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ABSTRACT Recent work on adaptive systems for modeling financial
markets is discussed. Financial markets are viewed as evolutionary systems
between different, competing trading strategies. Agents are boundedly ra-
tional in the sense that they tend to follow strategies that have performed
well, according to realized profits or accumulated wealth, in the recent past.
Simple technical trading rules may survive evolutionary competition in a
heterogeneous world where prices and beliefs co-evolve over time. Evolu-
tionary models can explain important stylized facts, such as fat tails, clus-
tered volatility and long memory, of real financial series.
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1 Introduction

In the past two decades economics is witnessing an important paradigmatic change: a
shift from a rational representative agent analytically tractable model of the economy
to a boundedly rational, heterogeneous agents computationally oriented evolutionary
framework. This change has at least three closely related aspects: (i) from representative
agent to heterogeneous agent systems; (ii) from full rationality to bounded rationality,
and (iii) from a mainly analytical to a more computational approach. Kirman (1992)
e.g. has vividly described the limitations of the representative agent framework and
made forceful arguments for modeling an economy as an interacting multi-agent system.
Sargent (1993) e.g. contains an extensive discussion of the importance of bounded
rationality in recent economic modeling.

Full rationality implies that all agents are rational and the rational expectations hy-
pothesis (REH) thus fits nicely within a representative agent framework. In contrast,
in a heterogeneous world full rationality seems impossible, since it requires perfect
knowledge about the beliefs of all other agents. Obviously, heterogeneity complicates
the modeling framework and may lead easily to analytical intractability. A computa-
tional approach thus seems to be better suited for investigating a heterogeneous agent
world. One might describe these observed changes in economics as a shift in paradigm
and research methodology from a rather abstract Arrow-Debreu general equilibrium
representative agent model to a bounded rationality, multi-agent based, computational



approach to economics.

In finance in the last decade a similar paradigmatic shift seems to occur, from a
perfectly rational world where asset allocations and prices are completely determined
by economic fundamentals (e.g. Fama (1970)), to a boundedly rational world where
heterogeneous agents employ competing trading strategies and prices may, at least
partly, be driven by ‘market psychology’ (e.g. Shiller (1989)). An important goal of
agent based modeling of financial markets is to explain important observed stylized
facts such as: (i) asset prices are persistent and have, or are close to having, a unit
root and are thus (close to) non-stationary; (ii) asset returns are fairly unpredictable,
and typically have little or no autocorrelations; (iii) asset returns have fat tails and
exhibit volatility clustering and long memory. Autocorrelations of squared returns and
absolute returns are significantly positive, even at high order lags, and decay slowly; (iv)
Trading volume is persistent and there is positive cross correlation between volatility
and volume.

A rapidly increasing number of structural heterogeneous agent models have been
introduced in the finance literature, recently, see for example Arthur et al. (1997),
Brock (1993, 1997), Brock and LeBaron (1996), Chiarella (1992), Chiarella and He
(2000), Dacorogna et al. (1995), DeGrauwe et al. (1993), De Long et al. (1990), Farmer
(1998), Farmer and Joshi (2000), Frankel and Froot (1988), Kirman (1991), Kirman
and Teyssiere (2000), LeBaron (2000), LeBaron et al. (1999), Lux (1995), Lux and
Marchesi (1999a,b) and Wang (1994), as well as many more references in these papers;
see also the websites of Tesfatsion (2001) and LeBaron (2001) for information and recent
working papers on interacting agent systems in economics and finance. Some authors
even talk about a Interacting Agents Hypothesis, as a new alternative to the Efficient
Market Hypothesis. In all these heterogeneous interacting agent models different groups
of traders, having different beliefs or expectations, co-exist. Two typical trader types
can be distinguished. The first are rational, ‘smart money’ traders or fundamentalists,
believing that the price of an asset is determined completely by economic fundamentals.
The second typical trader type are called chartists or technical analysts, believing that
asset prices are not determined by fundamentals, but that they can be predicted by
simple technical trading rules based upon patterns in past prices, such as trends or
cycles.

