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Abstract

In this note we critically examine the results on learning equilibria, obtained
by Bullard (1994) and Schonhofer (1999). In those papers it is shown that, in
an overlapping generations model with fiat money, an increase in the money
growth rate may lead to endogenous fluctuations. We suggest an alternative
learning procedure, that models the same perceived law of motion, but which
has more desirable stability properties.

1 Introduction

In recent years the limitations of the rational expectations hypothesis have become
increasingly obvious. In particular, it has been perceived as unsatisfactory that this
hypothesis endows economic agents with precise information about the structure of
the economy and the beliefs of other agents as well as unbounded reasoning abilities
to deal with this information. A number of authors have suggested that the rational
expectations hypothesis still is valid as a description of long run behaviour, since eco-
nomic agents learn over time and eventually arrive at a rational expectations steady
state. The rational expectations hypothesis can therefore be supported by a learning
story (see Lucas, 1976, Marcet and Sargent, 1989 and Evans and Honkapohja, 1999).
In such a learning model the bounded rational agents are generally assumed to have
no structural information about their economic environment other than time series
observations on certain economic variables. They use these time series observations
to make inferences about the economic environment. In his book on bounded ratio-
nality Sargent (1993, p.22) writes: “We can interpret the idea of bounded rationality
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broadly as a research program to build models populated by agents who behave like
working economists or econometricians.” Since the perceptions of agents influence
their behaviour, the learning feeds back into the actual realizations of economic vari-
ables. Hence, the learning procedure itself is one of the determinants of the evolution
of the economic variables. With respect to this learning procedure Bullard (1994,
p.468) states:

“A common research question, asked increasingly often in the recent literature, is
how this learning takes place, and more importantly, if it makes any difference for
inferences from dynamic general equilibrium models whether the learning is explicitly
modeled.”

In his interesting paper Bullard shows that explicitly modelling agents as econome-
tricians might create equilibria different from the rational expectations steady state.
Some of these learning equilibria can be characterized by endogenous fluctuations in
inflation rates and agents beliefs. Moreover, Schonhofer (1999) shows that chaotic
learning equilibria exist. In this paper we show that the main results from these two
papers arise from the estimation procedure that agents are supposed to use. In fact,
for an estimation procedure that is more sensible from a statistical point of view, the
dynamics of the model appear to be inherently stable. An important observation is
that the perceived law of motion is the same for both procedures, the only difference
is in the way this perceived law is estimated. The main point is that it is more sound
from an econometric point of view to run a regression on a stationary time series
than on a nonstationary time series. Since in our model agents want to predict the
inflation rates and since the time series of price levels is nonstationary, the estimation
procedure should be in terms of inflation rates instead of price levels.

The rest of the paper is organized as follows. Section 2 describes the overlapping
generations model studied in Bullard (1994) and discusses the existence of learning
equilibria. In Section 3 a learning procedure based upon inflation rates is introduced
and the main stability results are given. Section 4 concludes.

2 Learning equilibria

We consider a standard two period overlapping generations model where in each
period a generation is born that lives for two periods. The generation born in period
t solves

max U (co,c1) subject to pico + pfic1 < prwo + Py wa,
€0,C1

where U : ZR%r — IR is a strictly monotone, strictly quasi concave utility function, ¢y
and ¢; are consumption in the first and second period of the agent’s life and wy and w,
are endowments in the first and second period of the agent’s life. Furthermore, p; is



the price in period ¢ and pf, , is the price expected for period ¢ + 1. The optimization
problem gives the optimal level of consumption in the first period of the agent’s life
Piy1

=, le. o = ¢ (%). Optimal saving of the

as a function of expected inflation
young generation is then given by the savings function

g <pf+1> — wy — ¢ (pfﬂ) .
be De

From now on we will assume that the savings function is twice differentiable and
positive, i.e. S(mw) > 0 for all = (this corresponds to the Samuelson case, where
people save when young).! The demand for real balances in period ¢ is given by

% :S(@).
be 2

The only means of saving is money and the money stock M; is controlled by the
government and grows to finance government consumption. The monetary policy
rule is

Mt - Q?Mt_l.

