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Abstract

We consider a price adjustment process in a model of monopolistic compe-
tition. Firms have incomplete information about the demand structure. When
they set a price they observe the amount they can sell at that price and they
observe the slope of the true demand curve at that price. With this information
they estimate a linear demand curve. Given this estimate of the demand curve
they set a new optimal price. We investigate the dynamical properties of this
learning process. We Þnd that, if the cross-price effects and the curvature of
the demand curve are small, prices converge to the Bertrand-Nash equilibrium.
The global dynamics of this adjustment process are analyzed by numerical sim-
ulations. By means of computational techniques and by applying results from
homoclinic bifurcation theory we provide evidence for the existence of strange
attractors.

Keywords: Bertrand competition, price adjustment, nonlinear oligopoly dynamics, bi-
furcation theory
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1 Motivation
Economic theory deals primarily with the existence of equilibria, i.e. prices at which
market clearing occurs. The problem of how economic agents might coordinate on
such an equilibrium has received much less attention than the problem of existence,
but is nevertheless highly important. Indeed, if this problem cannot be solved satisfac-
torily, economic predictions and comparative statics based upon equilibrium analysis
are of limited relevance. The tâtonnement process is the best known of the different
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adjustment processes that have been studied. It models the law of supply and demand
and has the feature that if there is excess demand (supply) for a commodity its price
increases (decreases). The tâtonnement process has been extensively studied in the
literature. The classical references are Arrow and Hurwicz (1958) and Arrow, Block
and Hurwicz (1959). The latter show that gross substitutability of the aggregate
excess demand functions implies global stability of the (unique) equilibrium price
vector. This condition is however rather strong, and a price adjustment mechanism
which converges for almost all possible economies needs much more information on
the aggregate excess demand functions, see e.g. Smale (1976) and Saari and Simon
(1978). Moreover, since the tâtonnement process typically corresponds to a nonlinear
dynamical system, all kinds of complicated price dynamics are possible for nonpatho-
logical economies (see e.g. Goeree, Hommes and Weddepohl, 1997 and Tuinstra,
2000).
The tâtonnement process suffers from some conceptual problems (for a critical

treatment, see Schinkel, 2001). One of these problems surfaces when we realize that
in a perfectly competitive economy all agents take prices as given in determining their
consumption and production behaviour. Who is adjusting prices then? The tradi-
tional solution to this problem is the introduction of an auctioneer who sets prices.
However, where all decisions of consumers arise from utility or proÞt maximization
the behaviour of the auctioneer is postulated ad hoc. A consistent and realistic model
of price adjustment requires that prices are set by economic agents, in a way that
maximizes their utility or proÞt. In order to model this behaviour we have to consider
equilibrium models with monopolistic competition.
In a seminal paper Negishi (1961) introduced monopolistic competition in a gen-

eral equilibrium model by considering an economy with two types of producers: per-
fect competitors, who take prices as given, and imperfect competitors with enough
market power to set some of the prices. Each imperfect competitor has some con-
jecture about the demand curves of the commodities for which it can inßuence the
price. These conjectures are assumed to be linear functions of the own price. The
only restriction on the conjectures is that they have to pass through the price-quantity
combinations that correspond to the current state of the economy. The economy then
is in equilibrium if all consumers and perfectly competitive Þrms maximize their util-
ity and proÞts, given their conjectures and production sets, and if excess demand is
zero. A problem with this subjective demand approach is that it has no predictive
power: if conjectures of imperfectly competitive Þrms are not restricted any further
almost any allocation can be an equilibrium. For example, if these conjectures are
such that Þrms believe demand to be inÞnitely elastic at a certain price, the Wal-
rasian equilibrium results. For this reason a number of people have tried to construct
general equilibrium models of monopolistic competition that incorporate objective
demand curves (see for example Gabszewicz and Vial, 1972 and Nikaido, 1975). An
important drawback of the objective demand approach is the assumption that all
Þrms are supposed to be able to construct a complete general equilibrium model in
order to determine the objective demand curves. A compromise between the objec-
tive and subjective approaches would be to consider a subjective demand framework
that incorporates more consistency conditions than Negishi (1961) does. Silvestre
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(1977), for example, requires that in equilibrium not only subjective demand has to
equal objective demand, but, at this equilibrium, the slope of the subjective demand
curve also has to coincide with the slope of the objective demand curve. Gary-Bobo
(1987) extends this approach to higher-order derivatives.
In this paper we use the subjective demand framework to analyse a simple price

adjustment process where price movements result from proÞt-maximizing behaviour
of Þrms. As a starting point we take a partial equilibrium model, with n Þrms, all
being the single producer of a distinct commodity. As in Negishi (1961) we assume
that Þrms, which do not know the demand they are facing, believe that the demand
for their product only depends upon their own price and is linear in that price. A
learning dynamics of the following type arises. In every period each Þrm estimates a
demand curve for his commodity. This subjective demand curve leads to an optimal
price which in turn leads to new information on the demand curve, leading to a new
price, and so on. Notice that the demand curves are in general misspeciÞed, since
they do not incorporate information on prices for other products. Furthermore, Þrms
estimate demand curves that are linear in the own price, whereas the objective de-
mand curves might be nonlinear in the own price. Different learning procedures differ
in the information that is gathered by Þrms and in the way that this information is
used. A typical learning process is studied by Kirman (1995). Firms collect informa-
tion on observed price and quantity combinations and use a recursive ordinary least
squares algorithm to estimate a linear subjective demand curve. This estimated de-
mand curve is used to determine a new optimal price, which leads to new information
again. Simulations suggest that there is convergence on a so-called conjectural equi-
librium, where Þrms are able to sell what they expected and where they maximize
their proÞt, given their subjective demand curve. For a more general treatment of this
kind of learning process, based upon Bayesian updating, see Schinkel, Tuinstra and
Vermeulen (2000). This approach shares with the Negishi (1961) model the drawback
that almost any combination of prices corresponds to a conjectural equilibrium for
properly chosen belief parameters.
In this paper we consider a somewhat different learning procedure. Following

