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1 Introduction

Modern finance is based on the concept of rational expectations. As a consequence financial
markets are considered to be efficient in the sense that past prices cannot help in predicting
future prices. This view is known as the efficient market hypothesis (EMH). There has been a
long debate about the EMH. In particular, there is empirical evidence that many ‘stylized facts’
observed in financial time series cannot solely be explained by fundamentals, but that markets
have internal dynamics of their own.

One of the most important ‘stylized facts’ is volatility clustering. Whereas changes in asset
prices themselves appear to be unpredictable, the magnitudes of those changes seem to be pre-
dictable in the sense that large changes tend to be followed by large changes — either positive
or negative — and small changes tend to be followed by small changes. Asset price fluctuations
are thus characterized by episodes of high volatility, with large price changes, irregularly inter-
changed by episodes of low volatility, with small price changes. Mandelbrot (1963) first dis-
covered this phenomenon in commodity prices. Since the pioneering work of Engle (1982) and
Bollerslev (1986) on autoregressive conditional heteroskedastic (ARCH) models and their gen-
eralization to GARCH models, volatility clustering has been shown to be present in a wide va-
riety of financial assets including stocks, market indices and exchange rates. In empirical work,
volatility clustering is usually modeled bystatistical model, such as the familiar (G)ARCH
model or one of its extensions. Although these models are useful as a statistical description
of the data, they do not offer a structural explanation of why volatility clustering is present in
so many financial time series. Rather the statistical models postulate that volatility clustering
has an exogenous source and is, for example, caused by the clustered arrival of random ‘news
about economic fundamentals.

A recent branch of literature, including for example Arthur et al. (1997), Brock and Hommes
(1997, 1998), Brock et al. (2005), Farmer and Joshi (2002), Gaunersdorfer and Hommes (2007),
Kirman (1991), LeBaron (2001), LeBaron et al. (1999), Lux (1995, 1997) and Lux and March-
esi (1999, 2000), has offeredsauctural explanation of the phenomenon of volatility clustering

by multi-agent systems, where financial markets are viewed as complex evolutionary systems
between competing boundedly rational trading strategies; see Hommes (2006) and LeBaron
(2006) for recent surveys. In these multi-agent systems two important classes of traders can
be distinguishedundamentalists andtechnical analysts, having different trading strategies and
expectations about future prices of a risky asset. The fundamentalists believe that prices will
move towards its fundamental rational expectations (RE) value, as given by the expected dis-
counted sum of future dividends. In contrast, the technical analysts observe past prices and
try to extrapolate historical patterns. The multi-agent systems are characterized by an irregu-
lar switching between phases of low volatility, where fundamentalists dominate the market and
prices move close to the RE fundamental price, and phases of high volatility, where the market
is dominated by technical trading with prices deviating from the fundamental price. Volatility
clustering arises as andogenous phenomenon, caused or amplified by the trading process
itself through heterogeneity, adaptive learning, and the evolutionary interaction between funda-
mentalists and technical analysts.



Most work on heterogeneous agent modeling is computationally oriented however, and few an-
alytical results are available. In this paper we show by means of a simple, analytically tractable
behavioral multi-agent model with evolutionary learning that two generic phenomena cause en-
dogenous clustered volatility: coexistence of two attractors (a steady state and a limit cycle) and
so-called intermittency on a strange attractor. We conjecture that these phenomena also play an
important role in generating clustered volatility in the artificial stock markets in the computa-
tionally oriented literature mentioned above. Our model is an extension e@iddptive belief

systems (ABS) introduced by Brock and Hommes (1997, 1998), henceforth BH. An ABS is a
present discounted value asset pricing model with heterogeneous beliefs. There are two trader
types: fundamentalists, who believe that prices will move in the direction of the ‘fundamental
value’, and trend followers or chartists, who extrapolate the latest observed price change. The
fractions of the two different trader types change over time according to evolutionary fitness,
as measured by utility from realized profits or, equivalently (as we will show), forecasting ac-
curacy in the recent past. Chartists, however, also condition their forecasting rule upon price
deviations from the RE fundamental price, that is, they will abandon their charts and switch to
a fundamentalist market view when prices move away too far from the RE fundamental price.

The first phenomenon naturally suited to describe volatility clusterimges stence of attrac-

tors. In particular, our evolutionary model exhibits coexistence of a stable (fundamental) steady
state and a stable limit cycle. When buffeted with dynamic noise, irregular switching occurs
between close to RE fundamental steady state fluctuations, where the market is dominated
by fundamentalists, and large amplitude price fluctuations, where the market is dominated by
chartists. It is important to note that coexistence of attractorgéseric andstructurally stable
phenomenon.

An important question idi1ow can a stable limit cycle around a locally stable steady state arise?

We will show that for our evolutionary learning model there is a simple mathematical answer:
coexistence of a stable steady state and a stable limit cycle arises due to a sGloait@der

or degenerate Hopf bifurcation. To an economist not familiar with bifurcation theory this may
sound rather exotic, but a Chenciner bifurcation is a codimension two bifurcation, implying
that it is not due to a special specification of our model but it is a generic feature for nonlin-
ear systems with two or more parameters; see Kuznetsov (1998) for a detailed and advanced
mathematical treatment of bifurcation theory including all possible codimension one and codi-
mension two bifurcations. Close to a Chenciner bifurcation point, there exists an open region in
the parameter space for which a stable steady state and a stable limit cycle coexist. Occurrence
of a local Chenciner bifurcation of the steady state is therefore a sufficient condition for the
occurrence of certain global dynamic phenomena, in particular for the coexistence of a stable
steady state and a stable limit cycle. The Chenciner local bifurcation point actsagamzing

center’ of the dynamical behavior, implying global dynamic phenomena such as the creation or
disappearance of stable limit cycles as a single model parameter is varied; see e.g. Saleh (2006,
pp. 22—-23) for a more detailed mathematical discussion. We will show that our heterogeneous
agent model with evolutionary learning has a Chenciner bifurcation point in a two dimensional
subspace of the parameter space. Application and detection of codimension two bifurcations in
economic modeling are relatively new. One of the first applications of a codimension two bi-



furcation in economics is Benhabib et al. (2001), who show that a continuous time model with
active monetary policy rules exhibits a Bogdanov-Takens bifurcatitmour best knowledge,
the present paper contains the first economic application of the Chenciner bifurcation.

