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Abstract.

This chapter surveys work on dynamic heterogeneous agent models (HAMs) in economics and fi-
nance. Emphasis is given to simple models that, at least to some extent, are tractable by analytic
methods in combination with computational tools. Most of these models are behavioral models with
boundedly rational agents using different heuristics or rule of thumb strategies that may not be perfect,
but perform reasonably well. Typically these models are highly nonlinear, e.g. due to evolutionary
switching between strategies, and exhibit a wide range of dynamical behavior ranging from a unique
stable steady state to complex, chaotic dynamics. Aggregation of simple interactions at the micro
level may generate sophisticated structure at the macro level. Simple HAMs can explain important
observed stylized facts in financial time series, such as excess volatility, high trading volume, tempo-
rary bubbles and trend following, sudden crashes and mean reversion, clustered volatility and fat tails
in the returns distribution.

Keywords:

interacting agents, behavioral economics, evolutionary finance, complex adaptive systems, nonlinear
dynamics, numerical simulation.

JEL classification: B4, C0, C6, D84, E3, G1, G12



“One of the things that microeconomics teaches you is that individuals are not alike. There is heterogeneity, and
probably the most important heterogeneity here is heterogeneity of expectations. If we didn’t have heterogeneity,
there would be no trade. But developing an analytic model with heterogeneous agents is difficult.” (Ken Arrow,
In: D. Colander, R.P.F. Holt and J. Barkley Rosser (eds.), The Changing Face of Economics. Conversations
with Cutting Edge Economists. The University of Michigan Press, Ann Arbor, 2004, p301.)

1 Introduction

Economics and finance are witnessing an important paradigm shift, from a representative,
rational agent approach towards a behavioral, agent-based approach in which markets are
populated with boundedly rational, heterogeneous agents using rule of thumb strategies. In
the traditional approach, simple analytically tractable models with a representative, perfectly
rational agent have been the main corner stones and mathematics has been the main tool of
analysis. The new behavioral approach fits much better with agent-based simulation models
and computational and numerical methods have become an important tool of analysis. In
the recent literature however, already quite a number of heterogeneous agent models (HAM)
have been developed which, at least to some extent, are analytically tractable and for which
theoretical results have been obtained supporting numerical simulation results. In this chapter
we review a number of dynamic HAM in economics and finance. Most of these models are
concerned with financial market applications, but some of them deal with different markets,
such as commodity good markets. The models reviewed in this chapter may be viewed as
simple, stylized versions of the more complicated “artifical markets” and computationally
oriented agent-based simulation models reviewed in the chapter of LeBaron (2006) in this
handbook. In the analysis of the dynamic HAM discussed in the current chapter one typically
uses a mixture of analytic and computational tools.

The new behavioral, heterogeneous agents approach challenges the traditional representative,
rational agent framework. It is remarkable however, that many ideas in the behavioral, agent-
based approach in fact have quite a long history in economics already dating back to earlier
ideas well before the rational expectations and efficient market hypotheses. For example,
some of the key elements of the behavioral agent-based models are closely related to Keynes’
view that ‘expectations matter’, to Simon’s view that economic man is boundedly rational
and to the view of Kahneman and Tversky in psychology that individual behavior under
uncertainty can best be described by simple heuristics and biases. Before starting our survey,
we briefly discuss these important (and closely related) ideas, which will be recurrent themes
in this chapter.

Keynes (1936) argued that investors’ sentiment and market psychology play an important
role in financial markets, as will be clear from the following famous quote: ‘Investment based
on genuine long-term expectation is so difficult as to be scarcely practicable. He who at-
tempts it must surely lead much more laborious days and run greater risks than he who tries
to guess better than the crowd how the crowd will behave; and, given equal intelligence, he
may make more disastrous mistakes’ (Keynes, 1936, p.157). According to Keynes, it is hard
to compute an objective measure of ‘market fundamentals’ and, if possible at all, it is costly
to gather all relevant information. Another difficulty is that it is not clear what the ‘correct’
fundamental variables are, and fundamentals can be relevant only when enough traders agree
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on their role in determining asset prices. Instead of relying on market fundamentals, for an
investor it may be easier, less risky and more relevant to make a rule of thumb estimate
of the market sentiment. Herbert Simon (1957) emphasized that individuals are limited in
their knowledge about their environment and in their computing abilities, and moreover that
they face search costs to obtain sophisticated information in order to pursue optimal decision
rules. Simon argued that, because of these limitations, bounded rationality with agents us-
ing simple but reasonable or satisficing rules of thumb for their decisions under uncertainty,
is a more accurate and more realistic description of human behavior than perfect rational-
ity with fully optimal decision rules. In the seventies this view was supported by evidence
from psychology laboratory experiments of Kahneman and Tversky (1973) and Tversky and
Kahneman (1974), showing that in simple decision problems under uncertainty humans do
not behave rational, in the sense of maximizing expected utility, but their behavior can be
described by simple heuristics which may lead to significant biases. For a more recent and
stimulating discussion of bounded rationality, simple heuristics and biases as opposed to ra-
tional behavior we refer to the Nobel Memorial Lectures in Simon (1979) and Kahneman
(2003).

In contrast, Milton Friedman has been one of the strongest advocates of a rational agent
approach, claiming that the behavior of consumers, firms and investors can be described as
if they behave rationally. The Friedman hypothesis stating that non-rational agents will not
survive evolutionary competition and will therefore be driven out of the market has played an
important role in this discussion. The following quote from Friedman (1953, p.175) concern-
ing non-rational speculators is well known: ‘People who argue that speculation is generally
destabilizing seldom realize that this is largely equivalent to saying that speculators lose
money, since speculation can be destabilizing in general only if speculators on the average
sell when the currency is low in price and buy when it is high’. In a similar spirit, Alchian
(1950) argued that biological evolution and natural selection driven by realized profits may
eliminate non-rational, non-optimizing firms and lead to a market where rational, profit max-
imizing firms dominate. The question whether the Friedman hypothesis holds in a heteroge-
neous world has played an important role in the development and discussion about HAMs,
and we will come back to it several times in this chapter.