Most of the heterogeneous agent literature is computationally oriented. Although a
computational approach provides useful insight and intuition, a disadvantage of com-
puter simulations is that it is not always clear what exactly causes an observed simu-
lation outcome. Fortunately, another paradigmatic shift in the last decades in mathe-
matics, namely the study of nonlinear possibly chaotic dynamical systems, opens the
possibility to approximate complicated computer models by simple, stylized nonlinear
systems. In particular, the fact that simple deterministic nonlinear systems exhibit
bifurcation routes to chaos and strange attractors, with ‘random looking” dynamical
behavior, has received much attention. For example, there are two important phenom-
ena in simple nonlinear systems which may play an important role in generating some
of the stylized facts in finance. Volatility clustering may e.g. be explained by so-called
intermittent chaotic motion or by simultaneous co-existence of different attractors (e.g.
coexistence of a stable steady state and a stable limit cycle) leading to irregular switch-
ing between low volatility and high volatility phases.

Brock and Hommes (1997a,b, 1998), henceforth BH, propose simple Adaptive Belief



Systems (ABS) to model economic and financial markets. The simple ABS try to cap-
ture the essential features of the more complicated artificial computer stock markets.
An ABS is an evolutionary competition between trading strategies. Different groups
of traders have different expectations about future prices and future dividends. For
example, one group might be fundamentalists, believing that asset prices return to
their fundamental equilibrium price, whereas another group might be chartists, ex-
trapolating patterns in past prices. Traders choose their trading strategy according to
an evolutionary ‘fitness measure’, such as accumulated past profits. Agents are bound-
edly rational, in the sense that most traders choose strategies with higher fitness. A
convenient feature of an ABS is that the model can be formulated in terms of devia-
tions from a benchmark fundamental. In fact, the perfectly rational EMH benchmark
is nested within an ABS as a special case. An ABS may thus be used for experimental
and empirical testing whether deviations from a suitable RE benchmark are signifi-
cant. In particular, the ABS exhibits coexistence of a stable steady state and a stable
limit cycle. When buffeted with dynamic noise, irregular switching occurs between
close to the fundamental steady state fluctuations, when the market is dominated by
fundamentalists, and periodic fluctuations when the market is dominated by chartists.

New classical economists have viewed ‘market psychology’ and ‘investors sentiment’
as being irrational however, and therefore inconsistent with the REH. For example,
Friedman (1953) argued that irrational speculative traders would be driven out of the
market by rational traders, who would trade against them by taking long opposite
positions, thus driving prices back to fundamentals. BH 1998 show that this need not
be the case and that simple, technical trading strategies may survive evolutionary
competition, even in the long run.

This paper reviews simple ABS and discusses some recent extensions. The paper is
organized as follows. In section 2 we present ABS in a general mean-variance frame-
work, while section 3 presents a simple, stationary example. Section 4 discusses a
non-stationary example and finally section 5 gives some concluding remarks.

2 Adaptive Belief Systems

This section reviews the notion of an Adaptive Belief System (ABS), as introduced
in Brock and Hommes (1997,1998). An ABS is in fact a standard discounted value
asset pricing model derived from mean-variance maximization, extended to the case of
heterogeneous beliefs. Agents can either invest in a risk free asset or in a risky asset.
The risk free asset is perfectly elastically supplied and pays a fixed rate of return r; the
risky asset, for example a large stock or a market index, pays an uncertain dividend.
Let p; be the price per share (ex-dividend) of the risky asset at time ¢, and let y; be
the stochastic dividend process of the risky asset. Wealth dynamics is given by

Wi =1 +r)We 4 (Pra1 + yer1 — (L +7)p1) 2, (1)

where bold face variables denote random variables at date ¢ + 1 and z; denotes the
number of shares of the risky asset purchased at date t. Let F; and V; denote the
conditional expectation and conditional variance based on a publically available infor-
mation set such as past prices and past dividends. Let Ej; and Vj,; denote the ‘beliefs’
or forecasts of trader type h about conditional expectation and conditional variance.
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Agents are assumed to be myopic mean-variance maximizers so that the demand zj,
of type h for the risky asset solves

mas{ B (W] = 5Viu[Wel), )

where a is the risk aversion parameter. The demand zj; for risky assets by trader type

h is then
_ Ewpir +yen — (L+7)p]