There is a strikingly simpleconomic intuition why one should in fact expect coexistence of a
stable RE fundamental steady state and a stable limit cycle in our simple evolutionary model,
when chartists extrapolate trends only weakly and fundamentalists are only weakly stabiliz-
ing. When trend extrapolation is weak, the RE fundamental steady state will be locally stable,
because trend followers do not extrapolate small deviations from the RE steady state strongly
enough for prices to diverge, and the price will therefore return to the RE steady state. However,
even when trend extrapolation is weak, an upward price trend far away from the RE steady
state will be reenforced, causing prices to deviate even further from the fundamental. Such a
diverging upward price trend cannot continue forever however, since trend followers condition
their rule upon deviations from the RE fundamental price. When prices move too far away from
the fundamental, as measured e.g. by a price-earnings ratio, technical analysts abandon their
charts and switch to fundamentalists beliefs. The conditioning of technical trading upon market
fundamentals thus ensures that the upward price trend will stop and eventually will reverse into
a downward trend. If the fundamentalists are only weakly stabilizing, prices move only slowly
downwards into the direction of the fundamental price. The fraction of trend followers will
increase again, reenforcing the downward price trend. The downward trend will continue and
prices decrease below the fundamental RE steady state price. Since trend followers condition
their rule upon deviations from the RE fundamental price, at some point the downward price
trend reverses into an upward trend. The fraction of trend followers increases again, reenforcing
the upward price trend and prices will overshoot the fundamental RE steady state. A full cycle
around the locally stable RE fundamental steady state is then complete. This intuition suggests
that the interaction and evolutionary switching between weak trend extrapolation and weakly
stabilizing fundamental analysis may lead to coexistence of a locally stable RE fundamental
steady state and a locally stable limit cycle far from that steady state. The paper will make this
simple economic intuition rigorous for a simple, stylized behavioral and analytically tractable
heterogeneous agent model.

A second endogenous phenomenon suited to describe volatility clustermte rsittency. The
phenomenon of intermittency, as introduced by Pomeau and Manneville (1980), occurs when
asset price fluctuations are moving on a strange, chaotic attractor characterized by phases of al-
most periodic fluctuations irregularly interrupted by sudden bursts of erratic fluctuations. In the
evolutionary learning model studied here intermittency is characterized by close to the (locally
unstable) RE fundamental steady state fluctuations, suddenly interrupted by price deviations
from the fundamental triggered by technical trading. Recent mathematical results on homo-
clinic bifurcations have shown that for nonlinear systems strange attractors are the rule rather
than the exception. Stated more precisely, strange attractors are persistent in the sense that they

1A Bogdanov-Takens bifurcation for a continuous time system occurs when the Jacobian matrix at the steady
state has a double eigenvaldle@nd certain higher order genericity conditions are satisfied. For a discrete time
system a Bogdanov-Takens bifurcation is characterized by a double eigemval@ose to such a Bogdanov-
Takens bifurcation point the discrete system exhibits chaos and strange attractors.



typically occur for a positive Lebesgue measure set (i.e. a set of positive probability) of parame-
ter values, see e.g. Palis and Takens (1993) for a mathematical treatment. Economic applications
of strange attractor theory are fairly recent and include e.g. the overlapping generations econ-
omy in de Vilder (1996) and the ‘hog cycle’ or cobweb model with evolutionary learning in
Brock and Hommes (1997).

A similar economic intuition as the one described above explains why one should expect inter-
mittency on a strange attractor to occur in our evolutionary model when chartists are strong trend
extrapolators and fundamentalists are strongly stabilizing. Strong trend extrapolators destabilize
the fundamental RE steady state, because trend followers strongly extrapolate small deviations
from the fundamental steady state leading to diverging prices and, say, an upward price trend.
When prices diverge and move away far above the RE fundamental value, technical traders con-
ditioning their charts upon market fundamentals will abandon their rule and the upward price
trend will stop and reverse into a downward price trend. When fundamentalists are strongly
stabilizing, prices will then quickly move into a small neighborhood of the RE fundamental
steady state. Since the RE steady state is locally unstable in the presence of strong extrapo-
lators, the story then repeats. This mechanism suggests, that the interaction and evolutionary
switching between strongly extrapolating technical trading and strongly stabilizing fundamen-
tal strategies causes the RE fundamental steady state to have a saddle-point structure, with a
locally destabilizing force due to strong trend extrapolation and a globally stabilizing force due
to fundamentalists. In fact, the evolutionary learning system with strong trend extrapolation
and strongly stabilizing fundamentalists is close to having a homoclinic orbit and its associated
complicated dynamical behavior.

An important critique from ‘rational expectations finance’ upon heterogeneous agent models
using simple habitual rule of thumb forecasting rules is that ‘irrational’ tradersatiurvive

in the market. For example, Friedman (1953) argues that irrational speculative traders would
be driven out of the market by rational traders, who would trade against them by taking infi-
nitely long opposite positions, thus driving prices back to fundamentals. In an efficient market,
‘irrational’ speculators would simply lose money and disappear from the market. However,
for example, De Long et al. (1990) have shown that a constant fraction of noise traders may
on average earn higher expected returns than rational or smart money traders, and may sur-
vive in the market with positive probabilifyBH (1997, 1998) have also discussed this point
extensively, and stress the fact that in an evolutionary framework technical analysts are not ‘ir-
rational’, but they are in fadtoundedly rational, since in periods when prices deviate from the

RE fundamental price, chartists make better forecasts and earn higher profits than fundamen-
talists. Speculative deviations from the fundamental price may in fact be triggered by short run
profit opportunities for chartists. On average, technical analysts and fundamentalists may earn
approximately equal profits, so that in general fundamentalistzotanive chartists out of the
market. See also the survey in Hommes (2006) for an extensive discussion of these points. Our
evolutionary approach is also related to reinforcement learning in evolutionary game theory as
e.g. in Borgers and Sarin (1997); Samuelson (1997) contains a nice survey of related evolution-

2An early example of a heterogeneous agent model is Zeeman (1974); other more recent examples include
Frankel and Froot (1988), Kirman (1991), Chiarella (1992) and Brock (1993).
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ary models in game theory. For related work on adaptive learning and motivation of bounded
rationality, see e.g. Grandmont (1998), Sargent (1993, 1999) and Evans and Honkapohja (2001).
Bullard (1994) and Satmhofer (1999) show how adaptive learning based upon ordinary least
squares can lead to local instability, cycles and even chaos. In related empirical work Brock et
al. (1992) have shown that simple technical trading rules applied to the Dow Jones Index may
yield positive returns, suggesting extra structure above and beyond the EMH fundamental.

The paper is organized as follows. Section 2 describes the asset pricing model with fundamen-
talists and chartists. Section 3 presents a local stability analysis of the fundamental steady state
and bifurcations of codimension one. Section 4 discusses the complete 2-D (two dimensional)
bifurcation diagram of the Chenciner bifurcation, whereas section 5 presents the bifurcation
diagram in our adaptive learning model. Section 6 investigates chaotic dynamics in our model
and finally, section 7 concludes.

2 Themodd

The model introduced here deviates from the asset pricing model with heterogeneous beliefs in
BH (1998) in two ways. Firstly, we use a different evolutionary fithess measure, namely utility
from realized profits or equivalently risk adjusted realized profits (instead of non-risk adjusted
realized profits). Secondly, technical traders condition their charts upon price deviations from
the RE fundamental benchmark price, that is, the fraction of technical traders will decrease
when prices move far away from the fundamental price. Both deviations will be discussed in
more detail below.

Agents trade in a market with one risky and one risk-free asset. The risk-free asset is completely
elastically supplied at a gross retufh > 1. p;, denotes the price (ex-dividend) of the risky
asset andy; } the (stochastic) dividend process. The dynamics of wealth of investoritype
described by ) )

Whis1 = BRWy + Rip12m,

wherez,; is the number of shares of the risky asset purchased atttenel RHI = Dii1 +

U1 — Rp, is the excess return per share. Variables carrying tildes denote random variables.
Let £, andV, denote conditional expectation and conditional variance based on a publically
available information sef;, such as past prices and dividends, andFlgtandV},, denote the
‘beliefs’ or forecasts of investor typeabout conditional expectation and variance.

