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Abstract

Qualitative properties of optimal investment strategies for a firm with quadratic costs and
non-concave production are analysed. Organising the qualitative information in a bifurca-
tion diagram, it is found that the structure of the bifurcation manifolds is determined by a
so-called swallow-tail singularity. This implies the existence of threshold (Skiba) points for
positive discount factors. The parameter region for which threshold points exist is determined
numerically, and for small discount factors some of its properties are derived by an approxi-
mation method.

1 Introduction

If at a given point in time, a firm’s capital stock is not optimal, that is, if the marginal product
of capital does not equal the marginal cost of capital, a manager has to take a decision about
investment or disinvestment. Under the assumption that there adjustment costs to be paid on
changing the capital stock, it is not optimal to try to jump to the optimal level all at once;
rather, the manager has to make an investment plan. That firms do not change their capital
stock instantaneously has already been claimed by Keynes (1937); the work of Eisner and
Strotz (1963), Lucas (1967), Gould (1968) and Treadway (1969) has shown how “Keynesian”
investment schedules can be derived from optimality considerations by assuming adjustment
costs of capital.

Increasing returns to scale over some regions of the firm size may lead to the existence
of several optimal long term steady states, the initial size of the firm determining to which of
these states an optimal investment plan will lead. This divides the possible initial sizes into
‘optimal basins of attraction’ of the respective long term steady states; these basins are sep-
arated by threshold points, which are often called Skiba or Dechert-Nishimura-Skiba points,
after the seminal articles of Skiba (1978) and Dechert and Nishimura (1983). For a competent
overview on the literature on threshold points, see Deissenberg et al. (2001).
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Whether such thresholds exist for a given situation is a delicate nonlinear problem, which
depends on the convexity of the cost function and the non-concavity of the production func-
tion. The problem is investigated in the following pages by parametrising the strength of the
non-concavity and the shape of the cost function, to obtain a detailed picture of the relative
effects of these properties. This picture takes the mathematical form of a multi-dimensional
bifurcation diagram.

Previously (Wagener (2003)) it has been shown that knowledge of the bifurcations of the
state–co-state system associated to the optimality problem contains enough information to
determine whether or not, for given values of the parameters, there are threshold points in
the system, provided the state variable of the problem is one-dimensional: the set of param-
eters for which threshold points exist was shown to be bounded by manifolds of saddle-node
and heteroclinic bifurcations. It is conjectured that this relation is general and holds for all
dimensions of the state space.

A major problem in the investigation of nonlinear systems is that there are usually no
global results to be had, unless there is some additional structure present in the model. In
the present case, for small discounting, the state–co-state equations are close to a so–called
Hamiltonian system; this Hamiltonian structure places strong restrictions on the possibilities
of the phase flow, and there are several methods of perturbation theory that can be applied to
the problem.

The investigation will try to elucidate the consequences of changes in the various parame-
ters, but some statements will be of a somewhat tentative nature, as they have only numerical
simulations to back them up. Though the main thrust of the following will be the analysis of a
well-chosen model system, inspired on the model investigated by Haunschmied et al. (2003),
it should be noted that the results obtained are robust, structurally stable in the mathematical
sense.

Main ideas. To introduce the ideas of the present article, let the capital stock of a firm be
denoted by the variable x > 0, and let the associated revenue from production be R(x) > 0;
revenue is always assumed to increase with the capital stock, that is, it is assumed that R′(x) >
0 for all x. Investment in capital is denoted by u ≥ 0; the dynamics of the capital stock are

ẋ = u − σx, x(0) = x0,

where σ > 0 is the depreciation rate. By choosing units of time and investment suitably, the
parameter σ can be scaled to 1, so that the capital dynamics read simply as

ẋ = u − x, x(0) = x0. (1)

Investment at a rate u costs C(u) per unit time; costs are increasing and convex in u.
Consider the (not optimal) stabilising investment strategy u = us(x) = x; note that for

this investment level ẋ = 0, that is, the strategy stabilises the capital stock at x(t) = x0. The
profit of the firm per unit time is then given by Πs(x0) = R(x0) − C(x0). For a revenue
function of concave-convex-concave type, figure 1 shows two possible shapes of Πs.