B aVie[Per1 + Y1 — (1 +7)py] B

Zht

(3)
En[pes1 + yip1 — (L4 7)pe

ao? ’

where the conditional variance Vi, = o2 is assumed to be equal for all types. Let z°
denote the supply of outside risky shares per investor, assumed to be constant, and let
np denote the fraction of type h at date t. Equilibrium of demand and supply yields

H
E —(1
Z - ht[Pt+1 +yir1 — ( +T)pt] _ s (4)
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where H is the number of different trader types. BH focus on the special case of zero
supply of outside shares, i.e. z° = 0, for which the market equilibrium equation can be
rewritten as!

H
(L4 7r)pe = D nreBut[Pest + Yesa- (5)
h=1
Let us first discuss the EMH-benchmark with rational expectations. In a world where
all traders are identical and expectations are homogeneous the arbitrage market equi-
librium equation (5) reduces to

(1 +7)pt = Ei[Prr1 + Yeral, (6)

where E; denotes the common conditional expectation of all traders at the beginning
of period t, based on a publically available information set I; such as past prices and
observed dividends, i.e. Iy = {pi_1,Pt—2,---;Yt, Yt—1,- - -} It is well known that, using
the arbitrage equation (6) repeatedly and assuming that the transversality condition

i BePer] (7)
oo (14 7)k

holds, the price of the risky asset is uniquely determined by (8)

[e.¢]

vy o )

The price p; in (8) is called the EMH fundamental rational expectations (RE) price,
or the fundamental price for short. The fundamental price is completely determined by
economic fundamentals and given by the discounted sum of expected future dividends.

In the examples of ABS in section 4, we will add a noise term &; to the RHS of the market
equilibrium equation (5), representing a model approximation error.
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In general, the properties of the fundamental price p; depend upon the stochastic
dividend process y;. Section 3 focuses on a stationary example with an IID dividend
process ¥, whereas section 4 discusses a non-stationary example with a geometric
random walk for dividends.

It should be noted that, in addition to the fundamental solution (8) so-called bubble
solutions of the form

pe=p; + (1+7)(po — pp) 9)

also satisfy the arbitrage equation (6). It is important to note that along the bub-
ble solutions (9), traders have rational expectations. These rational bubble solutions
are explosive and do not satisfy the transversality condition. In a perfectly rational
world, traders realize that speculative bubbles cannot last forever and therefore they
will never get started and the finite fundamental price p; is uniquely determined. In a
perfectly rational world, all traders thus believe that the value of a risky asset equals
its fundamental price forever. Changes in asset prices are solely driven by unexpected
changes in dividends and random ‘news’ about economic fundamentals. In a heteroge-
neous evolutionary world however, the situation will be quite different, and we will see
that evolutionary forces may lead to endogenous switching between the fundamental
price and the rational self fulfilling bubble solutions.

Heterogeneous beliefs.

We shall now be more precise about traders’ expectations (forecasts) about future
prices and dividends. It will be convenient to work with

Tt =Pt — p;ka (10)

the deviation from the fundamental price. We make the following assumptions about
the beliefs of trader type h, for all h, t:

Bl Vig[pir1 +yir1 — (L+7)p] = Vi[pee1 + yer1 — (1L +17)p] = 0.

B2 Eht[}’t+1] = Et[}’t+1]-

B3 All beliefs Ep[pii1] are of the form

Eni[pis1] = Et[P::kH] + fa(Te1, .. T ). (11)

According to assumption B1 beliefs about conditional variance are equal for all types,
as discussed above already. Assumption B2 states that expectations about future div-
idends y;,1 are the same for all trader types and equal to the conditional expectation.
All traders are thus able to derive the fundamental price p; in (8) that would prevail
in a perfectly rational world. According to assumption B3, traders nevertheless believe
that in a heterogeneous world prices may deviate from their fundamental value p; by
some function f;, depending upon past deviations from the fundamental. Each fore-
casting rule f;, represents the model of the market according to which type h believes
that prices will deviate from the commonly shared fundamental price. For example, a
forecasting strategy f, may correspond to a technical trading rule, based upon short



run or long run moving averages, of the type used in real markets. We will use the
short hand notation

fht = fh(xtfla s ,th,L) (12)

for the forecasting strategy employed by trader type h.