Rational behavior has two related but different aspects (e.g. Sargent (1993)). Firstly, a ra-
tional decision rule has some micro-economic foundation and is derived from optimization
principles, such as expected utility or expected profit maximization. Secondly, agents have
rational expectations (RE) about future events, that is, beliefs are perfectly consistent with
realizations and a rational agent does not make systematic forecasting errors. In a rational
expectations equilibrium, forecasts of future variables coincide with the mathematical condi-
tional expectations, given all relevant information. Rational expectations provides an elegant
and parsimonious way to exclude ‘ad hoc’ forecasting rules and market psychology from
economic modeling. Since its introduction in the sixties by Muth (1961) and its populariza-
tion in economics by Lucas (1971), the rational expectations hypothesis (REH) has become
the dominating expectation formation paradigm in economics.

Another important issue in the discussion of rational versus boundedly rational behavior
is concerned with market efficiency, as e.g. emphasized by Fama (1965). If markets were
not efficient, then there would be unexploited profit opportunities, that would be exploited
by rational arbitrage traders. Rational traders would buy (sell) an underpriced (overpriced)
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asset, thus driving its price back to the correct, fundamental value. In an efficient market,
there can be no forecastable structure in asset returns, since any such structure would be
exploited by rational arbitrageurs and therefore disappear.

In the seventies and eighties the representative agent, rational expectations and efficient mar-
ket hypotheses became the dominating paradigm in economics and finance. In the late eight-
ies and nineties however, HAMs and bounded rationality became increasingly popular. The
following developments contributed to this change:

1. In a world where all agents are rational and it is common knowledge that all agents
are rational, there will be no trade. A trader with superior private information can
not benefit from his information, because other rational traders anticipate that he must
e.g. have positive information about an asset and will therefore not sell the asset to
him. Several no trade theorems have been obtained (Milgrom and Stokey (1982); see
Fudenberg and Tirole (1991, especially section 14.3.3) for a discussion). No trade
theorems are in sharp contrast with the high daily trading volume observed in real
markets, such as the stock market and the foreign exchange market. This tremendous
trading volume reinforces the idea of heterogeneous expectations and the idea that it
takes differences of opinion among market participants to trade.

2. In the early eighties, Shiller (1981,1989) and LeRoy and Porter (1981) claimed that
stock prices exhibit excess volatility, that is, movements in stock prices are much
larger than movements in underlying economic fundamentals. Statistical tests for ex-
cess volatility were developed, but the power of these tests turned out to be low and
the issue is still heavily debated. The stock market crash in October 1987 reinforced
the idea of excess volatility and the crash appeared to be difficult to explain by a repre-
sentative, rational agent model. Another important empirical observation has been the
strong appreciation followed by a strong depreciation of the dollar in the mid eight-
ies, which seemed to be unrelated to economic fundamentals as stressed by Frankel
and Froot (1986). Cutler, Poterba and Summers (1989) showed that the days of the
largest aggregate stock market movements in the S&P500 index, 1941-1987, do not
coincide with the days of the most important fundamental news and vice versa. These
empirical observations have played an important role in the increasing popularity of
non-rational, heterogeneous agent explanations of asset price movements.

3. Following earlier ideas of Simon, in the nineties and since more and more econo-
mists have come to question the unrealistically strong rationality assumptions con-
cerning perfect information about the environment and unlimited computing abilities.
In particular, in a heterogeneous world a rational agent has to know the beliefs of all
other, non-rational agents, which seems highly unrealistic as emphasized e.g. in Arthur
(1995) and Hommes (2001). These developments contributed to a rapidly growing
interest in bounded rationality in the 1990s, see for example the survey by Sargent
(1993). A boundedly rational agent forms expectations based upon observable quanti-
ties and adapts his forecasting rule as additional observations become available. Adap-
tive learning may converge to a rational expectations equilibrium or it may converge
to an “approximate rational expectations equilibrium”, where there is at least some
degree of consistency between expectations and realizations (see Evans and Honkapo-
hja (2001) for an extensive and modern treatment of adaptive learning in macroeco-
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nomics).

4. A problem with behavioral economics and bounded rationality is that it leaves “many
degrees of freedom”. Any HAM with bounded rationality must provide a plausible
story that there is at least some reasonable consistency between beliefs and realiza-
tions and how agents select from a large class of possible forecasting and trading
strategies. One plausible story is an evolutionary approach, advocated by Nelson and
Winter (1973,1974,1982), where agents or firms select from a class of simple, behav-
ioral strategies according to their relative performance, e.g. as measured by relative
profitability and how much this strategy is used by others. The evolutionary approach
plays an important role in this chapter.

5. New developments in mathematics, physics and computer science in nonlinear dynam-
ics, chaos and complex systems motivated economists to apply these tools. Economic
applications of nonlinear dynamics are surveyed in Brock et al. (1991), Day (1994),
Lorenz (1993) and Medio (1992). The Santa Fe conference proceedings Anderson et
al. (1988) and Arthur et al. (1997a) contain contributions in which the economy is
viewed as a complex evolving system, see also Arthur (2006) and the collection of pa-
pers in Rosser (2004a). Nonlinear dynamics, chaos, and complex systems have impor-
tant consequences for the validity of the REH. In a simple (linear) stable economy with
a unique steady state path, it seems natural that agents can learn to have rational expec-
tations, at least in the long run. A representative, perfectly rational agent model nicely
fits into a linear view of a globally stable and predictable economy. But how could
agents have rational expectations or perfect foresight in a complex, nonlinear world,
with prices and quantities moving irregularly on a strange attractor? A boundedly ra-
tional world view with agents using simple forecasting strategies, perhaps not perfect
but at least approximately right, seems more appropriate within a complex, nonlinear
world; see e.g. Brock and Hommes (1997b). Applications of tools from nonlinear dy-
namics and complex systems theory have stimulated much work in HAM, which are
almost always highly nonlinear, adaptive systems.

