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Abstract: 

 
Computer simulations, as well as traditional and recent theory, suggest hypotheses on the 

dynamics of dispersed prices that we test on existing laboratory data.  As predicted in some 

variations of the Edgeworth hypothesis, the posted price data exhibit a significant cycle. Relative 

to the unique stationary distribution, the empirical distribution has excess mass in a price interval 

that moves downward over time until it approaches the lower boundary of the stationary 

distribution. Then the excess mass jumps upward and the downward cycle resumes. The 

amplitude of the cycle seems fairly constant over the longer experimental sessions. Of the 

simulations we consider, the one closest to Edgeworth’s 1925 account, a hybrid of gradient 

dynamics and logit dynamics, seems to best reproduce the observed dynamics. 
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The Dynamics of Price Dispersion 
 

1. Introduction 

The law of one price fails dramatically even in Internet markets where it should have its best shot 

(e.g., Baye and Morgan, 2001; Pauly, Herring and Song, 2002). This observation renews interest 

in theoretical debates on price dynamics and price dispersion that go back at least to Bertrand 

(1883) and Edgeworth (1925).  

Bertrand argued for a unified competitive price because at any higher price, at least one 

seller could substantially increase sales volume and profit by slightly decreasing his price. 

Edgeworth noted that the outcome is more complicated when the sellers have binding capacity 

constraints at the competitive price. He predicted a price cycle in which sellers reduce price in 

small increments when there is excess capacity, but jump to much higher prices when the 

capacity constraints bind. Maskin and Tirole (1988) consider a duopoly with alternating moves 

(and no capacity constraints) and obtain price cycles as Markov perfect equilibria.  

Modern textbook treatments of multi-firm oligopolies (e.g., Tirole, 1988) downplay price 

dynamics and instead focus on stationary price dispersion, supported as a mixed strategy Nash 

equilibrium. In particular, the Burdett and Judd (1983) noisy search model has a unique Nash 

equilibrium price distribution, denoted NSE below. The distribution is truly dispersed—i.e., it 

has positive density over a non-trivial range of prices—for most parameter values of the buyer 

search technology, but for extreme parameter values the distribution degenerates to a unified 

competitive price or to a unified monopoly price.  

Hopkins and Seymour (2002) show that the unified monopoly price NSE is dynamically 

stable but that all relevant dispersed price equilibria are unstable under a wide class of learning 

dynamics. Their analysis leaves open the question of what behavior we should then observe. The 
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possibilities include convergence to a unified price, or small or large amplitude cycles in the 

price distribution, or chaos. 

In this paper we further analyze laboratory data originally gathered to investigate NSE. 

After offering more details on the theory described above, we describe a set of dynamic 

computer simulations of the dispersed prices, and derive testable hypotheses. Then we present 

the laboratory procedures and data. The data feature dispersed prices that tend to cycle. 

Estimated transition rates among the quartiles of the empirical price distribution confirm an 

Edgeworth-like cycle. The amplitude of the cycle is not small, and does not appear to decrease 

over time. Of the simulations we consider, a hybrid of gradient dynamics and logit dynamics 

seems to best reproduce the observed dynamics. 

 

2.  Theory 

A textbook account of Edgeworth dynamics (Chamberlin, 1962, includes a classic example) 

typically begins by describing Bertrand best reply dynamics in a symmetric oligopoly with 

negligible fixed costs and constant marginal cost. Each period each firm posts a price slightly 

below the prices posted in the previous period. Eventually prices decline to the firms’ marginal 

cost and profit is zero. The account then recalls Edgeworth’s observation that if demand at this 

low price exceeds the firms’ combined capacity, then a firm’s best response is to charge the 

monopoly price for the residual demand. Other firms follow, Bertrand competition resumes, and 

a new price cycle begins.  

We shall refer to the foregoing as the basic Edgeworth cycle (BEC) and, somewhat 

exaggerating its precision, we shall say that its observable features are a narrow interval of 

prices each period that moves downward until it hits bottom, then jumps upward, with cycles of 
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constant amplitude and frequency.  

Modern discussions such as Tirole (1988) question whether such a BEC is an 

equilibrium, and focus on mainly on stationary equilibrium distributions. The relevant 

equilibrium in the present context is the Burdett and Judd (1983) Noisy Search Equilibrium 

distribution (NSE), derived in closed form in Cason and Friedman (2003). The presumption 

seems to be that if cycles were to occur, their amplitude would decrease over time and the 

distribution would converge to NSE.   

