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Abstract

This paper considers tests for a unit root when the innovations follow a near-integrated GARCH

process. We compare the asymptotic properties of the likelihood ratio statistic with that of the least-

squares based Dickey-Fuller statistic. We first use asymptotics where the GARCH variance process

is stationary with fixed parameters, and then consider parameter sequences such that the GARCH

process converges to a diffusion process. In both cases, we find a substantial asymptotic local power

gain of the likelihood ratio test for parameter values that imply heavy tails in the unconditional

innovation distribution.

1 Introduction

A well-known property of financial time series is that their conditional variance displays variation over

time, such that persistent periods of high variation are followed by low-volatility periods. This phe-

nomenon, known as volatility clustering, is modelled in the econometrics literature either by GARCH

(generalized autoregressive-conditional heteroskedasticity) type models (see Bollerslev et al., 1994, for

an overview) or by stochastic volatility models, see e.g. Shephard (1996). When applied to daily finan-

cial returns data, both classes of models display a high degree of persistence, and hence a low degree

of mean-reversion in the volatility process. Such processes are referred to as near-integrated, since

their characteristic polynomial has a root close to but not necessarily equal to unity. Boswijk (1999)

considers asymptotic distribution theory for likelihood based estimators of the volatility parameters in

near-integrated exponential GARCH (EGARCH) models and stochastic volatility models.

In the present paper we study the effect of such near-integrated volatility processes on testing for

an autoregressive unit root in the level of the process itself (instead of its volatility). This problem

is relevant in finance, for example when models for the term structure of interest rates depend on the

presence and degree of mean-reversion in the short rate. A typical model for the short rate is the one by

Vasicek (1977), which is essentially a first-order autoregression with constant volatility. When applied
∗This paper has benefitted from dicussions with Anders Rahbek and André Lucas.
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to daily or weekly interest rates, the hypothesis of a unit root (i.e., no mean-reversion) often cannot

be rejected, and a possible explanation of this is that least-squares based tests are not powerful enough

to discover the (weak) mean-reversion. Since interest rates clearly do not have a constant volatility,

a likelihood-based testing procedure which takes this phenomenon into account might be expected to

yield more efficient estimates and hence more powerful tests.

Previous work in this area is by Ling and Lee (1997, 1998) and Rahbek (1999), who consider tests

for a unit autoregressive root in models with GARCH errors. They find that the maximum likelihood

estimator of the mean-reversion parameter has a limiting distribution that is a weighted average of

a Dickey-Fuller-type distribution and a normal distribution. They consider GARCH processes with

fixed parameters in the stationarity region, whereas in this paper we study the case where the volatility

parameters approach the unit root bound. Therefore, we consider parameter sequences such that the

autoregressive root in the volatility process approaches unity as the sample size increases. This allows

us to use the results of Nelson (1990) on continuous-time diffusion limits of GARCH processes. The

present paper is also closely related to Hansen (1992b, 1995), who considers ordinary least-squares,

generalized least-squares and adaptive estimation of regressions with non-stationary volatility.

The outline of the remainder of the paper is as follows. In Section 2, we define the model and

hypothesis, and the parameter sequences that will be used in the asymptotic analysis. Section 3 anal-

yses the likelihood function, the score and the information, and their asymptotic distribution under the

relevant probability measures. We study the asymptotic distributions of the Dickey-Fuller test statistic,

based on least-squares estimation, and the likelihood ratio test statistic, both under the null hypothesis

and under local alternatives. Section 4 provides numerical evidence on the local power of these tests.

In Section 5 we investigate the relevance of these local power results in finite samples, and Section 6

concludes.

2 The Model

Consider a univariate first-order autoregressive process with GARCH(1,1) innovations:

∆Xt = γ(Xt−1 − µ) + εt, t = 1, . . . , n, (1)

εt = σtηt, (2)

σ2
t = ω + αε2

t−1 + βσ2
t−1, (3)

ηt ∼ i.i.d. N(0, 1), (4)

where ∆Xt = (Xt −Xt−1), and where X0, ε0 and σ2
0 are fixed.

The parameter γ describes the degree of mean-reversion. If −2 < γ < 0, then Xt reverts back

to its mean µ. The null hypothesis that we wish to test is the unit root hypothesis, or equivalently the

no-mean-reversion hypothesis

H0 : γ = 0, (5)

which is tested against the alternative γ < 0. The model (1) has a restricted constant term, such that

under the null hypothesis the process does not contain a drift. Other specifications of the deterministic
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component in Xt can be considered, including a restricted linear trend term (to test a random walk with

drift against a trend-reverting autoregression), but this is not considered explicitly here. Similarly, the

model can be extended to allow for more lags in (1).

The (nonnegative) parameters ω, α and β characterize the dynamics of the volatility process. If

α + β < 1, then the variance reverts back to its mean σ2 = ω/(1− α − β), and if α + β = 1 then the

variance follows a random walk (with drift if ω �= 0). The asymptotic distribution of the test statistics

considered in the next section will depend on what we assume about the parameter of interest γ, but also

on assumptions about the volatility parameters (ω, α, β). We consider two alternative assumptions (in

all cases ω > 0, (α, β) ≥ 0):

Assumption 1 For all n ≥ 1, γn = κ/n and α+ β < 1, with (κ, µ, ω, α, β) fixed.