6. Laboratory experiments have shown that individuals often do not behave rationally.
We already mentioned the work by Kahneman and Tversky, showing that individuals
tend to use heuristics and biases in making decisions under uncertainty. In a stimulat-
ing and influential paper, Smith et al. (1988) showed the occurrence of bubbles in asset
pricing laboratory experiments; see also the survey in Sunder (1995). These bubbles
occur despite the fact that participants had sufficient information to compute the fun-
damental value of the asset. This type of laboratory experiments reinforced theoretical
work on HAMs with non-rational agents. See also the chapter of Duffy (2006) on the
relationship between laboratory experiments and agent-based modeling.

7. Evidence from survey data on exchange rate expectations of financial specialists, e.g.
by Frankel and Froot (1987ab, 1990ab), Allen and Taylor (1990), Ito (1990) and Taylor
and Allen (1992), showed that financial practitioners use different trading and forecast-
ing strategies. A consistent finding from survey data is that at short horizons investors
tend to use extrapolative chartists’ trading rules, whereas at longer horizons investors
tend to use mean reverting fundamentalists’ trading rules. Frankel and Froot (1987b,
p.264) conclude the following from their survey data analysis: “It may be that each
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respondent is thinking to himself or herself, “I know that in the long run the exchange
rate must return to the equilibrium level dictated by fundamentals. But in the short
run I will ride the current trend a little longer. I only have to be careful to watch for
the turning point and to get out of the market before everyone else does”.” For a long
time academic work has been skeptical concerning the usefulness of technical trad-
ing. Brock et al. (1992) tested 26 simple, frequently used technical trading rules (e.g.
moving average and trading range breaks) on the Dow Jones index in the period 1897-
1986 and showed that they can generate significantly positive returns, suggesting extra
structure above and beyond the EMH benchmark. Dacorogna et al. (1995) show that
trading models with different time horizons and risk profiles can be profitable when
applied to high frequence exchange rate data. Both the work on survey data, the fact
that technical trading is used extensively among practitioners and empirical work sug-
gesting the potential success of technical trading have stimulated much work on HAMs
with chartists versus fundamentalists.

8. Finally, the fact that computational tools became widely available in the late eighties
and the nineties has enormously stimulated the development and numerical simulation
analysis of behavioral HAMs with boundedly rational agents, both in research and in
teaching. The current Handbook provides the best proof of this fact, see in particular
the chapters of Judd (2006) and Tesfatsion (2006).

There is already too much work on HAMs to provide a comprehensive review in this chap-
ter. We focus on stylized dynamic HAMs using some simple examples to illustrate and dis-
cuss what we believe to be important characteristics of HAMs. A long list of references is
provided to help guide the interested reader through the already extensive literature. The
chapter of LeBaron (2006) contains an overview of larger, computational HAMs as well
as many more references to the literature. This chapter is organized as follows. Section 2
discusses some early HAMs with chartists and fundamentalists and work on survey data
analysis of expectations of financial experts. Section 3 relates the work on HAMs to behav-
ioral finance. Section 4 presents examples of disequilibrium HAMs, where the interaction
of agents leads to complex market dynamics such as cycles or chaotic fluctuations. Section
5 discusses stochastic interacting agent systems and work on social interactions. Section 6
discusses simple financial market HAMs with herding behavior, able to generate important
stylized facts such as clustered volatility. Section 7 discusses models where sophisticated
agents using advanced but costly strategies compete against simple agents using cheap rule
of thumb strategies. Section 8 discusses an asset pricing model with heterogeneous beliefs
with endogenous evolutionary switching of strategies. Section 9 summarizes and discusses
some future perspectives.
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2 Fundamentalists and chartists

In many HAMs two important types of agents are distinguished, fundamentalists and
chartists. Fundamentalists base their expectations about future asset prices and their trad-
ing strategies upon market fundamentals and economic factors, such as dividends, earnings,
macroeconomic growth, unemployment rates, etc. They tend to invest in assets that are un-
dervalued, that is, whose prices are below a benchmark fundamental value, and sell assets
that are overvalued, that is, whose prices are above the market fundamental value. In contrast,
chartists or technical analysts do not take market fundamentals into account but instead base
their expectations about future asset prices and their trading strategies upon observed histor-
ical patterns in past prices. Technical analysts try to extrapolate observed price patterns, such
as trends, and exploit these patterns in their investment decisions. A well known example of
a technical trading rule is the moving average trading rule, buying (selling) an asset when a
short run moving average crosses a long run moving average from below (above).

This section discusses some early work emphasizing the importance of fundamentalists and
chartists. Subsection 2.1 discusses one of the first financial HAMs with fundamentalists and
chartists, due to Zeeman (1974). Subsection 2.2 discusses work on survey data on expecta-
tions of Frankel and Froot (1986,1987ab,1990ab), Allen and Taylor (1990) and Taylor and
Allen (1990), showing the importance of chartists trading rules among financial practition-
ers. Finally, subsection 2.3 discusses another early model with fundamentalists and chartists
discussed in a series of papers by Frankel and Froot (1986,1987ab,1990ab), which have
stimulated much subsequent work in this area.

2.1 An early example

One of the first HAMs for the stock market (or for exchange rates) can be found in Zee-
man (1974). This model is an application of the cusp catastrophe with a slow feedback flow.
Zeeman’s purpose was to offer a qualitative description of the observed stylized fact of tem-
porary bull and bear markets. The model is highly stylized and lacks any micro foundations,
but nevertheless it contains a number of important, behavioral elements that have also been
used in recent heterogeneous agents modeling.

The model contains two types of traders, fundamentalists and chartists. Fundamentalists
know the ‘true’ value of the stock and buy (sell) when the price is below (above) that value.
Chartists are trend followers, buying when price rises and selling when price falls. There are
three variables J , F and C. J denotes the rate of change of a stock market index or of an
exchange rate. J = 0 represents a static market, whereas J > 0 (J < 0) represents a bull
(bear) market. C denotes the proportion of the market held by chartists, i.e. the proportion
of speculative money in the market, and F denotes the excess demand for stock by funda-
mentalists. Zeeman assumes that J responds to C and F much faster than C and F respond
to J . Stated differently, J is a fast variable (a state variable) and C and F are slow variables
(control variables or slowly changing parameters).

