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Abstract

This paper considers tests for a unit root when the innovations follow a near-integrated GARCH
process. We compare the asymptotic properties of the likelihood ratio statistic with that of the |east-
sguares based Dickey-Fuller statistic. We first use asymptotics where the GARCH variance process
is stationary with fixed parameters, and then consider parameter sequences such that the GARCH
process converges to a diffusion process. In both cases, we find a substantial asymptotic local power
gain of the likelihood ratio test for parameter values that imply heavy tails in the unconditional
innovation distribution.

1 Introduction

A well-known property of financial time seriesis that their conditional variance displays variation over
time, such that persistent periods of high variation are followed by low-volatility periods. This phe-
nomenon, known as volatility clustering, is modelled in the econometrics literature either by GARCH
(generalized autoregressive-conditional heteroskedasticity) type models (see Bollerdlev et al., 1994, for
an overview) or by stochastic volatility models, see e.g. Shephard (1996). When applied to daily finan-
cial returns data, both classes of models display a high degree of persistence, and hence a low degree
of mean-reversion in the volatility process. Such processes are referred to as near-integrated, since
their characteristic polynomial has a root close to but not necessarily equal to unity. Boswijk (1999)
considers asymptotic distribution theory for likelihood based estimators of the volatility parametersin
near-integrated exponential GARCH (EGARCH) models and stochastic volatility models.

In the present paper we study the effect of such near-integrated volatility processes on testing for
an autoregressive unit root in the level of the process itself (instead of its volatility). This problem
is relevant in finance, for example when models for the term structure of interest rates depend on the
presence and degree of mean-reversion in the short rate. A typical model for the short rate isthe one by
Vasicek (1977), which is essentially a first-order autoregression with constant volatility. When applied

*This paper has benefitted from dicussions with Anders Rahbek and André Lucas.
 Address for correspondence: Department of Quantitative Economics, Universiteit van Amsterdam, Roetersstraat 11, NL-

1018 WB Amsterdam, The Netherlands. E-mail: pet er b@ ee. uva. nl .



to daily or weekly interest rates, the hypothesis of a unit root (i.e., no mean-reversion) often cannot
be rejected, and a possible explanation of thisis that |east-squares based tests are not powerful enough
to discover the (weak) mean-reversion. Since interest rates clearly do not have a constant volatility,
a likelihood-based testing procedure which takes this phenomenon into account might be expected to
yield more efficient estimates and hence more powerful tests.

Previous work in thisareais by Ling and Lee (1997, 1998) and Rahbek (1999), who consider tests
for a unit autoregressive root in models with GARCH errors. They find that the maximum likelihood
estimator of the mean-reversion parameter has a limiting distribution that is a weighted average of
a Dickey-Fuller-type distribution and a normal distribution. They consider GARCH processes with
fixed parameters in the stationarity region, whereas in this paper we study the case where the volatility
parameters approach the unit root bound. Therefore, we consider parameter sequences such that the
autoregressive root in the volatility process approaches unity as the sample size increases. This alows
us to use the results of Nelson (1990) on continuous-time diffusion limits of GARCH processes. The
present paper is also closely related to Hansen (1992b, 1995), who considers ordinary least-squares,
generalized least-squares and adaptive estimation of regressions with non-stationary volatility.

The outline of the remainder of the paper is as follows. In Section 2, we define the model and
hypothesis, and the parameter sequences that will be used in the asymptotic analysis. Section 3 anal-
yses the likelihood function, the score and the information, and their asymptotic distribution under the
relevant probability measures. We study the asymptotic distributions of the Dickey-Fuller test statistic,
based on |east-squares estimation, and the likelihood ratio test statistic, both under the null hypothesis
and under local alternatives. Section 4 provides numerical evidence on the local power of these tests.
In Section 5 we investigate the relevance of these local power results in finite samples, and Section 6
concludes.

2 TheModd

Consider a univariate first-order autoregressive process with GARCH(1,1) innovations.

AXy = (X1 —p) + ey t=1,...,n, Q)
€ = Oy, )
07 = w+agi_| + Boi_y, 3)
n, ~ 1iid.N(0,1), 4

where AX; = (X; — X;—1), and where X, g9 and o2 are fixed.

The parameter v describes the degree of mean-reversion. If —2 < v < 0, then X, reverts back
to its mean . The null hypothesis that we wish to test is the unit root hypothesis, or equivaently the
no-mean-reversion hypothesis

Ho:v =0, ®)
which is tested against the adternative v < 0. The model (1) has a restricted constant term, such that
under the null hypothesis the process does not contain a drift. Other specifications of the deterministic
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component in X; can be considered, including arestricted linear trend term (to test arandom walk with
drift against a trend-reverting autoregression), but this is not considered explicitly here. Similarly, the
model can be extended to allow for more lagsin ().