Equilibrium

Assuming that investors are myopic mean-variance maximizers, the demand forshéses
typeh solves )
EhtR~t+1 . (1)
aVp Ry q

Here the nonnegative parametecharacterizes risk aversion. Let andn;; denote the supply
of shares per investor and the fraction of investors of typ&timet, respectively. Equilibrium

~ a ~ .
max{ EpWh 41 — §VhtWt+1}> Le. Zzp =
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of supply and demand implies

Z NptZht = Zst- (2)
h

Assuming constant supply of outside shares over time we may stick to the (equivalent) special
casez,; = 0.2 Further, we assume that dividends are independently and identically distributed
(iid), in particular,E;5; 11 = y*.

Beliefs
In the case where there is only one type of traders the equilibrium eqyajioaduces to

Rpy = Epri + Y.

In the standard cade > 1 there is only one solutiop; = p* = y*/(R — 1) that satisfies the ‘no
bubbles’ conditioriim, .., Ep;/R" = 0. This price, given as the discounted sum of expected
future dividends, would prevail in a perfectly rational world and will be calledftindamental
price.

We make some simplifying assumptions concerning the beliefs:

Al The beliefs about future prices and dividends are assumed to be of the form

En(Prs1 + Uer1) = Ee(Dir) +y* + fae—1, - pe—r) = Rpy + frn(De=1, - - De—1),

wheref;, is somedeterministic function of past prices describing the beliefs of trader type

h about price deviations from the fundamental value. Further, this assumption implies that
investors have homogeneous beliefs about future dividéhd$, 1) = Ei(Ji1) = y*.

Hence all traders are able to derive the fundamental pfice

A2 The beliefs about conditional variances of the excess returns are assumed to be of the
form . .
Vi1 = ViR = 02, Vh,t.

That is, beliefs about conditional variances are the same for all types and constant over
time?

We consider a model with two simple belief types,

Eii = pit-s—l =p" +v(pi—1 —p*), 0<v<1 (3)
Fopp = p;,t+1 = i1+ 9(De—1 — Pr—2), g € R. (4)

3In the caser,; = constant one can introduce a risk adjusted dividgiﬁqi = y;+1 —aoc?z® and proceed in the
same way, see Brock (1997).

4Gaunersdorfer (2000) studies the case of time varying (homogeneous) beliefs about conditional variances. She
obtains similar bifurcation routes to complicated asset price fluctuations as in the case with constant beliefs. We
therefore restrict here to this more simple case. Chiarella and He (2002) introduce heterogeneity in beliefs about
variances.



Trader typel are ‘fundamentalists’, believing that tomorrow’s price will move in the direction

of the fundamental pricg* by a factorv. Whenw is close td) (1) fundamentalists believe prices

to move quickly (slowly) towards its fundamental valufe Trader type2 are technical traders

or chartists, deriving their beliefs from price histories. Our specification (4) is only a simple
example of a technical trading rule using only the latest observed price and the latest observed
price change. Ify > 0 these traders are trend followers, extrapolating the latest observed price
change; ifg < 0 they are contrarians expecting a reversal of the latest price change. Given our
assumptions, the equilibrium dynamics (2) reads as

2
Rpy = nuphp1 T4 (5)

h=1

Fractions

Fractionsn,,, are updated according to past performance, conditioned upon the deviation of
actual prices from the fundamental value. The evolutionary competition part of the updating
rules closely follows BH (1997, 1998). The additional conditioning upon deviations from the
fundamental is e.g. similar and motivated by the Santa Fe computational artificial stock market
in Arthur et al. (1997) and LeBaron et al. (1999).

In a first, evolutionary, step fractions are determined as discrete choice probabilities

Nt = eXP[ﬁUh,t—ﬂ/Zt, Zy = Z eXp[ﬁUh,tfl], (6)
h

whereU},; is some ‘fitness function’ or ‘performance measure’. Note that the fractions are inde-
pendent of the fitness level, i.e. they do not change if the same term is added to the exponents.
The parameteg is called the intensity of choice. It measures how sensitive traders are to dif-
ferences in performance of trading strategies. Fer 0 fractions are fixed over time and are —

in the case of only two different types — equallt®. In the limit of 5 — oo all traders choose
immediately the predictor with the best performance in the recent past. Thus, for finite, positive
( agents are boundedly rational in the sense that fractions of the predictors are ranked according
to their fitness.

BH (1998) take (accumulated) realized net profits as the evolutionary fithess measure. Realized
profit in periodt, given byr,, = R,z,,_1, does not take into account however the risk taken
to achieve this profit. Here we take accumulatesk adjusted realized profits as the fitness
measure. Risk adjusted realized profit in periesigiven by
)

The = Rezpg—1 — 50 Zhit—1> (7)
wherez;, ;_ is the demand for the risky asset by trader types before. Notice that maximiz-
ing expected wealth in (1) is equivalent to maximizing expected utility from profits in (7). Risk
adjusted realized profits as the fithess measure is thus consistent with the investors’ demand



function derived from myopic mean-variance maximization of expected wealth. A straightfor-
ward computation shows that the risk adjusted profits fithess measure is equivalent to a constant
times minus squared prediction errors, so that the evolutionary fithess simplifies to

1

Unt = —ﬁ(]?t —05)? + U1, (8)

where the parametér< n < 1 represents ‘memory strength’ of the fithess mea3ure.

In the second step of the updating of fractions conditioning on deviations from the fundamental
by the technical traders is modeled as

Ny = Ny expl—(pi—1 — p*)?/al, a>0 9)
nie = 1-— Not.

According to (9) the fraction of technical traders decreases more, as prices deviate further
from their fundamental valug*. This is motivated by the fact that technical traders are con-
ditioning their charts upon price deviations from the fundamental. One may interpret the term
—(pi—1 — p*)?/a as a penalty term in the fitness measure of technical traders. This penalty term
ensures that speculative bubbles cannot last forever and explode to infinity, but that at some
point when prices have moved far away from the fundamental value the fraction of fundamen-
talists will increase and stabilize prices. The penalty term ensures that price deviations from the
fundamental remain boundéd.

Notice that fractions in perioddepend orobserved prices up to the end of periad- 1 (begin-
ning of periodt), p;_1,pir—2, . . .

5See Gaunersdorfer (2001) and Hommes (2001) for a detailed computation showing this equivalence. Numeri-
cal simulations in Gaunersdorfer and Hommes (2007) suggest that the dynamics of the model with realized profits
as the fitness measure is very similar to the analysis presented below.

SHommes (2001) gives an interpretation of this ‘penalty term’ as a transversality condition in a heteroge-
neous world, where temporary speculative bubbles are allowed but price deviations from the fundamental remain
bounded.



Dynamical system
SettingUy,; = U, ;—1, we obtain the following dynamical system,

1 (& € e *
Dt = E(pl,tﬂ + n2t(p2,t+1 - pl,t—H) +y") (10)
. 1 . A
Une = " 2q02 (pe—1 — ph,t71>2 +NUni-1, h=12. (11)

Introducing new variables;(t — 1) = py_;, up(t — 1) = (A]M_l, (10)—(11) is written as a 6-D
system inp := (p1, p2, P3, P4, U1, uz). In the following we denote this system By where

p(t) = ®(p(t —1)).