Zeeman postulates seven hypotheses based upon observed qualitative features of the stock
exchange and the behavior of speculators (chartists) and value investors (fundamentalists).
Using Thom’s classification theorem, Zeeman then shows that the simplest generic mathe-
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Figure 1: The cusp catastrophe surface of equilibria. The state variable J is the rate of change of the stock
index, whereas the control variables F and C represent excess demand of fundamentalists and the proportion of
chartists. For clarity the (C, F )-plane has not been drawn through the origin, but below the surface. Reprinted
with permission from Journal of Mathematical Economics, Vol. 1, No. 1, 1974, E.C. Zeeman, The unstable
behavior of stock exchange, Figure 3, p. 46.

matical model that can be derived from these hypotheses is the cusp catastrophe model with
a slow feedback flow. Figure 1 shows the surface S satisfying

J3 − (C − C0)− F = 0. (1)

The surface S represents the equilibria of the system1. The projection of S onto the
(C, F )−plane yields the cusp region, bounded by two fold curves tangent to each other
in the cusp point. For (C,F ) outside the cusp region, S is single sheeted and the model
has a unique (stable) steady state. Inside the cusp region, S is 3-sheeted, the middle sheet
representing an unstable equilibrium and the other two sheets stable equilibria. The system
converges quickly to the attractor surface S and then slowly moves along the surface. For
example, consider a situation where the system is in a bull market at the upper sheet of S.
In a bull market the proportion of chartists increases, because they ‘follow the trend’, thus
accelerating a further increase of the stock index. At some point however fundamentalists
start selling stocks, because they judge that the market has become overvalued, causing the
growth of the index to decrease. The excess demand F of fundamentalists decreases and the
system moves along the upper sheet of S in the direction of the point B, causing a crash and
a rapid decline of the stock prices until the system reaches the lower sheet of S. During this
bear market, at some point fundamentalists start buying stocks again, because they believe
that the stock is undervalued, causing a decrease in the proportion of chartists and an increase
of the market index. As the index rises, the proportion of chartists increases again, acceler-
ating the rise in stock prices leading to a new bull market. Zeeman’s model thus explains
a switching between bull and bear markets, as indicated by the arrows in Figure 1, derived
from behavioral assumptions about chartists and fundamentalists.

1Notice that, since J denotes the rate of change, these equilibria are not steady states, but rather equilibria
with constant growth rate.
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Catastrophe theory became quite popular in the early seventies, but was heavily criticized as
being a “science fad” in the late seventies and eighties, for example in Zahler and Sussmann
(1977). Rosser (2004b) contains an interesting recent discussion and reappraisal of mathe-
matical methods from catastrophe theory and of Zeeman’s model. Guastello (1995, pp.292-
297) studied the 1987 market crash using Zeeman’s model, whereas recently Rheinlaender
and Steinkamp (2004) introduced a stochastic version of Zeeman’s model using random dy-
namical systems theory.

2.2 Survey data on expectations

In the late eighties and early nineties, a number of authors including Frankel and Froot (1987,
1990), Shiller (1987), Allen and Taylor (1990) and Taylor and Allen (1992) conducted ques-
tionnaires among financial practitioners to obtain detailed information about investors’ ex-
pectations. This survey data work has been an important source of inspiration for the devel-
opment of HAMs. More recent survey based evidence includes Cheung et al. (1999), Lui and
Mole (1998) and Menkhoff (1997,1998).

Figure 2: Time series of the real value of the dollar against a weighted average of the currencies of the foreign
G-10 countries plus Switzerland (bold graph) and the time series of the real interest differential between the US
and a weighted average of the foreign country rates (dotted graph) in the eighties. Reprinted with permission
from American Economic Review, Vol. 80, No. 2, AEA Papers and Proceedings, Frankel, J.A. and Froot, K.A.,
The rationality of the foreign exchange rate. Chartists, fundamentalists and trading in the foreign exchange
market, Figure 1, p.181.

In their series of papers in the mid eighties and early nineties, Frankel and Froot studied the
large movements of the US dollar exchange rate in the eighties and in particular they inves-
tigated the question whether investors’ expectations may have amplified those movements.
Frankel and Froot (1990a) contains a detailed description of this research; a short, but stim-
ulating discussion is also given in Frankel and Froot (1990b). Figure 2 shows a time series
of the real value of the dollar against a weighted average of the currencies of the foreign
G-10 countries plus Switzerland and the time series of the real interest differential between
the US and a weighted average of the foreign country rates in the eighties. Frankel and Froot
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(1990b, p.181) note the following:

“At times, the path of the dollar has departed from what would be expected on the basis of
macroeconomic fundamentals. The most dramatic episode is the period from June 1984 to
February 1985. The dollar appreciated another 20 percent over this interval, even though
the real interest differential had already begun to fall. The other observable factors that are
suggested in standard macroeconomic models (money growth rates, real growth rates, the
trade deficit) at this time were also moving in the wrong direction to explain the dollar rise.”

Indeed it seems difficult to believe that a rational theory could explain such an increase of
20% of the equilibrium real exchange rate within 9 months and that this rapid rise would
then be reversed within the next month. Instead Frankel and Froot (1990b, p.182) argue
that “the appreciation may have been an example of a speculative bubble – that it was not
determined by economic fundamentals, but rather was the outcome of self-confirming market
expectations.” Frankel and Froot use survey data on exchange rate expectations to test this
hypothesis2.

Frankel and Froot (1987ab, 1990ab) use three different sources for their survey data on ex-
change rate expectations of financial specialists, bankers and currency traders. Some of the
surveys go back to 1976 and include telephone interviews. The time horizon of the exchange
rate expectations vary from 1 week to 12 months. An important finding is that respondents’
short-term expectations are quite different from their long-term expectations. Frankel and
Froot estimate three simple, standard models for expectations, namely extrapolative expec-
tations, regressive (or mean reverting) expectations and adaptive expectations. The extrap-
olative expectations model assigns a weight g to the lagged spot rate and a weight (1− g) to
the current spot rate, that is, the expected spot rate is given by

se
t+1 = (1− g)st + gst−1, (2)

where st is the log of the current spot rate, or equivalently

∆se
t+1 = −g∆st, (3)

where ∆se
t+1 is the expected change of the (log) spot rate and ∆st the last realized change.