Assumption 2 For all n ≥ 1, γn = κ/n, αn + βn = 1 + λ/n, ωn = �/n and αn = ζ/
√
2n, with

(κ, µ,�, λ, ζ) fixed, such that � > 0, ζ > 0 and λ < ζ2/2.

Under Assumption 1, the process Xt is near-integrated with stationary volatility. The unit root

null hypothesis requires κ = 0, and values κ �= 0 define the local alternatives. Under Assumption 2,

the variance process is also near-integrated. One possible motivation for these parameter sequences is

that the model (1)–(4) is viewed as a discrete-time approximation, for varying n but over a fixed time

interval, of the continuous-time diffusion process defined below in Lemma 2, see Nelson (1990).

We conclude this section with two lemmas that describe the limiting behaviour of Xt under each of

the two possible assumptions.

Lemma 1 Under Assumption 1, and as n → ∞,
 1

σ
√
n

�·n�∑
t=1

εt,
1

σ
√
n
X�·n�


 L−→ (W (·), U(·)) , (6)

in D[0, 1]2, where σ2 = ω/(1 − α − β), W (·) is a standard Brownian motion process on [0, 1], and

U(·) is an Ornstein-Uhlenbeck process on [0, 1]:

dU(s) = κU(s)ds+ dW (s), U(0) = 0. (7)

The proof of this lemma is given in Ling and Li (1998, Theorem 3.3) for κ = 0, in which case U(·)
reduces to W (·). This is extended to the case κ �= 0 by writing X�·n� as a continuous functional of the

partial sum of εt.

Lemma 2 Under Assumption 2, and as n → ∞,
 1√

n

�·n�∑
t=1

ηt,
1√
2n

�·n�∑
t=1

(η2
t − 1),

1√
n
X�·n�, σ2

�·n�


 L−→ (W1(·),W2(·), Y (·), V (·)) , (8)
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in D[0, 1]4, where (W1(·),W2(·)) is a standard bivariate Brownian motion process on [0, 1], and

(Y (·), V (·)) is the solution to the system of stochastic differential equations

dY (s) = κY (s)ds+ V (s)1/2dW1(s), (9)

dV (s) = [λV (s) +�]ds+ ζV (s)dW2(s), (10)

with Y (0) = 0 and V (0) = σ2
0.

The proof of this lemma follows from Nelson (1990, Theorem 2.2 and Section 2.3). The difference

again is that Nelson considers the case κ = 0, but the extension of his proof to the present case is

straightforward. If the process Y (s) is discretely sampled at times s = t/n, and we define Xt =
√
nY (t/n), t = 0, 1, . . . , n, then the actual process generating Xt may be approximated by (1)–(4)

under Assumption 2; the approximation error will vanish as n → ∞, see Nelson (1990). An alternative

(Euler) approximation would lead to a discrete-time stochastic volatility-type model, but we choose to

work with the GARCH model because it has a closed-form expression for the likelihood function, which

simplifies the construction of likelihood-based test statistics considered in the next section.

3 Likelihood Analysis

The statistical analysis of model (1)–(4) is given in Ling and Li (1997, 1998) and Rahbek (1999), but

will be briefly repeated here.

It will be convenient to introduce the parameter vector δ = (γ,−γµ)′ and Zt = (Xt−1, 1)′, such

that (1) becomes ∆Xt = δ′Zt + εt, and the null hypothesis is H0 : δ = 0. The full parameter vector is

θ = (δ′, ω, α, β)′, and the log-likelihood function is

 (θ) =
n∑

t=1

 t(θ) =
n∑

t=1

−1
2

(
log 2π + log σ2

t (θ) +
ε2
t (δ)

σ2
t (θ)

)
, (11)

where εt(δ) = ∆Xt−δ′Zt, and where it should be noted that σ2
t (θ) depends on the volatility parameters

(ω, α, β), but also, via ε2
t−1, on the regression parameters δ. The log-likelihood is conditional on σ0 and

ε0, which are not observed. In practice, they may be replaced by suitable estimates (we will assume that

this has an asymptotically negligible effect).

The unrestricted parameter space for θ is Θ = R
2 × R

+ × R
+ × R

+, and the restricted parameter

space defined by the null hypothesis is Θ0 = (0, 0) × R
+ × R

+ × R
+. Define θ̂ = argmaxθ∈Θ  (θ)

and θ̃ = argmaxθ∈Θ0
 (θ), the unrestricted and restricted maximum likelihood estimators, respectively.

The likelihood ratio statistic for the null hypothesis is

LR = −2
(
 (θ̃)−  (θ̂)

)
. (12)

We will compare the performance of this test with that of Dickey and Fuller’s (1981) F -statistic:

Φ1 =
n− 2
2

∑n
t=1 ∆XtZ

′
t (
∑n

t=1 ZtZ
′
t)
−1∑n

t=1 Zt∆Xt∑n
t=1(∆Xt − δ̂

′
LSZt)2

, (13)
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with δ̂LS = (
∑n

t=1 ZtZ
′
t)
−1∑n

t=1 Zt∆Xt; this is a monotonic transformation of the likelihood ratio

statistic for H0 under the restriction α = β = 0 (i.e., homoskedastic innovations).