Combining the demand for real balances with the monetary policy rule, we get the
following market clearing condition

S <pt+1) pr = US < D )pt—l-
Y4 Pt

In terms of gross inflation rates m, = % this equilibrium condition becomes

m1S (7)) =95 (75_,) . (1)

At the monetary steady state, 7* = 14, the inflation rate is equal to the money growth
rate.

The model is closed by specifying the way in which agents form expectations
about future inflation rates. Under rational expectations or perfect foresight we
have 7§, ; = my. It is well-known that for a downward sloping savings function
the monetary steady state 1 is unstable under perfect foresight. For nonmonotonic
savings functions more complicated perfect foresight dynamics, such as cycles and
chaotic fluctuations can occur (see e.g. Grandmont, 1985).

The assumption of perfect foresight requires that agents exactly know the market
equilibrium equations as well as other agents’ beliefs and are able to use this informa-
tion to compute the market clearing prices for the future. An alternative approach is

!Since the savings function corresponds to an aggregate excess demand function, in principal any
continuous function can be a savings function that is consistent with utility maximization, if we
would extend the number of agents per generations to at least 2 (see Sonnenschein (1973)).
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to assume that economic agents make inferences about their environment by means
of a learning procedure. Such a procedure uses time series observations to make fore-
casts about the future development of variables. Consider the following example of
such a learning procedure.

The generation born in period ¢ has to make a forecast about the inflation rate for
period ¢t + 1. Agents believe that the inflation rate is constant (which at the rational
expectations steady state is indeed the case), that is, in terms of prices, they have
the following perceived law of motion

e = Bpi-1, (2)

The precise value of 3, however, is unknown to the agents. Bullard (1994) assumes
that agents run a least squares regression on prices in order to estimate this § and
to be able to form predictions on the inflation rate. The least squares regression
estimate for agents born in period ¢, using data available through time ¢ — 1, is

—1
Zi:l Ps—1Ps
-1 )
demt Piq
and hence their forecast of the inflation rate is nf = ;. Given this forecast, the
implied actual law of motion for the price dynamics of the model becomes
S (Be-1)
pe=V—G P (4)
S ()
(3) and (4) together form an expectations feedback system. Realized prices influence
perceptions agents have about their economic environment and these perceptions
feed back into the actual dynamics and determine which prices will realize. The
complete system (3-4) can be written as a recursive dynamical system by introducing

B = (3)

the variable g, = p? , [Zizl p?,l}_l. Written as a system of first-order difference
equations, the learning model becomes

Bur = s+ g [ﬂg 2 - ﬁt] ,
Yer1 = B, ) (5)
e = [g{l (19283)2 +1

The main result on learning equilibria is the following

Proposition 1 (Bullard, 1994) Assume 9 > 1 and S (.) is twice differentiable and
downward sloping. Then (5) generically undergoes a Hopf bifurcation at the monetary
steady state at that value ¥* of ¥, for which

(1-972)a() =1,
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where a (V) = —19‘2/(:99)) is the inflation elasticity of savings, evaluated at the monetary
steady state. For v < v*, the monetary steady state is stable and for ¥ > ¥* it s

unstable.