Silvestre (1977), we assume that the slope of the demand curve plays an important
role. In particular, we assume that when a Þrm sets a price it observes the amount it
could have sold at that price and it observes the sensitivity of the demand curve with
respect to small variations in that price, that is, it learns the derivative of the demand
curve at the price it sets (it might, for example, observe this sensitivity through
small price experiments). On the basis of this information a linear demand curve is
estimated and a new optimal price is determined. In the next period, information
about sales and the slope of the demand curve at the new price is gathered and this
information gives a new estimated demand curve, and so on.
In general, the adjustment process introduced in this paper corresponds to a (mul-

tidimensional) nonlinear dynamical system. In this paper we provide a local stability
analysis of the equilibrium of the learning process. Furthermore, we use numerical
simulations to investigate the global dynamics of a duopoly version of the model.
For this case different kinds of complicated phenomena emerge. We use bifurcation
theory to get some insight into the global behaviour of the learning process. More-
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over, by numerical simulations we provide evidence for the existence of a so-called
homoclinic bifurcation, i.e. a tangency between the stable and unstable manifolds
of the equilibrium point. The use of homoclinic bifurcation theory is rather new in
economic theory. It has been applied, for example, by Brock and Hommes (1997)
and Droste, Hommes and Tuinstra (2002) in evolutionary models with heterogenous
agents and by de Vilder (1996) who studies the appearance of homoclinic bifurcations
in a two-dimensional overlapping generations model with capital. In this paper we
will provide a computational proof of the existence of a homoclinic orbit, which im-
plies complicated price dynamics. An important observation is that these endogenous
ßuctuations are not the consequence of an atypical choice of demand curves. In fact,
these ßuctuations arise naturally in our model and therefore might be an explanation
for business cycles observed in reality.
The outline for the rest of this paper is as follows. In Section 2 we discuss the

partial equilibrium model and brießy review some well-known adjustment processes.
In Section 3 the learning procedure is introduced and its local stability properties
are investigated. Section 4 uses numerical simulations to study the global dynamical
properties of the learning model, applied to a duopoly situation. Section 5 summa-
rizes. Finally, Appendix A contains some proofs and Appendix B gives a brief outline
of homoclinic bifurcation theory.

2 A partial equilibrium model
We consider a partial equilibrium model with heterogeneous commodities and im-
perfect competition. Let there be n Þrms, where each Þrm produces its own unique
commodity and is the sole supplier of that commodity. The cost function of Þrm i
is given by a nonnegative, continuous, nondecreasing and twice differentiable func-
tion Ci : IR+ → IR+. Let p =(p1, . . . , pn) ∈ IRn+ be a price vector, where pi is
the price for the i�th commodity. For convenience, this price vector is sometimes
written as (pi,p−i) , where p−i ≡ (p1, . . . , pi−1, pi+1 . . . , pn) . The demand for com-
modity i depends upon the prices of all commodities and is given by a demand
function Di : IRn+ → IR+, which is assumed to be nonnegative, continuous and twice
differentiable in all its arguments, whenever it is strictly positive. First and sec-
ond order derivatives of the demand functions are denoted by Di

j (p) ≡ ∂Di(p)
∂pj

and

Di
jk (p) ≡ ∂2Di(p)

∂pj∂pk
.We assume demand is nonincreasing in the own price (Di

i (p) ≤ 0)
and that Di

j (p) and D
j
i (p) have the same sign. If D

i
j (p) and D

j
i (p) are positive we

call commodities i and j substitutes, if they are negative, we call them complements.
Each Þrm chooses its own price in order to maximize proÞts, which are given by

πi (pi,p−i) = piDi (p)− Ci
¡
Di (p)

¢
.

The well-known Bertrand-Nash equilibrium can be deÞned as follows.

Definition 1 A price vector p∗ = (p∗1, . . . , p
∗
n) is a Bertrand-Nash equilibrium if for

each i = 1, . . . , n we have

πi
¡
p∗i ,p

∗
−i
¢ ≥ πi ¡pi,p∗−i¢ for all pi.
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At such an equilibrium no Þrm can increase its proÞts by unilaterally deviating
from this equilibrium price level. An alternative formulation of the Bertrand-Nash
equilibrium is in terms of reaction functions. The reaction function (or correspon-
dence) for Þrm i gives the price that maximizes his proÞt, given the prices set by the
other Þrms, that is, the reaction function is deÞned as

Ri (p−i) = argmax
pi

π (pi,p−i) .

It is easy to see that a Bertrand-Nash equilibrium corresponds to a Þxed point of the
map

R (p) =

 R1 (p−1)
...

Rn (p−n)

 .
To guarantee existence of a Bertrand-Nash equilibrium we have to assume qua-

siconcavity of the proÞt functions, a condition which does not follow from standard
assumptions on the fundamentals of the economy, such as preferences, endowments
or technology. In particular, this condition requires the demand function to be not
�too convex�. However, it is well known (see e.g. Sonnenschein, 1973) that demand
functions can take almost any form and still be consistent with utility maximization.
As is pointed out by Roberts and Sonnenschein (1977), lack of quasiconcavity of
the proÞt functions may cause the reaction curves to exhibit discontinuities, possibly
leading to nonexistence of the Bertrand-Nash equilibrium (nonpathological and ro-
bust examples can be found in e.g. Roberts and Sonnenschein, 1977, Friedman, 1983
and Bonanno, 1988).
A way out of this problem is to consider equilibria along the lines of Bonanno

and Zeeman (1985) and Bonanno (1988). They study price setting oligopolies where
all Þrms have constant marginal costs, that is Ci (xi) = cixi. Bonanno and Zeeman
(1985) consider the case where producers only focus on the Þrst order conditions for
an optimum, that is, a price vector p∗ = (p∗1, . . . , p

∗
n) is called an equilibrium when

∂πi (p
∗)

∂pi
= 0, for all i. (1)

They go on to show that, under some mild conditions, such an equilibrium always ex-
ists. However, (1) allows for the situation where some producer is at a local minimum
of his proÞt function, since Þrms disregard second order conditions. Note that, if Þrms
think they face a linear demand curve, they will believe they are at the global maxi-
mum of their proÞt function whenever the Þrst order condition is satisÞed. Bonanno
(1988) deÞnes a local Bertrand-Nash equilibrium as a price vector p∗ = (p∗1, . . . , p

∗
n)

for which, besides (1) the second order condition for a local maximum is satisÞed,
that is,

∂2πi (p
∗)

∂p2
i

< 0, for all i.