Hopkins and Seymour (2002) reverse this presumption. They show that NSE is 

dynamically unstable under a wide class of learning dynamics. The local linear approximation 

indicates that a small perturbation of NSE will lead to Edgeworth-like cycles whose amplitude is 

small at first but increasing. They refer to the cycles as Rock-Paper-Scissors (RPS) to emphasize 

that an excess of medium prices follows an excess of high prices that follows an excess of low 

prices that follows an excess of medium prices, in the same way that, in the familiar children’s 

game, Paper beats Rock which beats Scissors which beats Paper. Their analysis does not show 

whether the cycle amplitude tapers off at some moderate level (i.e., the attractor is a stable limit 

cycle not far from the NSE distribution), or diverges to a high amplitude BEC, or goes chaotic. 

The simulations introduced below demonstrate that the answer depends on the specific dynamics 

and parameters.  

The simulations represent buyers via an algorithm that is derived from the Noisy Search 

assumption that each of a continuum of buyers (total mass normalized to 1) seeks to buy a unit at 

lowest price, and employs an optimal reservation price search strategy given a search technology 

that produces random samples of sellers’ posted prices. The initial sample contains one price 

with probability q≥0 or two prices with probability 1- q≥0, and the buyer can obtain a fresh such 
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sample at cost c≥0. When the distribution of posted prices has cumulative distribution function 

F, a seller posting price p will then obtain sales volume s(p) = q + 2(1- q)(1-F(p)) if p ≤ p* = 

c/(1-q) and s(p) = 0 if p >  p*. The algorithm yields seller profits π = ps(p) because production 

cost is normalized to 0. NSE in this setup is characterized by an equilibrium price dispersion 

with distribution function F(p) = 
q

q
p

p
22

*11
−







 −+ on the support interval [qp*/(2-q), p*].  

See Cason and Friedman (2003) for the derivations and caveats.  

 

2.1 Gradient dynamics. 

Consider now what happens away from NSE. One possibility is that sellers each period consider 

nearby prices and (with some inertia) chose those that would have been most profitable last 

period. Also, to give the Edgeworth or RPS story a decent chance, the highest relevant price p* is 

deemed nearby to the lowest relevant price qp*/(2-q).  

 We simulate these gradient dynamics by choosing a price grid 0 ≤ p1≤ …≤pi ≤ …≤ pn , 

initial proportions of sellers f1, …, fi , …, fn choosing these prices, and a positive adjustment rate 

parameter α. The simulation computes profit πi as above at each price pi, and then adjusts the 

proportion of sellers as follows. For each choice pi, 

(1) if πi-1 > πi then  fi  decreases and fi-1 increases by the amount  (πi-1 - πi) α fi; and 

if  πi-1 < πi then fi  increases and fi-1 decreases by the amount (πi - πi-1) α fi-1.  

The index i here is to be understood mod n, so that  p1 and pn are adjacent. The idea is that the 

probability mass describing sellers’ choices moves between nearest neighbors, up the profit 

gradient. The flux is proportional to the slope of the gradient and to the mass already there.  

 These dynamics do not satisfy the hypotheses of Hopkins and Seymour’s theorem, so we 



 
 

 
 

 

5

have no theoretical prediction regarding their convergence behavior. Simulations therefore are 

especially helpful. 

Figure 1 shows a typical simulation. From an initial uniform distribution, the density 

moves quickly via damped RPS oscillations to a neighborhood of the NSE distribution. But it 

seems to converge to a low amplitude limit cycle rather than to the NSE. 

 

Figure 1 about here 

 

2.2. Replicator dynamics  

Replicator dynamics (Taylor and Jonker, 1978; Weibull, 1995) are perhaps the most widely 

known adjustment processes. They do satisfy the assumptions of Hopkins and Seymour's 

theorem so we do not expect convergence to NSE. Our simulation uses the same price grid and 

profit calculations as before, notes the current average profit πA = Σifiπi , and computes the next 

period proportions fi' from 

(2)   fi'  =  fi + ((πi -πA )/πA )α fi. 

That is, probability mass moves to or from any price point at a rate proportional to its payoff 

(relative to the population average) and to the mass already there. 

 Figure 2 shows a typical replicator simulation. From an initial uniform distribution, the 

density quickly diverges via increasing RPS oscillations to an extreme basic Edgeworth cycle 

(BEC). Not even the time-averaged distribution converges to NSE, but rather to something closer 

to the uniform distribution (but with moderate skew in the same direction as NSE.) 

 

Figure 2 about here. 
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2.3. Logit dynamics 

In the case of replicator dynamics, prices are coupled only through the average profit. For our 

logit dynamics, coupling between two price levels is more explicit. Using the same price grid 

and profit calculations as before, compute the “attraction weights” βi  each period from 

 

Note that βi is close to its maximum value α if the profit is maximized at price pi and βi is close to 

its minimum value 0 if the profit at pi is much lower than some other profits. Note that for large 

values of the parameter λ small profit differences cause large differences in βi. However, it 

turned out that our final results hardly depended on λ. To reduce the number of free parameters, 

we set it equal to unity. 

 The dynamics are now specified as follows: for every pair of prices pi and pj, each period 

(3) a portion βi fj of the sellers at price pj moves to pi, and 

a portion βj fi of the sellers at price pi moves to pj.  