The (nonnegative) parameters w, « and § characterize the dynamics of the volatility process. If
a + 3 < 1, then the variance reverts back to itsmean 02 = w/(1 — a — 3), and if a + 3 = 1 then the
variance follows a random walk (with drift if w = 0). The asymptotic distribution of the test statistics
considered in the next section will depend on what we assume about the parameter of interest -, but al'so
on assumptions about the volatility parameters (w, a, 3). We consider two alternative assumptions (in
al casesw > 0, (a, 5) > 0):

Assumption 1 Foralln > 1,~, = k/nand a + 5 < 1, with (s, p, w, o, §) fixed.

Assumption 2 For all n > 1, v, = k/n, an + 5, = 1+ A/n, w, = w/n and a,, = ¢/v/2n, with
(k, i, @, A, €) fixed, such that @ > 0, ¢ > 0 and \ < ¢2/2.

Under Assumption 1, the process X; is near-integrated with stationary volatility. The unit root
null hypothesis requires « = 0, and values x # 0 define the local alternatives. Under Assumption 2,
the variance process is also near-integrated. One possible motivation for these parameter sequences is
that the model (1)—(4) is viewed as a discrete-time approximation, for varying n but over afixed time
interval, of the continuous-time diffusion process defined below in Lemma 2, see Nelson (1990).

We conclude this section with two lemmas that describe the limiting behaviour of X, under each of
the two possible assumptions.

Lemma 1l Under Assumption 1, and asn — oo,

['n]
(Ulﬁ S e, Ulﬁxw) £ (W), U()), (6)
t=1

in D[0, 1]?, where 02 = w/(1 — a — 3), W(-) is a standard Brownian motion process on [0, 1], and
U (-) isan Ornstein-Uhlenbeck process on [0, 1]:

dU(s) = kU(s)ds + dW (s), U(0) =0. (7)

The proof of thislemmaisgiven in Ling and Li (1998, Theorem 3.3) for x = 0, inwhich case U (-)
reducesto W(-). Thisis extended to the case  # 0 by writing X .,,; as acontinuous functional of the
partial sum of &;.

Lemma 2 Under Assumption 2, and asn — oo,
1 Ln] 1 [-n] ) 1 , B
NG ’ _17—X'n’ n _>W'7W'7Y'7V' 5 8
7 e 0~ D =Xty | S ROWOY OV @

t=1



in D[0, 1], where (W1 (), Wa(+)) is a standard bivariate Brownian motion process on [0, 1], and
(Y(-),V(-)) isthe solution to the system of stochastic differential equations

dY(s) = kY (s)ds+ V(s)/2dWy(s), 9)
dv(s) = [AV(s)+ w]ds+ ¢V (s)dWa(s), (10)

with Y (0) = 0 and V(0) = o3.

The proof of thislemmafollows from Nelson (1990, Theorem 2.2 and Section 2.3). The difference
again is that Nelson considers the case k = 0, but the extension of his proof to the present case is
straightforward. If the process Y (s) is discretely sampled at times s = ¢/n, and we define X; =
VnY (t/n),t = 0,1,...,n, then the actual process generating X; may be approximated by (1)—(4)
under Assumption 2; the approximation error will vanish asn — oo, see Nelson (1990). An aternative
(Euler) approximation would lead to a discrete-time stochastic volatility-type model, but we choose to
work with the GARCH model because it has a closed-form expression for the likelihood function, which
simplifies the construction of likelihood-based test statistics considered in the next section.

3 Likelihood Analysis

The statistical analysis of model (1)—(4) isgivenin Ling and Li (1997, 1998) and Rahbek (1999), but
will be briefly repeated here.

It will be convenient to introduce the parameter vector § = (v, —yu)’ and Z; = (X;—1,1)’, such
that (1) becomes AX; = ¢'Z; + &, and the null hypothesisis Hg : § = 0. The full parameter vector is
0 = (§',w, o, B3)’, and the log-likelihood function is

n n 2
00) = ; 0,(0) = ; —% <1og 21 + log o2(0) + 22((‘;))) : (11)
wheree;(§) = AX,—§'Z;, and whereit should be noted that o7 () depends on the volatility parameters
(w, @, B), but dso, vias?_;, ontheregression parameters §. Thelog-likelihood is conditional on o and
0, Which are not observed. In practice, they may be replaced by suitable estimates (we will assume that
this has an asymptotically negligible effect).