Define the score vector S(θ) = ∂ (θ)/∂θ and the observed information matrix J(θ) =

−∂2 (θ)/∂θ∂θ′. Conventional Taylor series expansions (corresponding to a quadratic approximation of

the log-likelihood function) result in

LR = θ̂
′
E1

[
E′

1J(θ0)−1E1

]−1
E′

1θ̂ + oP (1)

=
(
n−1ν ′ + S(θ0)′J(θ0)−1E1

) [
E′

1J(θ0)−1E1

]−1 (
E′

1J(θ0)−1S(θ0) + n−1ν
)
+ oP (1), (14)

where θ0 is the true value (which is a sequence under Assumption 1 or 2), E1 = [I2 : 0]′ is a selection

matrix such that δ = E′
1θ and ν is the normalized distance between the true and hypothesized value of

δ:

ν = n

((
κ/n

−κµ/n

)
−
(

0

0

))
= κ

(
1

−µ

)
. (15)

Therefore, we need to find an expression for S(·) and J(·), and evaluate their joint asymptotic behaviour

under either Assumption 1 or 2.

Let ξ = (ω, [α+ β], α)′, the (linearly transformed) GARCH parameters, and wt(θ) = (1, σ2
t−1(θ),

ε2
t−1(δ)− σ2

t−1(θ))
′. The following results are useful ingredients for the score vector:

∂ t(θ)
∂σt(θ)2

=
1

2σ2
t (θ)

(
ε2
t (β)

σ2
t (θ)

− 1
)

=
1

2σ2
t (θ)
(
η2

t (θ)− 1
)
, (16)

∂σ2
t (θ)
∂δ

= β
∂σ2

t−1(θ)
∂δ

− 2αεt−1(δ)Zt−1 = −2α
t−1∑
i=1

βi−1εt−i(δ)Zt−i, (17)

∂σ2
t (θ)
∂ξ

= β
∂σ2

t−1(θ)
∂ξ

+ wt(θ) =
t−1∑
i=0

βiwt−i(θ). (18)

where ηt(θ) = εt(δ)/σt(θ). Here we use the fact that a fixed start-up value for σ2
0 implies ∂σ2

0/∂δ = 0

and ∂σ2
0/∂ξ = 0. Thus we find

Sδ(θ) =
∂ (θ)
∂δ

=
n∑

t=1

(
Zt

εt(δ)
σ2

t (θ)
− α

σ2
t (θ)
(
η2

t (θ)− 1
) t−1∑

i=1

βi−1εt−i(δ)Zt−i

)
, (19)

Sξ(θ) =
∂ (θ)
∂ξ

=
n∑

t=1

(
1

2σ2
t (θ)
(
η2

t (θ)− 1
) t−1∑

i=0

βiwt−i(θ)

)
. (20)

Expressions for the blocks Jδδ, Jδξ and Jξξ of the information matrix can be derived from this. We shall

not give explicit expressions here, but only provide their limiting behaviour in the next lemma, see Ling

and Li (1998).

Lemma 3 Under Assumption 1, and as n → ∞,

1√
n

�·n�∑
t=1

(
εt

σ2
t

− α

σ2
t

(
η2

t − 1
) t−1∑

i=1

βi−1εt−i

)
L−→ τB(·), (21)
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in D[0, 1], jointly with Lemma 1, where

τ2 = E

[
1
σ2

t

+ 2α2
∞∑
i=1

β2(i−1) ε
2
t−i

σ4
t

]
, (22)

and (W (·), B(·)) is a bivariate vector Brownian motion process with var(W (1)) = var(B(1)) = 1 and

cov(W (1), B(1)) = ρ =
1
στ

. Letting D1n = diag((σn)−1, n−1/2) and F (s) = (U(s), 1)′,

D1nSδ
L−→ τ

∫ 1

0
F (s)dB(s), (23)

D1nJδδD1n
L−→ τ2

∫ 1

0
F (s)F (s)′ds, (24)

Furthermore,

n−1/2Sξ
L−→ N(0,Σ), n−1Jξξ

P−→ Σ, n−1/2D1nJδξ
P−→ 0, (25)

where Σ is a positive definite matrix.

These results leads to the following theorem, the proof of which is given in the Appendix:

Theorem 1 Under Assumption 1, and as n → ∞,

LR
L−→
(∫ 1

0
F (s)

[
dB(s) +

κ

ρ
U(s)ds

])′ [∫ 1

0
F (s)F (s)′ds

]−1

×
(∫ 1

0
F (s)

[
dB(s) +

κ

ρ
U(s)ds

])
, (26)

2Φ1
L−→
(∫ 1

0
F (s)[dW (s) + κU(s)ds]

)′ [∫ 1

0
F (s)F (s)′ds

]−1

×
(∫ 1

0
F (s)[dW (s) + κU(s)ds]

)
. (27)

The limiting distribution of LR under the null hypothesis (κ = 0) depends on the nuisance parameter

ρ. In practice this nuisance parameter can be estimated consistently by ρ̂ = 1/
√
σ̂2τ̂2, where σ̂2 =

ω̂/(1− α̂− β̂) and τ̂2 is the sample analog of (22). Although we have not been able to obtain an explicit

formula for ρ in terms of α and β, an approximation yields

ρ(α, β) ≈ ρ̃(α, β) =

√
(1− α− β)(1− β2)

(1− α− β + α2)(1− β2 + 2α2)
, (28)

which is obtained by replacing ε2
t−i/σ

2
t in (22) by 1, and using E(1/σ2

t ) ≈ (1 − α − β + α2)/ω,

which corresponds to the continuous-record stationary distribution of 1/σ2
t obtained by Nelson (1990).