An important and convenient consequence of the assumptions B1-B3 concerning
traders’ beliefs is that the heterogeneous agent market equilibrium equation (5) can be
reformulated in deviations from the benchmark fundamental. In particular substituting
the price forecast (11) in the market equilibrium equation (5) and using the facts that
the fundamental price p; satisfies (1 +7)p; = E¢[p},, + y4+1] and the price p; = x; + p}
yields the equilibrium equation in deviations from the fundamental:

H H
(L+7r)ze = npLpe[Xe1] = D e fne- (13)
h=1 h=1

An important reason for our model formulation in terms of deviations from a bench-
mark fundamental is that in this general setup, the benchmark rational expectations
asset pricing model is nested as a special case, with all forecasting strategies fn; = 0.
In this way, the adaptive belief systems can be used in empirical and experimental
testing whether asset prices deviate significantly from anyone’s favorite benchmark
fundamental.

Evolutionary dynamics

The evolutionary part of the model describes how beliefs are updated over time, that
is, how the fractions ny; of trader types in the market equilibrium equation (13) evolve
over time. Fractions are updated according to an evolutionary fitness or performance
measure. The fitness measures of all trading strategies are publically available, but
subject to noise. Fitness is derived from a random utility model and given by

Uni = Unt + €, (14)

where Uy, is the deterministic part of the fitness measure and €, represents noise.
Assuming that the noise €, is IID across h = 1, ... H drawn from a double exponential
distribution, in the limit as the number of agents goes to infinity, the probability that
an agent chooses strategy h is given by the well known discrete choice model or ‘Gibbs’
probabilities?

eXp(ﬁUh,t,l)

H
7 ) Zt—l = Z eXp(ﬂUh,t—l)u (15)
t—1

h=1

Npt =

where Z; 1 is a normalization factor in order for the fractions n, to add up to 1.
The crucial feature of (15) is that the higher the fitness of trading strategy h, the
more traders will select strategy h. The parameter § in (15) is called the intensity of
choice, measuring how sensitive the mass of traders is to selecting the optimal prediction
strategy. The intensity of choice (3 is inversely related to the variance of the noise terms
ent- The extreme case 3 = 0 corresponds to the case of infinite variance noise, so that
differences in fitness cannot be observed and all fractions (15) will be fixed over time

2see Manski and McFadden (1981) and Anderson, de Palma and Thisse (1993) for extensive dis-
cussion of discrete choice models and their applications in economics.
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and equal to 1/H. The other extreme case 3 = +0o corresponds to the case without
noise, so that the deterministic part of the fitness can be observed perfectly and in each
period, all traders choose the optimal forecast. An increase in the intensity of choice ¢
represents an increase in the degree of rationality w.r.t. evolutionary selection of trading
strategies. The timing of the coupling between the market equilibrium equation (5) or
(13) and the evolutionary selection of strategies (15) is crucial. The market equilibrium
price p; in (5) depends upon the fractions ny.. The notation in (15) stresses the fact
that these fractions ny; depend upon past fitnesses Uy, ;—1, which in turn depend upon
past prices p;_1; and dividends y; 1 in periods ¢ — 1 and further in the past as will
be seen below. After the equilibrium price p; has been revealed by the market, it will
be used in evolutionary updating of beliefs and determining the new fractions ny ;1.
These new fractions ny 1 will then determine a new equilibrium price p;;1, etc.. In
the ABS, market equilibrium prices and fractions of different trading strategies thus
co-evolve over time.