The unrestricted parameter space for § is© = R? x RT x RT x R*, and the restricted parameter
space defined by the null hypothesisis ©g = (0,0) x R x R* x R*. Define § = argmax, g £(6)
andf = argmaxgycg, £(0), the unrestricted and restricted maximum likelihood estimators, respectively.
Thelikelihood ratio statistic for the null hypothesisis

LR =2 (z(é) - e(é)) . (12)
We will compare the performance of thistest with that of Dickey and Fuller’s (1981) F-statistic:

Py = n—2 Z?:l AXtZt{ (Z?:l ZtZt/)_l Z?:l Zt1 AKX, (13)
= - = ,
2 D1 (AXy = 0p,52)?
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with o5 = (X0, Z:Z)) "' SO0, Z;AXy; this is a monotonic transformation of the likelihood ratio
statistic for H under therestriction a = 3 = 0 (i.e., homoskedastic innovations).

Define the score vector S(0) = 0¢4(0)/06 and the observed information matrix J(6) =
—020(0) /0606’ . Conventional Taylor series expansions (corresponding to a quadratic approximation of
the log-likelihood function) result in

LR = 0'Ei[E;J(00) " "E] " Ejf+op(1)
= (0" +5(00)' T (60) EL) [ELT(60) " Er] T (BT (60) 1 S(60) +n'w) +op(1), (14)

where 6 is the true value (which is a sequence under Assumption 1 or 2), F; = [I5 : 0]’ isaselection
matrix such that 6 = E}6 and v is the normalized distance between the true and hypothesized value of

()

Therefore, we need to find an expression for S(-) and J(-), and evaluate their joint asymptotic behaviour
under either Assumption 1 or 2.

Let & = (w, [a+ 3],a), the (linearly transformed) GARCH parameters, and w;(0) = (1,07 (),
g7 1(0) — o7_1(0))". Thefollowing results are useful ingredients for the score vector:

on) 1 e2(B) 1

2 02 t—1 .
00’5(59) ﬁa ta—(; (0) . 2a8t_1((5)Zt_1 _ —2(1;/81151&—1'(5)275_1', (17)
9ot (0 9ot 1(6) =

55( g B¢ — Twl)= ;ﬂ we—i(). (18)

wheren,(0) = () /0+(0). Here we use the fact that afixed start-up value for o3 implies 903 /05 = 0
and 903 /0¢ = 0. Thuswefind

Ss(0) = %ﬂf) Z(Zt

t=1

1
jtg(((;) - 020([9) (n7(0) — 1) Zﬁi_lé‘tz’((s)zti) ; (19)
t ¢ i=1

~—

3

Se(0) = ag_(g)

1 ) t—1 . )
o (M (0) =1 Brwi—i(0) ] - (20
- <2a%<e> (n ) ;

t

Expressionsfor the blocks Jss, Js¢ and Jg¢ of the information matrix can be derived from this. We shall
not give explicit expressions here, but only provide their limiting behaviour in the next lemma, see Ling
and Li (1998).

Lemma 3 Under Assumption 1, and asn — oo,

1 L & a =1 X .
= <—2 —— i -1))_ 8" 5t—z‘> — TB("), (21)



in D[0, 1], jointly with Lemma 1, where

™ =F

1 > . 2
—+ 202 52(“)%1 7 (22)
t i=1 t

and (W (-), B(-)) isabivariate vector Brownian motion processwith var(W (1)) = var(B(1)) = 1 and
cov(W(1), B(1)) = p = —. Letting D, = diag((on)~},n=1/2) and F(s) = (U(s), 1)/,

agT

. 1
DinSs £ 7 / F(s)dB(s), 23)

0

1
DinJssDin 72/ F(s)F(s)ds, (24)

0

Furthermore,
n~1/2g L N -1 P -1/2 P

e — N(0,%), nJgg — X, n~ ' “DipnJsg — 0, (25)

where ¥ is a positive definite matrix.
These results leads to the following theorem, the proof of which is given in the Appendix:

Theorem 1 Under Assumption 1, and asn — oo,

LR £, </01F(s) [dB(s)ijU(s)dsD/UOIF(S)F(S)’ds]

-1

p
« < /O " F(s) [dB(s) + gU(s)dsD , (26)
20, £, ( /0 "R (s) —i—/fU(s)ds]), [ /0 1 F(S)F<s)’ds} B
« < /0 L F(s)[dW(s) + /fU(S)dS]) . 27)

Thelimiting distribution of L R under the null hypothesis (x = 0) depends on the nuisance parameter
p. In practice this nuisance parameter can be estimated consistently by p = 1/v/627#2, where 62 =
&/(1—a—f3) and 72 isthe sample analog of (22). Although we have not been able to obtain an explicit
formulafor p interms of o and 3, an approximation yields