Imagine the case of a firm at an initial capital level xI . In both cases of figure 1, the short-
sighted strategy would be to decrease the level of investment steadily, until the capital stock is
at level xA. While in the left hand case, this is clearly the right strategy, in the right hand case
a long-sighted manager has a more difficult choice to make: by increasing investment rather
than decreasing it, the firm might reach a capital level close to xB , yielding a higher profit
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Figure 1: Profit functions for stabilising investment strategies.

stream. Whether this is the right strategy depends on how these future gains are weighted, and
on the precise level of the firms initial capital stock. It might be the case that it is always best
to let the firm expand in order to reach xB , for instance if future gains are allowed to weigh
heavily; conversely, if the future is discounted strongly, it might depend on the initial position
of the firm whether it is best to reach xB , or whether it should rather shrink towards xA, and
there will be a threshold point where both possibilities are equally attractive.

2 Setup

2.1 Control problem. The manager of the firm faces the following optimality problem:
to maximise the discounted profit functional

J [x, u] =

∫

∞

0

(R(x) − C(u)) e−ρt dt, (2)

ρ > 0 denoting the discount rate, subject to the condition that equation (1) holds for all t.
Introduce y as co-state variable; the Pontryagin function of the problem reads as

P (x, y, u) = −(R(x) − C(u)) + y(u − x);

minimising P over u yields the relation

C ′(u) + y = 0.

Let c be the marginal cost function, given as c(u) = C ′(u); analogously, let the marginal
revenue function r be given by r(x) = R′(x). The relation between co-state and control can
then be written as y + c(u) = 0, or u = c−1(−y), where c−1 denotes the inverse of c. The
Hamilton function of the problem takes the form

H = −R(x) + C(c−1(−y)) + y(c−1(−y) − x);

the reduced Hamiltonian equations ẋ = Hy, ẏ = ρy − Hx read as

ẋ = c−1(−y) − x, ẏ = ρy + r(x) + y. (3)
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2.2 Equilibria. To determine the equilibria of the system (3), note that the equations ẋ =
0 and ẏ = 0 are equivalent to

y + c(x) = 0, (1 + ρ)y + r(x) = 0,

which after elimination of y leads to

δ(x; ρ) = r(x) − (1 + ρ)c(x) = 0. (4)

Also introduce ∆(x; ρ) = R(x) − (1 + ρ)C(x); then ∂∆

∂x
= δ. Note that all equilibria of (3)

correspond in a one-to-one fashion to solutions to δ(x; ρ) = 0, or, expressed geometrically, to
the intersections of the graphs of r and (1 + ρ)c(x).

The same conclusion is reached when a new co-state variable p = y + c(x) is introduced.
The system (3) reads in the new variables as

ẋ = c−1

(

c(x) − p
)

− x, ṗ = δ(x; ρ) + (1 + ρ)p + c′(x)
[

c−1(c(x) − p) − x
]

.

Since ẋ = 0 implies p = 0, all equilibria are located on the line {p = 0}. If the argument
of c−1 is developed in a first order Taylor series for small values of p, the system simplifies to

ẋ = − p

c′(x)
+ O(p2), ṗ = δ(x; ρ) + ρp + O(p2).

It is clear that the equilibria of this system are those points (x∗, 0) for which δ(x∗; ρ) = 0.

3 Quadratic costs

This section restricts attention to the following model specifications. Costs are assumed to be
quadratic

C(u) = c1u +
c2

2
u2,

or, equivalently, marginal costs are assumed to be linear: c(u) = c1 + c2u. Though the
economic relevant case is c1, c2 > 0, it will be seen below that the ‘non-relevant’ cases carry
structural information about the model. The revenue function is specified as

R(x) =
√

x − λ
x

1 + x4
; (5)

this is (up to scalings) the same as used by Haunschmied et al. (2003).

3.1 Bifurcation at infinity. Let E denote the epigraph {(x, y) ∈ R
2 : y > r(x)} of r;

its boundary ∂E is the graph of r. Let moreover ` be the line {(x, y) : y = c1 + c2x}.
If M > 0 is large enough, the part of the line ` for which x > M is contained in E

whenever c2 > 0 or c2 = 0 and c1 > 0, while the part of ` for which x < 0 is in the
complement of E. Hence ` can cross γ only an odd number of times (counting multiplicities).
On the other hand, if c2 < 0, or if c2 = 0 and c1 ≤ 0, the line ` begins and ends outside E,
and hence crosses γ an even number of times.

Hence, the line {c2 = 0} is a bifurcation curve, where one equilibrium disappears towards
infinity as the parameter c crosses the curve.