It will be useful for us to investigate the details of this result a little further. Con-
sider the Jacobian matrix of (5) evaluated at the monetary steady state (5*,v*, ¢*) =
(9,9,1 —9~2%). This Jacobian matrix is

924+ (1-9al) —(1-9a® 0

J = 1 0 0 . (6)
99 g 92
a3 Oy

One of the eigenvalues is equal to 92 and hence lies inside the unit circle for ¥ > 1.
The other two eigenvalues are eigenvalues are complex and lie on the unit circle when
(1—-972)a(¥) = 1. Moreover, the eigenvalues cross the unit circle with positive
speed as v} changes. The Hopf bifurcation described in the proposition leads to an
invariant closed curve around the steady state of the learning dynamics. This closed
curve can be attracting or repelling. Motion on the closed curve can be periodic and
quasi-periodic.? Bullard (1994) calls these cycles “learning equilibria” since they cor-
respond to equilibria of the learning dynamics, that are not equilibria under rational
expectations. Their existence can therefore be attributed to the learning process. If ¥
increases further, the time series of the inflation rates can become even more compli-
cated. Schonhofer (1999) gives, for a particular set of examples, numerical evidence
for the existence of homoclinic orbits and chaos in the learning dynamics.

Let us now try to develop an intuition for the fact that the recursive least squares
estimates do not converge to the monetary steady state. Ordinary least squares
algorithms are so-called decreasing gains algorithms. Different observations receive
the same weights in the regression which implies that, as time goes by and the number
of observations increases, the impact of individual new observations becomes smaller.
In (5) this gain is represented by the variable g, = p? ;/ >t p? . If price levels
are bounded g; will converge to 0 which, if it does not result in convergence to the
monetary steady state, at least leads to ever smaller changes in the estimate of .
In the present model, however, price levels are unbounded and in fact, at the steady
state they grow at a constant rate ¥ > 1. This implies that the equilibrium value
of the weight g; is strictly positive, g* = 1 — 972 > 0. Hence, even after many
observations, one new observation on the price level may lead to a significant change
in the beliefs of the agents, which therefore keep on fluctuating, implying endogenous
and persisting fluctuations in the inflation rates.

In fact, least squares learning on price levels is closely related to the adaptive
expectations rule on inflation rates. Adaptive expectations (Nerlove, 1958) corre-
sponds to updating the expectation in the direction of the last observation, i.e.,

2If the savings function is nonmonotonic similar phenomena occur. In that case, the monetary
steady state may also lose stability throug a period-doubling bifurcation. This happens at that value

9 for ¥ for which $=ta (9) = L.



g = T +a(m1 —my), with 0 < o < 1. Notice that the weight « is constant,
and adaptive expectations therefore correspond to a constant gains algorithm. In-
troducing adaptive expectations into (1) yields the following second order difference
equation

S (Bi-1)

=t a (05302 - ). )
Notice that the only difference between (5) and (7) is that for the latter the weight
« is constant whereas for the former it depends upon the realization of the prices.
However, if the weight in (7) equals a = g* = 1 —92, (7) has the same local stability
properties as (5).> Hence, the learning scheme proposed by Bullard (1994) turns out
to be closely related to adaptive expectations. Although the weight or gain g, in (5)
is not constant, it is certainly not (monotonically) decreasing over time.

3 An alternative procedure

In the previous section it was argued that the nonstationary nature of the price
time series may lead to endogenous and persisting fluctuations in inflation rates.
According to the perceived law of motion (2) agents believe that the systematic part
of the inflation rate is constant. The residuals or forecast errors from the regression
(3) turn out to be

e = pr — B—1pi—1 = (ﬁ% - ﬁt—l) Di—1-

Clearly, if the economy is not at the monetary steady state v, the part between
brackets does not vanish and the forecast errors grow without bound. This provides
us with another intuition for the nonconvergence of the recursive system (5): because
the forecast errors grow indefinitely (in absolute value), the estimates keep changing
significantly, despite the fact that the weight attached to each individual observation
decreases as time goes by. Each new observation can upset the current estimate and
lead to a radical change in the estimated perceived law of motion which, of course, is
an unsatisfactory property of an estimation procedure. Given the exploding forecast
errors, and the fluctuations in the beliefs, agents will be inclined to change their
estimation procedure. Apart from that, it seems to be not too sensible to run a least
squares regression on an exploding time series. We can rewrite (2) into the following
perceived law of motion

T = 3. (8)

3This follows from the fact that the upper 2 x 2 matrix of (6) (which is the relevant part) is equal
to the Jacobian of (7).