~ 7 _ 1-a-8)(1-p)
p(aulg)m‘p(aalg)_\/(1_0[_6_’_0[2)(1_62_’_20[2)’ (28)

which is obtained by replacing c? /o7 in (22) by 1, and using E(1/0?) ~ (1 — a — 3 + o?)/w,
which corresponds to the continuous-record stationary distribution of 1/0? obtained by Nelson (1990).
In order to check the accuracy of this approximation, we estimate the expectation in (22) by the average,
over 1000 Monte Carlo replications!, of the sample mean corresponding to (22) with a sample size of
10,000. Thisisdonefor o + 3 € {0.1,0.2,...,0.9} and o/ (v + 3) € {0.1,0.2,...,1}. It appears

LAll numerical results have been obtained using Ox version 2.20, see Doornik (1999).




that (28) somewhat underestimates the true correlation; from alog-linear regression of the actual p’son
p(a, B), we obtain the following adjusted approximation:

P, B) = pla, B)*, (29)

which is quite accurate, with aregression standard error of about 1%.

Next, the estimate of p can be used to obtain an asymptotic p-value, either by Monte Carlo simu-
lation or by the Gamma approximation proposed by Boswijk and Doornik (1999). The power function
depends, in addition to p, only on « (it is invariant to o). In the next section, we compare the power
functions of the two statistics for two cases.

Consider now the asymptotic behaviour of the score vector and information matrix under Assump-
tion 2:

Lemma4 Under Assumption 2, and asn — oo,

['n] t—1 i
% > (;—% - U% (nf —1) Zﬁ"‘lst_z) £, / V(w) " Y2dW; (u), (30)

i=1 0

in D0, 1], jointly with Lemma 2. Letting Dy, = diag(n~!,n~'/2) and G(s) = (Y (s),1),
DonS5 5 /0 1 G(s)V(s)"V/2dWy(s), (31)
Doy JssDan  —= /0 1 G(5)G(s)'V(s) " 'ds. (32)
Furthermore, there exist non-singular norming matrices Ds,, such that
D3nSe = Op(1),  DsnJeeDsn = Op(1),  DapJseDan — 0. (39

A proof is given in the Appendix. Note that the limiting Riemann integral in (32) is the quadratic
variation of the stochastic integral in (31). The suitably normalized information matrix is block-diagonal
in the limit, because the cross-variation between the two parts of the score vector is zero in the limit.
These results imply:

Theorem 2 Under Assumption 2, and asn — oo,

-1

LR = (/ G(s)V (s) V2 [dWy(s) + kV (s) "2V (s) ds> [/ G(s ()V(s)lds}
< / G(s)V(s)"2[dWy(s )—i—/iV(s)l/QY(s)ds]), (34)
( / G(s)[V (s)/2dW, (s) + mY(s)ds])l[ /O 1 G(s)G(s)'ds /0 1 V(s)ds} B
< / G(s)[V (s)/2dW (s )+mY(s)d5]>. (35)



The theorem is proved in the Appendix. The results are closely related to those obtained by Hansen
(1992b, 1995), who considers ordinary least-squares, generalized least-squares and adaptive estima
tion of regressions with non-stationary volatility. Note that the likelihood ratio statistic is asymptoti-
cally equivalent to a Wald statistic based on weighted least-squares with known {o?}. Hansen shows
that when the process generating the non-stationary volatility is unknown, it may be estimated non-
parametrically, without loss of efficiency relative to a parametric likelihood analysis.

Boath distributionsin Theorem 2 depend on nuisance parameters, even under the null hypothesis(x =
0). In principle they are affected by al volatility parameters (w, A, ¢), athough parameter variations
that only affect the scale of V'(s) will leave the distributions in (34) and (35) unaffected. From Nelson
(1990), it appears that the function \/¢? is most relevant, since it determines the stationary distribution
of the volatility process. Unfortunately these parameters are not consistently estimable.

A possible solution to this nuisance parameter problem is to use the conditional asymptotic null
distribution of the two test statistics, given the volatility process V' (-). Although this process depends
on the parameters (w, A, (), these are variation independent of the parameter of interest «, so that
conditioning on V' does not entail aloss of information on «. In other words, V' is S-ancillary for , see
Barndorff-Nielsen (1978). Clearly the asymptotic distributionsin (34) and (35) for fixed V' will depend
on the realization of V/, and hence cannot be tabulated. However, given the independence between
W1 and V' the conditional distribution is quite easy to simulate. In practice this will involve replacing
the volatility process by its estimate V,(s) = &fmJ, with {57} the filtered estimate of {07} based
on the maximum likelihood estimates of the GARCH parameters. The results of Nelson and Foster
(1994) suggest that Vn(-) converges in probability to V'(-) in D0, 1], which in turn would imply that
the estimated conditional distribution given {67 }7_, convergesto the true conditional distribution given
{V(s),s €[0,1]}.