At such a local Bertrand-Nash equilibrium no Þrm can improve his proÞt by deviating
to a price in the neighbourhood of the equilibrium price. A sufficient condition for
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such a local Bertrand-Nash equilibrium to exist is that Di
ii (p) 6= 2Di (p)

±
(pi − ci)2

for all i and p at which demand is positive. This condition implies that the Þrst and
second order derivative of the proÞt function never vanish together, which excludes
the case that a local minimum and a local maximum of the proÞt function merge.
We are interested in how Þrms coordinate on a Bertrand-Nash equilibrium. Before

we turn to our learning model, let us brießy discuss some well-known adjustment
processes in this type of model. The best-known adjustment process is the best-reply
dynamics, which is based upon the assumption that each individual Þrm believes that
the other Þrms will not change their prices. It then sets a price which, given these
Þxed prices of its competitors, maximizes its proÞt. This price is speciÞed by the
reaction function. Implicitly it is assumed that each Þrm has full information about
its demand curve and about the prices its competitors have set in the previous period.
We assume reaction function are continuous and differentiable and a (not necessarily
unique) Bertrand-Nash equilibrium p∗ exists. The best-reply dynamics are given by p1,t+1

...
pn,t+1

 =

 R1 (p−1,t)
...

Rn (p−n,t)

 . (2)

These best-reply dynamics constitute an n−dimensional dynamical system. Another
type of adjustment processes are gradient processes, see for example Furth (1986)
and Bischi and Naimzada (1999). These gradient processes assume that Þrms change
their price in the direction in which proÞt increases. That is, if marginal proÞt at
the current price is positive, the Þrm increases its price and if marginal proÞt is
negative, the Þrm decreases its price. In both cases the Þrm expects an increase in
proÞts. However, since other Þrms also change their prices, it is very well possible
that proÞts in fact decrease. In continuous time this process can be written as

dpi
dt
= Ki

∂πi
∂pi
, i = 1, . . . , n, (3)

where Ki is the speed with which the i�th producer changes the price for its prod-
uct. Notice that an equilibrium of the gradient dynamics corresponds to a price
vector where for each Þrm the Þrst order condition (but not necesarrily the second
order condition) for a proÞt maximum is satisÞed. Now let us consider the stability
properties of these two adjustment processes.

Proposition 2 A Bertrand-Nash equilibrium p∗ is locally stable under the best-reply
dynamics (2) and under the gradient dynamics (3) if¯̄̄̄

∂2πi (p
∗)

∂p2
i

¯̄̄̄
>
X
j 6=i

¯̄̄̄
∂2πi (p

∗)
∂pi∂pj

¯̄̄̄
, for all i. (4)

If condition (4) is not satisÞed, and if the reaction curves are nonmonotonic the
best-reply dynamics can generate periodic and chaotic behaviour (see e.g. Rand,
1978, Bischi and Gardini, 1997 and Kopel, 1997 for similar complicated behaviour in
the Cournot oligopoly model).
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Gradient systems can also exhibit complicated behaviour. In fact, Corchón and
MasCollel (1996) show that any set of functions can be generated by the gradient sys-
tem with demand functions that satisfy nice properties such as gross substitutability,
that is, for which the centralized tâtonnement process is globally stable.

3 The learning model
In this section we introduce an adjustment process for the partial equilibrium model
discussed in the previous section. We assume Þrms do not know the demand curves
for the products they are manufacturing but they believe these demand curves depend
only upon their own price, and hence they are abstracting from any interdependence
with prices set by other Þrms. Moreover, they believe that this relationship between
price and demand is linear. Each Þrm estimates a demand curve on the basis of local
information obtained in the previous period. This local information consists of two
parts: a Þrm knows, given the price it charged in the previous period, how much it
could have sold against that price, and it knows the sensitivity of the demand curve
with respect to price changes at that price (that is, it knows the slope of the demand
curve at that price, compare Silvestre, 1977), for example through experimentation
or market research. This information is sufficient to identify a linear demand curve.
On the basis of this perceived linear demand curve an optimal price is determined. In
the next period this new price leads to new information about the location and slope
of the true demand curve and hence to a new estimate of the perceived demand curve,
leading to a new optimal price again, ad inÞnitum. Notice that the information a
Þrm obtains about its demand curve not only varies from period to period because it
charges different prices but also because the other Þrms may also change their prices.
We are interested in the dynamical behaviour of this adjustment process.
We assume marginal costs are constant, Ci (xi) = cixi. Firm i�s perceived demand

curve is
di (pi) = ai − bipi, with ai, bi > 0.

Given this perceived demand curve and the cost structure, Þrm i�s (perceived) proÞt
maximizing price can be determined as

pi =
ai
2bi

+
1

2
ci. (5)

In each period Þrm i estimates the demand curve on the basis of information from
the previous period. Firm i knows the price it charged in the previous period and
the amount it (could have) sold, so it knows (pit, Di (pt)). Furthermore it knows the
slope of the demand curve in this point, Di

i (pt). It follows that the estimated demand
curve in period t then becomes

dit (pi) = ait − bitpi =
¡
Di (pt)−Di

i (pt) pit
¢
+Di

i (pt) pi.

From (5) we then Þnd that the price will be

pi,t+1 = Fi (pt) =
ait
2bit

+
1

2
ci =

1

2
(pit + ci)− 1

2

Di (pt)

Di
i (pt)

. (6)
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It is easily veriÞed that any Þxed point p∗ = (p∗1, p
∗
2, . . . , p

∗
n) of (6) satisÞes the Þrst

order conditions for a Bertrand-Nash equilibrium, and hence corresponds to an equi-
librium in the sense of Bonanno and Zeeman (1985), see the discussion in Section
2.
We are interested in the stability of these equilibria. We have the following result

(recall that Di
jk (p) ≡ ∂2Di(p)

∂pj∂pk
).

Proposition 3 A sufficient condition for local stability of an equilibrium p∗ of (6)
is¯̄̄̄
¯Di (p∗)Di

ii (p
∗)

(Di
i (p

∗))2

¯̄̄̄
¯+X

j 6=i

¯̄̄̄
¯Di (p∗)Di

ij (p
∗)−Di

i (p
∗)Di

j (p
∗)

(Di
i (p

∗))2

¯̄̄̄
¯ ≤ 2, for all i = 1, . . . , n.

(7)

To get some intuition for condition (7) notice that the following two conditions
together are sufficient (but not necessary) for condition (7) to hold

¯̄
Di
i (p

∗)
¯̄ ≥X

j 6=i

¯̄
Di
j (p

∗)
¯̄
and

¯̄
Di
i (p

∗)
¯̄ ≥

vuutDi (p∗)
nX
j=1

¯̄
Di
ij (p

∗)
¯̄
.