Notice that the economic agents’ perceptions underlying both (2) and (8) is that the
inflation rate is constant. Now let us assume that agents try to learn 3 in (8) by
running a least squares regression of inflation rates on a constant, which corresponds
to averaging over past inflation rates, that is,
1 1
=|1-- + =M.
(1-7) At g

= =
Bey1 = ;Zﬂ's =3 [Z% + M
s=0 s=0
The evolution of inflation rates and dynamics is then described by

1/ S (Bi-1)

s =+ 1 (125052 - 1), )
This updating rule is closely related to (5) and (7), the main difference lying in the fact
that the weight factor 1/t approaches 0 as ¢ goes to infinity. Hence, the contribution
of new observations will decrease over time and the stability properties of (9) turn out
to be dramatically different from the stability properties of (5). In the following two
subsections we will respectively investigate local and global stability of the monetary
steady state ¢ for our learning process (9).

3.1 Local stability

In this section we will show that the monetary steady state 9 of the dynamical system
(9) is locally stable for almost any savings function. In particular, for all ¢ we have
that if the initial inflation rates are sufficiently close to the monetary steady state,
the inflation rates converge to this steady state. This local stability result comes in
two steps. In the first step conditions are given under which the sequence {f3;} is
bounded, and in the second step it is shown that this bounded sequence will converge
to the monetary steady state 9.

Proposition 2 Assume S (.) is differentiable and positive. Then for each K > 24,
there exists T' > 0 such that if for 1 <t < T the condition

B < K
holds, then the sequence {3;}, generated by (9), is bounded.

Proof. Some preparatory remarks are made. Introduce &;y; = Bi11 — B¢, the
amount by which (3, changes at time ¢ + 1. Then

Introduce

maxo<g<k S ()

M = .
ming<g<x S ()

7



If T is such that for 1 <t < T, we have that 5, < K, then |6;;1| can be bounded as

1 K’

Taking (10) as an implicit definition of K’ the constant 7" is now chosen as

T = 3max {K’m%XO<H<KS (ﬁ),K’ﬁ_l} :
ming<s<i S (3)

In order to bound 6é;,; more sharply, the ratio S((3;_1)/S(5;) has to be estimated
first. With Taylor’s theorem, assuming that 3;_1, 5; < K:

S(B) _S(B—8) _S(B)-S &b _ 5
S@) S S () 5 (0,

where € € (8; — &, 5¢); we use the convention that the open interval (a, b) is equal to
(b, a), irrespective of wether a < b or b < a. Hence

‘S(ﬁt—l) B 1‘ < maxocpcn 5'(6) K’
S (B) ~ ming<p<x S(B) t

where (10) and the definition of T' are used. The proof proceeds by an induction
argument. Assume that 3, < K for all s < t, where t > T. From (11) it follows that

S(By) _ 4
S@) 3

Now, if §; > %19, then combining estimate (12) with the definition of ;.1 yields

1 /4
6t+1 < ? <§Q9 — ﬁt) y

and the right hand side is negative by assumption. Hence ;.1 < ; < K in this case.
Likewise it is shown that for 0 < 3, < %19, %19 > 01 >0and 0 < G < By <
20 < K.
Consider now the third case, %19 < B < %19. Combining (10), the fact that ¢t > T
and the definition of T yields

6t7

1T
< =—. 11
3t (11)

§ < (12)

G| < £ L0,
t+1_T_3a

hence 3,1 < %19 < 21 and since 2¢ < K by assumption, it follows also in this case
that ﬂp,.l < K.
The induction is complete, and we have shown that G, < K forallt> 0. m

Next we prove convergence of the bounded series.
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Proposition 3 The sequence {3;}, generated by (9), with B, € [0, K] for all t, con-
verges to V.