Before we proceed, it is of interest to discuss the difference of the two types of asymptotic approxi-
mation in Theorems 1 and 2 as o + /3 approaches 1, so that the unconditional variance o2 diverges. For
fixed parameter values (Assumption 1) the approximation (28) suggeststhat p | 0 asa + G T 1, which
is confirmed by the fact that p = 1/(o7), and o diverges whereas 7 remains finite. Thisimplies, first,
that the limiting distribution of the LR statistic will approach the x2(2) distribution under the null hy-
pothesis, because B and F' become independent. Secondly, it shows that the local power will increase,
and in fact approach 1 for al «, because the non-centrality parameter in (26) is essentialy x/p. This
suggests that in such cases the likelihood ratio test has infinite power superiority over the least-squares
based test. Note, however, that Theorem 1 is only valid under Assumption 1, which involves the con-
dition o + 8 < 1; the quality of the asymptotic approximation might deteriorateasa + 6 T 1. More
importantly, if « | 0 a thesametimeas«a + § T 1, then the above arguments are no longer valid, since
lima |0 o411 P, 3) does not exist. Thisimpliesthat for parameter values with oo 4 3 closeto 1 and «
close to 0, which are typically encountered with daily financial returns, this asymptotic approximation
will not be reliable, and we should turn to the continuous-record asymptotic approximation implied by
Assumption 2 instead.

Under Assumption 2, then, it is alowed that o + 8 = 1 and hence A = 0; no discontinuity in



the limit theory is to be expected around A = 0, as long as A < (¢?/2, which is the condition for
strict stationarity of the limiting diffusion process V' (s). The main difference between the cases A\ < 0
and 0 < X\ < §2 /2 is that in the former case the disturbances ¢, have finite variance, whereas in
the latter case the unconditional variance is infinite, since the limiting distribution of ¢; is Student’s
t(2 — 4)\/¢?), see Nelson (1990). For A = 0 the limiting distribution of LR will not be x%(2) under the
null hypothesis, since V (s)~1/2Y (s) = V(s)~1/2 [; V(u)'/2dW;(u) and Wy (s) are not independent
for A = 0. As ( increases however, the variation in V (s) increases, and one might expect that the
behaviour of V' (s)~/2Y (s) will be dominated by V (s), such that it becomes independent of 17 (s).
From the expressionsin (34) and (35) it isnot clear that the rel ative power advantage of L R will increase
with ¢; thiswill be investigated in the next section.

In summary, the results in this section indicate we may expect a power gain of the likelihood ratio
test over the Dickey-Fuller test when alarge value of a + /3 (implying persistent volatility) is combined
with a large value of « (implying a large short-run variation in the volatility). In the next section we
investigate whether these predictions are reflected in the asymptotic local power behaviour of the tests,
and in Section 5 we turn to the finite sample behaviour of the procedures.

4 Local Power

In this section we provide some numerical evidence on the local power of the two alternative test statis-
tics. First, we consider the case of stationary volatility (Assumption 1). We consider two sets of GARCH
parameters:

1 a=005p8=09ado? = w/(1—a—pF) =1, which implies p = 0.967 (the value of
p = 1/(o7) is obtained by Monte Carlo simulation, as described in Section 3). These parameter
values correspond to a relatively smooth GARCH process with strong persistence, as typically
found in empirical data sets of daily returns. The high value of the correlation coefficient suggests
that the power difference between the LR and ®, test will be relatively small in this case.

2. a = 0.35, 3 = 0.6 and 0> = 1, which implies p = 0.570. Again this leads to a rather slowly
mean-reverting GARCH process, but now the higher value of « leads to more short-run variation
in the volatility. The low value of p leads us to expect more power gains for the LR test in this
case.

Figure 1 displays the local power function of the ®; test, which is the same for both parameter
combinations, and that of the L R statistic for each data-generating process. Note that the local power
of @, is the same as the local power of LR when o = g = 0 and hence p = 1, i.e,, when there
are no GARCH effects. All results are obtained by Monte Carlo simulation, using a discretization
(1000 equidistant points) of the processes and integrals, and with 10,000 replications for the power
calculations, and 100, 000 replications for the critical values.



Figure 1: Local power of ®; and LR with stationary volatility (size = 5%).

L _— (Dl
—-—-LR(casel) -
--------- LR (case 2) e

As expected, the power gain of the LR test relative to the least-squares-based &, is very small
when (a, 3) = (0.05,0.9). This suggests that for such GARCH processes, one might as well use
the conventional test. For the second parameter combination, however, the power gain is much larger.
Therefore, these results confirm the prediction in the previous section that only when the volatility
process hasitself a high volatility (corresponding to a high value of «), the likelihood ratio test yields a
substantial power gain over the least-squares based Dickey-Fuller test.