Also, when working in a neighborhood of, it will be convenient if local coordinates :=
(21, -+ ,x4,u1,uz) are introduced by

zi(t) = pi(t) — p,

wherez; denotes the deviation from the fundamental pgiteThe system then takes the form

1
o(x) = {E ((1 —ng)vzy +ne(zr + g1 — 552))) L1, T2, T3, (12)
1 ) 1 )
~ 5007 (21 — vaz)” + nuy, —w(% — a3 — g(ws — 24))° + nua| ,
wherens is given by
_ et
fa=¢ efur 4 efuz’

3 Stability analysis of the fundamental steady state

This section gives a local analysis of the dynamics around the fundamental steady state. In the
first part it is shown thak* = 0 is the only steady state of (12). In the following, this will be
called thefundamental steady state or thefundamental for short. The remainder of this section
analyzes the stability of this fundamental steady state. It is stable if the trend pargneeter
close to0, and it loses its stability in two different ways: period doubling bifurcations occur for
certain negative values gf while Hopf bifurcations occur for some positiye



3.1 Uniquenessand stability of the steady state

The first lemma shows that the fundamental steady statepwithy*, or equivalentlyz* = 0, is
the unique steady state.

Lemmal
Let (x) begiven by (12). Let moreover R > 1,0 <wv < land0 <7 < 1. Thenx* = 0 isthe
unigue steady state of ®.

Proof
Let x* be any steady state df, that is, letx* satisfy

x" = d(x7). (13)

Notice first thatx* = 0 is indeed a steady state. From the second, third and fourth component
of equation (13), it follows that; = x5, = x3 = x4. Settingx; = =z, the first component then
reads as

Rz = (1 — ny)vzx + nox.

Assuming that: # 0, we may divide both sides of this equation:yBut then we have
R=(1—ng)v+mn2<1<R,
which is a contradiction, hence= 0. Now the last two components of equation (13) yield
Uy = nuy, Uz = TUz2.

Sincen # 1,” the lemma follows. |
Stability

In order to determine the stability of the fixed point the characteristic polynomial of the Jaco-
bian D®(0) at the steady state is computed. It is given by

pA) = A2(n — A)? ()\2 _lfgtuy 9 ) . (14)

2R 2R

Thus, the eigenvalues of the Jacobiannre(both of multiplicity 2) and the root&,, A, of the
guadratic polynomial in the last bracket. Note that these roots satisfy the relations

1
—+ g+v and Ay = i (15)

2R 2R

Also note that the eigenvalues 0 andlways lie inside the unit circle. Thus, the stability of the
steady state is determined by the absolute values ahd \,.

AL+ Ay =

’Forn = 1 the dynamical system hasdauble eigenvalue 1 (see equation (14)) and hence is non-generic in a
two parameter system. Though this is an interesting case, it is — because of additional mathematical difficulties —
beyond the scope of this paper to analyze it.

10



3.2 Codimension one hifurcations

As parameters are varied, bifurcations, that is, qualitative changes of the dynamical behavior
will arise. In particular, bifurcations changing the (local) stability of the fundamental steady
state may occur. At such a bifurcation value, the steady state must be non-hyperbolic having (at
least) one eigenvalue @¥®(0) with absolute value one, that is, one of the eigenvalues is equal

to 1, —1, or there is a pair of complex eigenvalues on the unit circle. We first discussdhe
mension one bifurcations, which are those bifurcations that are expected to occur (generically)
when only a single parameter is varied.

Eigenvalue equal to 1
Assume that one of the eigenvalugss equal tol, say\, = 1. Then it follows from (15) that

g 14+g+v
= and 1 AN = —————.
R tA R

Eliminating A\; from these equations leads to the condition

A

1+v=2R.

However, since < 1 < R, this condition can never be satisfied. Hence eigenvalues equal to
cannot occur.

Eigenvalue equal to —1
Under the assumption that = —1, equations (15) lead to the relations
__9 _ _Lltg+v

A = o and 1+ XM = R

Eliminating \; leads to
2g+v=—-1-2R.

For parameters satisfying this equatiorpeniod-doubling (also calledflip) bifurcation of the
steady state is found (if a certain non-degeneracy condition is satisfied).

Two complex conjugate eigenvalues of modulus 1
The roots\;, )\, of the characteristic equation are complex conjugate and of modulus one
if M\ = 1and|\; + \2| < 2. Using (15), this leads to the conditions

g I+g+w
— =1 n _— 2.
oR and 2R |~
Substituting the first condition into the second yields

1+wv
2R

1+ < 2.

For0 < v < 1, this condition is always satisfied, sinfe> 1. Hence, for parameters satisfying
the equation
g =2R,

11



aHopf (also calledNeimark-Sacker) bifurcation occurs (again if certain non-degeneracy condi-
tions are satisfied).

Conclusion
Introduce the functionspp (5, v, R) andgy (3, v, R) by

geo(5,0R) = —5(0+2R+1) (16)
gu(B0 R) = 2R a7)

The following lemma summarizes the above discussion.

Lemma 2
The steady state x* = 0 is hyperbolic for g # gpp and g # gy (9pp and gy defined by (16)
resp. (17)). Itisasymptotically stablefor gpp < g < gu, and unstablefor g > gy and g < gpp.

For ¢ = gpp OF g = gy, the fundamental steady state fails to be hyperbolic. In the first
case D®(0) has an eigenvalue —1, in second case two complex conjugate eigenvalues of ab-
solute value 1.

If moreover in these latter cases certain non-degeneracy conditions are satisfied, then for ¢ =
gpp the system undergoes a period doubling (flip)bifurcation, and for ¢ = gy a Hopf
(Neimark-Sackerpifurcation.

Notice that the period doubling bifurcation valge, < 0, so that a period doubling bifurcation

only occurs in the presence of contrarians, who expect a reversal of the latest price change.
Sincev > 0 andR > 1 it follows thatgpp < —1.5 so that only strong contrarian behavior

can destabilize the fundamental steady state. The Hopf bifurcation yglue 0 and is thus
caused by trend extrapolating behavior. Siatce 1 it follows thatgy > 2, implying that only

strong trend extrapolators can destabilize the fundamental stead§ btate next section we

show however that even for intermediate trend following parameéters; < 2 — although the
fundamental steady state is locally stable — our evolutionary system can have a coexisting stable
limit cycle or even a coexisting strange attractor.

4 A Chenciner bifurcation

In the last two decades, economists have become familiar with period doubling and Hopf bifur-
cations. These are examples of codimension one bifurcations, that is, these bifurcations occur
generically when a single system parameter is varied. Economic applications of bifurcations of
codimension two or higher are rare however, probably because they are more difficult to handle.

8Gaunersdorfer (2001) introduces positive per period costs for information gathering by fundamentalists. When
fundamentalists beliefs are costly compared to simple technical trading rules, the period doubling and Hopf bifur-
cation values move closer tband a period doubling bifurcation may already occurdep ~ —1 and a Hopf
bifurcation already fogg ~ 1.
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An exception is Benhabib et al. (2001) who find a Bogdanov-Takens bifurcation point, i.e. a bi-
furcation with a double eigenvaluk in a continuous time model with active monetary policy
rules.