Proof. Note that as a corollary of the proof of the preceding proposition, we
obtain that (10) holds for all time ¢. Hence, 6; — 0 as t — oco. By uniform continuity
of S on [0, K] it follows that

Sy __SGa)

S (Bt) S (B +6) ’

as t tends to infinity. From this the following is inferred.
Choose € > 0 arbitrarily. There is a T" > 0, such that

S (Bi-1)
S (6:)

—1

<e,

for all £ > T, uniformly in [;. B

Three cases are distinguished. Assume first that 5, > (1 + 2¢) ¢ for some ¢y > T.
Then

1 ev

01 < 7 (14+e)v—(1+2)0) < -5

Were (5, > (14 2¢) 9 for all t > ¢, then

t t
1
1+2e)0 < By =0y, + 0y < By, — v —.
(1+22) : S%I : S%I -
But the sum increases beyond all bounds as ¢ tends to infinity, so this is an impossi-
bility.
Likewise (; < (1 — 2¢)9 cannot be satisfied for all ¢ > tg, for any t.
Moreover, since |6;] < 2e1 for ¢ large enough, it follows that there exists some
t, > T such that

(1 —€>19 <ﬁt1 < (1—|—€)19
Let t5 be the first ¢ greater than ¢;, such that |3, — 9| > 2. Since |6;| is bounded
by 2e1,
|ﬂt2 — 19| < |ﬂt2 - ﬁt2_1| + |ﬂt2_1 - 19| < 2el + 2ev) = 4e9.

But from ¢, onwards, f3; increases (or decreases) towards ¢ until it satisfies again
|G — V| < e (by the arguments given above). Hence, for all ¢ > ¢; we have that

Since € was arbitrary, this proves the proposition. m

Note that the main examples of savings functions studied in Bullard (1994) and
Schonhofer (1999) satisfy the conditions of the proposition. Also observe that we do
not require the savings function to be monotonically decreasing for our local stability
results.



3.2 Global stability

Now that we have established that the monetary steady state is locally stable under
our learning procedure, we like to say something about the global behaviour of the
inflation rates. Will the inflation rates converge to the monetary steady state for
any set of initial conditions? If the savings function is bounded away from zero the
inflation rates themselves will also be bounded and the following Corollary is an
immediate consequence from Proposition 3.

Corollary 4 If S (B) is differentiable, c € IR, and
S(B) = c>0,
for all B, then the sequence {(3;}, generated by (9), converges to .

Notice that by the same argument the occurrence of bounded and persisting fluc-
tuations in the inflation rate, as featured in the dynamical system (5), is excluded.
The next proposition gives another class of savings functions for which global stability
can be established.

Proposition 5 Assume S () is differentiable, S(3) > 0 for all 5 € [0,00) and
that there is a constant Ky, such that S (3) is monotonically decreasing for 3 > K.
Assume furthermore that there is a constant o € [0,1], and a function r (3) such that

S(8) = e~ +1(8), with

% — 0 as B — oo. (13)
Then the sequence { B}, determined by By, 1 > 0, and the evolution equation:

S (Bi-1)
S (6r)

BtJrl:Bt"‘%[ ﬁ—ﬁt]7

converges, ast — 0o, to the limit v.

Proof. All that needs to be done is to show that the sequence {3;} is bounded.
First fix K7 > 34 such that for § > K;:

C

<=
2

Such a K exists because of condition (13). Now take K = max {Kj, K;}. Two cases
are distinguished:

1. ﬁt,1 2 ﬁt > K and
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2. B> B> K.

Case 1
If K < B <01, then S(5;) > S(6: 1) since S () is monotonically decreasing for /3
larger than K, and we have

S (Bi-1)
S (6:)

Hence ;1 < ;. This argument can be repeated until §;.,, < K, which brings us to
case 3.

Case 2
If K < (1 <, then:

v —p <V -5 <0.