Next, we consider the local power function when the volatility process is near-integrated. In this
case we consider four parameter configurations:

1. A = —100, ¢ = +/10. This corresponds to the first case ((a, 3,) = (0.05,0.9)) considered
above, with n = 2000.

2. A = —100, ¢ = 74/10. For n. = 2000, this corresponds to the second case above ((av, 3,,) =

CA
(0.35,0.6)), which leads to more variation in the volatility process.

3. A\ = —40, ¢ = 2. Thisisaprocess with less mean-reversion in the volatility than case 1, but with
the same value of —\/¢? = 10; it correspondsto (o, 3,,) = (0.05,0.9) for n = 800. Therefore,
we expect roughly the same results asin case 1.

4. X\ = —40, ¢ = 14. Thisis comparable to case 2 (same —\/¢% = 10/49 ~ 0.2), but with less
mean-reversion in the volatility, and correspondsto («.,, 3,,) = (0.35,0.6) for n = 800.
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Inall casesweset w = —\, such that V' (s) revertsto 1, but the results are invariant to «o, aslong as
the starting value is chosen appropriately. We use a fixed start-up value V' (0) = 1, which corresponds
to the expectation of the stationary distribution of V(s); aternatively, one could draw V' (0)~* from
its stationary T'(1 — 2)\/¢?, 2w /¢?), distribution, see Nelson (1990). An important difference between
cases 1 and 3 on the one hand, and cases 2 and 4 on the other hand, is the existence of higher moments
of £;. Nelson’s (1990) limiting ¢(2 — 4 /¢?) distribution for the disturbances implies that ¢, has no
finite integer moments beyond the variance in cases 2 and 4, whereas is has much higher moments (up
to2 — 4)/¢? = 42) incases1 and 3.

For each test, we perform a conditional and an unconditional version. The unconditional version
involves Monte Carlo simulation of the 5% critical value for the given parameter combination (based
on 100, 000 replications), and defining the local power as the rejection frequency (based on 10,000
replications) at this critical value. In practice this is infeasible, since the volatility parameters are not
known and not consistently estimable, but obtaining the critical valuesis of interest to investigate how
sensitive they are to parameter variations. In the conditional version of the test, we simulate the p-value
(based on 1000 replications), for each of the 10, 000 realizations of the test statistic, conditional on the
actual volatility process for that realization, and reject when this p-value is less than 0.05. In practice
thelocal power of the conditional and unconditional versions of the test turns out to be amost identical,
so we only report the conditional versionsin Figure 2.

Figure 2: Local power of ®; and L R with near-integrated volatility (size = 5%).
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The results clearly show the expected power gain of the LR test for cases 2 and 4, whereas the two
tests are almost equivalent in cases 1 and 3. Furthermore, the power functions in cases 1 and 3 are
very close to the corresponding case 1 in Figure 1 (using fixed-parameter asymptotics), and similarly
the behaviour in cases 2 and 4 resembles the corresponding case 2 in Figure 1. The effect of A is much
weaker, although we see that the power is dlightly lower for the small A\ cases. It turns out that the
critical values are also fairly close to the corresponding fixed-parameter cases, so that the two types
of asymptotics are largely in agreement. As one might expect, this agreement would break down for
parameter values such that « + 3 = 1, and hence A = 0. The fixed-parameter asymptotic analysis,
although not strictly applicable anymore, would suggest that p = 0, which would imply x? critical
values and an infinite power gain of the LR test. However, additional ssmulations indicate that the
behaviour of the tests under o, + 3,, = 1 and v, = ¢/+/2n depends very much on ¢, comparable to
cases 1-4 in Figure 2; only when ¢ — oo the null distribution of LR approaches the x%(2) distribution,
and the local power becomes 1 for al «.

5 A Monte Carlo Experiment

In this section we consider the finite-sample behaviour of the tests in a small-scale Monte Carlo ex-
periment. We consider n € {250,2000}, which would correspond to approximately 1 and 8 years of
daily financial data. Here n = 250 may be considered a small sample for GARCH estimation; usually
a number of years of daily data are considered. Next, we continue to consider the two near-integrated
cases (a, ) = {(0.05,0.9), (0.35,0.6) }; note that these are chosen the same for both sample sizes, so
that one might expect a relatively better approximation by the stationary (fixed-parameter) asymptotic
distributions for larger sample sizes. Furthermore we consider v,, = «/n with x € {0, -5, —20}, to
study both the size and power properties of the tests.