In this section we discuss an important codimension two bifurcation, the so-called Chenciner
bifurcation (also called degenerate Hopf bifurcation), that occurs in our heterogeneous agent
model with evolutionary learning. A codimension two bifurcation is a non-generic phenom-
enon when only one parameter is varied, but it is a generic phenomenon when two parameters
are varied simultaneously. The importance of the Chenciner bifurcation for our evolutionary
learning model is the fact that close to a Chenciner bifurcation point there is an open region in
the parameter space where a stable steady state and a stable limit cycle coexist. We will identify
such a region — which we call a ‘volatility clustering region’ — in fhe-parameter space in our
model (see section 5, figure 3).

This section presents a general discussion of the Chenciner bifurcation by means of the 2-D
bifurcation diagram of itsormal form (see figure 1). The normal form of a bifurcation may be
thought of as the simplest model in which the bifurcation occurs. Section 5 then shows that the
Chenciner bifurcation occurs in our evolutionary learning model and discusses the bifurcation
diagram for our adaptive belief system.

As discussed in section 3, a steady state loses stability through a Hopf bifurcation when its
Jacobian matrix has two eigenvalues on the unit circle with all other eigenvalues inside the unit
circle. There are two types of Hopf bifurcation:

() asupercritical Hopf bifurcation where the stable steady state becomes unstable, and the
unstable steady state is surrounded bgtémracting invariant circle with periodic or quasi-
periodic dynamics;

(if) a subcritical Hopf bifurcation where the stable steady state becomes unstable, and the
stable steady state is surrounded bsegelling invariant circle with periodic or quasi-
periodic dynamics.

The normal form of the Hopf bifurcation determines whether it is super- or subcritical. Such a
normal form can be obtained by a (sequence of) suitable coordinate transformation(s) around
the steady state, restricted to ttanter manifold, which is an invariant manifold through the

steady state tangent to the eigenspace spanned by the eigenvectors associated to the complex
eigenvalues\ and X. The normal form of a Hopf bifurcation is a 2-D map describing the dy-
namics on the center manifold. Although such normal form computations are straightforward,

in practical applications they can be quite complicated. For general mathematical references on
bifurcations theory and details on how to compute center manifolds and normal forms see, for
example, Guckenheimer and Holmes (1986) and Kuznetsov (1998).

The normal form of the Hopf bifurcation with complex eigenvalues (1 + u)e™, written in
polar coordinates, has the following general form:

o(r,d) = (r+pr+vr*, 0 +w+r?) +.... (18)

13



Here the dots denote terms of higher order imnd«. Polar coordinateér, ¢) are used to de-
scribe points on the 2-D real center manifdldf. They are chosen such that& 0 corresponds

to the steady state of the system. The Hopf bifurcation occyrs-at) for which the complex
eigenvalues lie on the unit circle anddenotes the angle of the complex eigenvalues. For a
generic Hopf bifurcation, the coefficientsand~ must satisfy the non-degeneracy condition
v # 0 # ~. The non-degeneracy condition# 0 ensures that the rotational part of the normal
form is not linear. For < 0 the Hopf bifurcation is supercritical, whereas for- 0 the Hopf
bifurcation is subcritical. In applications, the coefficierdepends upon system parameters and
its computation can be quite complicated.

Forv = 0 the Hopf bifurcation becomes degenerate and higher order terms have to be taken into
account in the analysis. This bifurcation is calledegenerate Hopf or Chenciner bifurcation,

and has been analyzed originally by Chenciner (1985a, 1985b, 1988), see also Kuznetsov (1998)
for a textbook treatment. The Chenciner bifurcation is a codimension two bifurcation, implying
that it is a generic phenomenon in systems with two or more parameters.

The normal form of the Chenciner bifurcation, with complex eigenvalues (1 + u)e™,
written in polar coordinates is given by

e(r,9) = (r+pr+uvr’ +mr’+ .. 9 +w+ypri+..). (19)

Here the dots again denote terms of higher orderamd«. The Chenciner bifurcation occurs

at (u,v) = (0,0) for which the complex eigenvalues lie on the unit circle and the third order
term in the normal form vanishes. The non-degeneracy conditions for the Chenciner bifurcation
are in these coordinates # 0 # .. We discuss the casg < 0 (which occurs in our
application in section 5) and, without loss of generality, we assumenitia} = —1. See
Kuznetsov (1998) for more information. The normal form then simplifies to

o(r,9) = (7“+/L7"+V7”3 —r5,19+w+72r2) , (20)

where the higher order terms are set to zero.

We discuss the structure of the local bifurcation diagram of the Chenciner bifurcation, illustrated
in figure 1, using the normal form (20). Note that any positive soluticio the equation

pAvr? —rt =0,

or, equivalently, to
2 2
(P-3) =% +m (21)
corresponds to amvariant circle in phase space.

For 1+ > 0, equation (21) has exactly one positive solution. Fo= 0 equation (21) has a
solutionr, = 0. Thus, = 0 is a line of Hopf bifurcations, whose type is determined by the
sign ofv: for v < 0, the Hopf bifurcation is supercritical, for > 0 it is subcritical.

14



DH H

Figure 1:Bifurcation diagram of the Chenciner bifurcation in the u-v-plane. The codimension
two bifurcation point DH isin the origin of the coordinate system. The vertical dashed line
H = {4 = 0} isacurve of Hopf bifurcation values, supercritical on one side of the Chenciner
point (v < 0), subcritical on the other (v > 0). The solid curve SN denotes a curve of saddle-
node bifurcations of invariant circles. The ‘volatility clustering region’, where a stable steady
state and a stablelimit cycle coexist, isthe region between the curve SV and the positive v-axes.

The number of positive solutions far< 0 is determined by the sign of /4 + u: there are two
if it is positive, none if it is negative. Finally, for parameters on the curve

V2
SN:ZJrM:O, (22)
two positive roots of equation (21) coincide. The cu# in (22) thus corresponds to parame-
ter values for which @addle-node bifurcation of invariant circles occurs.

A sketch of the complete bifurcation diagram is given in figure 1. Consider a point in para-
meter spacd (i, )}, with . < 0 andv < 0. For these parameter values the steady state is
locally stable. Now fixv and increas@. When crossing the negativeaxis, forpu = 0, asu-
percritical Hopf bifurcation occurs, that is, a stable invariant circle is created and the steady
state becomes unstable. Thus, in the redipn> 0} a stable limit cycle around an unstable
steady state exists. Now fix a parameter value 0 and decreasg from some positive value.

When crossing the positive-axis atu, = 0, asubcritical Hopf bifurcation occurs in which the
steady state becomes stable, an unstable invariant circle emerges out of the steady state, and the
stable invariant circle still exists. Decreasindurther, the unstable and stable circles approach
each other and dissappear isagldle-node bifurcation of invariant circles wheny crosses the

curve SN. Thus, in the region between the positiveaxes and the curvE N the system has

two attractors, a stable steady state and an attracting (large) invariant circle, separated by an
unstable invariant circle which forms the boundary between these two attractors. We will call
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this region dvolatility clustering region’, since adding some noise to the system, the dynamics

is characterized by an irregular switching between phases of small amplitude fluctuations close
to the steady state with small changes and phases of large amplitude fluctuations with large
changes along the limit cycle. The boundary of the volatility clustering region is formed by the
curve of supercritical Hopf bifurcations of the steady state (the positiaris) and the curve

SN of saddle-node bifurcations of an invariant circle and these boundary curves all end at the
Chenciner bifurcation point in the origin.