Figure 3 shows a typical logit simulation. The dynamics depend more strongly on the parameter 

α than in the two previous cases: if α is small, logit dynamics converge to a stationary 

distribution but one which is different from the NSE. For larger values of α,1 this stationary 

distribution becomes dynamically unstable and cycling behavior is observed. Note that the 

period of the cycles is much shorter than in the case of replicator dynamics.   

 

Figure 3 about here. 

                                                 
1 Given our choice of price grid etc, the critical value of α is about 0.15. 
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2.4. Hybrid dynamics 

A close reading of Edgeworth2 shows that he allowed transitions to high prices from medium 

low as well as very low prices. To investigate the implications, we constructed a ‘hybrid’ type of 

dynamics, by adding logit-like terms ∑∑
≠≠

−
ji

ij
ij

ji ff ββ  to the gradient dynamics (1), allowing 

flux between all possible points of our price grid. For small α, this Edgeworth variation seems to 

converge to something resembling NSE, but again it produces fairly large amplitude cycles for 

larger values of α, as can be seen in Figure 4. 

 

Figure 4 about here 

  

2.5. Testable Hypotheses 

Let Qit, i=1…4, be the observed fraction of sellers posting prices in quartile i, and let M = ((mij)) 

be the 4×4 matrix of observed proportions of sellers moving from quartile i one period to quartile 

j the next period. We will examine the following hypotheses. 

H0: The transition matrix is uniform: all off-diagonal entries equal, and diagonal entries 

equal. That is, up to sampling error, mij = mkl for all i≠j and all k≠l; and similarly mii = mjj for all 

i,j = 1, …,4. This hypothesis is consistent with NSE equilibrium and with rational expectations, 

as well as with no structure. 

H1. Bertrand/RPS/Edgeworth cycles: The subdiagonal entries (those representing 

transitions to next lower quartile) are significantly larger than other off-diagonal entries. That is, 

                                                 
2 For at every stage in the fall of the price, and before it has reached its limiting value [...], it is competent to each 
monopolist to deliberate whether it will pay him better to lower the price against his rival [...] or rather to raise it to 
a higher [...] level [...]. Edgeworth (1925) 
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up to sampling error, mi,i-1 > mij for all j≠i, i-1 for i = 2, 3, 4. This is the clearest implication of 

the cycle stories. 

H1′. Full cycles: In addition to H1, it is also true that transitions from the lowest quartile 

are most often to the highest quartile. That is, m1,4 > m1,j for j =2,3. This is the simplest way of 

completing an Edgeworth-like cycle. 

H2. Anticipatory dynamics: The sub-subdiagonal entries are larger than the next lower 

entries. That is, m4,2 > m4,1. Sellers who anticipate that other sellers respond as in H1 will best 

respond with larger price reductions.  

H3. Divergence from NSE: H1 holds more strongly in later periods than in early periods. 

H4. Convergence to NSE: H1 holds more strongly in earlier periods and H0 holds in later 

periods. 

 

3. The Laboratory Experiment 

The laboratory experiment used an electronic posted offer market institution with human subjects 

as sellers and (in the data analyzed below) automated buyers. Subjects were recruited from 

undergraduate classes in Economics and Biology at UCSC and Purdue, and were instructed 

orally and in writing. The written instructions appear in Cason and Friedman (1999) and are 

posted at http://www.mgmt.purdue.edu/faculty/cason/papers/NSEinst.pdf. At the end of the 

session the subjects received total profits, converted from lab dollars into U.S. dollars at a fixed 

exchange rate and averaging about $20 for sessions that lasted about 90-100 minutes.  

Each period each of six sellers posts a single price. Profit π = ps(p) is computed using the 

formula given earlier. Sales volume is explained to subjects in terms of the equivalent expression 

s(p) = q + 2(1- q)(ri-1)/(n-1), where ri is the rank of a given seller’s price pi among the n≤6 
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sellers currently posting prices at or below the reservation price p*.  For example, with c=0.60 

and q=1/3, the reservation price is p* = $0.90; we tell the sellers that each of hundreds of small 

automated buyers immediately accepts the lowest price it sees if it is below $0.91 and otherwise 

keeps searching, with the result that sales volume will be 0.33 + 1.33(ri-1)/5 if all 6 sellers post 

prices below $0.91. The current values of c and q, and corresponding reservation prices, are 

shown on the blackboard and on subjects’ screens. At the end of the period sellers see a list of all 

sellers’ posted prices, sales volumes and profits, but the identities of other sellers are obscured.  