For LR and ®; tests’ we compute two types of p-values, the first based on fixed-parameter asymp-
totics, and the second based on near-integrated asymptotics, conditional on the estimated {57}. For
the fixed-parameter asymptotic p-values, we use the Gamma approximation of Boswijk and Doornik
(1999), in combination with p(«, 3) given in (28)—29), where o and (3 are replaced by their unre-
stricted ML estimates. Finally, we also consider QL R, the quasi-likelihood ratio test based on the
assumption that ¢, ~ i.i.d. ¢(v). This test isincluded to see whether the same power gain can be
obtained by atest that correctly specifies the marginal distribution of the disturbances, although it mis-
specifies the volatility dynamics. From, e.g., Lucas (1997), it follows that when ¢, isindeed i.i.d. t(v),
the asymptotic distribution of QLR is the same as that of LR in (26), but with p the correlation be-
tween ¢, and —0log f,(e¢)/0et, where f,, denotes the ¢(v) density. It can be shown that for v > 2,
p? = (V? +v —6)/(v?> + v). Replacing v by the unrestricted ML estimate, this yields again a p-value
for thistest using the Gamma approximation.

The results, based on 2000 replications, are given in Table 1, and give rise to the following con-
clusions. First, we see that the fixed-parameter asymptotic p-values give a better approximation for

?In the likelihood function, the volatility processisinitidized using 63 = 25 = n~' 3.1 | AXZ.
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the small o generating process, but a worse approximation for the « = 0.35 case. In the latter case,
QLR has arather large size distortion for n = 250, but this seems to vanish as n increases. In fact,
for n = 2000 there hardly seem to be any substantial size distortions left, with the exception of the
®, test using ordinary critical values when « is large. The power behaviour of the LR and ®; tests
is as predicted by the asymptotic analysis. For small «, the power of the testsis virtually identical, so
that there is not much gain in using the LR test. When « is large on the other hand, the power gain is
quite clear, especialy for the larger sample size. Finally, we note that for this case the power curve of
the Student ¢-based QL R test lies between that of &, and L R: although there is a clear gain in fitting
the marginal tail behaviour of the disturbances by a Student’s ¢ instead of a normal distribution, we see
that the misspecification of the conditional variance gives this test a power disadvantage relative to the
GARCH-based LR test.

Table 1: Rejection frequenciesof LR, ®; and QLR

n = 250 n = 2000
k=0 | k=-5 | k=-20 k=0 Kk=-5 | k=-20
a =0.05, | LR, fixed 0.059 0.086 0.784 0.055 0.082 0.794
8=0.9 LR, near-int. 0.067 0.094 0.809 0.061 0.091 0.813
4, fixed 0.059 0.086 0.775 0.054 0.078 0.752
4, near-int. 0.067 0.095 0.798 0.058 0.085 0.770
QLR 0.062 0.085 0.760 0.054 0.079 0.755
a=0.35, | LR, fixed 0.074 0.248 0.823 0.049 0.448 0.989
B =0.6 LR, near-int. 0.063 0.249 0.926 0.040 0.417 0.990
4, fixed 0.099 0.150 0.755 0.073 0.127 0.739
4, near-int. 0.070 0.120 0.689 0.052 0.114 0.705
QLR 0.115 0.190 0.754 0.055 0.234 0.913

6 Conclusion

In this paper we have investigated likelihood ratio testing for a unit root when the innovations fol-
low a near-integrated GARCH process. We have analysed the asymptotic null distribution and local
power function of the likelihood ratio test and the least-squares based Dickey-Fuller test, both under
fixed GARCH parameters and under near-integrated sequences. It has been found that the two types of
asymptotics are largely in agreement, as long as the sum of the GARCH parametersis less than one. A
considerable power gain potential for the LR test has been found to occur with GARCH processes with
alarge short-run variation in the volatility, corresponding to a heavy-tailed marginal distribution of the
innovations. These asymptotic results have been shown to be reflected in the finite sample behaviour of
the tests.
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Appendix
Proof of Theorem 1. Consider first the limiting distribution of LR. Let D3, = diag(D1y,, n~/213),
so that £ D3,, = D1, E}. Therefore, (14) implies, with S = S(6y) and J = J(6y),

LR = [nW'D}!+ 5D} (D;nJD* ) B [Ey(D}, I DY) T E ]

x [E{(D3,JD5,) "t D, S + Di,in"tv] 4+ op(1). (A.1)
Lemma3yields
1 ) 1
F(s)dB F(s)F(s)'ds 0
D}, £ T/ FOWBE N e o, £ | T / R
N(0,3) 0 »

and clearly Dy, n 1y — (ok,0)’. Combining these results gives

LR = [((m, 0)—|—T/01dB(s)F(s)/ <72/01F(5)F(s)’ds> _1] [72/01 F(s)F(s)’ds]
X [(TQ/OIF(S)F(S),dS)17‘/01F(S)dB(S)—|—(O'H,O)/
= [(am, 0) /OIF(S)F(S)/dS+/01dB(s)F(s)/] [/OlF(s)F(s)’ds} B