For short-term horizons (1 week, 2 weeks, 1 month) significantly negative values of g (rang-
ing from −0.13 to −0.05) are obtained, characteristic of destabilizing or bandwagon ex-
pectations for which a current appreciation generates self-sustaining expectations of future
appreciations. In contrast, at longer-term horizons of 6–12 months, significantly positive val-
ues of g (ranging from 0.07 to 0.38) are obtained characteristic of stabilizing expectations,
where a trend is expected to reverse.

The regressive or mean-reverting expectations model is a weighted average between the
current (log) spot rate and the (log) long-run equilibrium spot rate s̄t, that is

se
t+1 = (1− v)st + vs̄t, (4)

2Another rational explanation of the large fluctuations in the exchange rate is a time varying risk premium.
Froot and Frankel (1989) show however that the bias in the forward discount, i.e. the log difference of the
forward exchange rate and the spot rate, cannot be explained by rational expectations and a (time varying) risk
premium, but may be attributable to systematic expectational errors.
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or in terms of expected depreciation

∆se
t+1 = v(s̄t − st). (5)

If the weight v is positive (negative), then investors expect the exchange rate to move to-
wards (away from) the long run equilibrium value. A negative weight v is characteristic of
destabilizing or explosive expectations, while a positive weight v is characteristic of stabi-
lizing expectations. Again, at short-term horizons (1 week, 2 weeks, 1 month) significantly
negative values of v (ranging from −0.03 to −0.08) are obtained, whereas at longer-term
horizons of 6–12 months significantly positive values of v (ranging from 0.06 to 0.17) are
obtained. Similar results are also found for the case of adaptive expectations. Frankel and
Froot (1990a, pp.98–101) conclude that

“... short-term and long-term expectation behave very differently from one another. In terms
of the distinction between fundamentalists and chartists views, we associate the longer-term
expectations, which are consistently stabilizing, with the fundamentalists, and the shorter
term forecasts, which seem to have a destabilizing nature, with the chartists expectations.
Within each of the above tables, it is as if there are actually two models of expectations
operating, one at each end of the forecasting horizons, and a blend in between. Under this
view, respondents use some weighted average of the chartist and fundamentalist forecasts in
formulating their expectations for the value of the dollar at a given future date, with weights
depending on how far off that date is.”

This conclusion is in line with other questionnaire surveys of Allen and Taylor (1990) and
Taylor and Allen (1992), conducted on behalf of the Bank of England, among chief foreign
exchange dealers in London. Taylor and Allen (1992, p.304) conclude:

... at least 90 per cent of the respondents place some weight on this form of non-fundamental
analysis when forming views at one or more time horizons. There is also a skew towards
reliance on technical, as opposed to fundamentalist, analysis at shorter horizons, which
becomes steadily reversed as the length of horizon considered is increased. A very high
proportion of chief dealers view technical and fundamental analysis as complementary forms
of analysis and a substantial proportion suggest that technical advice may be self-fulfilling.

Techniques used by Forecasting Services
Year Total Chart. Fund. Both
1978 23 3 19 0
1981 13 1 11 0
1983 11 8 1 1
1984 13 9 0 2
1985 24 15 5 3
1988 31 18 7 6

Table 1: From Frankel and Froot (1990b, p.184, Table 2); source: Euromoney, August issues.
Total = number of services surveyed; Chart. = number who reported using technical analysis; Fund. = number
who reported using fundamentals models; and Both = number reporting a combination of the two. When a
forecasting firm offers more than one service, each is counted separately.

Finally, Table 1 is reproduced from Frankel and Froot (1990b) showing how the relative
importance of fundamentalist and technical analysis shifts over time. The table shows that
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in 1978 most of the forecasting services (19 vs. 3) relied on fundamental analysis, whereas
in 1985 the situations has been reversed (5 vs. 15). Frankel and Froot (1990b, pp.184-185)
conclude the following:

“... it may indeed be the case that shifts over time in the weight that is given to different
forecasting techniques are a source of changes in the demand for dollars, and that large
exchange rate movements may take place with little basis in macroeconomic fundamentals.”

2.3 An exchange rate model

Their work on questionnaire surveys among financial practitioners motivated Frankel and
Froot (1986,1990ab) to develop a heterogeneous agent model for exchange rates with time
varying weights of forecasting strategies, which has stimulated much subsequent research
in the field. Their exchange rate model contains three classes of agents: fundamentalists,
chartists and portfolio managers. Fundamentalists think of the exchange rate according to a
model –e.g. the overshooting model– that would be exactly correct if there were no chartists
in the market. Chartists do not have fundamentals in their information set; instead they use
autoregressive time series models –e.g. simple extrapolation– having only past exchange
rates in the information set. Finally portfolio managers, the actors who actually buy and sell
foreign assets, form their expectations as a weighted average of the predictions of fundamen-
talists and chartists. Portfolio managers update the weights over time in a rational, Bayesian
manner, according to whether the fundamentalists or the chartists have recently been doing
a better job of forecasting. Thus each of the three is acting rationally subject to certain con-
straints. The model departs from the orthodoxy in that the agents could do better, in expected
value terms, if they knew the complete model. The departure is a general model of exchange
rate determination

st = c∆sm
t+1 + zt, c ≥ 0, (6)

where st is the log of the spot exchange rate, ∆sm
t+1 is the rate of depreciation expected by

the market, i.e. by the portfolio managers, and zt, represents market fundamentals. Portfolio
managers use a weighted average of the expectations of fundamentalists and chartist:

∆sm
t+1 = ωt∆sf

t+1 + (1− ωt)∆sc
t+1, 0 ≤ ωt ≤ 1. (7)

Fundamentalists’ forecast are given by

∆sf
t+1 = v(s̄− st), (8)

where s̄ is the fundamental exchange rate and v is the speed of adjustment. For simplicity,
Frankel and Froot (1990b) assume that the ‘chartists’ believe that the exchange rate follows
a random walk, that is,

∆sc
t+1 = 0. (9)

Portfolio managers’ expected change of exchange rates (7) then simplifies to

∆sm
t+1 = ωtv(s̄− st). (10)

The weight ωt attached to fundamentalists views by portfolio managers evolves according to

∆ωt = δ(ω̂t−1 − ωt−1), 0 ≤ δ ≤ 1, (11)
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where ω̂t−1 is defined as the weight, computed ex post, that would have perfectly predicted
the realized change in the spot rate, that is, ω̂t−1 is defined by the equation

∆st = ω̂t−1v(s̄− st−1). (12)

Equations (11) and (12) together determine the change of weights that portfolio managers
give to fundamentalist’s views:

∆ωt = δ(
∆st

v(s̄− st−1)
− ωt−1), (13)

where the coefficient δ measures the speed of adaption. Portfolio managers thus adapt the
weight given to the fundamentalist forecast in the direction of the weight that would have
yielded a perfect forecast.

