differently
than future values, conditionally on past values of X only. In this case X is
conditionally (on past values of X') dependent on Y. This definition of causal-
ity is only operational and leaves open the possibility that causality is found
between X and Y when they are in fact uncoupled. This can be the case, for
example, if both X and Y are driven by a third variable, Z say.

As the test statistic we used the conditional marginal redundancy (see [5]),
that is,

T,(X,m, Y, 1) =rg(Y (G = 1), ., Y (5); Xy [ X(G = m),..., X (7)) (13)
which is the average amount of information contained in Y (5 —1),...,Y(j),

given that we know X (j—m),..., X(j). We can write the conditional marginal
redundancy as

TQ(X7m7Y7l):rq(X(j —m),...,X(j),Y(j —l),...,Y(j);X(j+1)) -
(X =m),..., X(7); X (G +1)), (14)



where m and [ are time lags and the marginal redundancy r(-) is given by [13]

ro(Z(5); X(j + 1)) = Ry(Z(5), X (5 + 1)) — Ry(Z(5)), (15)

where Z(j) stands for (X(j —m),..., X (j)) or (X(j —m),..., X (§),Y(j —
[),...,Y(j)) respectively. The marginal redundancy quantifies the amount of
information about the variable X (j + 1) contained in Z(j). When the dis-
tribution of X is independent of past values of Y, T, is zero, whereas Ty is
positive when Y drives X. Therefore, a one-sided test is appropriate, in which
it is established whether or not fq(x, m,y,l), that is, the estimated value of
T;, using the measured time series « and y, is significantly larger than zero. fq
is obtained by plugging in estimated correlation integrals, that is,

dimz

Ry(z;¢) = log Cy(z;€) — 3 log Cy(zy; €), (16)
=1

where z(;) denotes the ith component of z. Again, we use ¢ = 2.

The stationary bootstrap is used to estimate the probability (p-value) that
fq(x*, m,y*, 1) > fq(x, m,y,l) by the number of such simulations divided by
the total number of simulations (1000). A small p-value suggests that it is un-
likely that the observed value Tq(a:, m, y,) had occurred by chance (under the
“no coupling” hypothesis), that means that “Hy, = true” is unlikely. Testing
at a confidence level of 1 — o, one would reject Hy whenever the p-value is
smaller than a.

The tests are performed for [ < m with m fixed (see Eq. (14)). The value
of m was chosen to be as large as possible without leading to estimates of
C5 equal to zero, in which case the estimated marginal redundancies would
become infinite. For our data, this requirement leads to m = 4.

We test for Granger causality between all pairs of variables in the four periods.
Table 2 shows the obtained p-values for each pair of variables in each of the four
climatological periods. We find no evidence for Granger causality in the oldest
period. For the three most recent periods (I-III), there is strong evidence for
§'80 being a Granger cause of §*C. We find good evidence suggesting that
insolation is a Granger cause of §'3C during period I and of §'80 from II to
the present.

In geological terms, the increase in coupling reflects the growing influence of
Northern Hemisphere ice sheets (6'*0) on global climate (cf. [14]). In period
IV, NADW formation (6'*C) was little influenced by ice volume. During the
Northern Hemisphere glaciation (period III) the ice sheets grew southwards,
reaching the North Atlantic. This influenced NADW formation through var-



S0 — §13C insolation — ¢'3C insolation — %0

l I Ir I 1Iv I II Ir 1iv I Ir I 1
1]0.01 0.09 0.02 0.62|001 0.24 098 0.11|0.07 0.03 0.38 0.47
21002 0.04 0.00 047 ]0.03 048 0.84 0.30|0.05 0.30 0.58 0.88
31006 0.02 0.01 057]0.05 017 0.81 0.18|0.04 048 0.55 0.90
410.07 0.02 0.02 090|010 0.30 091 0.19|0.07 0.67 0.57 0.95

§13C — 6180 §13C — insolation 580 — insolation

l I I 1mr 1 I IT I 1iv I Imr 1 1
1017 026 0.26 0.10|0.50 0.24 046 0.22|0.32 047 0.08 0.36
21047 036 037 0.19]0.71 0.20 0.14 0.08 | 0.47 0.56 0.25 0.33
31040 032 037 033]031 038 027 0.13]0.59 0.55 0.46 0.28

41051 039 053 0.33]0.17 063 035 0.056]0.36 0.60 0.63 0.32
Table 2

Obtained p-values for the test for Granger causality among 6'3C, 680 and insola-
tion. 1000 bootstrap replications. [, lag. e =1, m = 4.

ious climatological links (e.g., movement of the polar front), leading to non-
linearity and delay behavior. In period II, the grip of ice volume on NADW
formation was rather stable. The grip was increased in late Pleistocene ice
ages (period I) after marine-based ice sheets had developed [7].

Because 6'3C is not found to be a Granger cause of §'80, we have found no
evidence for feedback between these two variables in our dataset. No evidence
is found for §'0 (or 6'3C) being a Granger cause of insolation. This suggests
that the effect of possible physical mechanisms by which the climate variables
can influence insolation (through changes in the Earth’s moment of inertia [6])
is not very strong. Some evidence suggests that insolation has an impact on
long-term climate dynamics via §'80, and possibly §'3C, from periods II and I,
respectively, to the present. This is in line with the leading role which climatic
Milankovitch theory (see [14,16] and references therein) ascribes to insolation.
When comparing the p-values one should bear in mind that the power of the
test in the various periods depends on the number of observations in each
period.

5 Concluding Remarks

Using recently developed, information theoretical, nonlinear methods for the
analysis of time series we found that the coupling in the global climate system
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is essentially nonlinear and has increased over time. Upon examining the re-
dundancies in subsets of variables, it was found that the increase in coupling
could be ascribed mainly to an increased coupling between §'®0 (an indicator
of global ice volume) and §'*C (an indicator of NADW formation). Tests for
Granger causality suggest that 680 is a Granger cause of 6'3C, whereas the
reverse is not the case.
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