A natural candidate for evolutionary fitness is accumulated realized profits, as given
by
Eh,t—l[Pt +y: — Rpi_1]

ao?

where R = 1+r is the gross risk free rate of return and 0 < n < 1is a memory parameter
measuring how fast past realized fitness is discounted for strategy selection. The first
term in (16) represents last period’s realized profit of type h given by the realized excess
return of the risky asset over the risk free asset times the demand for the risky asset by
traders of type h. In the extreme case with no memory, i.e. n = 0, fitness Uy; equals net
realized profit in the previous period, whereas in the other extreme case with infinite
memory, i.e. n = 1, fitness Uy, equals total wealth as given by accumulated realized
profits over the entire past. In the intermediate case, the weight given to past realized
profits decreases exponentially with time.

Unt = (pr +y: — Rpi—1) +nUp -1 (16)

3 A stationary example

This section presents a stationary example due to Gaunersdorfer and Hommes (2000).
The random dividend process is IID and given by

Yr =Y+ €&, (17)
with constant mean E[y;] = 3. In this case, the fundamental price (8) reduces to a
constant given by
f e y y
= —_— =, 18
b 1;::1 (I4+r) r (18)
Let there be two types of traders, with forecasting rules
Plepi=fu = p +v(p-1—p), 0<v <1, (19)
Porr=Ju = D1 +9gPe1—pi2), g>0. (20)

Trader type 1 are fundamentalists, believing that tomorrow’s price will move in the
direction of the fundamental price p* by a factor v. A special case occurs for v =1, so
that

Jit = pi-1, (21)



and we will refer to this type as an EMH-believer because the naive forecast is consistent
with a random walk for prices. Trader type 2 are simple trend extrapolators, extrapolat-
ing the latest observed price change, so that the forecasting rule now includes two time
lags. In the stationary example, we assume that beliefs on the conditional variance are
the same and constant for both types, i.e.

VielPes1 + yie1 — (L+7)p] = 0. (22)

Market equilibrium (5) in a world with fundamentalists and chartists as in (19-20),
with common expectations on IID dividends Fi[y:.1] = ¥, becomes

(14 r)p, = nu(p* +v(p—1 — p*))+
(23)
not(Pi—1 + g(Pi—1 — Pe—2)) + § + 64,

where ny; and no; represent the fractions of fundamentalists and chartists respectively
and ¢; is an IID random variable representing model approximation error.

Beliefs will be updated by conditionally evolutionary forces. The basic idea is that
fractions are updated according to past fitness, conditioned upon the deviation of
actual prices from the fundamental price. The evolutionary competitive part of the
updating scheme follows the BH-framework with profits as the fitness measure; the
additional conditioning upon deviations from the fundamental is motivated by the
approach taken in the Santa Fe artificial stock market in Arthur et al. (1997) and
LeBaron et al. (1999). The evolutionary part of the updating of fractions yields the
discrete choice probabilities

e = exp(BUn,1-1)/Zi-1, h=1, 2 (24)

as in (15) with the fitness measure Uy, given by past realized profits as in (16).
In the second step of updating of fractions, the conditioning on deviations from the
fundamental by the technical traders is modeled as

N = TNorexpl—a(pr 1 — p*)Q], a>0 (25)
nyi = 1-— Not. (26)

According to (25) the fraction of technical traders decreases more, the further prices
deviate from their fundamental value p*. As long as prices are close to the funda-
mental, updating of fractions will almost completely be determined by evolutionary
fitness (24), but when prices move far away from the fundamental, the correction term
exp[—a(pi_1 — p*)?] in (25) becomes small. The majority of technical analysts thus be-
lieves that temporary speculative bubbles may arise but that these bubbles cannot last
forever and that at some point a price correction towards the fundamental price will
occur. The condition (25) may be seen as a weakening of the transversality condition
in a perfectly rational world, allowing for temporary speculative bubbles.