If λ is sufficiently close to 0, the function r is convex, its epigraph is a convex set, and any
line can have at most two intersections with its boundary. The above possibilities reduce to
one intersection in the odd case, and zero or two intersections in the even case.
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3.2 Saddle-node bifurcations. The simplest possible bifurcations of equilibria are the
confluence and subsequent vanishing of two intersections of γ and `; this corresponds to a
saddle-node bifurcation of the original system.

The geometric condition for a saddle-node bifurcation of equilibria is that the line ` is
tangent to γ; analytically, tangency of ` and γ at the point (x0, r(x0)) is expressed by

c1 + c2x =
1

1 + ρ
(r(x0) + r′(x0)(x − x0)) .

Hence all saddle-node bifurcation parameters are located on the curve

c1(s) =
1

1 + ρ
(r(s) − r′(s)s) , c2(s) =

1

1 + ρ
r′(s),

where s ∈ R parametrises the curve. Note that these expressions can be computed easily.

3.3 Cusps and self-intersections. The curve c(s) = (c1(s), c2(s)) has a classical in-
terpretation as the transformation of the curve (x, r(x)/(1 + ρ)) into line or tangent coor-
dinates (see for instance van der Waerden (1939) or Arnol’d (1988)). Whereas ordinarily a
curve s 7→ γ(s) is given as the set of points located on the curve, in tangent coordinates the
curve is given as the set of its tangents; the curve itself is recovered as the envelope of this
family of lines.

The point of this for the present case is that singularities of the transformed curve corre-
spond to bifurcations of higher codimension, as the transformed curve gives the location of
the saddle-node bifurcations in the space of parameters. But singularities of the transformed
curve correspond to geometric properties of the original curve, and in the present case, to
properties of the function r(x).
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Figure 2: Configurations of the marginal revenue function that are associated to singularities of
the saddle-node bifurcation curves. Left: an inflection point gives rise to a cusp bifurcation. Right:
a double tangent gives rise to a self-intersection of the saddle-node curve.

The only two singularities which are of interest for the present case are points where r
changes from convexity to concavity, that is, points s0 where the second derivative of r has a
simple zero — these correspond to cusps in the transformed curve, since c′1(s0) = c′2(s0) = 0
— and the situation that a line ` is tangent to γ at several places, giving rise to points of
self–intersection of the transformed curve (see figure 2).

Note that by setting f1(x) =
√

x and f2(x) = x/(1 + x4), the function R can be written
as R = f1(s)−λf2(s). Since the condition for a cusp bifurcation is that r′′(s0) = R′′′(s0) =
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0, cusp bifurcations of the system are located on the curve

c1(s) =
1

1 + ρ
(r(s) − r′(s)s) , c2(s) =

1

1 + ρ
r′(s), λ(s) =

f ′′′

1 (s)

f ′′′

2
(s)

.

4 Heteroclinics

In the previous section, the steady states of the state–co-state system have been determined.
However, depending on the circumstances, not all of these might be economically relevant.

4.1 No discounting. This is most easily seen in the case that ρ = 0; since in this
case the integral (2) in the utility functional usually does not converge, it cannot be used
to compare investment strategies. Instead, the notion of overtaking optimality is needed:
if JT =

∫ T

0
(R(x) − C(u)) dt, then the strategy u1(t) overtakes the strategy u2(t) if there

exists a constant T1 such that JT [x1, u1] > JT [x2, u2] for all T > T1.
Note that for ρ = 0 the equilibria are determined by the solution of

r(x) = c(x),

that is, by the condition that marginal costs equal marginal production, and that there are no
other possibility for the optimal investment strategy than to converge to one of these equilibria.

Assume that (xA, yA) and (xB , yB) are two saddle equilibria of the state–co-state system.
In equilibrium yi + c(xi) = 0, i ∈ {A, B}, and

hi = H(xi, 0) = C(xi) − R(xi),

that is, hi is the difference between cost and production for the equilibrium level of capital xi;
the lower hi is, the better.

If hA < hB and the future is not discounted at all, then it is clear that any investment
strategy which leads to xA as asymptotic capital stock level eventually overtakes any strategy
which leads to xB instead. Hence, for ρ = 0, the optimal investment always leads to the equi-
librium that yields the lowest value of H , if there is a unique equilibrium with this property.
Since this property is satisfied by an open and dense set of systems, this is almost always the
case.

4.2 Positive discounting. Yet the case that hA = hB is not devoid of interest; for
imagine for the moment that the discount rate ρ is positive but small. If the initial level of
capital x0 is close to xA, it is certainly better to converge to xA than to work all the way
towards xB ; even if hB is a little below hA, it may still be optimal to remain close to xA: the
distant winnings may be so much discounted that they do not compensate for the losses which
are incurred by going from a neighbourhood of xA to a neighbourhood of xB .