Finally, we note that the dynamics on the invariant circles may undergo bifurcations as well.
For these dynamics there are two possibilities. The first possibility is that the dynamics on
these circles consist of a sequence of attracting and repelling hyperbolic periodic points. This
type of dynamics is calledesonating, phase locked or Morse-Smale; for an example see figure 4
(middle plot). There is usually an open set of parameters for which the invariant circle has phase
locked dynamics. The boundaries of this set are formed by saddle-node bifurcation curves of
the attracting and repelling points on the invariant cifdighile the total set of parameters with
phase locked dynamics is open and dense, its complement has positive measure. Parameters
in the complement correspond to the case that the dynamics on the invariant cirgiesre
periodic; an example is shown in the left plot of figure 4. There is a large literature on quasi-
periodic dynamics, to which the interested reader is referred (see Moser (1974), Herman (1979),
Arnol'd (1983), Broer et al. (1990) and references there).

The local, codimension two Chenciner bifurcation point acts asaganizing center’ for the
dynamical behaviour for nearby parameter values. In particular, existence of a local, codimen-
sion two Chenciner bifurcation of the steady state, with the sign restrigtien0 in the normal

form (19), implies a global, codimension one saddle-node bifurcation of invariant circles and
existence of a ‘volatility clustering’ region, where a stable steady state and a stable limit cycle
coexist in the parameter space. Close to the Chenciner bifurcation point the dynamics on the
stable invariant circle is either periodic or quasi-periodic. When parameters move away from
the Chenciner bifurcation point subsequent bifurcations may lead to more complicated, chaotic
dynamics. As we will see in section 6 (see e.g. the right plot in figure 4), this may happen even
when the steady state remains locally stable.

5 Theonset of instability

This section investigates the onset of instability in our simple behavioral model with evolution-
ary learning. In particular, we investigate the following questiohat is the set of parameter

values for which prices in our heterogeneous agent model with evolutionary learning do not
necessarily converge to the fundamental steady state? It turns out that, even when the funda-
mental steady state is locally stable, prices need not converge to their fundamental value, but

®Pintus, Sands and de Vilder (2000) present an infinite horizon intertemporal equilibrium model exhibiting
these types of local bifurcations after a Hopf bifurcation of the steady state, finally leading to strange attractors.
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may settle down to a stable limit cycle. In particular, a Chenciner bifurcation with a bifurcation
diagram similar to figure 1 plays an important role in our model with evolutionary learning.

Our adaptive learning model is determined by the mapging (12). To simplify the compu-
tations we restrict our analysis to the case of no memory in the performance measufg, (

so that the dimension of the state space of the system reduces from six to four. The parameter
spaceP is equal td°

P={(f,v,9,R) : 3>0,0<v<1, R>1}.

Recall from lemma 2 in section 3 that a Hopf bifurcation occurgjfer 2 R. TheHopf bifurca-
tion manifold for our system (12) is therefore given by

H={(8,v,9,R) € P : g=2R}.

Within the codimension one Hopf bifurcation manifalfi one can find Chenciner bifurcation
points by changing a second parameter, different frorantil the Hopf bifurcation becomes
degenerate, that is, until the coefficientin the normal form (18) of the Hopf bifurcation
becomed). For our evolutionary adaptive learning model, the locus of Chenciner bifurcation
points in the 2-Dj3-v-parameter plane, within the Hopf bifurcation manifdid= {¢ = 2R},

is plotted in figure 2! Figure 2 shows that far.3 < 3 < 3.3 two Chenciner bifurcation points
exist, with the largest-value approaching as3 approache8.3. For largerg-values,G > 3.3,

a Chenciner bifurcation point occurs fewvalues around.35.

Figure 3 (left panel) shows the bifurcation diagram around the Chenciner bifurcation point
in the 2-D g-v-parameter plane of our adaptive learning systemfoe 1.01 and 5 = 100;

the reader should compare this figure to the-bifurcation diagram of the normal form of the
Chenciner bifurcation in figure 1. The Chenciner bifurcation point, lying on the Hopf bifurcation
manifold H, is labelledD H, whereas the curve labelleglV is the saddle-node bifurcation
curve of the invariant circles. The volatility clustering region lies between the ctiend

the Hopf bifurcation manifoldd. In this region a second attractor (a stable limit cycle, or
possibly a more complicated, chaotic attractor) coexists with the stable fundamental steady
state. Below the Chenciner bifurcation point the Hopf bifurcation is supercritical; above the
Chenciner bifurcation point the Hopf bifurcation is subcritical. Numerical simulations suggest
that on the left hand side of or below the curyé/, the fundamental steady state is globally
stable. When crossing the cungV from left to right, a pair of invariant circles, one stable

and one unstable, are created. The unstable invariant circle separates the stable fundamental
steady state from the stable invariant circle. The cufdethus marks th@nset of instability.

To the right of this curve, prices do not necessarily converge to their fundamental value but may

10changing the values of parameterando is equivalent to choosing a different value férsee equations (6)
and (8). Further, by changing to new coordinates- \/a x, the iteration equation (12) changes\fovx;1 =
® (y/ax,) and it follows, by some algebra, th&,; = ® (x;), where the parametgt is replaced by3 = af.
Thus, attention may be reduced to the case 1. Hence we can restrict the parameter space of our model to

1This is a nontrivial figure, based upon more than 10 pages of algebraic computations of the normal form of the
Hopf and the Chenciner bifurcations for our 4-D adaptive learning system; see appendix A in an earlier working
paper Gaunersdorfer et al. (2000).
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Figure 2:Plot of the curve D H of Chenciner bifurcation pointslying within the Hopf bifurcation
set H = {g = 2R} in the §-v-diagram, for § € [0,10], v € [0,1] and R = 1.0l and « = 1
fixed.

converge to a stable limit cycle or to a more complicated, chaotic attractor. The enlargement in
the right panel of figure 3 shows that, as the intensity of chgit@switch strategies increases,

the curveSN moves to the left and approaches the vertical line- 1. This implies that,
although the fundamental steady state remains locally stable, for higher values of the intensity
of choicef, (global) instability sets in already for a trend parametelose tol.

The saddle-node bifurcation of the invariant circle igkobal’ phenomenon, in the sense that
invariant circles are ‘global’ objects, and it typically occurs ‘far away’ from the steady state.
Except in small neighborhoods of Chenciner bifurcation points, no analytic information can be
obtained about the location of the manifd@v. The sketch of the location &f NV in figure 3

has been obtained as follows. For fixed valueg @ndwv, plots of the phase space have been
inspected numerically for a range gfvalues. The lowest value @f (to a precision 0.001)

for which an attractor other than the fundamental steady state existed, has been termed the
(approximate) saddle-node bifurcation valu€s, v) of the invariant circle. The enlargement

in the right panel of figure 3 shows that the cul/&” of g. moves to the left and approaches

g = 1 as the intensity of choicg increases (see also Gaunersdorfer et al. (2005) for a plot in
the 3-D parameter spagég, v, 5)}).