In order to check the accuracy of this approximation, we estimate the expectation in (22) by the average,

over 1000 Monte Carlo replications1, of the sample mean corresponding to (22) with a sample size of

10, 000. This is done for α + β ∈ {0.1, 0.2, . . . , 0.9} and α/(α + β) ∈ {0.1, 0.2, . . . , 1}. It appears
1All numerical results have been obtained using Ox version 2.20, see Doornik (1999).
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that (28) somewhat underestimates the true correlation; from a log-linear regression of the actual ρ’s on

ρ̃(α, β), we obtain the following adjusted approximation:

ρ̂(α, β) = ρ̃(α, β)0.64, (29)

which is quite accurate, with a regression standard error of about 1%.

Next, the estimate of ρ can be used to obtain an asymptotic p-value, either by Monte Carlo simu-

lation or by the Gamma approximation proposed by Boswijk and Doornik (1999). The power function

depends, in addition to ρ, only on κ (it is invariant to σ). In the next section, we compare the power

functions of the two statistics for two cases.

Consider now the asymptotic behaviour of the score vector and information matrix under Assump-

tion 2:

Lemma 4 Under Assumption 2, and as n → ∞,

1√
n

�·n�∑
t=1

(
εt

σ2
t

− α

σ2
t

(
η2

t − 1
) t−1∑

i=1

βi−1εt−i

)
L−→
∫ ·

0
V (u)−1/2dW1(u), (30)

in D[0, 1], jointly with Lemma 2. Letting D2n = diag(n−1, n−1/2) and G(s) = (Y (s), 1)′,

D2nSδ
L−→
∫ 1

0
G(s)V (s)−1/2dW1(s), (31)

D2nJδδD2n
L−→
∫ 1

0
G(s)G(s)′V (s)−1ds. (32)

Furthermore, there exist non-singular norming matrices D3n such that

D3nSξ = OP (1), D3nJξξD3n = OP (1), D2nJδξD3n
P−→ 0. (33)

A proof is given in the Appendix. Note that the limiting Riemann integral in (32) is the quadratic

variation of the stochastic integral in (31). The suitably normalized information matrix is block-diagonal

in the limit, because the cross-variation between the two parts of the score vector is zero in the limit.

These results imply:

Theorem 2 Under Assumption 2, and as n → ∞,

LR
L−→
(∫ 1

0
G(s)V (s)−1/2[dW1(s) + κV (s)−1/2Y (s)ds]

)′ [∫ 1

0
G(s)G(s)′V (s)−1ds

]−1

×
(∫ 1

0
G(s)V (s)−1/2[dW1(s) + κV (s)−1/2Y (s)ds]

)
, (34)

2Φ1
L−→
(∫ 1

0
G(s)[V (s)1/2dW1(s) + κY (s)ds]

)′ [∫ 1

0
G(s)G(s)′ds

∫ 1

0
V (s)ds

]−1

×
(∫ 1

0
G(s)[V (s)1/2dW1(s) + κY (s)ds]

)
. (35)

7



The theorem is proved in the Appendix. The results are closely related to those obtained by Hansen

(1992b, 1995), who considers ordinary least-squares, generalized least-squares and adaptive estima-

tion of regressions with non-stationary volatility. Note that the likelihood ratio statistic is asymptoti-

cally equivalent to a Wald statistic based on weighted least-squares with known {σ2
t }. Hansen shows

that when the process generating the non-stationary volatility is unknown, it may be estimated non-

parametrically, without loss of efficiency relative to a parametric likelihood analysis.

Both distributions in Theorem 2 depend on nuisance parameters, even under the null hypothesis (κ =

0). In principle they are affected by all volatility parameters (�,λ, ζ), although parameter variations

that only affect the scale of V (s) will leave the distributions in (34) and (35) unaffected. From Nelson

(1990), it appears that the function λ/ζ2 is most relevant, since it determines the stationary distribution

of the volatility process. Unfortunately these parameters are not consistently estimable.

A possible solution to this nuisance parameter problem is to use the conditional asymptotic null

distribution of the two test statistics, given the volatility process V (·). Although this process depends

on the parameters (�,λ, ζ), these are variation independent of the parameter of interest κ, so that

conditioning on V does not entail a loss of information on κ. In other words, V is S-ancillary for κ, see

Barndorff-Nielsen (1978). Clearly the asymptotic distributions in (34) and (35) for fixed V will depend

on the realization of V , and hence cannot be tabulated. However, given the independence between

W1 and V the conditional distribution is quite easy to simulate. In practice this will involve replacing

the volatility process by its estimate V̂n(s) = σ̂2
�sn�, with {σ̂2

t } the filtered estimate of {σ2
t } based

on the maximum likelihood estimates of the GARCH parameters. The results of Nelson and Foster

(1994) suggest that V̂n(·) converges in probability to V (·) in D[0, 1], which in turn would imply that

the estimated conditional distribution given {σ̂2
t }n

t=1 converges to the true conditional distribution given

{V (s), s ∈ [0, 1]}.