Frankel and Froot (1990a) take a continuous time limit and obtain differential equations for
ω(t) and s(t). Since the fundamental steady state may be unstable, the model is extended
by adding an endogenous stabilizing fundamental force, due to current account imbalance
when the exchange rate moves too far away from the fundamental. Simulations of the ex-
tended model show that the exchange rate may exhibit a temporary bubble, during which
fundamentalists weight is driven to zero, with a rapidly increasing exchange rate, but at some
point when the exchange rate has moved too far away from its fundamental value external
deficits turn the trend and portfolio managers start giving more weight again to fundamen-
talists forecast, accelerating the depreciation. Frankel and Froot (1990a, p. 113) note that
“Ironically, fundamentalists are initially driven out of the market as the dollar appreciates,
even though they are ultimately right about its return to s̄”.

In the model the three types of agents, portfolio managers, chartists and fundamentalists are
not fully rational. In defending their approach against the Friedman hypothesis that specula-
tive, destabilizing investors will be driven out of the market by smart, stabilizing investors,
Frankel and Froot (1986, pp.35-36) use a bounded rationality defense for their model [em-
phasis added]:

“All this comes at what might seem a high cost: portfolio managers behave irrationally
in that they do not use the entire model in formulating their exchange rate forecasts. But
another interpretation of this behavior is possible in that portfolio managers are actually
doing the best they can in a confusing world. Within this framework they cannot have been
more rational; abandoning fundamentalism more quickly would not solve the problem in the
sense that their expectations would not be validated by the resulting spot process in the long
run. In trying to learn about the world after a regime change, our portfolio managers use
convex combinations of models which are already available to them and which have worked
in the past. In this context, rationality is the rather strong presumption that one of the prior
models is correct. It is hard to imagine how agents, after a regime change, would know the
correct model.”
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3 Noise traders and behavioral finance

The work on HAMs discussed in this chapter is closely related to recent ideas from behav-
ioral finance. In their recent survey, Barberis and Thaler (2003, p1052) state: behavioral
finance argues that some financial phenomena can plausibly be understood using models in
which some agents are not fully rational. Behavioral finance has two building blocks. The
first is limits to arbitrage, meaning that it can be difficult and risky for rational arbitrageurs
to correct mispricing caused by non-rational traders, because the mispricing may get worse
in the short run when a majority of traders adopts a trend following strategy. The second
building block is market psychology, an attempt to characterize which heuristics and biases
play a role in financial markets. The financial market HAMs discussed in the current chap-
ter fit within behavioral finance in that they provide tractable, parsimoniously parameterized
models capturing key features in behavioral finance.

In the HAMs with fundamentalists versus chartists discussed in Section 2, none of the two
trader types is fully rational, because none of the two takes into account the presence of the
other. Would not, as the Friedman hypothesis suggests, a fully rational trader perform better
and drive out all other trader types? In this section we discuss two early models due to De-
Long, Shleifer, Summers and Waldmann (1990a,b). This approach has been called the noise
trader approach and has e.g. been nicely summarized in Shleifer and Summers (1990). An-
other early, related HAM with “smart money” versus “ordinary” traders has been introduced
by Shiller (1984). In these models there are two types of investors: rational arbitrageurs
and noise traders. Arbitrageurs –also called smart money traders or rational speculators–
are investors who form fully rational expectations about security returns. In contrast, “noise
traders”, a term due to Kyle (1985) and Black (1986), –sometimes also called liquidity
traders– are investors whose changes in asset demand are not caused by news about eco-
nomic fundamentals but rather by non-fundamental considerations such as changes in ex-
pectations or market sentiment.

3.1 Rational versus noise traders

In DeLong et al. (1990a) there are two types of traders, noise traders and sophisticated,
rational traders. There are two assets, a safe asset paying a fixed dividend r in each period,
and a risky asset paying an uncertain dividend

r + εt, (14)

where εt is IID, normally distributed with mean 0 and variance σ2
ε . The price of the unsafe

asset in period t is denoted by pt.

Noise traders incorrectly believe that they have special information about the future price
of the risky asset. For example, they use signals from technical analysts, stock brokers or
economic consultants and irrationally believe that these signals carry information and select
their portfolios based upon these incorrect beliefs. For sophisticated traders it is optimal
to exploit noise traders misperceptions. Sophisticated traders buy (sell) when noise traders
depress (push up) prices. This contrarian trading strategy pushes prices in the direction of
the fundamental value, but not completely.
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For both trader types, demand for the risky asset is derived from expected utility maximiza-
tion of constant absolute risk aversion (CARA) utility of tomorrow’s wealth,

λR
t =

r + Etpt+1 − (1 + r)pt

2γ(σ2
pt+1

+ σ2
ε )

, (15)

λN
t =

r + Etpt+1 − (1 + r)pt

2γ(σ2
pt+1

+ σ2
ε )

+
ρt

2γ(σ2
pt+1

+ σ2
ε )

, (16)

where γ is the coefficient of absolute risk aversion, Et[pt+1] is the expected price at date
t + 1 conditional on information up to time t, σ2

pt+1
is the expected one period variance

of pt+1 and ρt is the misperception of the expected price for tomorrow by the noise trader.
Notice that the only difference in the demand of rational and noise traders is the second term
in (16), due to the misperception ρt of the noise traders of next periods price of the risky
asset. The misperception of noise traders is an exogenously given IID normally distributed
random variable with mean ρ∗ and variance σ2

ρ.