The Þrst of these says that the matrix of substitution effects has a dominant diagonal,
the second condition says that the �curvature� (as measured by the second order
derivatives) of the demand functions has to be small, as compared to the slope. Notice
that there is a direct connection between these two conditions and the perceptions of
the Þrms. The condition on the substitution effects corresponds to the perception of
Þrms that prices of other Þrms do not matter and the condition on the curvature (or
nonlinearity) of the demand curves corresponds to the perception of Þrms that the
demand curve is linear. Hence, instability of the equilibrium is more likely to occur
when perceptions of Þrms are less palatable.
As a last remark notice that if p∗ is locally stable in our learning model then it

satisÞes the second order conditions for a local Bertrand-Nash equilibrium (compare
Bonanno, 1988). That this is the case can be seen by rewriting the Þrst and second
order conditions for a maximum as

Di (p)Di
ii (p)

(Di
i (p))

2 ≤ 2

and observing that this inequality is implied by (7). We end this section by applying
our adjustment process to some typical and well known examples of demand functions.

Linear demand functions
Consider the following system of linear demand functions

D (p) = α+ βp, (8)

where α is a vector of intercepts and β is an n×n matrix. The parameter βii < 0 gives
the sensitivity of demand for commodity i with respect to its own price and βij gives
the sensitivity of demand for commodity i with respect to the price of commodity j.
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First consider the existence of a Bertrand-Nash equilibrium. The Þrst order con-
ditions for an equilibrium are

−2βiipi = αi − βiici +
X
j 6=i
βijpj , i = 1, . . . , n, (9)

which in matrix notation becomes

−


2β11 β12 · · · β1n

β21 2β22 · · · β2n
...

...
. . .

...
βn1 βn2 · · · 2βnn



p∗1
p∗2
...
p∗n

 =


α1 − β11c1
α2 − β22c2

...
αn − βnncn

 .
A nonnegative equilibrium price vector p∗ exists for all c =(c1, . . . , cn)

0 ≥ 0 and all
α ≥ 0 if the matrix (β + βD)

−1 exists and is nonpositive, where βD is the diagonal
matrix with βii as its i�th diagonal element. We have the following result.

Proposition 4 If βii < 0 and βij ≥ 0 for all i, j with i 6= j, then an equilibrium
exists for all α ≥ 0 and all c ≥ 0 if

2 |βii| >
X
j 6=i
|βij| , i = 1, . . . , n. (10)

Now assume a unique equilibrium exists and is given by

p∗ = − (β + βD)−1 (α− βDc) .

The adjustment process (6) becomes

pi,t+1 = −
αi − βiici +

P
j 6=i βijpjt

2βii
, i = 1, . . . , n. (11)

Notice that in this case with linear demand functions, (11) coincides with the best
reply dynamics, as can be seen from (9). Also, the linear speciÞcation (8) together
with the linear perceived demand curves implies that each Þrm knows the slope of
the demand curve (βii for Þrm i) but does not know the intercept since it neglects
cross-price effects. The following stability property can easily be checked by looking
at (11).

Corollary 5 If a unique equilibrium p∗ ≥ 0 exists and if the βij�s satisfy condition
(10) the dynamical system is globally stable.

Notice that condition (10) is weaker than diagonal dominance of the set of demand
functions.

Loglinear demand functions
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Another well known demand structure is given by so-called �constant elasticity� or
loglinear demand functions. These correspond to

Di (p) = αi

nY
j=1

p
βij

j ,

where βii < −1 for all i ensures the existence of a Bertrand-Nash equilibrium, which
is

pi =
βii

βii + 1
ci, i = 1, . . . , n.

Notice that this equilibrium does not depend upon other parameters than βii and ci.
Consider the adjustment process (6). This can be written as

pi,t+1 =
1

2
(pit + ci)− 1

2

αi
Qn
j=1 p

βij

jt

βiip
−1
it αi

Qn
j=1 p

βij

jt

=
1

2

µ
1− 1

βii

¶
pit +

1

2
ci.

Notice that the dynamics of the price of commodity i is independent of the dynamics
of the other prices. The stability condition βii < −1 is always satisÞed. Therefore
the Bertrand-Nash equilibrium for the model with loglinear demand curves is globally
stable in our adjustment process.

4 Endogenous Fluctuations
In the previous section we considered some examples where the learning procedure
converged to the Bertrand-Nash equilibrium. In this section we study a typical exam-
ple for which our learning process leads to more complicated dynamical phenomena.
We assume n = 2 and ci = 0 for i = 1, 2. Demand functions are given by

D1 (p1, p2) = exp
£−pγ1pδ2¤ and D2 (p1, p2) = exp

£−pδ1pγ2¤
where γ > 0 and |δ| < γ. It is easily veriÞed that the commodities are substitutes for
δ < 0 and complements for δ > 0. The restriction |δ| < γ implies that the sensitivity
of demand with respect to the own price is larger than the sensitivity of demand with
respect to the other Þrm�s price. The unique Bertrand-Nash equilibrium is1

p∗1 = p
∗
2 =

·
1

γ

¸1/(γ+δ)

.

The adjustment process (6) becomes

p1,t+1 = F1 (p1t, p2t) =
1

2
p1t +

1

2

1

γ
p1−γ

1t p
−δ
2t (12)

p2,t+1 = F2 (p1t, p2t) =
1

2
p2t +

1

2

1

γ
p−δ1t p

1−γ
2t .

1The proÞt function for Þrm 1 is π1 (p1, p2) = p1 exp
£−pγ1pδ2¤. This gives a best reply function

p1 = R1 (p2) =
³

1
γ

´ 1
γ

p
− δ
γ

2 and symmetrically for Þrm 2. It can easily be checked that for the best-
reply dynamics the eigenvalues of the Jacobian matrix evaluated at the Bertrand-Nash equilibrium
are µ1 = µ2 = − δ

γ , and hence, since |δ| < γ, the best reply dynamics are stable.
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Figure 1: Stable period two orbits for the price adjustment process (12). Left panel:
γ = 31

2
, δ = −1 (goods are substitutes), right panel: γ = 31

2
, δ = 1 (goods are

complements).