We report here results from four sessions, each divided into several runs of 20-30 

consecutive periods in which all treatments are held constant.  The treatments include the four 

combinations of search cost, c=0.20 or 0.60, and sample size, q = 1/3 or 2/3. Two sessions with 

experienced subjects, one with c = 0.20 and one with c = 0.60, were conducted at UCSC; each 

included two runs with q = 1/3 and two runs with q = 2/3.  Two other sessions, one at Purdue 

University with c = 0.20 and the other at UCSC with c = 0.60, used inexperienced subjects and 

contained one run each with q = 1/3 and q = 2/3. All four sessions had initial runs (not analyzed 

here) with q = 1 and q = 0; these values theoretically produce unified price. See Cason and 

Friedman (2003) for a more complete description of the experiment, which included additional 

sessions with human buyers and with noisier buyer algorithms. 

 
4. Empirical results 

We begin by presenting the overall price distributions and the trends in some sample periods. 

Different readers may form differing impressions from these qualitative summaries, so we then 

proceed to estimate transition matrices and to test our hypotheses.  
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4.1. Price distributions and trends 

The equilibrium distribution of posted prices (NSE) shifts up with increases in the probability 

that buyers observe only one price (q) and with increases buyer search costs (c), as indicated by 

the lighter histogram bars in Figure 5. With 20-cent search costs, NSE prices range between 6 

and 30 cents for q=1/3 and range between 30 and 60 cents for q=2/3. With 60-cent search costs, 

NSE prices range between 18 and 90 cents for q=1/3 and range between 90 and 180 cents for 

q=2/3. The observed distributions shown with darker bars shift as predicted and generally are in 

the predicted range. But they tend to be less skewed than the NSE distributions. Cason and 

Friedman (2003) offer a detailed analysis of these regularities.  

 Our present focus is price dynamics. Figures 6 through 8 present the dynamics in a 

sample of 3 of the 12 runs studied here. The circles represent posted prices, and the short dashed 

line indicates the mean transaction price for each period. Solid vertical lines separate trading 

periods, and the horizontal dashed lines indicate the NSE price range. 

 Figure 6 presents a q=2/3 run with 20-cent search costs. Prices decline gradually in the 

first part of the run before they jump up toward the reservation price around period 80. Price 

dispersion decreases in the middle of this run before increasing again—reflecting many price 

reductions—in later periods. Figure 7 presents a q=1/3 run with 60-cent search costs that begins 

with one of the best basic Edgeworth cycles (BEC) we have seen in the data. By contrast, Figure 

8 (a q=2/3 run with 60-cent search costs) shows prices with higher cross-sectional variance; the 

distribution shifts down in early periods but seems to stablize in later periods. 

 

4.2. Transition matrices 

The analysis begins with the empirical distribution of posted prices Fk, where k indexes the 
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experimental treatment (i.e., the search cost c and probability q of receiving only one seller’s 

price).3  First, define the quartile cutoff points r1k, r2k and r3k, where 0.25 = Fk(r1k), 0.50 = Fk(r2k), 

and 0.75 = Fk(r3k). Then define the four quartiles as the price observation between the cutoff 

points. Those between r1k and r2k, for example, are in quartile 2 (denoted Q2).  

 The movement of prices from one period to the next can be summarized by a 4×4 

transition matrix Mk, where the ijth entry gives the empirical proportion of sellers whose prices 

move from quartile i in period t to quartile j in period t+1. Large entries on the diagonal indicate 

a stable price distribution and very little churning within the distribution.  

 Table 1 presents the estimated transition matrices for sessions with experienced subjects, 

and Table 2 does the same for inexperienced subjects. Of course, in all the calculations the first 

transition from the previous treatment k is excluded. The diagonal entries indicate that prices 

remain in the same quartile for two consecutive periods roughly 40 to 75 percent of the time. The 

subdiagonal entries indicate that transitions to the next lower quartile typically are more frequent 

than transitions to any other quartile. In Table 1, the only exceptions are the Q4 quartile in the 

search cost=20 and q=1/3 treatment and the Q3 quartile in the search cost=20 and q=2/3 

treatment. In many cases these transitions are twice as common as any other transition.  

 Tables 3 and 4 subdivide the experienced subject data into first and second runs. Both 

relevant sessions featured a first run of 30 periods and a second run of 20 periods for both q 

treatments, so this is a natural way to divide the data. The tables suggest several regularities. 

First, with the exception of the c=20, q=1/3 treatment, the diagonal entries tend to be higher in 

the early periods. Second, the subdiagonal entries tend to be larger for the late data. Indeed, these 

entries are at least twice as great as the next highest off diagonal entry in 7 out of the 12 possible 
                                                 
3 The NSE distribution could be used instead of the empirical distribution, but it turns out to be impractical because 
its lowest quartile contains very few observations. The reason, as documented in the previous subsection, is that the 
empirical price distributions do not exhibit the strong skewness of the NSE distributions.  
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rows in the late period data, compared to only 4 out of the 12 rows in the early period data. 