Before we proceed, it is of interest to discuss the difference of the two types of asymptotic approxi-

mation in Theorems 1 and 2 as α+ β approaches 1, so that the unconditional variance σ2 diverges. For

fixed parameter values (Assumption 1) the approximation (28) suggests that ρ ↓ 0 as α + β ↑ 1, which

is confirmed by the fact that ρ = 1/(στ), and σ diverges whereas τ remains finite. This implies, first,

that the limiting distribution of the LR statistic will approach the χ2(2) distribution under the null hy-

pothesis, because B and F become independent. Secondly, it shows that the local power will increase,

and in fact approach 1 for all κ, because the non-centrality parameter in (26) is essentially κ/ρ. This

suggests that in such cases the likelihood ratio test has infinite power superiority over the least-squares

based test. Note, however, that Theorem 1 is only valid under Assumption 1, which involves the con-

dition α + β < 1; the quality of the asymptotic approximation might deteriorate as α + β ↑ 1. More

importantly, if α ↓ 0 at the same time as α+ β ↑ 1, then the above arguments are no longer valid, since

limα↓0,α+β↑1 ρ(α, β) does not exist. This implies that for parameter values with α+ β close to 1 and α

close to 0, which are typically encountered with daily financial returns, this asymptotic approximation

will not be reliable, and we should turn to the continuous-record asymptotic approximation implied by

Assumption 2 instead.

Under Assumption 2, then, it is allowed that α + β = 1 and hence λ = 0; no discontinuity in
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the limit theory is to be expected around λ = 0, as long as λ < ζ2/2, which is the condition for

strict stationarity of the limiting diffusion process V (s). The main difference between the cases λ < 0

and 0 ≤ λ < ζ2/2 is that in the former case the disturbances εt have finite variance, whereas in

the latter case the unconditional variance is infinite, since the limiting distribution of εt is Student’s

t(2− 4λ/ζ2), see Nelson (1990). For λ = 0 the limiting distribution of LR will not be χ2(2) under the

null hypothesis, since V (s)−1/2Y (s) = V (s)−1/2
∫ s
0 V (u)1/2dW1(u) and W1(s) are not independent

for λ = 0. As ζ increases however, the variation in V (s) increases, and one might expect that the

behaviour of V (s)−1/2Y (s) will be dominated by V (s), such that it becomes independent of W1(s).

From the expressions in (34) and (35) it is not clear that the relative power advantage of LR will increase

with ζ; this will be investigated in the next section.

In summary, the results in this section indicate we may expect a power gain of the likelihood ratio

test over the Dickey-Fuller test when a large value of α+ β (implying persistent volatility) is combined

with a large value of α (implying a large short-run variation in the volatility). In the next section we

investigate whether these predictions are reflected in the asymptotic local power behaviour of the tests,

and in Section 5 we turn to the finite sample behaviour of the procedures.

4 Local Power

In this section we provide some numerical evidence on the local power of the two alternative test statis-

tics. First, we consider the case of stationary volatility (Assumption 1). We consider two sets of GARCH

parameters:

1. α = 0.05, β = 0.9 and σ2 = ω/(1 − α − β) = 1, which implies ρ = 0.967 (the value of

ρ = 1/(στ) is obtained by Monte Carlo simulation, as described in Section 3). These parameter

values correspond to a relatively smooth GARCH process with strong persistence, as typically

found in empirical data sets of daily returns. The high value of the correlation coefficient suggests

that the power difference between the LR and Φ1 test will be relatively small in this case.

2. α = 0.35, β = 0.6 and σ2 = 1, which implies ρ = 0.570. Again this leads to a rather slowly

mean-reverting GARCH process, but now the higher value of α leads to more short-run variation

in the volatility. The low value of ρ leads us to expect more power gains for the LR test in this

case.

Figure 1 displays the local power function of the Φ1 test, which is the same for both parameter

combinations, and that of the LR statistic for each data-generating process. Note that the local power

of Φ1 is the same as the local power of LR when α = β = 0 and hence ρ = 1, i.e., when there

are no GARCH effects. All results are obtained by Monte Carlo simulation, using a discretization

(1000 equidistant points) of the processes and integrals, and with 10, 000 replications for the power

calculations, and 100, 000 replications for the critical values.
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Figure 1: Local power of Φ1 and LR with stationary volatility (size = 5%).
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As expected, the power gain of the LR test relative to the least-squares-based Φ1 is very small

when (α, β) = (0.05, 0.9). This suggests that for such GARCH processes, one might as well use

the conventional test. For the second parameter combination, however, the power gain is much larger.

Therefore, these results confirm the prediction in the previous section that only when the volatility

process has itself a high volatility (corresponding to a high value of α), the likelihood ratio test yields a

substantial power gain over the least-squares based Dickey-Fuller test.

Next, we consider the local power function when the volatility process is near-integrated. In this

case we consider four parameter configurations:

1. λ = −100, ζ =
√
10. This corresponds to the first case ((αn, βn) = (0.05, 0.9)) considered

above, with n = 2000.

2. λ = −100, ζ = 7
√
10. For n = 2000, this corresponds to the second case above ((αn, βn) =

(0.35, 0.6)), which leads to more variation in the volatility process.