This adjustment process exhibits many kinds of complicated dynamical features that
are known from dynamical systems theory. Particularly, as the parameters γ and δ
increase the Bertrand-Nash equilibrium becomes unstable and prices are attracted to
a periodic orbit. Moreover, for high enough values of the parameters strange attrac-
tors exist. In the rest of this section we will investigate the dynamics of (12) in more
detail. In Subsection 4.1 we will consider local stability of the Bertrand-Nash equilib-
rium and use local bifurcation theory to study what happens when this equilibrium
becomes unstable. In Subsection 4.2 we will show the existence of strange attrac-
tors by providing a computational proof for the existence of a homoclinic intersection
between the stable and unstable manifolds of the Bertrand-Nash equilibrium.

4.1 Local bifurcations

Due to the symmetry in the demand curves we have a symmetric adjustment process
(for the analysis of symmetric dynamical systems, see Golubitsky, Stewart and Scha-
effer, 1988 and for an economic application, see Tuinstra, 2000). SpeciÞcally, system
(12) exhibits a so-called reßection symmetry: F1 (p2, p1) = F2 (p1, p2). Of particular
interest to us is the so-called Þxed point subspace, which consists of all points in the
state space that are invariant under the reßection symmetry. In our case this Þxed-
point subspace consists of all price vectors (p1, p2) with p1 = p2. To see this, observe
that if p1t = p2t then we will also have p1s = p2s for all s ≥ t. Hence, if prices get
trapped in this Þxed point subspace they will never get out.
With respect to the local stability of the Bertrand-Nash equilibrium we have
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Figure 2: Left pannel: attractor consisting of two closed curves (created at Neimark-
Sacker bifurcation of period two) for γ = 31

2
and δ = −1.75. Right panel: stable

period four orbit (created at period-doubling bifurcation of period two) for γ = 31
2

and δ = 1.75.

Proposition 6 The equilibrium (p∗1, p
∗
2) undergoes a period-doubling bifurcation for

those values of γ and δ for which γ + |δ| = 4. At these values for γ and δ a period
two cycle is created. If δ < 0 this period two cycle lies off the Þxed point subspace and
if δ > 0, it lies in the Þxed point subspace.

In the previous section we indicated that local stability of the Bertrand-Nash
equilibrium depends upon the curvature of the demand function with respect to the
own price and the dependence of demand upon the prices of the other commodities.
In the present example these two aspects are characterized by the parameters γ and
δ, respectively. From Proposition 6 it follows that the Bertrand-Nash equilibrium is
unstable when these effects are large. The structure of the resulting period two orbits
is as follows. For δ < 0 the period two orbit has the form

©
(p, q)0 , (q, p)0

ª
for some

p and q and for δ > 0, the period two orbit has the form
©
(p, p)0 , (q, q)0

ª
for some p

and q. Hence, when goods are substitutes (δ < 0) their prices move opposite to each
other: when the price of good 1 is high the price of good 2 is low and vice versa. On
the other hand, when goods are complements (δ > 0), their prices move together:
they are both high or both low.
Now we consider some numerical examples. Let γ = 31

2
. According to Propo-

sition 6 we have a period-doubling bifurcation at δ = ±1
2
. These period-doubling

bifurcations are supercritical: for |δ| close to, but larger than 1
2
, an attracting period

two orbit exists. Figure 1 shows these period two orbits for δ = −1 and δ = 1, re-
spectively. Observe that they lie off and along the diagonal respectively, as indicated
by Proposition 6. If we let δ increase further the amplitude of the period two orbits
increases untill eventually these period two orbits become unstable through another

12



Figure 3: Bifurcation curves in (δ, γ)-space. The curves denoted PD (f) give the
parameter combinations at which a period-doubling bifurcation of the Bertrand-Nash
equilibrium occurs. The curve denoted PD (f2) gives the parameter combinations at
which a period doubling bifuration of the period two cycle occurs. The curve denoted
NS (f 2) gives the parameter combinations at which a Neimark-Sacker bifurcation of
the period two orbit occurs.

bifurcation. For the case with δ < 0 the period two orbit undergoes a Neimark-Sacker
bifurcation at δ = δNS ≈ −1.519. At this Neimark-Sacker bifurcation the period two
orbit loses stability and an invariant closed curve around each of the period two points
is created. These two invariant closed curves together form the new attractor for this
system. The price dynamics might be periodic or quasi periodic. The resulting at-
tractor is shown for δ = −1.7 in the left panel of Figure 2. For the case with δ > 0 the
period two orbit undergoes another period doubling bifurcation at δ = δPD ≈ 1.643.
At this value of δ the original period two orbit loses stability and a stable period four
orbit is created. This orbit also lies along the diagonal. The right panel of Figure 2
shows this period four orbit for δ = 1.7.
Figure 3 shows a bifurcation plot for the parameters γ and δ. It shows the com-

binations of γ and δ for which the period-doubling bifurcation of the Bertrand-Nash
equilibrium occurs and the combinations of γ and δ for which the Neimark-Sacker

13



Figure 4: Left panel: attractor for price adjustment process (12) with γ = 31
2
and

δ = −21
2
(goods are substitutes). Right panel: attractor for price adjustment process

(12) with γ = 31
2
and δ = 21

2
(goods are complements).

and the period doubling bifurcations of the period two orbits occur, respectively.

4.2 Global bifurcations

We have seen that cyclic behaviour in the price adjustment process (12) is possible
if the curvature of the demand curves (as measured by γ) or the interdependency
between goods (as measured by δ) becomes high. In this section we show that even
more complicated behaviour is possible. Consider again the case with γ = 31

2
. Figure

4 shows two attractors, one for δ = −21
2
and one for δ = 21

2
. These attractors are

more complicated than the ones from the previous section. First let us focus on the
case where δ > 0. The attractor in the right panel of Figure 4 emerges through a
cascade of period doubling bifurcations along the diagonal (the Þrst of these period
doubling bifurcations were already discussed above). Figure 5 shows this cascade by
means of a so-called bifurcation diagram. This bifurcation diagram displays the long-
run behaviour of the price for good 1 for different values of δ.2 Clearly, many period
doubling bifurcations occur. These bifurcations eventually lead to a one dimensional
chaotic attractor (shown in the right panel of Figure 4). Moreover, there is a window
in the bifurcation diagram, (between δ ≈ 3.026 and δ ≈ 3.218) for which the dynam-
ics converges to a stable period three cycle. Therefore, the so-called �period-three
implies chaos�-result for one-dimensional maps (see e.g. Devaney, 1989) applies to
the dynamical system (12) restricted to the diagonal. This result implies that cycles