The main economic consequence from this analysis is that, if traders’ sensitivity to differences
in fitness is high (i.e. the intensity of choigkis high) then the interaction between weakly
extrapolating trend followers (i.e. for trend parametgrslose to1) and weakly stabilizing
fundamentalists (i.e. with.6 < v < 0.9, say), leads to coexistence of attractors and agents may
coordinate on a stable limit cycle around the locally stable fundamental steadj?dtatae

2Hommes et al. (2005) have recently carried out laboratory forecasting experiments using a similar asset pric-
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Figure 3:Left panel: Bifurcation diagram of the Chenciner bifurcation in the g-v-planefor g =
1000, R = 1.01 and o« = 10. At the point labelled DH (¢ = 2R = 2.02 and v ~ 0.45)
a degenerate Hopf or Chenciner bifurcation occurs. This point lies on the Hopf bifurcation
line {g = 2R}, labeled H and from this point a curve SN emanates corresponding to the
saddle-node bifurcation curve of invariant circles. The area between the curves SN and H is
the ‘volatility clustering region’” with a second attractor coexisting with the stable fundamental
steady state. Right panel: The curve SNV, corresponding to the saddle-node bifurcation of the
invariant circle, for different values of the intensity of choice 5 = 10/2,i = 2, ...,8. Thecurve
SN movesto the left and approachesthe vertical line g = 1, asthe intensity of choice increases
from 3 = 10 to 8 = 10, 000.
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presence of noise, the evolutionary dynamics then switches irregularly between a stable phase
with close to the fundamental steady state small amplitude price fluctuations and an unstable
phase with large price fluctuations along a (noisy) limit cycle. Our simple evolutionary learning
model thus exhibits volatility clustering.

6 Theamount of chaos

In section 3 it has been shown that in the caseg of 0, the fixed pointx* = 0 is stable for
small g, and it loses its stability in a Hopf bifurcation fgr= 2R. In section 5 we have seen
that a stable limit cycle may already exist fpr< 2R (in fact wheng is close tol), when the
fundamental steady state is still locally stable. In this section we focus on more complicated,
chaotic dynamical behavior in the model and investigate for which parameter constellations
chaos arises. In particular, we find another mechanism for clustered volatility in our adaptive
belief system, namely intermittent chaos.

Figure 4 shows typical examples of attractors in phe, . -plane, for three differeng-values

with all other parameters fixed. Singe< 2R these attractors coexist with a locally stable
fundamental steady state. For g = 1.6 an attracting quasi-periodic circle occurs, whereas for

g = 1.7 a stable limit cycle of period 16 occurs. Fgr= 2, after a complicated sequence of
bifurcations, the invariant circle has turned into a strange attractor. The numerical simulations
in figure 4 thus suggest that in our adaptive learning model, a strange attractor with chaotic
dynamical behavior may coexist with a locally stable fundamental steady state. In figure 4
(right plot), the unstable invariant circle created at the Chenciner bifurcation can be seen as the
inner boundary between the strange attractor and the locally stable fundamental steady state.

Figure 5 illustrates what happens after the supercritical Hopf bifurcation in the model. An im-
portant difference between both figures is that the parametidat is, the factor with which
fundamentalists expect prices to move towards the fundamental value, has been decreased from
v = 0.6 in figure 4 tov = 0.3 in figure 5. Numerical simulations suggest that o= 2 the
fundamental steady state is globally stable, whereag for2.09 an invariant attracting circle,
guasi-periodic (or periodic with high period), has appearedgFor.4, the invariant circle has
developed into a strange attractor. Notice that the strange attractor in figure 5 (right plot) seems
to contain the (unstable) fundamental steady state suggesting that price fluctuations get close to
the fundamental steady state occasionally. The corresponding chaotic time series suggests some
form of volatility clustering caused by intermittent chaos, characterized by phases of growing
prices and phases of close to the fundamental price fluctuations.

There is a strikingly simple economic intuition why such intermittent chaos may in fact be
expected when chartists are strong trend extrapolators (i.e. the trend paransdage) and
fundamentalists are strongly stabilizing (i.e. the parametgclose to zero). In the presence of

ing framework. In these experiments both possibilities, with human subjects either learning to coordinate on the
fundamental price or learning to coordinate on an oscillatory pattern, have been observed.
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Figure 4:Projections of a quasi-periodic, a periodic and a chaotic attractor on the p;-p; -
plane. Not drawn is the stable fundamental steady state at p* = 100. Parameters are: 5 = 4,
v = 0.6, R = 1.01, « = 10, and, from left to right, ¢ = 1.60, g = 1.71, and g = 2.00. These
parameter values lie in the ‘volatility clustering region’ where two attractors coexist. The fixed
point undergoes a subcritical Hopf bifurcation at ¢ = 2.02. In the right figure the unstable
invariant circle can be seen asthe inner boundary of the strange attractor.
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Figure 5:Projection of the attractors on the p;-p; . 1-plane. Parameters are: § = 4, v = 0.3,
R=101,a=10and g = 2 (a), g = 2.09 (b) and ¢ = 2.4 (c). The fixed point is attracting
in the top left picture: points spiraling towards it are shown. It undergoes a supercritical Hopf
bifurcation at ¢ = 2.02, has a quasiperiodic attractor for ¢ = 2.09 and a strange attractor
for ¢ = 2.4, with corresponding time series for the strange attractor in the plot (d) showing
intermittent chaos.
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strong trend extrapolators the fundamental steady state is locally unstable, because trend follow-
ers strongly extrapolate small deviations from the fundamental steady state leading to oscilla-
tory, diverging prices. When prices diverge and move away far above or below the fundamental
value, technical traders conditioning their charts upon market fundamentals will abandon their
rule and the upward or downward price trend will stop and most technical analysts will start
following the fundamental rule. When fundamentalists are strongly stabilizing, prices will then
quickly move into a small neighborhood of the fundamental steady state. Due to the strong trend
extrapolators, the fundamental steady state is locally unstable and prices start oscillating again
and the story then repeats. This mechanism suggests that the evolutionary interaction causes
the fundamental steady state to have a saddle-point structure with a locally destabilizing force
due to strong trend extrapolation and a globally stabilizing force due to strong stabilization by
fundamentalists.

This economic intuition suggests that the evolutionary learning system is in fact close to having
a homoclinic orbit and its associated complicated dynamical behavior. The economic intuition
also suggests reasons why the dynamics might be chaotic. A set of initial states of the system
close to the fundamental will kséretched out during the phase when technical traders dominate
and extrapolate a trend. At the point where the fundamentalists start to become the dominating
fraction in the market, the set will Helded back onto itself. The action of the fundamentalists
transports this folded set back close to the fundamental. It is precisely this stretching and folding
which lies at the root of the occurrence of chaos in dynamical systems in general. Technical
trading causes stretching, whereas the conditioning of technical trading rules upon fundamentals
causes folding, and the interaction between these competing strategies create intermittent chaos
in the adaptive belief system.