3. λ = −40, ζ = 2. This is a process with less mean-reversion in the volatility than case 1, but with

the same value of −λ/ζ2 = 10; it corresponds to (αn, βn) = (0.05, 0.9) for n = 800. Therefore,

we expect roughly the same results as in case 1.

4. λ = −40, ζ = 14. This is comparable to case 2 (same −λ/ζ2 = 10/49 ≈ 0.2), but with less

mean-reversion in the volatility, and corresponds to (αn, βn) = (0.35, 0.6) for n = 800.
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In all cases we set � = −λ, such that V (s) reverts to 1, but the results are invariant to �, as long as

the starting value is chosen appropriately. We use a fixed start-up value V (0) = 1, which corresponds

to the expectation of the stationary distribution of V (s); alternatively, one could draw V (0)−1 from

its stationary Γ(1 − 2λ/ζ2, 2�/ζ2), distribution, see Nelson (1990). An important difference between

cases 1 and 3 on the one hand, and cases 2 and 4 on the other hand, is the existence of higher moments

of εt. Nelson’s (1990) limiting t(2 − 4λ/ζ2) distribution for the disturbances implies that εt has no

finite integer moments beyond the variance in cases 2 and 4, whereas is has much higher moments (up

to 2− 4λ/ζ2 = 42) in cases 1 and 3.

For each test, we perform a conditional and an unconditional version. The unconditional version

involves Monte Carlo simulation of the 5% critical value for the given parameter combination (based

on 100, 000 replications), and defining the local power as the rejection frequency (based on 10, 000

replications) at this critical value. In practice this is infeasible, since the volatility parameters are not

known and not consistently estimable, but obtaining the critical values is of interest to investigate how

sensitive they are to parameter variations. In the conditional version of the test, we simulate the p-value

(based on 1000 replications), for each of the 10, 000 realizations of the test statistic, conditional on the

actual volatility process for that realization, and reject when this p-value is less than 0.05. In practice

the local power of the conditional and unconditional versions of the test turns out to be almost identical,

so we only report the conditional versions in Figure 2.

Figure 2: Local power of Φ1 and LR with near-integrated volatility (size = 5%).
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The results clearly show the expected power gain of the LR test for cases 2 and 4, whereas the two

tests are almost equivalent in cases 1 and 3. Furthermore, the power functions in cases 1 and 3 are

very close to the corresponding case 1 in Figure 1 (using fixed-parameter asymptotics), and similarly

the behaviour in cases 2 and 4 resembles the corresponding case 2 in Figure 1. The effect of λ is much

weaker, although we see that the power is slightly lower for the small λ cases. It turns out that the

critical values are also fairly close to the corresponding fixed-parameter cases, so that the two types

of asymptotics are largely in agreement. As one might expect, this agreement would break down for

parameter values such that α + β = 1, and hence λ = 0. The fixed-parameter asymptotic analysis,

although not strictly applicable anymore, would suggest that ρ = 0, which would imply χ2 critical

values and an infinite power gain of the LR test. However, additional simulations indicate that the

behaviour of the tests under αn + βn = 1 and αn = ζ/
√
2n depends very much on ζ, comparable to

cases 1–4 in Figure 2; only when ζ → ∞ the null distribution of LR approaches the χ2(2) distribution,

and the local power becomes 1 for all κ.

5 A Monte Carlo Experiment

In this section we consider the finite-sample behaviour of the tests in a small-scale Monte Carlo ex-

periment. We consider n ∈ {250, 2000}, which would correspond to approximately 1 and 8 years of

daily financial data. Here n = 250 may be considered a small sample for GARCH estimation; usually

a number of years of daily data are considered. Next, we continue to consider the two near-integrated

cases (α, β) = {(0.05, 0.9), (0.35, 0.6)}; note that these are chosen the same for both sample sizes, so

that one might expect a relatively better approximation by the stationary (fixed-parameter) asymptotic

distributions for larger sample sizes. Furthermore we consider γn = κ/n with κ ∈ {0,−5,−20}, to

study both the size and power properties of the tests.

For LR and Φ1 tests2 we compute two types of p-values, the first based on fixed-parameter asymp-

totics, and the second based on near-integrated asymptotics, conditional on the estimated {σ̂2
t }. For

the fixed-parameter asymptotic p-values, we use the Gamma approximation of Boswijk and Doornik

(1999), in combination with ρ̂(α, β) given in (28)–(29), where α and β are replaced by their unre-

stricted ML estimates. Finally, we also consider QLR, the quasi-likelihood ratio test based on the

assumption that εt ∼ i.i.d. t(ν). This test is included to see whether the same power gain can be

obtained by a test that correctly specifies the marginal distribution of the disturbances, although it mis-

specifies the volatility dynamics. From, e.g., Lucas (1997), it follows that when εt is indeed i.i.d. t(ν),

the asymptotic distribution of QLR is the same as that of LR in (26), but with ρ the correlation be-

tween εt and −∂ log fν(εt)/∂εt, where fν denotes the t(ν) density. It can be shown that for ν > 2,

ρ2 = (ν2 + ν − 6)/(ν2 + ν). Replacing ν by the unrestricted ML estimate, this yields again a p-value

for this test using the Gamma approximation.