2This bifurcation diagram is created in the following way. For each value of δ ∈
{0.007, 0.014, . . . , 3.5}, the dynamical system (12) is iterated 200 times for the initial condition
(p10, p20) = (p∗1, p∗2 − 0.01) and the last 100 values of p1 are then plotted.
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Figure 5: Bifurcation diagram for δ between 0 and 31
2
, with γ = 31

2
.

of any period exist on the diagonal.
Now consider the attractor that emerges when δ < 0. Figure 6 shows the time

series associated with this attractor. Notice that periods of tranquility, where prices
are close to the Bertrand-Nash equilibrium, are interchanged with periods of large
ßuctations in prices, Þrst increasing and then falling back to their old level.
We will now provide some computational support for the conjecture that a strange

attractor exists in this dynamical system. For that we use the theory of homoclinic
bifurcations. For a comprehensive treatment of this theory we refer to Palis and
Takens (1993). Appendix B contains a brief outline of the main results in this Þeld.
Let us denote the dynamical system (12) by F (.). We know that for δ < 0 and
γ − δ > 4 one of the eigenvalues lies outside the unit circle and hence the Bertrand
Nash equilibrium is unstable. The other eigenvalue always lies in the unit circle.
Therefore, the Bertrand-Nash equilibrium is a saddle point, with a stable and an
unstable direction. The stable and unstable manifolds of the equilibrium p∗ = (p∗1, p

∗
2)

are deÞned as (see Palis and Takens, 1993, p.167)

W s (p∗) =
©

p0 ∈ IR2
+|F t (p)→ p∗ for t→ +∞ª ,

W u (p∗) =
©

p0 ∈ IR2
+|∃ {p−t}t≥0 → p∗ with p−t+1 = F (p−t)

ª
.

These manifolds may intersect each other in points different from the Bertrand-Nash
equilibrium, that is, there may exist a point q 6= p∗ with q ∈ W s (p∗) ∩W u (p∗) .
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Figure 6: Time series for p1 and p2, respectively, generated by price adjustment
process (12) with γ = 31

2
and δ = −21

2
.

Such a point q is called a point of homoclinic intersection. The existence of such a
homoclinic intersection implies a very complicated structure of the unstable and stable
manifolds, see Appendix B. For given γ, the map F , and therefore also the stable
and unstable manifolds, depends upon the parameter δ. A homoclinic bifurcation is
said to occur at δ = δ∗ when for δ < δ∗ there is no intersection between the unstable
manifold W u (p∗) and the stable manifold W s (p∗), for δ = δ∗ there is a point of
homoclinic tangency between W s (p∗) and W u (p∗) and for δ > δ∗ there is a point of
transversal homoclinic intersection. Such a homoclinic bifurcation implies all kinds
of complicated behaviour. In particular, when the equilibrium is dissipative at the
homoclinic bifurcation (that is, if the product of eigenvalues of the Jacobian matrix
evaluated at p∗ is smaller than 1 in absolute value) there is chaotic dynamics on an
invariant set for parameter values close to the bifurcation value.
We are interested in whether such a homoclinic bifurcation occurs in our model.

First consider the stable manifold. The diagonal, which is the Þxed point subspace
of the reßection symmetry of system (12) is invariant under the adjustment process.
Furthermore, it can be easily checked that all prices starting on this diagonal con-
verge to the Bertrand-Nash equilibrium. The diagonal therefore belongs to the stable
manifold. We approximate (part of) the unstable manifold by iterating a small part
of the unstable eigenvector close to the equilibrium price under the map F . Figure 7
show this stable and unstable manifold for different values of δ. We Þnd that a ho-
moclinic bifurcation occurs at δ∗ ≈ −1.9448. At this value of δ there is a homoclinic
tangency between the stable and unstable manifold as can be seen in the upper right
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Figure 7: Stable and unstable manifolds for different values of δ. Upper left panel:
δ = −1.8. Upper right panel: δ = −1.9448. Lower left panel: δ = −2. Lower right
panel: small portion of strange attractor for δ = −2.5.

panel of Figure 7. Furthermore, the saddle point is dissipative at this value of δ. For
lower values of δ there is no intersection between the stable and unstable manifold
(see upper left panel of Figure 7) and for higher values of δ there is a transversal inter-
section between the stable and the unstable manifold (see lower left panel of Figure
7). From this we conclude that our model features complicated dynamics. The lower
right panel of Figure 7 shows a small portion of the attractor for δ = −21

2
(which was

shown in the left panel of Figure 4). This attractor clearly has a complicated fractal
structure.

5 Summary
In this paper we addressed the classical problem of the stability of economic equi-
librium. We have argued that a sensible adjustment process should incorporate pro-
ducers who set prices. We have introduced a simple example of such an adjustment
process, where Þrms do not know the demand they are facing, but try to learn this de-
mand from past observations. In fact, the process uses information about the amount
that could be sold against the price from the previous period and the sensitivity of
demand at the price from the previous period (for example obtained by small price
experiments) to estimate a demand curve. An important feature is that Þrms have
mis-speciÞed beliefs about the actual demand curves, since they assume that these
demand curves only depend upon the own price and are linear in this own price.
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The adjustment process appears to be stable for situations where the cross price ef-
fects and the curvature (or nonlinearity) of the demand functions are relatively small.
However, when the cross price effects and curvature are not so small, endogenous ßuc-
tuations might emerge. Moreover, for a typical example we have shown the existence
of homoclinic tangencies, which imply all kinds of complicated behaviour. Hence, in
our model uncertainty about the economic environment explains the occurrence of
business cycles.
The model we have discussed here has been a Þrst step in the direction of a more

realistic theory of price adjustment. It can be extended in a number of directions.
First of all, one can imagine more sophisticated learning procedures where Þrms, for
example, consider a subset of all prices instead of only their own price. Secondly, it
would be interesting to consider learning procedures of this type in a general equilib-
rium framework, possibly allowing for trade at disequilibrium prices. Finally, we have
focused on Þrms as myopic optimizers who are only interested in short term proÞt
maximization. Ideally Þrms maximize some discounted stream of proÞts, which im-
plies that each Þrm solves an optimal control problem which takes account of the
trade off between the beneÞts of experimenting with prices in order to gain informa-
tion on the demand curve and the resulting loss in short run proÞts. In the literature
this is referred to as �sporadic price discrimination� or �active learning�.