The noisy conditional evolutionary ABS with fundamentalists versus chartists is
given by (19-20), (23), (24) and (25-26). By substituting all equations into (23) a 4-th
order nonlinear stochastic difference equation in prices p; is obtained. It turns out that
this nonlinear evolutionary system exhibits periodic as well as chaotic fluctuations of



asset prices and returns; a detailed mathematical analysis of the bifurcation routes
to strange attractors and coexisting attractors is given in Gaunersdorfer, Hommes and
Wagener (2000). Here we focus on one simple, but typical example with EMH-believers,
i.e. v = 1, versus trend followers.

Figure 1 compares 10,000 time series observations of the stationary example buffeted
with dynamic noise with 40 years of daily S&P 500 data®. It should come as no surprise
that for our stationary model the price series in the top panels are quite different, since
S&P 500 is non-stationary and strongly increasing. Prices in our evolutionary model
are highly persistent however and close to having a unit root. The model price series
clearly exhibits sudden large movements, which are triggered by random shocks and
amplified by technical trading. When prices move too far away from the fundamental
p* = 1000 technical traders condition their rule upon the fundamental and switch
to the EMH-belief. With many EMH believers in the market, prices have a (weak)
tendency to return to the fundamental value. As prices get closer to the fundamental,
trend following behavior may become dominating again and trigger another fast price
movement.

We next turn to the time series patterns of returns fluctuations and the phenom-
enon of volatility clustering. Returns are computed as relative price changes. The third
panel in figure 1 shows that the autocorrelations of the returns, squared returns and
the absolute returns of the ABS-model series are similar to those of S&P 500, with
(almost) no significant autocorrelations of returns and slowly decaying autocorrela-
tions of squared and absolute returns. Returns are (linearly) unpredictable and exhibit
clustered volatility. Although the ABS-system considered here is a nonlinear dynamic
system with only 4 lags, it exhibits long memory with long range autocorrelations. Our
simple stationary ABS thus exhibits a number of important stylized facts of S&P 500
returns data.

4 A non-stationary example

This section considers a simple example of a non-stationary ABS.* It is far from trivial
to study nonlinear, non-stationary dynamical systems subject to random shocks. The
example discussed below exhibits oscillatory (periodic or perhaps chaotic) fluctuations
around a (stochastic) trend. There is hardly any theory about such nonlinear, non-
stationary systems. For our evolutionary ABS non-stationarity makes the analysis much
more complicated, since growing trends in asset prices will affect dynamic evolutionary
switching of trading strategies. This section presents some preliminary simulations of
non-stationary ABS.
Assume that the dividend process follows a geometric random walk, i.e.,

log Y1 = logys + p + €441, (27)

where €, ~ N(0,0.) and p is a drift term. Beliefs on dividends are the same for all

3The October 1987 crash and the two days thereafter have been excluded. The returns for these
days were about —0.20, 4-0.05, and +0.09.

4This section is based on an ongoing research project on the dynamics of non-stationary ABS,
jointly with Andrea Gaunersdorfer (University of Vienna), Florian Wagener and Roy van der Weide
(both at CeNDEF, University of Amsterdam).



trader types and given by

Eht[yt'i‘l] = Et [yt+1] = ytepEt<€€t+1) = ytetu""ag/?

A straightforward computation shows that for the dividend process (27) the funda-
mental price is proportional to the dividend ¥, and thus growing at the same rate, and
given by

ehtol/2

pr = ytm7 (28)

with R = 1 + r. In our non-stationary example, beliefs about variances are given by
exponentially moving averages, i.e.

o = wol |+ (1 —w) (R — vi_y)?

v = w1+ (1 —w)R—y

where R; = p; + y; — Rpy_1 is the excess return and 0 < w < 1 is a weight parameter,
as in Gaunersdorfer (2000)°.

In the non-stationary case, beliefs of fundamentalists are reformulated in relative
terms. Fundamentalists believe that the relative deviation of the price from the funda-
mental value will decrease, i.e.