X [/OIF(S)F(S)'dS(UTﬁ,O)/—l—/olF(s)dB(s)} : (A.3)

and using o = 1/p, thisyields (26). For ®;, we use Lemma 1 together with the continuous mapping
theorem to yield

n 1
DY 22D [ FoF(s)ds (A4)
t=1 0

and

n n n
Din) ZAX; = Dy Z ZZiD1n D0+ Din Y Zie
t=1 t=1

—>/F Vds(ow, 0) /F VAW ()0
- . /0 F()[dW (s) + KU (s)]ds. (A.5)

Furthermore,

t=1 t=1 t=1

-1
1 n n n n
= — (Z e} — Y aZ{Dy, <D1n > ZtZ;Dm> Din Y Zig
t=1

= n_2263+op(1), (A.6)
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which convergesin probability to o2. Collecting the results yields (27). O

Proof of Lemma 4. Write the first term of (30) as

lsn] s
U
2= (o) %

where Wi, (s) = =221 - From Lemma 2, (Win(-), 0%,,,) convergesweakly to (W1(-), V().
Nelson (1990, Theorem 2.3) shows that V (-) is stationary if A < §2/2 and @ > 0, and that under
those conditions o? converges weakly to V'(-)~* (and hence aL o £ V( )~1/2). Since {n,} are
i.i.d. N(0,1), the conditions of Hansen (1992a) apply, and |, o LunJ dW1n(u fo w)~V2dWy (u).

Write the remainder of (30) asn'/2 S gjj vy /oy, where vy isamarti ngal e dlfference sequence with
variance 2a2 3", B2VE (@2 /o?). Usinge2_, /o2 = n?_(02_,/0?), and substitution of 202 =
/nand 32 = (1 —¢/V2n 4+ MN/n)? =1 —2(/v2n + o(n~1/2), it follows that the variance of v, is
O(n=1/2), sothat n=/2 5>t v, /oy £ 0. This proves (30).

The resuilts (31) and (32) follow from (30), together with the result that (n'/2D5,Z.,,|, 0 i 1J)
(G(-), V(-)~1/?), and the fact that (1, +v;) has bounded variance, so that again the conditions of Hansen
(1992a) for weak convergence to a stochastic integral apply.

For the results on the score and information for &, let e; = (77 — 1) /v/2, Way(s) = n=1/2 Z}fﬁj et

L
—

and define Fi,,(s) = (1—3,,) S g1 =1 5™ = 1 —exp(|sn | log(1 — ¢/v2n+ A/n)) —
Then the first component S, of Se, properly normalized, satisfies
2 1
\/;(1 = Bn) S :/ 7 on) i (8) AW (s —>/ )~ dWa(s). (A-8)
0

For the second component S,,., 5, We use Fy,, (s) = (1 — 8,) 01 gi o "on| i1/, » Which con-
verges weakly to 1, so that

1 1
\/g(l — Bn)Satp = /0 Fan(8)dWan(s) — ; dWs(s) = Wa(1). (A.9)

Notethat \/2/n(1 — 3,) = n~'¢ +o(n~'), sothat n=1¢ (or n~1) can also be used as anormalization
in (A.8) and (A.9). Thethird part S, of S,, satisfies

1 _5721 1 n t—1 5 _i_ 1 n
" Sa = %; ; 1—5 5 2 €t—i—1 ) €t = ﬁ;Uteh (A.10)

7

Now v, is astationary processwith E(u2) = g, suchthat /(1 — 82)/nSa —= N(0,q). As1 — 3% =
2¢/v/2n + o(n~1/2), the normalization in (A.10) is equivalent to 21/4¢1/2,,=3/4, In summary, letting

£IQ 0

Dy, = | " , A1
3n . W (A.11)
n
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we have D3, S¢ = O,(1). By similar methods, it can be shown that Ds,,J:Ds,, converges, and that
Dy, Jse D3y, converges, the latter converges to zero due to the two parts of the score vector being uncor-
related because E[n,(n7? — 1)] = 0. O

Proof of Theorem 2. The result (34) follows from Lemma4 and (14). Previous derivations show that

Dgnzn:ZtAXt = Dgnzn:ZtUmt+D2nzn:ZtZt’V/n
t=1 t=1
£ / G(s)V (s)2dW (s) +;<;/ G(s)Y (s)ds, (A.12)
and similarly
Dnznjztngn £ /01 G(s)G(s)'ds. (A.13)
t=1
Finaly,
lzn:(AXt _im)? = lzn:a§+0p(1)
n = n
= _ZUt+ th 1) +op(1)
£ / (A.14)
This proves (35). O
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