There is a fixed fraction µ of noise traders and a fraction 1 − µ of rational, sophisticated
traders. Market equilibrium requires that aggregate demand equals fixed supply normalized
to 1, yielding the equilibrium price

pt =
1

1 + r
[r + Etpt+1 − 2γ(tσ

2
pt+1

+ σ2
ε ) + µρt]. (17)

De Long et al. (1990a) only consider steady state equilibria satisfying the pricing rule

pt = 1 +
µρ∗

r
+

µ(ρt − ρ∗)
1 + r

− (2γ)

r
[σ2

ε +
µ2σ2

ρ

(1 + r)2
]. (18)

The last three terms show the impact of noise traders on the price of the risky asset. Notice
that, when the distribution of the misperception ρt of the noise traders converges to a point
mass at ρ∗ = 0, the price of the risky asset converges to its fundamental value 1− (2γσ2

ε /r).
The second term on the RHS of (18) captures the fluctuations in prices due to the average
misperception ρ∗ of noise traders. The higher the average misperception of noise traders,
the higher the asset price in equilibrium. The third term on the RHS of (18) captures the
fluctuations in prices due to the variation ρt − ρ∗ in misperception of noise traders. When
noise traders in period t are more bullish (bearish) than on average, the asset price increases
(decreases). The final term on the RHS of (18) captures both fundamental risk and noise
trader risk. A higher variance σ2

ε , or a higher fraction µ of noise traders or a higher variance
σ2

ρ of noise traders’ misperceptions all increase the risk premium to hold the risky asset and
thus lower the asset price.

An important question is which type of traders, sophisticated or noise traders, earn relative
higher returns. DeLong et al. (1990a) compute the (unconditional) expected difference of
return between noise traders and sophisticated traders to be

E[∆Rt] = ρ∗ − (ρ∗)2 + σ2
ρ

2γ[
µσ2

ρ

(1+r)2
+ σ2

ε

µ
]
. (19)

From this expression it follows that for the noise traders to earn higher expected returns. the
mean misperception ρ∗ of returns must be positive. It is also clear, due to the dominating
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quadratic term in ρ∗, that for high values of ρ∗ the expected difference in returns will become
negative. However, for intermediate degrees of average bullishness ρ∗ noise traders earn
higher expected returns than sophisticated traders. Furthermore, the larger is the value of γ,
that is, the more risk averse traders are, the larger is the range of ρ∗-values for which noise
traders earn higher expected returns.

Imitation of beliefs
The arguments above show that when the fractions of both types are fixed, noise traders
may earn higher expected returns suggesting that they may be able to survive in the long
run. DeLong et al. (1990a) also discuss a dynamic version of the model with time varying
fractions. Strategy selection is based upon the relative performance of the two strategies.
Letting µt be the fraction of noise traders and RN

t and RS
t be the realized return of noise

traders and sophisticated traders, the fraction of noise traders changes according to

µt+1 = max {0, min [1, µt + α(RN
t −RS

t )]}, (20)

where α > 0 is the rate at which investors become noise traders. According to (20) the
strategy that has performed better, according to realized returns, attracts more followers, and
such a rule may be interpreted as an imitation rule. It should be noted that this HAM with
sophisticated agents and time varying fractions can only be solved for small values of α,
because sophisticated agents have to calculate the effect of the realization of returns on the
fractions of noise traders and sophisticated traders in the next period. For α sufficiently small
realized returns can be calculated under the approximation that the fraction of noise traders
remains the same.

For α small, the expected return difference between noise traders and sophisticated traders
is obtained from (19) by replacing µ by µt:

E[∆Rt] = ρ∗ − (ρ∗)2 + σ2
ρ

2γ[
µtσ2

ρ

(1+r)2
+ σ2

ε

µt
]
. (21)

The fraction of noise traders will increase (decrease) as long as the difference in expected
returns (21) is positive (negative). A steady state fraction µ∗ must satisfy either

E[∆Rt] = 0, (22)

or µ∗ = 0 or µ∗ = 1. A straightforward computation shows that the number of steady states
µ∗ depends upon the parameter condition

σ2
ε >

(1 + r)2(ρ∗ + σ2
ρ)

2

16γ2(ρ∗)2σ2
ρ

. (23)

The dynamics of the fraction of noise traders, in the limit as the speed of adjustment α tends
to 0, has the following properties:

• If (23) is satisfied, then there are no steady states µ∗ satisfying (22); noise traders
always earn higher expected return and drive out sophisticated rational traders, that is,
the noise trader share µt tends to 1;
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• If (23) is not satisfied, then (22) has (at least one) positive real root(s); the smallest
µ∗L > 0 is stable and thus a positive share of noise traders always survives in the
market; if µL ≥ 1, then noise traders drive out sophisticated rational traders.

The fact that noise traders may survive in the long run, is only true if selection of trading
strategies is based upon realized returns, and it can be argued that this contradicts traders’
objective of maximizing expected utility. Since sophisticated investors maximize true ex-
pected utility, any other trading strategy that earns a higher mean return must have a variance
sufficiently higher to make it non-optimal, that is, it must have sufficiently higher risk. When
strategy selection is based upon realized utility instead of realized return, noise traders can
not survive in the long run, because on average realized utility of sophisticated traders is
higher than realized utility of noise traders. De Long et al. (1990a, p.724) however argue
that a wealth based performance rule such as realized returns may be more relevant for real
markets: “... we find it plausible that many investors attribute the higher returns of an in-
vestment strategy to the market timing skills of its practitioners and not to its greater risk.
This consideration may be particular important when we ask whether individuals change
their own investment strategies that have just earned them a high return. When people imi-
tate investment strategies, they appear to focus on standard metrics such as returns relative
to market averages and do not correct for ex ante risk. As long as enough investors use the
pseudo signal of realized returns to choose their own investment strategy, noise traders will
persist”. Realized returns are also important simply because those who make them become
wealthier and get more weight in the market. The noise trader model thus contradicts the
Friedman hypothesis.