Ey, (p—t“ — pt+1> PPy e o, 1] (29)
Py D
or equivalently
Pl = Eupiy) + v(V’pr1 — Ei(piy1)) (30)

where v = el toe/2 g the growth rate of the dividend process (and of the fundamental
value). As before, technical traders believe that prices will increase (decrease) when
they have increased (decreased) in the previous period, i.e.

pS,tH =pt1+ g(ptfl - pH)- (31)

In the non-stationary case, the conditioning of technical trading rules upon fundamen-
tals is also modeled in relative terms, as

bt—1 — p;k—l )2)ﬁ2t

Not = exp(—a(
Pt

ny = 1-—ny,

with ng; given by the discrete choice probabilities as before.

5In the stationary case, the introduction of time varying beliefs about conditional variances does
not change the results much as shown by Gaunersdorfer (2000). In the non-stationary case time varying
beliefs about conditional variance are important since average price changes increase over time.
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The complete non-stationary ABS with fundamentalists versus trend extrapolators
is given by:

D = %[p(itﬂ + n2t(p§,t+21 = P%ii1) T Ee(ye)] (1 + 6)
pit-‘,—l = L (pi‘+1) + U<62M+U€pt—1 - Et<p2k+1))
P = P+ 9(pio1 — pioa)
618"' 13 t—1—D;_
o = Zf exp(—a(%)Q)
Nt = 1—ny
7, = ePuit + eBuat
o? = wol |+ (1 —w)(Ri_1 —vi_1)?
vy = w1+ (1 —w)Ri
U1y = T;g(ptfl + Y1 — Rpth)(p(li,t—l + Et72(yt71) - Rpt72) +Nuie 1
Uzt = T;Z(ptfl + Y1 — Rpth)(pS,tfl + Eyo(y—1) — Rpi—2) + nugy—1
Yer1 = yexp(p+eq1), & ~N(0,0.) iid
* eu+ff§/2
Dy = paeZz Yt
Ey(ye1) = etoily,
* 62 +0?
Ei(piy) = myt

Notice that in the non-stationary case, the model approximation error ¢; has been
introduced as a random relative price change.

Before looking at the dynamics of the non-stationary ABS, let us have a look at the
S&P 500 data again. Figure 2 shows 10,000 time series observations of daily S&P 500
data, namely the index, changes of the index, returns (i.e. relative changes) of the index
and absolute returns. The S&P 500 index shows a strong upward trend over the past
40 years. Changes in the index increase in amplitude and exhibit clustered volatility.
Relative changes or returns are unpredictable and show clustered volatility, as can also
be seen from the persistence in the absolute returns series.

We try to reproduce these stylized facts qualitatively by the non-stationary ABS,
both with and without noise. Figures 3-6 show some typical numerical simulations, for
different choices of the parameters o and g, and different levels of dividend noise o
and model approximation noise os, with other parameters fixed at

r = 0.0004; p = 0.0003; a=1; v=0.99;

6=1;17=0.99w=0.28; (32)

Figure 3 shows an example without noise, with periodic price fluctuations around a
growing trend. The cycle is characterized by a large drop in prices followed by oscillatory
fluctuations before a new upward price trend sets in. Price returns are periodic, with
a small volatility phase with close to zero price changes interchanged with a high
volatility phase with oscillatory prices. The oscillatory phase is dominated by trend
followers who cause the price to move away below the growing fundamental. As prices
move too far away from the fundamental, fundamentalists start dominating the market
driving prices slowly (v = 0.99) back to the fundamental price. Although the price cycle
exhibits features of volatility clustering, its pattern causes unrealistically regular and
predictable asset returns.

In order to get rid of the periodic regularity in prices and returns, we add small
dividend noise (o5 = 0.001) as well as small model noise (o = 0.0001, i.e. 0.01%), as
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illustrated in figure 4. An immediate observation is that trend extrapolators dominate
the market most of the time (see the time series of the fraction of fundamentalists)
leading to deviations from the fundamental and too large fluctuations in asset prices.
Returns become much more irregular, but at the same time the clustered volatility
present in the noise free limit cycle has been destroyed as well.