Finally, we note a possible regularity not considered in our list of hypotheses. The transition 

4
tQ → 1

1
tQ +  from very high to very low prices is small for all treatments in the early periods. But 

this transition is the most frequent for search cost=60 in the late periods. This could be an artifact 

of the small sample size for 4
tQ  in the late data, since the number of seller price changes in these 

transition cells is only 8 or 5 in the q=1/3 and q=2/3 cases. 

 

4.3 Hypothesis tests 

Consider now the formal hypotheses H0 to H4. The data clearly reject H0 because the estimated 

transition matrices are obviously not uniform, even allowing for randomly distributed errors. 

 The data seem generally consistent with H1, since the subdiagonal entries are usually the 

largest off-diagonal entries. The null hypothesis implies that the target (subdiagonal) entry would 

be largest of the three off-diagonal entries in about one-third of the rows, or in about 4 of the 12 

cases. A simple binomial test rejects this null hypothesis in favor of H1. For Table 1 as well as 

for Table 2, we have subdiagonal entries largest in 11 of 12 cases (p-value < 0.01). For Table 3 

(early periods of experienced data), 9 of the 12 these transitions to the next lower quartile are 

highest (p-value < 0.01). And for Table 4 (late periods of experienced data), 8 of the 12 

subdiagonal entries are largest (p-value < 0.05). 

 The results do not support Hypothesis H1′, however, since transitions from the lowest to 

the highest quartile are greater than transitions to other quartiles less than half the time. In three 

of the four relevant cases shown in Table 1, the transition to the next higher quartile (m1,2) is 

greater than the transition to the highest quartile (m1,4). And in the four cases shown in Table 2, 

the m1,4 transition is greater than the m1,2 and m1,3 transitions only for the search cost=60 
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treatment. Pooling these eight cases together for a binomial test fails to reject the null hypothesis 

that transitions out of the lowest quartile are equally likely to fall into the three other quartiles (p-

value = 0.53). 

 The data provide some support for H2, since the 2-below entries are usually greater than 

the 3-below entries in the transition matrices. Here quartile 4
tQ  is relevant. The 4

tQ → 1
1
tQ +  

transition (m4,1) is smaller than the 4
tQ → 1

2
tQ +  transition (m4,2) in 4 out of the 4 matrices of Table 

2 (inexperienced data), and in 3 out of the 4 matrices of Table 1 (experienced data). 

Nevertheless, these 2-below and 3-below transitions are rather infrequent, occurring typically 

about 10 to 15 percent of time.  

 Hypotheses H3 and H4 require a comparison between Table 3 (early periods) and Table 4 

(later periods); inexperienced subject data do not have second runs in a given q condition and so 

are not useful for this comparison. As already noted in the previous subsection, the transition 

frequency to the next lower quartile (H1) tends to be greater in the later data than in the early 

data. To evaluate H3 formally, we differenced the 12 relevant transitions ( t
iQ → 1

1
t
iQ +
− ) between 

Tables 4 and 3. Under the null hypothesis that the transitions to next lower quartile are equally 

strong in the early and later data, these 12 differences would be centered on zero. One is exactly 

zero, 7 are greater in the later data (+.13, +.04, +.15, +.10, +.28, +.22, and +.06), and 4 are 

greater in the early data (-.01, -.04, -.01 and -.12). A Wilcoxon signed rank test indicates that the 

central tendency of these 12 differences is significantly different from zero at the marginal 10-

percent level (Wilcoxon test statistic=19.5). We conclude that the evidence favors H3 

(divergence from NSE) over H4 (convergence), but the statistical significance is rather weak. 
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4.4 Fitting the simulations  

Simulations may provide evidence on the crucial question of convergence. The strategy is to fit 

the observed transition matrices to simulated transition matrices obtained from each of the four 

dynamics described earlier. We standardize on a 24-point uniform price grid over the support of 

the NSE, and a simulation length 2000 time iterations. (Gradient dynamics was the exception; we 

needed a longer simulation and used 50000 iterations.) A preliminary simulation produces the 

time-average distribution from which we determine which of the 24 price points belong to each 

quartile. The main simulation then yields average transition probabilities between quartiles over 

varying numbers ω of time iterations that might correspond to a single period of the experiment. 

The other parameter to fit is the adjustment speed α. 

We computed the 4×4 quartile transition matrix for α values 0.05, 0.10, 0.15, 0.20, and 

0.25 (higher values produced numerical instabilities in some cases) and a wide range of ω for 

each of the four dynamics. In each case we took the differences dij between the simulated matrix 

entries and the corresponding laboratory data matrix entries for experienced subjects in Table 1. 

The best fit is defined as that which produces the smallest Hilbert-Schmidt norm, the square root 

of the sum of the squares of the matrix elements dij.  