These heuristic considerations lead to the question whether there is a unique optimal long-
run steady state, or whether there may be several. It has been shown (Wagener (2003)) that
the set of parameters for which there may be several optimal long-run steady states is bounded
by saddle-node and heteroclinic bifurcation curves of the state-co-state system.

To analyse the situation, it is convenient to pass to the variable p = y + c1 + c2x as in
subsection 2.2. The state–co-state equations take the form

ẋ = − p

c2

, ṗ = δ(x; ρ) + ρp. (6)
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Figure 3: Left: the three-dimensional bifurcation diagram of equilibria in (λ, c1, c2)-space. The
surface of saddle-node bifurcations displays a swallow-tail singularity. Right: the bifurcation
diagrams of equilibria for λ = 0.1, 0.3 and 0.45 respectively, from top to bottom. Shown are the
curve of saddle-node bifurcations and the curve c2 = 0 of bifurcations at infinity (both solid). The
dashed line c1 = 0 indicates the left-hand boundary of the economic relevant region c1, c2 > 0.
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Figure 4: Full bifurcation diagrams for λ = 0.35 and ρ = 0.05, ρ = 0.25 and ρ = 1 (first row,
from left to right), and enlargement of the diagram for ρ = 0.25. The size of the set for which
threshold points exist grows as ρ increases. For parameters (c1, c2) in region I of the enlargement,
the equilibrium with the highest capital stock is always optimal, in II the long-term steady state is
determined by the initial capital stock x(0), whereas in III the lowest capital stock is always the
optimal long-term outcome. For parameters in region IV there is only one long term steady state
for the system.
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Figure 5: Occurrence of a threshold point (a), the corresponding value function (b), and a hetero-
clinic connection between saddle points (c). In the phase diagrams (a) and (c), level curves of the
Hamiltonian are shown by broken lines, while phase curves of the reduced system are solid; the
arrow indicates the direction of the phase flow. In (b), the graph of the value function is drawn,
while the broken lines represent the values of the functional J continued along the stable manifolds
of A and B.

The variable transformation Ψ(x, y) = (x, y + c(x)) is symplectic; this means roughly that
the variable p is a ‘good’ co-state variable. In the (x, p)–coordinates, the Hamiltonian takes
the form H(x, p) = −p2/c2 − ∆(x; ρ). Note that after a time reflection t → −t, the Hamil-

tonian changes sign, reading as H = p2

c2

+ ∆(x), which is the standard form of a mechanical
system in one degree of freedom (see Arnol’d (1989)). In this picture, the term ρp → −ρp
corresponds to friction that is linear in the velocity. Also note that all equilibria are on the
axis p = 0.

4.3 Melnikov’s method. For small values of ρ, the approximate location of the hete-
roclinic bifurcation curves can be determined by Melnikov perturbation theory (cf. Gucken-
heimer and Holmes (1986)). To see this in a general way, assume that besides depending on ρ,
the state–co-state system depends on another, multi-dimensional, parameter µ ∈ Σ ⊂ R

q . Let
µ0 be a value of this parameter such that all for (µ, ρ) close to (µ0, 0), there are two saddle
equilibria (xA, 0) and (xB , 0). Assume also that

hA(µ, ρ) = H(xA(µ, ρ), 0; µ, ρ) ≤ H(xB(µ, ρ), 0; µ, ρ) = hB(µ, ρ);

this last assumption can always be achieved by relabeling the equilibria.
Let s ∈ R parametrise a curve of heteroclinic bifurcation parameters s → µ̄(s; ρ) in

the parameter space Σ, such that the heteroclinic connection associated to µ = µ̄(s; ρ) is
contained in the upper half plane {p ≥ 0}. Melnikov’s method shall be applied to find an
approximation, to first order in ρ, of the quantity µ̄(s; ρ) − µ̄(s; 0).