Figures 5 and 6 show a second non-stationary simulation with and without noise.
In figure 5 a slow cycle with small amplitude around the fundamental price occurs.
The smaller amplitude is due to a much larger value of a(= 100) preventing the trend
extrapolators to cause large deviations from the fundamental. Small dividend noise
and model noise leads to irregular fluctuations around the stochastic fundamental price,
with irregular switching between fundamentalists and trend extrapolators, as illustrated
in figure 6.

5 Concluding Remarks

This paper has sketched simple nonlinear adaptive systems for modeling and explain-
ing the stylized facts of financial markets. Traders switch between different forecasting
strategies based upon their success in the recent past. The stationary ABS, with IID
dividends and a constant fundamental price, are able to match important stylized
facts of financial time series, such as unpredictable returns and clustered volatility. In
real markets, long price series are non-stationary however, and it is important to take
these non-stationarities into account. Some preliminary simulations of non-stationary
adaptive belief systems have been presented. In the non-stationary case, the evolution-
ary switching of strategies interacts with non-stationarities and growing fundamental
prices, which make the nonlinear, non-stationary ABS dynamics very sensitive to noise.
From a qualitative viewpoint price and return patterns in the simple non-stationary
ABS seem reasonable, but more work is needed to match all autocorrelation structure
in prices, returns, absolute and squared returns as well as other stylized facts.

A convenient feature of our ABS is that the benchmark rational expectations model
is mested as a special case. This feature gives the model flexibility with respect to ex-
perimental and empirical testing. It is worthwhile noting that Chavas (1996) and Baak
(1997) have run empirical tests for heterogeneity in expectations in agricultural data
and indeed find evidence for the presence of boundedly rational traders in the hog and
cattle markets. Sharma (2001) finds evidence of boundedly rational traders in finan-
cial markets. Van de Velden (2001) has run asset pricing experiments and shows that,
even in a stationary environment, it is hard to learn the correct, RE-fundamental price
level and deviations from the fundamental price are persistent. Theoretical analysis of
stylized evolutionary adaptive market systems, as discussed here, and its empirical and
experimental testing may contribute in providing insight into the important question
whether asset prices in real markets are driven only by news about economic funda-
mentals or whether asset prices are, at least in part, driven by ‘market psychology’.
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Figure 1: Daily S&P 500 data, 08/17/1961-05/10/2000 (left panel) compared with data
generated by our ABS (right panel), with dynamic noise 6; ~ N (0, 10): price series (top
panel), returns series (middle panel), and autocorrelation functions of returns, absolute

returns, and squared returns (bottom panel). Parameters are: v =1, g = 1.9, § = 2,
n=0.99, a = 1/1800, r = 0.001, =1, p* = 1000 and o = 1.
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Figure 2: Time series for daily S&P 500 data, 08/17/1961-05/10/2000, namely the index
(top left), changes of the index (top right), returns (i.e. relative changes, bottom left) and
absolute returns (bottom right).
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Figure 3: Simulated example without noise with a large amplitude limit cycle around a grow-
ing fundamental price. Price (top left), price change (top right), return (middle left), absolute
return (middle right) fraction of fundamentalists (bottom left) and deviation from fundamen-
tal (bottom right). Parameters 05 = 0. = 0, a = 0.25, ¢ = 1.03 and other parameters as in
(32).
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absolute return (middle right) fraction of fundamentalists (bottom left) and deviation from
fundamental (bottom right). Parameters o5 = 0.001, o, = 0.0001, o = 0.25, ¢ = 1.03 and
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Figure 5: Simulated example without noise with a slow, small amplitude limit cycle around
a growing fundamental price. Price (top left), price change (top right), return (middle left),
absolute return (middle right) fraction of fundamentalists (bottom left) and deviation from
fundamental (bottom right). o5 = 0 = 0, a = 100, g = 1 and other parameters as in (32).
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Figure 6: Simulated example with a noisy small amplitude limit cycle around a growing
stochastic fundamental price. Price (top left), price change (top right), return (middle left),
absolute return (middle right) fraction of fundamentalists (bottom left) and deviation from
fundamental (bottom right). os = 0.005, o = 0.0001, o = 100, g = 1 and other parameters
as in (32).
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