Appendix A
This appendix contains the proofs of the main results.
The following well-known result (see e.g. Atkinson, 1989) will prove to be helpfull

for the local stability results.

Lemma 7 Let λ be an eigenvalue of the matrix A and let k·k be any matrix norm.
Then we have |λ| ≤ kAk.

Proof. Let k·kv be a vector norm compatible with matrix norm k·k, i.e. kAzkv ≤
kAk kzkv for all z, and notice that such a vector norm always exists. Now let x
be the eigenvector corresponding to λ. We then have kAxkv = kλxkv = |λ| kxkv.
By compatibility of k·k and k·kv, we have kAxkv ≤ kAk kxkv. Hence, |λ| kxkv ≤
kAk kxkv, implying |λ| ≤ kAk.

Proof of Proposition 2. The equilibrium p∗ is locally stable if the eigenvalues
of the Jacobian matrix of (2) evaluated at p∗ lie in the unit circle. This Jacobian
matrix is

J =


0 R1

2

¡
p∗−1

¢
R1

3

¡
p∗−1

¢ · · · R1
n

¡
p∗−1

¢
R2

1

¡
p∗−2

¢
0 R2

n

¡
p∗−2

¢
...

. . .
... 0 Rn−1

n

³
p∗−(n−1)

´
Rn1
¡
p∗−n

¢
Rn1
¡
p∗−n

¢
Rnn−1

¡
p∗−n

¢
0

 ,
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where Rij (p−i) ≡ ∂Ri(p−i)
∂pj

. By Lemma 7 the largest eigenvalue of A is always smaller,
in absolute value, than the norm of A. Now consider the maximum row sum norm
kAk∞ = maxi

Pn
j=1 |Aij|, i.e. the largest row sum of absolute values of elements

of A. The vector norm kxk∞ = maxi |xi| is compatible with this matrix norm. A
sufficient condition for the Bertrand-Nash equilibrium to be locally stable under the
best-reply dynamics then becomes

Pn
j=1

¯̄
Rij
¡
p∗−i
¢¯̄
< 1 for all i. Ri (p−i) is implicitly

deÞned by
∂πi(Ri(p−i),p−i)

∂pi
= 0. Totally differentiating this equation with respect to pj

and solving for Rij (p−i) ≡ ∂Ri(p−i)
∂pj

gives

Rij (p−i) = −
∂2πi (p)

∂pi∂pj

Á
∂2πi (p)

∂p2
i

.

The condition
Pn

j=1

¯̄
Rij
¡
p∗−i
¢¯̄
< 1 then becomes equivalent with (4)

Now we turn to gradient system (3). The Jacobian matrix for this system is

J =


K1

∂2π1

∂p2
1

K1
∂2π1

∂p1∂p2
· · · K1

∂2π1

∂p1∂pn

K2
∂2π2

∂p2∂p1
K2

∂2π2

∂p2
2

...
. . .

Kn
∂2πn

∂pn∂p1
Kn

∂2πn

∂p2
n

 .
If for each row of this matrix, the diagonal elements are larger in absolute value than
the sum of the absolute values of the off-diagonal elements, and if these diagonal
elements are negative, then the matrix J satisÞes diagonal dominance, which implies
that J is negative deÞnite. The eigenvalues of a negative deÞnite matrix have negative
real parts, and hence diagonal dominance implies local stability. It is easily veriÞed
that condition (4) together with the second order condition for a (local) Bertrand-
Nash equilibrium implies diagonal dominance and hence local stability.

Proof of Proposition 3. To determine local stability we have to look at the
Jacobian matrix J. The diagonal elements of the Jacobian are

Jii =
∂Fi (p

∗)
∂pi

=
1

2

Di (p∗)Di
ii (p

∗)

(Di
i (p

∗))2

The off-diagonal elements are

Jij =
∂Fi (p

∗)
∂pi

=
1

2

Di (p∗)Di
ij (p

∗)−Di
i (p

∗)Di
j (p

∗)

(Di
i (p

∗))2

Let λ be an eigenvalue of J, then, according to Lemma 7 we have |λ| ≤ kJk. Consider
again kAk∞ = maxi

Pn
j=1 |Aij| , then a sufficient condition for all eigenvalues of the

Jacobian matrix to lie in the unit circle is

Ji =
nX
j=1

|Jij| ≤ 1, for all i = 1, . . . , n,

19



and this is equal to condition (7).

Proof of Proposition 4. This is a straightforward application of Theorem 4.C.3
from Takayama (1985).

Proof of Corollary 5. Condition (10) follows directly from condition (7). Since
the dynamical system is linear, local stability implies global stability.

Proof of Proposition 6. The Jacobian matrix of system (12) at any point
(p1, p2) is Ã

1
2
+ 1

2
1
γ
(1− γ) p−γ1 p−δ2 −1

2
1
γ
δp1−γ

1 p−δ−1
2

−1
2

1
γ
δp−δ−1

1 p1−γ
2

1
2
+ 1

2
1
γ
(1− γ) p−δ1 p

−γ
2

!
.

Evaluating this Jacobian matrix in the equilibrium p∗1 = p
∗
2 =

h
1
γ

i1/(γ+δ)

gives

J =

µ
1− 1

2
γ −1

2
δ

−1
2
δ 1− 1

2
γ

¶
with eigenvalues µ1 = 1+

1
2
(δ − γ) and µ2 = 1− 1

2
(δ + γ), and corresponding eigen-

vectors: v1 =
¡ −1 1

¢0
and v2 =

¡
1 1

¢0
. First suppose δ < 0. In that case the

equilibrium is stable (unstable) for γ − δ < (>) 4, and unstable for γ + δ > 4. At
γ − δ = 4, µ1 goes through −1.Now suppose δ > 0. In that case the equilibrium is
stable for γ + δ < (>) 4, and unstable for γ + δ > 4. At γ + δ = 4, µ2 goes through
−1.
When one of the eigenvalues goes through −1 a period-doubling bifurcation occurs

in the dynamical system restricted to the center manifold (see Guckenheimer and
Holmes, 1983, p.158). The center manifold is locally reßection symmetric (Kuznetsov,
1995, Theorem 7.6). When µ1 = −1, the center manifold lies tangent to v1 and a
period two orbit which lies off the Þxed point subspace with p1 = p2 is created. When
µ2 = −1, the center manifold coincides with the Þxed point subspace with p1 = p2

(which also equals the eigenspace corresponding to µ2) and a period two orbit is
created in that Þxed point subspace.