Fix s at s1 and µ at µ1 = µ̄(s1; ρ). For µ = µ1, let γ0 denote that part of the level
curve of the Hamiltonian {H = hB} of height hB(µ1, ρ) that is in the upper half plane;
γ1 the heteroclinic connection between the saddle points A and B; γ2 that segment of the
line {p = 0} that connects the intersection C of γ0 and {p = 0} with the point A. See
figure 5c. Denote the region bounded by γ0, γ1 and γ2 by S. The curves will be assumed to
be oriented such that the region S is always to the left of them.
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Introduce the differential 1-form

ω = (Hx − ρp) dx + Hp dp = dH − ρp dx,

associated to the system of differential equations (6). Note that ω vanishes by definition on
any vector tangent to an integral curve of (6); hence

∫

γ1

ω = 0. Likewise
∫

γ0

dH = 0,
since H is constant along γ0. Taking this into account, it follows that the integral of ω over
the boundary ∂S of S equals

∫

∂S

ω = −ρ

∫

γ0

p dx +

∫

γ2

dH ;

Denoting by |S| the area of S, it follows by Stokes’ theorem (see for instance Spivak (1965))
that

∫

∂S

ω =

∫

S

dω = ρ

∫

S

dx ∧ dp = ρ|S|.

Since γ0 and γ1 have a mutual distance of order ρ, the area enclosed by these two curves and
the axis {p = 0} is of order O(ρ), and the term ρ|S| is of the order O(ρ2). The final result
that is obtained is that if γ1 is a heteroclinic connection between the two saddles A and B in
the upper half plane {p ≥ 0}, then

hB − hA − ρ

∫ xC

xA

√

−c2∆ dx = 0 + O(ρ2).

4.4 Implications. By the envelope theorem, partial derivatives of hi(µ, ρ), with respect
to either µ or ρ are equal to partial derivatives of H(xi, 0; µ, ρ) with respect to these variables
modulo terms of order O(ρ2), since the equilibria (xi, 0) have a distance of order O(ρ) to
stationary points of H . Also note that for ρ = 0, the curves γ0 and γ1 coincide, as do the
points xC and xB . Moreover hB(µ, 0) = hA(µ, 0). Introducing D = hB − hA and µ̄0 =
µ̄(s0; 0), expanding all terms to first order with respect to ρ, and dividing by ρ yields that

∂D

∂µ
(µ̄0, 0)

∂µ̄

∂ρ
(s0; 0) +

∂D

∂ρ
(µ̄0, 0) =

∫ xB

xA

√

−c2∆ dx + O(ρ).

Hence

µ̄(s0, ρ) = µ̄0 +

−∂D

∂ρ
+

∫ xB

xA

√

−c2∆ dx

∂D

∂µ

ρ + O(ρ2).

Completely analogously it follows for the heteroclinic connections in the lower half plane {p ≤
0} that

µ(s0, ρ) = µ0 +

−∂D

∂ρ
−

∫ xB

xA

√

−c2∆ dx

∂D

∂µ

ρ + O(ρ2);

here µ(s, ρ) ∈ P is the corresponding bifurcation manifold.
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In particular, note that as c2 → 0, the difference between the heteroclinic bifurcation
values µ̄ and µ tends to 0 as well; taking µ = c1, the difference reads as

µ̄(s0, ρ) − µ(s0, ρ) =
2ρ

xB − xA

∫ xB

xA

√

−c2∆ dx + O(ρ2).

This effect is illustrated by figure 4, where the heteroclinic bifurcation curves bend and ap-
proach each other as c2 approaches 0.

This can be interpreted in economic terms as follows: if investment costs are almost linear,
almost no investment problems of the type considered here will have threshold points.

5 Conclusions

The present article has investigated a simple cost-production model of a firm in the situation
that the revenue function fails to be concave in some region of firm size; this may arise due
to increasing returns to scale of production or to some other reason as e.g. network effects
(cf. Haunschmied et al. (2003) and references therein). The dependence on the problem
parameters of the optimal investment strategies have been analysed, and it has turned out that
the properties of these strategies depend quite sensitively on the parameters.

To picture the different types of properties, bifurcation diagrams have been drawn; in the
model system, they turned out to be organised by a swallow-tail singularity of the equilibria,
from which the existence of heteroclinic connections between saddle equilibria followed; us-
ing results obtained previously (Wagener (2003)), the parameter region for which threshold
points can be expected in the system has been characterised as a region in parameter space
bounded by manifolds of heteroclinic and saddle-node bifurcations; these regions are non-
empty for positive discount factors.

The saddle-node manifolds have been obtained analytically; the heteroclinic bifurcation
manifolds were obtained numerically. However, for small values of the discount factor, an
analytic estimate of the size of the region in parameter space for which threshold points exist
has been obtained by the Melnikov method. This led in particular to the result that for close-
to-linear cost functions, almost no threshold parameters exist.
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