The results are shown in Figure 9 and in Table 5 for c=20, q=1/3. Replicator dynamics 

give the worst fit; gradient dynamics give fair fits, but at very large ω; logit and hybrid dynamics 

fit almost equally well. The overall best fit is given by hybrid dynamics for α=0.25: the 

corresponding dynamics are cycling. All best-fit matrices have large subdiagonal (and upper 

right hand corner) entries, consistent with H1 (and even H1′). 

The large ω for gradient dynamics may arise from its nearest-neighbors nature: 

information on higher profits needs far more time to travel through the grid. This translates into a 
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large number of simulation iterations corresponding to single period of laboratory time. 

Similar results hold for the other transition matrices in Table 1. In all cases, hybrid 

dynamics provide the best fit and for the best fitting parameter values, the dynamics display 

cycles. 

 

5. Discussion 

Are dispersed prices a transient phenomenon, destined to disappear as buyers and sellers 

learn to obey the law of one price? All our evidence indicates that the answer is no. Experienced 

sellers in our laboratory experiment change prices more frequently in later periods than in earlier 

periods, and in all treatments the average distributions of posted prices resembles the dispersed 

equilibrium (NSE) of the Noisy Search model of Burdett and Judd (1983).  

Do prices settle down into stable distribution such as NSE? Again, the answer appears to 

be negative. Consistent with the theoretical predictions of Hopkins and Seymour (2002), the 

NSE seems to be unstable and we observe a price cycle. Observed price transitions from higher 

prices tend to be to slightly lower prices, consistent with hypothesis H1.  

Do we then get a basic Edgeworth cycle (BEC), where sellers’ prices move downward 

together until they hit bottom, then jump together to the top? Our direct evidence supports 

neither the closeness each period nor the jump to the top. Simulations of replicator dynamics 

exhibit a strong BEC, but they fit the data poorly.4  

The data instead seem more consistent with a gentler variant of Edgeworth dynamics. 

Relative to the stationary distribution NSE, each period there is an excess of prices (but not 

                                                 
4 Many other evolutionary and learning dynamics not investigated here also satisfy the assumptions of Hopkins and 
Seymour’s main theorem. The presumption now would be that such dynamics also produce a BEC and fit the data 
poorly.  
 



 
 

 
 

 

16

usually a majority of prices) in one of the quartiles, and transitions are more frequent to the next 

lower quartile than to other quartiles. In the best fitting simulations—logit dynamics and gradient 

dynamics and especially a hybrid of the two—the cycle maintains a constant amplitude, neither 

very small (which would be hard to distinguish from convergence to NSE) nor very large (as in 

the BEC). Direct tests of the data (for hypotheses H3 and H4) indicate divergence from NSE, not 

convergence.  Both direct examination of the data (H1′ tests) and the success of the logit and 

hybrid rules indicate that sellers sometimes move to higher prices before they have dropped to 

the bottom of the price distribution.  

The laboratory and simulation results may help organize examinations of field data. For 

example, Lach (2002) analyzes individual seller price data on coffee, flour, chicken, and 

refrigerators. The reported transition matrices on close examination show a now familiar pattern: 

the largest off diagonal entries are almost always on the subdiagonal, suggesting some variant of 

Edgeworth dynamics. 

 We close with a caveat and call for further work. Four laboratory sessions at two sites is a 

good start, but strong claims for robustness will require more data from different labs and from 

the field. Four dynamical specifications, each with two fitted parameters again is a reasonable 

start, but other investigators may want to consider other variations and other criteria for goodness 

of fit.  Our hope is simply that the questions and methods introduced here will turn out to be 

fruitful in dealing with the dynamics of price dispersion.   
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Appendix: Simulation Details 

We collect some details here for investigators interested in replicating and extending our 

simulation results. Comparable details regarding the laboratory data can be found in Cason and 

Friedman (1999, 2003). The simulations were coded in MATLAB.5 

Each entry mi,j in the 4×4 transition matrix Mt in a given simulation is simply the 

proportion of sellers charging prices in quartile i in period t who charge a price in quartile j in the 

next period. The length ω average is the time average of the products Mt+1 ·...·Mt+ω. Quartile bins 

might at times carry very little probability mass. In order to prevent them from influencing 

unduly the averages in that situation, the term Mt+1 ·...·Mt+ω in the average is weighted with the 

mass that resides on average in the quartile bin over the period from t+1 up to t+ω. 

The above description of the transition matrix is insufficient in the case of replicator 

dynamics, since in that case the migration of sellers between quartiles is not modeled explicitely, 

but only in reference to the average profit. Hence we supplement the model by an independence 

condition, in order to be able to compute transition matrices: we assume that all price-changing 

sellers gather together in one place, forget what prices they came from, and are distributed anew 

over the prices according to the replicator rule.   