To get a global impression of the ‘amount of chaos’ to be expected in the sylsgapunov
exponents are computed for a range of parameter values.
Definition
If {x:}$°, is an orbit on an attractor, then tfiest (or largest) Lyapunov exponent ) is defined
as
1
A= lim —

t—oo N

n—1
> log || DD(x,)]].
k=0

The (largest) Lyapunov exponent measures the average rate of divergence (or convergence) of
nearby trajectories. A system is commonly considered to be chaotic, if it has an attractor such
that orbits on the attractor have positive largest Lyapunov exponent.

For the present system, Lyapunov exponents have been computed for 10 different initial con-
ditions, in order to account for the possibility of coexisting attractors. The largest value of the
exponent obtained has been taken. These plots have been made both-in dred thes-g-
diagrams (figures 6 and 7), given as a contour plot (right plots: region with positive Lyapunov
exponents are indicated) and a 3-D-plot (left pletspordinate indicates magnitude of the Lya-
punov exponent). Far > 2R chaos seems to be the rule rather than the exception. But even for
the locally stable region of the fundamental steady state 2R, for parameters in the ‘volatil-

ity clustering region’ a coexisting chaotic attractor may exist (an example was shown already in
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Figure 6:Lyapunov exponentsfor g € [1,5], v € [0,1], 3 = 3, R = 1.01, o = 10: on the left,
the magnitude of the largest Lyapunov exponent is plotted along the z-axis. In the right picture,
for points in the grey area, largest Lyapunov exponents are positive — for those parameters,

thereis a chaotic attractor.
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Figure 7:Lyapunov exponentsfor 3 € [0,10], g € [1,3], v = 0.6, R = 1.01, « = 10. Legend as
in figure 6.
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the right plot of figure 4). In particular, chaos may arise for relatively small values of the trend
parametey when the intensity of choicg is large, that is, when traders are sensitive to small
differences in fitness and quickly adapt their trading strategies.

7 Concluding Remarks

In this paper we present a simple, nonlinear structural model for volatility clustering, based on
the concept of evolutionary adaptive belief systems introduced by Brock and Hommes (1997).
\olatility clustering arises endogenously due to the interaction between fundamentalists and
technical analysts driven by adaptive learning. Two mechanisms are proposed as an explanation:
intermittency and coexistence of attractors. Chaos arises from the combination of stretching
due to strong trend extrapolation by chartists, folding due to conditioning of the chartists’ fore-
casting rules upon market fundamentals and contraction due to strong fundamentalists pushing
prices quickly back close to the (unstable) fundamental steady state. Coexistence of attractors
arises due to a codimension two Chenciner bifurcation. Close to the Chenciner bifurcation there
is a ‘volatility clustering region’, that is, an open set in parameter space where a locally stable
fundamental steady state and a stable invariant circle coexist. Both mechanisms proposed are
generic phenomena and thus may serve as endogenous explanations of volatility clustering in
more complicated computational multi-agent systems. The local, codimension two Chenciner
bifurcation point acts as an ‘organizing center’ of the bifurcation structure and implies global,
codimension one bifurcation phenomena such as a saddle-node bifurcation of invariant circles.

We have presented a strikingly simg@nomic intuition why in our heterogeneous agent adap-

tive learning model one should in fact expect both coexistence of a locally stable fundamental
steady state and a stable limit cycle and intermittent chaos to occur, depending upon the strength
of trend extrapolation (as measured by the trend paramgtard the strength of fundamental
stabilization (as measured by the factowith which fundamentalists expect prices to move
towards the fundamental value).

In the presence of strongly extrapolating chartists small price deviations from the fundamental
will be reenforced by trend extrapolation. The fundamental steady state will therefore be locally
unstable and prices move away from their fundamental value. When the price deviation from the
fundamental becomes too large however, chartists will abandon their rules since they condition
their charts on market fundamentals. Most technical traders will thus start following a funda-
mental rule and, when fundamentalists are strongly stabilizing, prices will quickly move back
close to the fundamental value, and the story repeats. Evolutionary interaction between strongly
extrapolating chartists and strongly stabilizing fundamentalists leads to a strange attractor with
intermittent chaos and irregular price fluctuations switching between phases of low and high
volatility, as illustrated in figure 5.

When the chartists are only weak trend extrapolators, the fundamental steady state is locally
stable. The trend extrapolators may be strong enough however to reenforce a price trend far
away from the fundamental steady state. This upward trend, say, cannot continue forever, since
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Figure 8:Time series of prices for the model with fundamentalists and chartists together with
a small fraction of noise traders. Parameters v = 0.6 and ¢ = 2 are such that a stable fun-
damental steady state and a strange attractor coexist (see figure 5). Due to the noise traders,
price fluctuations switch irregularly between a low volatility phase, with prices close to the
fundamental value, and a high volatility phase, with prices exhibiting temporary bubbles.
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chartists condition their rule upon market fundamentals and at some point will switch to be-
come fundamentalists. Prices will then return in the direction of the fundamental value, and a
downward trend will start. If fundamentalists are only weakly stabilizing, prices will only move
slowly downwards and will not get close enough to the (locally stable) fundamental steady state.
Trend followers will extrapolate the downward trend, until the point when prices move too far
away from their fundamental value and the downward trend will be reversed into an upward
trend, and the story repeats. This mechanism leads to a market in which a locally stable fun-
damental steady state coexists with a stable limit cycle. When the intensity of choice to switch
strategies is high, coordination on a stable limit cycle around a locally stable fundamental steady
state may arise even when trend followers are only weakly extrapolating (i@ Vvidues close

to 1). When traders are highly sensitive to differences in fitness, the evolutionary interaction be-
tween weak trend extrapolators and weakly stabilizing fundamentalists may thus lead to a stable
limit cycle (or a more complicated attractor) around a (locally) stable fundamental steady state.
In the presence of noise, the market then switches irregularly between phases of low volatility
and phases of high volatility, as illustrated in figure 8. A noise term (normal distribution, with
standard deviation = 0.5) has been added to the equilibrium pricing equation (10). Notice that
this is equivalent to adding a small fraction of noise traders, who trade randomly, to the market
clearing equation (2). Due to the presence of the noise traders, the market switches irregularly
between a low volatility phase, dominated by fundamentalists with prices close to the funda-
mental value, and a high volatility phase, dominated by trend followers with prices exhibiting
temporary bubbles. Temporary bubbles are triggered by noise traders and reenforced by trend
followers.

The model studied here is admittedly simple and should only be viewed as a stylized, analyti-
cally tractable behavioral model. Volatility clustering arises, at least in a qualitative sense. We
have proposed intermittency and coexistence of attractors (e.g. arising from a Chenciner bifur-
cation) as an endogenous explanation of clustered volatility. Both intermittency and coexistence
of attractors are ‘generic’ phenomena, and similar phenomena are expected to occur in a more
complicated, nonlinear dynamic models.

A convenient feature of our simple adaptive belief system is that the model has been formulated
around a benchmark fundamental. In this paper we have focused exclusively on the case of a
constant fundamental, derived from an underlying iid dividend process. A natural extension is
to investigate the evolutionary adaptive system in the case of more realistic stochastic dividend
process and its corresponding time varying stochastic fundamental processes, for example a
geometric random walk, and see whether simple stochastic models can match the observed
volatility clustering in real financial data more closely.
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