Appendix B
This appendix contains a brief technical discussion of some of the concepts used in
Section 4.2. Consider a differentiable two-dimensional map Fα : IR2 → IR2, where
α ∈ IR is a parameter. Let p be a saddle Þxed point, that is, let the Jacobian of
Fα evaluated at p have two real eigenvalues where 0 < |λ2| < 1 < |λ1|. We can now
deÞne the stable and unstable manifolds of the equilibrium p as

W s (p) =
©

x ∈ IR2|F t (x)→ p for t→ +∞ª ,
W u (p) =

©
x ∈ IR2|F t (x)→ p for t→ −∞ª .
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Figure 8: Shape of stable and unstable manifolds (W s (p) and W u (p)) if there is a
homoclinic intersection q.

When F (.) is not a diffeomorphism and not invertible, the deÞnition of the unstable
manifold is a little bit more complicated (see Palis and Takens, 1993, p.167). The
unstable manifold may then have selÞntersections and the stable manifold may have
different components.
The stable and unstable manifolds are tangent to the corresponding stable and

unstable eigenvectors of the linearized system at the Bertrand-Nash equilibrium (this
follows from the stable manifold theorem (see Guckenheimer and Holmes, 1983, p.18)).
Notice that these manifolds are invariant under F , that is, F (W s (p)) = W s (p) and
F (W u (p)) = W u (p). If F would be a linear system, these manifolds would cor-
respond to the stable and unstable eigenvectors of the linearized system. However,
for a nonlinear mapping the stable and unstable manifolds may have a more compli-
cated structure. In fact, they can have intersections, that is, there may exist a point
q 6= p with q ∈ W s (p) ∩ W u (p) . Such a point q is called a point of homoclinic
intersection. Since the stable and unstable manifold are invariant under F , we must
have that F t (q), t = ±1,±2, . . ., are also points of homoclinic intersection. The se-
quence of points {F t (q)}t=+∞

t=−∞ then is called a homoclinic orbit. The existence of such
a homoclinic orbit implies a very complicated structure of the unstable and stable
manifolds. Since the sequence F t (q) (by deÞnition) converges to p when t → −∞,
and all points lie in the stable and unstable manifold the unstable manifold accumu-
lates onto itself inÞnitely often as F t (q) approaches p. The same holds for the stable
manifold. Figure 8 shows the shape that the unstable and stable manifold have if
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Figure 9: Homoclinic bifurcation. Left panel: stable and unstable manifold before the
bifurcation (α < α0). Middle panel: stable and unstable manifolds at the homoclinic
bifurcation (α = α0). Right panel: stable and unstable manifolds after the homoclinic
bifurcation (α > α0).

there is a point of homoclinic intersection.
The map F , and therefore also the stable and unstable manifolds, depends upon

the parameter α. A homoclinic bifurcation is said to occur at α = α0 when for
α < α0 there is no intersection between the unstable manifold W u (p) and the stable
manifold W s (p), for α = α0 there is a point of homoclinic tangency between W s (p)
and W u (p) and for α > α0 there is a point of transversal homoclinic intersection.
Figure 9 shows the creation of such a homoclinic bifurcation as α increases.

Such a homoclinic bifurcation implies all kinds of complicated behaviour. First of
all, there have to be wild oscillations of the unstable and stable manifolds as pointed
out above. Also, the existence of homoclinic interesections implies the existence of
so-called horseshoes.
Figure 10 given an example of such a horseshoe. The map G contracts the rec-

tangle R in the vertical direction, then stretches it in the horizontal direction and
Þnally folds it over itself, in a horseshoe-like fashion. Clearly, some of the points in R
are mapped out of R and some of the points are mapped back into R. Iterating this
map indeÞnitely one can Þnd the set of points that will stay in R forever under the
horeshoe map. The same thing can be done for the inverse map of G. The intersec-
tion Λ of these two sets, (that is, the set of all points that stay in R as t→ ±∞) is a
so-called Cantor set of Lebesgue measure 0. This Cantor set has a fractal structure
and dynamics on this Cantor set can be very complicated. In particular, Λ contains
inÞnitely many unstable periodic points, and an uncountable set of aperiodic points
(i.e. points which are neither periodic nor converge to a periodic orbit). Moreover,
the map G has sensitive dependence on initial conditions with respect to initial states

22



Figure 10: An example of a horseshoe. The rectangle R is mapped in a horseshoe-like
fashion into G (R).

in Λ, that is, there exists a C > 0, such that for all x0, y0 ∈ Λ, with x0 6= y0

lim
n→∞

sup |Gn (x0)−Gn (y0)| > C.

That is, any two initial conditions, no matter how close, will be separated from
each other eventually. Sensitive dependence on initial conditions implies (long run)
unpredictability of the corresponding dynamical system. However, the set Λ is very
small and hence this topological chaos may only be relevant for the transient behaviour
of the dynamics.
A homoclinic intersection therefore implies complicated behaviour for a small

set of initial states. Other interesting dynamical phenomena occur in the interval
(α0−ε,α0+ε), with ε > 0 small, when the equilibrium is dissipative at the homoclinic
bifurcation, that is, if the product of eigenvalues of the Jacobian matrix evaluated
at p is smaller than 1 in absolute value. Most importantly, it implies existence of
Hénon-like strange attractors for an open interval of α−values with positive Lebesgue
measure (Benedicks and Carleson, 1991 and Mora and Viana, 1993). The Hénon map
is given by (xt+1, yt+1) = (1− ax2

t + yt, bxt). Figure 11 shows the attractor for this
Hénon map for a = 1.4 and b = 0.3. The right panel of Figure 11 shows a small
portion of this attractor. Notice that the attractor has a fractal structure: its shape
seems to repeat itself on a smaller scale. Also notice the resemblance with the lower
right panel in Figure 7.
Other interesting phenomena occuring close to a homoclinic bifurctation are the

coexistence of inÞnitely many stable cycles for a residual set of α−values (this is
called the Newhouse phenomenon, Newhouse, 1974,1979) and cascades of inÞnitely
many period doubling and period halving bifurcations (Yorke and Alligood, 1983).
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Figure 11: The Hénon map for parameters a = 1.4 and b = 0.3. The right panel
shows an enlargement of a piece of the attractor from the left panel. This illustrates
the fractal structure of the Hénon attractor.
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