 

                                                 
5 Code is available on request from the third author, by e-mail to: f.o.o.wagener@uva.nl. 
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Figure 1: 

Simulated gradient dynamics. The horizontal axis contains a uniform grid of 24 prices. The 

vertical axis indicates the fraction of sellers posting each price. Snapshots of the distribution are 

shown every 20 time iterations. At the beginning of a cycle, a small hump enters at high prices. It 

flattens out as it moves towards lower prices; then the  cycle repeats. 

 



Figure 2: 

Simulated replicator dynamics. The axes and snapshots are as in figure 1. The two solid curves 

correspond to the first and the last time iterations respectively. At the beginning of a cycle, a 

peak enters at high prices. It becomes higher and sharper as it moves towards lower prices. When 

it arrives at the bottom of the price range, high prices have become profitable and the cycle 

repeats. 



 

Figure 3: 

Simulated logit dynamics with alpha = 0.25. The axes are as in figure 1. Snapshots of the 

distribution are shown every time step.  



 

Figure 4: 
 

Simulated hybrid dynamics with alpha = 0.25. The axes and snapshots are as in figure 3. The 

peaks are even more pronounced than for the logit simulation. 

 
 



Figure 5: Equilibrium and Observed Posted Price Histograms

Price Frequency Distribution for search cost=20, q =1/3
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Figure 6: Posted and Transaction Prices--Session UC9x (Experienced, $0.20 Search, q=2/3)
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Figure 7: Posted and Transaction Prices--Session UC12x (Experienced, $0.60 Search , q=1/3)
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Figure 8: Posted and Transaction Prices--Session UC12x (Experienced, $0.60 Search, q=2/3)
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Table 1: Estimated Transition Matrices for All Periods in Experienced Sessions 
 

  search cost=20 q=1/3   search cost=20 q=2/3  
Observ.  1

1
tQ +  1

2
tQ +  1

3
tQ +  1

4
tQ +  Observ.  1

1
tQ +  1

2
tQ +  1

3
tQ +  1

4
tQ +  

82 1
tQ  0.73 0.11 0.09 0.07 83 1

tQ 0.75 0.10 0.06 0.10 
70 2

tQ  0.24 0.59 0.13 0.04 63 2
tQ 0.22 0.62 0.08 0.08 

65 3
tQ  0.08 0.25 0.58 0.09 75 3

tQ 0.13 0.12 0.59 0.16 
71 4

tQ  0.03 0.11 0.14 0.72 61 4
tQ 0.02 0.11 0.36 0.51 

            
  search cost=60 q=1/3   search cost=60 q=2/3  

Observ.  1
1
tQ +  1

2
tQ +  1

3
tQ +  1

4
tQ +  Observ.  1

1
tQ +  1

2
tQ +  1

3
tQ +  1

4
tQ +  

71 1
tQ  0.63 0.18 0.07 0.11 74 1

tQ 0.66 0.16 0.09 0.08 
74 2

tQ  0.24 0.55 0.14 0.07 71 2
tQ 0.24 0.55 0.07 0.14 

74 3
tQ  0.04 0.24 0.62 0.09 71 3

tQ 0.03 0.25 0.52 0.20 
69 4

tQ  0.14 0.06 0.16 0.64 72 4
tQ 0.10 0.11 0.28 0.51 

 
 
 
 
 
Table 2: Estimated Transition Matrices for All Periods in Inexperienced Sessions 
 

  search cost=20 q=1/3   search cost=20 q=2/3  
Observ.  1

1
tQ +  1

2
tQ +  1

3
tQ +  1

4
tQ +  Observ.  1

1
tQ +  1

2
tQ +  1

3
tQ +  1

4
tQ +  

44 1
tQ  0.64 0.07 0.16 0.14  46 1

tQ 0.61 0.20 0.09 0.11 
41 2

tQ  0.32 0.49 0.15 0.05  47 2
tQ 0.28 0.40 0.15 0.17 

43 3
tQ  0.05 0.30 0.53 0.12  38 3

tQ 0.11 0.34 0.45 0.11 
46 4

tQ  0.02 0.20 0.17 0.61  43 4
tQ 0.02 0.16 0.23 0.58 

             
  search cost=60 q=1/3   search cost=60 q=2/3  

Observ.  1
1
tQ +  1

2
tQ +  1

3
tQ +  1

4
tQ +  Observ.  1

1
tQ +  1

2
tQ +  1

3
tQ +  1

4
tQ +  

48 1
tQ  0.56 0.17 0.08 0.19  46 1

tQ 0.76 0.07 0.07 0.11 
38 2

tQ  0.34 0.45 0.11 0.11  39 2
tQ 0.23 0.64 0.10 0.03 

42 3
tQ  0.14 0.24 0.57 0.05  44 3

tQ 0.11 0.18 0.55 0.16 
46 4

tQ  0.07 0.11 0.24 0.59  45 4
tQ 0.02 0.04 0.27 0.67 

 