The results, based on 2000 replications, are given in Table 1, and give rise to the following con-

clusions. First, we see that the fixed-parameter asymptotic p-values give a better approximation for
2In the likelihood function, the volatility process is initialized using σ̂2

0 = ε̂2
0 = n−1∑n

t=1 ∆X2
t .
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the small α generating process, but a worse approximation for the α = 0.35 case. In the latter case,

QLR has a rather large size distortion for n = 250, but this seems to vanish as n increases. In fact,

for n = 2000 there hardly seem to be any substantial size distortions left, with the exception of the

Φ1 test using ordinary critical values when α is large. The power behaviour of the LR and Φ1 tests

is as predicted by the asymptotic analysis. For small α, the power of the tests is virtually identical, so

that there is not much gain in using the LR test. When α is large on the other hand, the power gain is

quite clear, especially for the larger sample size. Finally, we note that for this case the power curve of

the Student t-based QLR test lies between that of Φ1 and LR: although there is a clear gain in fitting

the marginal tail behaviour of the disturbances by a Student’s t instead of a normal distribution, we see

that the misspecification of the conditional variance gives this test a power disadvantage relative to the

GARCH-based LR test.

Table 1: Rejection frequencies of LR, Φ1 and QLR

n = 250 n = 2000

κ = 0 κ = −5 κ = −20 κ = 0 κ = −5 κ = −20

α = 0.05, LR, fixed 0.059 0.086 0.784 0.055 0.082 0.794

β = 0.9 LR, near-int. 0.067 0.094 0.809 0.061 0.091 0.813

Φ1, fixed 0.059 0.086 0.775 0.054 0.078 0.752

Φ1, near-int. 0.067 0.095 0.798 0.058 0.085 0.770

QLR 0.062 0.085 0.760 0.054 0.079 0.755

α = 0.35, LR, fixed 0.074 0.248 0.823 0.049 0.448 0.989

β = 0.6 LR, near-int. 0.063 0.249 0.926 0.040 0.417 0.990

Φ1, fixed 0.099 0.150 0.755 0.073 0.127 0.739

Φ1, near-int. 0.070 0.120 0.689 0.052 0.114 0.705

QLR 0.115 0.190 0.754 0.055 0.234 0.913

6 Conclusion

In this paper we have investigated likelihood ratio testing for a unit root when the innovations fol-

low a near-integrated GARCH process. We have analysed the asymptotic null distribution and local

power function of the likelihood ratio test and the least-squares based Dickey-Fuller test, both under

fixed GARCH parameters and under near-integrated sequences. It has been found that the two types of

asymptotics are largely in agreement, as long as the sum of the GARCH parameters is less than one. A

considerable power gain potential for the LR test has been found to occur with GARCH processes with

a large short-run variation in the volatility, corresponding to a heavy-tailed marginal distribution of the

innovations. These asymptotic results have been shown to be reflected in the finite sample behaviour of

the tests.
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Appendix

Proof of Theorem 1. Consider first the limiting distribution of LR. Let D∗
1n = diag(D1n, n

−1/2I3),

so that E′
1D

∗
1n = D1nE

′
1. Therefore, (14) implies, with S = S(θ0) and J = J(θ0),

LR =
[
n−1ν ′D−1

1n + S′D∗
1n(D

∗
1nJD∗

1n)
−1E1

] [
E′

1(D
∗
1nJD∗

1n)
−1E1

]−1

× [E′
1(D

∗
1nJD∗

1n)
−1D∗

1nS +D−1
1n n−1ν

]
+ oP (1). (A.1)

Lemma 3 yields

D∗
1nS

L−→


 τ

∫ 1

0
F (s)dB(s)

N(0,Σ)


 , D∗

1nJD∗
1n

L−→


 τ2

∫ 1

0
F (s)F (s)′ds 0

0 Σ


 , (A.2)

and clearly D−1
1n n−1ν → (σκ, 0)′. Combining these results gives

LR
L−→
[
(σκ, 0) + τ

∫ 1

0
dB(s)F (s)′

(
τ2

∫ 1

0
F (s)F (s)′ds

)−1
] [

τ2

∫ 1

0
F (s)F (s)′ds

]

×
[(

τ2

∫ 1

0
F (s)F (s)′ds

)−1

τ

∫ 1

0
F (s)dB(s) + (σκ, 0)′

]

=
[
(στκ, 0)

∫ 1

0
F (s)F (s)′ds+

∫ 1

0
dB(s)F (s)′

] [∫ 1

0
F (s)F (s)′ds

]−1

×
[∫ 1

0
F (s)F (s)′ds(στκ, 0)′ +

∫ 1

0
F (s)dB(s)

]
, (A.3)

and using στ = 1/ρ, this yields (26). For Φ1, we use Lemma 1 together with the continuous mapping

theorem to yield

D1n

n∑
t=1

ZtZ
′
tD1n

L−→
∫ 1

0
F (s)F (s)′ds, (A.4)

and

D1n

n∑
t=1

Zt∆Xt = D1n

n∑
t=1

ZtZ
′
tD1nD

−1
1n δ +D1n

n∑
t=1

Ztεt

L−→
∫ 1

0
F (s)F (s)′ds(σκ, 0)′ +

∫ 1

0
F (s)dW (s)σ

= σ

∫ 1

0
F (s)[dW (s) + κU(s)]ds. (A.5)

Furthermore,

σ̂2
LS =

1
n− 2

n∑
t=1

(∆Xt − δ̂
′
LSZt)2

=
1

n− 2


 n∑

t=1

ε2
t −

n∑
t=1

εtZ
′
tD1n

(
D1n

n∑
t=1

ZtZ
′
tD1n

)−1

D1n

n∑
t=1

Ztεt




=
1

n− 2

n∑
t=1

ε2
t + op(1), (A.6)
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which converges in probability to σ2. Collecting the results yields (27). �

Proof of Lemma 4. Write the first term of (30) as

1√
n

�sn�∑
t=1

ηt

σt
=
∫ s

0
σ−1
�un�dW1n(u), (A.7)

where W1n(s) = n−1/2
∑�sn�

t=1 ηt. From Lemma 2, (W1n(·), σ2
�·n�) converges weakly to (W1(·), V (·)).

Nelson (1990, Theorem 2.3) shows that V (·) is stationary if λ < ζ2/2 and � > 0, and that under

those conditions σ−2
�·n� converges weakly to V (·)−2 (and hence σ−1

�·n�
L→ V (·)−1/2). Since {ηt} are

i.i.d. N(0, 1), the conditions of Hansen (1992a) apply, and
∫ ·
0 σ−1

�un�dW1n(u)
L→ ∫ ·0 V (u)−1/2dW1(u).

Write the remainder of (30) as n1/2
∑�sn�

i=1 υt/σt, where υt is a martingale difference sequence with

variance 2α2
n

∑∞
i=1 β

2(i−1)
n E(ε2

t−i/σ
2
t ). Using ε2

t−i/σ
2
t = η2

t−i(σ
2
t−i/σ

2
t ), and substitution of 2α2

n =

ζ2/n and β2
n = (1− ζ/

√
2n + λ/n)2 = 1− 2ζ/

√
2n + o(n−1/2), it follows that the variance of υt is

O(n−1/2), so that n−1/2
∑�·n�

i=1 υt/σt
P→ 0. This proves (30).

The results (31) and (32) follow from (30), together with the result that (n1/2D2nZ�·n�, σ−1
�·n�)

L→
(G(·), V (·)−1/2), and the fact that (ηt+υt) has bounded variance, so that again the conditions of Hansen

(1992a) for weak convergence to a stochastic integral apply.

For the results on the score and information for ξ, let et = (η2
t − 1)/

√
2, W2n(s) = n−1/2

∑�sn�
t=1 et

and define F1n(s) = (1−βn)
∑�sn�−1

i=0 βi
n = 1−β

�sn�
n = 1− exp(�sn� log(1− ζ/

√
2n+λ/n)) → 1.

Then the first component Sω of Sξ, properly normalized, satisfies√
2
n
(1− βn)Sω =

∫ 1

0
σ−2
�sn�F1n(s)dW2n(s)

L−→
∫ 1

0
V (s)−1dW2(s). (A.8)

For the second component Sα+β , we use F2n(s) = (1− βn)
∑�sn�−1

i=0 βi
nσ

2
�sn�−i−1/σ

2
�sn�, which con-

verges weakly to 1, so that√
2
n
(1− βn)Sα+β =

∫ 1

0
F2n(s)dW2n(s)

L−→
∫ 1

0
dW2(s) = W2(1). (A.9)

Note that
√
2/n(1− βn) = n−1ζ + o(n−1), so that n−1ζ (or n−1) can also be used as a normalization

in (A.8) and (A.9). The third part Sα of Sω satisfies√
1− β2

n

n
Sα =

1√
n

n∑
t=1

(
t−1∑
i=0

√
1− β2

nβ
i
n

σ2
t−i−1

σ2
t

et−i−1

)
et =

1√
n

n∑
t=1

utet, (A.10)

Now ut is a stationary process with E(u2
t ) = q, such that

√
(1− β2

n)/nSα
L−→ N(0, q). As 1− β2

n =

2ζ/
√
2n+ o(n−1/2), the normalization in (A.10) is equivalent to 21/4ζ1/2n−3/4. In summary, letting

D3n =




ζ

n
I2 0

0

√
1− β2

n

n


 , (A.11)
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we have D3nSξ = Op(1). By similar methods, it can be shown that D3nJξD3n converges, and that

D2nJδξD3n converges; the latter converges to zero due to the two parts of the score vector being uncor-

related because E[ηt(η2
t − 1)] = 0. �

Proof of Theorem 2. The result (34) follows from Lemma 4 and (14). Previous derivations show that

D2n

n∑
t=1

Zt∆Xt = D2n

n∑
t=1

Ztσtηt +D2n

n∑
t=1

ZtZ
′
tν/n

L→
∫ 1

0
G(s)V (s)1/2dW1(s) + κ

∫ 1

0
G(s)Y (s)ds, (A.12)

and similarly

Dn

n∑
t=1

ZtZ
′
tDn

L→
∫ 1

0
G(s)G(s)′ds. (A.13)

Finally,

1
n

n∑
t=1

(∆Xt − δ̂
′
LSZt)2 =

1
n

n∑
t=1

ε2
t + oP (1)

=
1
n

n∑
t=1

σ2
t +

1
n

n∑
t=1

σ2
t (η

2
t − 1) + oP (1)

L→
∫ 1

0
V (s)ds. (A.14)

This proves (35). �
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