_ 1 (B9 14+ (Bima) B, 0
Biy1 = B + 7 (Cﬁt_a T+ 1 (B,) 52 E — 1) 0y

<7 (o))

where estimate (14) has been used. Since it has been assumed that 5, 1, 8, > K > 39,
we have 3%, > (30)% and 8™ > (3¢)' *and hence £7%4%, > 3¢9. It follows
that ;.1 < [3;, and the situation of case 1 is obtained.

Case 3

Consider now the case that 5, < K. Then either 3,,; < K and we again obtain the
situation of this case, or 8,1 > K and:

maxo<s<x S (0)
ming<s<x S (3)

ﬁt+1§K+ ﬁ:Kla

and the situation of case 4 is obtained.

Case 4
Finally, consider the case that 5, 1 < K < ;. We have either that t =1 or 5, < K,
since S (f;—2) < maxo<g<k S (). From this we infer:

mMaxXo<g<k S (5)
miﬂog,@gK S (5)

ﬂt—i—l S max {ﬂl: K/} + V= KH?

and we are in situation of one of the preceding cases. FEither way, this discussion
establishes that:

BtJrl < max (ﬁov Blv KH) .

Hence, the series {/3;} is bounded and therefore, by Proposition 3, converges to the
monetary steady state. m
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region of non-convergence (black): S(x)=e”-x
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Figure 1: Region of nonconvergence in (0o, f;)-space for savings function S (8) =

exp [—f] and ¥ = /2.

Let us conclude this section with two examples where the monetary steady state is
not globally stable. We consider two particular savings functions, S (3) = exp (—f3)
and S (B8) = (B3, respectively. Notice that they do not satisfy the assumptions
required in Proposition 5, but from Propositions 2 and 3 it follows that for these
savings functions the monetary steady state 1 is locally stable. These savings function
approach 0 very fast as 3 increases. Consider what happens if 3; is much larger than
Bo. In that case the term S () /S (B1) is very large, leading to a high value of (.
Eventually, the inflation rates will run away to infinity and money loses its value.
Figures 1 and 2 give, for these savings functions with 9 = /2, initial conditions 3,
and i, for which the inflation rates explode and run away to infinity. Notice that
(1 has to be sufficiently larger than gy, for divergence to infinity to occur. These
examples show that, although persistent endogenous fluctuations are impossible, it
is, under certain circumstances, possible for the inflation rates to run off to infinity.

4 Concluding remarks

Departing from the theory of rational expectations introduces infinitely many degrees
of freedom in modelling agents’ beliefs. This “wilderness of bounded rationality” can
be restricted by considering agents that, if not unboundedly rational, at least are
trying to be “sensible” in predicting the future development of economic variables.
That is, they should have a perceived law of motion that is reasonable, in some sense,
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region of non-convergence (black): S(x)=x"-3
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Figure 2: Region of non-convergence in (5, 31 )-space for savings function S (8) = 373

and ¥ = /2.

and they should use the proper econometric techniques to estimate this perceived law
of motion. The learning equilibria obtained by Bullard (1994) and Schonhofer (1999),
however, are partly obtained from a somewhat misguided application of econometric
techniques, that is, a regression is applied on a nonstationary price time series. In
this paper we have shown that a more reasonable estimation technique (estimating
the perceived law of motion on the basis of the stationary time series of inflation
rates) induces convergence to the monetary steady state. Recall that the perceived
laws of motion and therefore agents’ beliefs are the same for both models.

Therefore, these learning equilibria are not the result of modelling agents as econo-
metricians per se, but they are the result of modelling the agents as naive econome-
tricians. Hence, Bullard (1994) was right in asserting that it is important how the
learning process is modelled, in terms of the perceived law of motion and in terms of
the estimation procedure that is used.

Examples where learning in a stationary environment does lead to chaotic equilib-
ria are provided by Hommes and Sorger (1998) and Tuinstra (2000). In these models
the perceived law of motion of the agents converges to some limit belief and given
this limit belief prices keep fluctuating over some nontrivial attractor.
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