 
Table 3: Estimated Transition Matrices for Early Periods in Experienced Sessions 
 

  search cost=20 q=1/3   search cost=20 q=2/3  
Observ.  1

1
tQ +  1

2
tQ +  1

3
tQ +  1

4
tQ +   Observ.  1

1
tQ +  1

2
tQ +  1

3
tQ +  1

4
tQ +  

41 1
tQ  0.73 0.15 0.07 0.05  44 1

tQ  0.75 0.07 0.07 0.11 
42 2

tQ  0.19 0.57 0.21 0.02  33 2
tQ  0.15 0.67 0.12 0.06 

44 3
tQ  0.07 0.25 0.55 0.14  54 3

tQ  0.11 0.09 0.67 0.13 
47 4

tQ  0.04 0.09 0.13 0.74  43 4
tQ  0.02 0.09 0.28 0.60 

             
  search cost=60 q=1/3   search cost=60 q=2/3  

Observ.  1
1
tQ +  1

2
tQ +  1

3
tQ +  1

4
tQ +   Observ.  1

1
tQ +  1

2
tQ +  1

3
tQ +  1

4
tQ +  

38 1
tQ  0.74 0.08 0.08 0.11  28 1

tQ  0.61 0.21 0.11 0.07 
39 2

tQ  0.26 0.56 0.15 0.03  45 2
tQ  0.16 0.60 0.09 0.16 

53 3
tQ  0.02 0.25 0.64 0.09  47 3

tQ  0.04 0.23 0.51 0.21 
44 4

tQ  0.05 0.05 0.20 0.70  54 4
tQ  0.04 0.11 0.28 0.57 

 
 
 
 
 
Table 4: Estimated Transition Matrices for Late Periods in Experienced Sessions 
 

  search cost=20 q=1/3   search cost=20 q=2/3  
Observ.  1

1
tQ +  1

2
tQ +  1

3
tQ +  1

4
tQ +   Observ.  1

1
tQ +  1

2
tQ +  1

3
tQ +  1

4
tQ +  

41 1
tQ  0.73 0.07 0.10 0.10  39 1

tQ  0.74 0.13 0.05 0.08 
28 2

tQ  0.32 0.61 0.00 0.07  30 2
tQ  0.30 0.57 0.03 0.10 

21 3
tQ  0.10 0.24 0.67 0.00  21 3

tQ  0.19 0.19 0.38 0.24 
24 4

tQ  0.00 0.17 0.17 0.67  18 4
tQ  0.00 0.17 0.56 0.28 

             
  search cost=60 q=1/3   search cost=60 q=2/3  

Observ.  1
1
tQ +  1

2
tQ +  1

3
tQ +  1

4
tQ +   Observ.  1

1
tQ +  1

2
tQ +  1

3
tQ +  1

4
tQ +  

33 1
tQ  0.52 0.30 0.06 0.12  46 1

tQ  0.70 0.13 0.09 0.09 
35 2

tQ  0.22 0.54 0.11 0.11  26 2
tQ  0.38 0.46 0.04 0.12 

21 3
tQ  0.10 0.24 0.57 0.10  24 3

tQ  0.00 0.29 0.54 0.17 
25 4

tQ  0.32 0.08 0.08 0.52  18 4
tQ  0.28 0.11 0.28 0.33 

 
 



  (a)            (b) 

  (c)          (d) 
 

  (e)         (f) 
Figure 9: 

Errors in c=20, q=1/3 fits. The horizontal axes show the averaging period ω for the simulated 
transition matrices, and the vertical axes show the (Hilbert-Schmidt) distance between the 
simulated matrix and the first transition matrix in Table 1. One curve is shown for each value of 
the parameter α: 0.05: solid line, 0.10: long dashes, 0.15: short dashes, 0.20: dots, 0.25: dash-
dotted. Replicator dynamics are shown in (a), gradient in (b), logit in (c) and (d), hybrid in (e) 
and (f).  



Table 5: Best Simulation Fits for c=20, q=1/3 
 

 Replicator Gradient Logit Hybrid 
α period error period error period error period error 

0.05 92 0.399 7600 0.262 12 0.280 12 0.274 
0.10 40 0.383 3000 0.348 6 0.283 6 0.276 
0.15 28 0.428 1400 0.384 4 0.285 4 0.280 
0.20 20 0.438 900 0.403 3 0.286 3 0.276 
0.25 16 0.437 600 0.418 2 0.279 2 0.240 

 
(a) Best fitting transition matrix at given parameters and quality of fit. 
 

 1
1
tQ +  1

2
tQ +  1

3
tQ +  1

4
tQ +  

1
tQ  0.59 0.10 0.12 0.19 

2
tQ  0.21 0.58 0.09 0.12 

3
tQ  0.08 0.21 0.63 0.08 

4
tQ  0.04 0.09 0.20 0.67 

 
(b) Overall best fitting simulated transition matrix (hybrid, α=0.25). 