3.2 Informed arbitrage versus positive feedback trading

DeLong, Shleifer, Summers and Waldmann (1990b) consider a different model where noise
traders are replaced by positive feedback traders. The purpose of the model is to show that,
in contrast to the Friedman hypothesis, in the presence of positive feedback traders, rational
speculation can be destabilizing. The model only has four periods (0, 1, 2 and 3) and two
assets, cash and stock. The stock is liquidated and pays an uncertain dividend Φ+θ in period
3, when investors consume all their wealth. θ is normally distributed with mean 0, and no
information about θ is revealed. Φ can take three different values, −φ, 0 or φ; the value of Φ
becomes public in period 2, and a signal ε about Φ is released in period 1.

There are three types of investors. Positive feedback traders, whose asset demand depends
upon the latest observed price change, informed rational speculators who maximize utility
of period 3 consumption using private information and passive investors whose asset demand
depends only on the asset price relative to its fundamental price and who only have access
to public information. In period 2, the value of Φ is revealed to both the informed rational
investors and the passive investors. In period 1 a signal about period 2 fundamental news
Φ is given, but only the informed rational investors have access to this private information.
The fractions of the three types are constant over time. The fraction of positive feedback
traders is normalized to 1, the fraction of rational informed speculators is µ and the fraction
of passive investors is 1− µ. The sum of the last two types is held constant in order to keep
the risk-bearing capacity of the market constant. An increase in µ is therefore an increase
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in the proportion of rational investors who receive information and exploit short run price
dynamics, holding the risk-bearing capacity of the market constant.

The structure of the model is summarized in Table 2. Informed rational speculators are per-

Structure of the Model
Total Demand of

Positive Informed
Feedback Passive Rational

Period Event Traders Investors Speculators
0 None, benchmark period 0 0 optimal choice

(=0)
1 speculators receive signal ε 0 -αp1 optimal choice

of period 2 fundamental shock
2 passive investors learn Φ β(p1 − p0) −α(p2 − Φ) optimal choice

3 Liquidation of stock β(p2 − p1) −α(p3 − (Φ + θ)) optimal choice
dividend Φ + θ

revealed publically

Table 2: as in DeLong et al. (1990b, p385). Demand of different investor types and information for different
investor types. β and α are the slope of the demand curves of positive feedback traders and passive investors.
p0, p1, p2 and p3 are asset equilibrium prices in the corresponding periods.

fectly rational in the sense that they form their demand optimally from mean-variance maxi-
mization given private information and taking into account the other type of investors in the
market. Demand of passive investors is assumed to be negatively related to the price devi-
ation from the fundamental. Finally, the demand of feedback traders is determined by the
most recently observed past price change3.

In period 1, the rational informed investors receive a signal ε ∈ {−φ, 0, φ}. We focus on the
situation where this signal is positive, i.e. ε = φ > 0. We consider two cases, one where the
signal is noiseless and a second case where the signal, ε = φ is imperfectly informative and
Φ = φ or Φ = 0 each with probability 1/2. The equilibrium prices in periods 0, 1, 2 and 3
can be computed by solving the model backwards, and they are graphically represented in
Figure 3. Period 0 forms a reference period and the initial price is set to the fundamental price
0, i.e. p0 = 0. When there are no rational informed speculators (i.e. µ = 0), the equilibrium
price jumps from 0 in period 1 to φ in period 2, when private information becomes public.
When there are rational informed traders in the market, arbitrage pushes up the equilibrium
prices p1 and p2 in periods 1 and 2, in both the noiseless and noisy signal cases. This effect
is amplified by the presence of positive feedback trading leading to equilibrium prices far
above fundamental prices reflecting private information in period 1 and public information
in period 2. The conclusion is that, in contrast to the Friedman hypothesis, in the presence of
positive feedback traders, rational speculation can be destabilizing. The model thus explains
overreaction to news about economic fundamentals, caused by rational informed speculators
taking into account the presence of feedback traders.

3As pointed out in DeLong et al. (1990b, p385, footnote 6) it is the responsiveness of feedback traders to past
price changes and not the responsiveness to current price changes that leads to the possibility of destabilizing
rational speculation.
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Figure 3: as in DeLong et al. (1990b, p390). Equilibrium prices with a noiseless signal (left panel) and
a noisy signal (right panel) ε for rational informed traders. Without rational informed traders in the market
(circles, lower graphs) the equilibrium price jumps from 0 in period 1 to φ in period 2 when the positive,
private information becomes public. In the absence of feedback traders, arbitrage of rational informed traders
pushes up the equilibrium prices p1 to a fundamental value φ when the signal is perfect (left panel, dotted
line) resp. a fundamental value φ/2 (when all agents are informed, i.e. µ = 1) when the signal is imperfect
(right panel, dotted line). In the presence of feedback traders rational speculation by informed traders causes
the equilibrium prices (black dots, upper graphs) to overshoot the fundamental price by a large amount. α is
the slope of the demand curve of the passive and informed rational traders; β is the responsiveness of positive
feedback traders to past price changes.

In the models of DeLong et al. (1990a,b) the behavior of noise traders is exogenously given,
and the other group, the sophisticated (informed) traders, take the presence of noise traders
into account and respond perfectly rational to their erroneous behavior. In a way, this requires
even more rationality than in a RE-model, because in a heterogeneous market a rational
agent must anticipate the beliefs of all other, non-rational traders. More recently, behavioral
finance HAMs have been developed where two (or more) different groups of boundedly ra-
tional traders interact. A recent example is Hong and Stein (1999), who consider a model
with newswatchers versus momentum traders. Newswatchers make forecasts based on pri-
vate information without conditioning on past prices, whereas momentum traders’ forecasts
are based on the most recent price change. These type of behavioral finance models can ex-
plain important stylized facts, which can not be explained by a perfectly rational agent EMH
model, such as excess volatility, positive correlations of returns at short horizons and negative
correlation of returns at long horizons. It also provides an explanation for the risk premium
puzzle: because of noise trader risk, the difference between average returns on stocks and
bonds –the risk premium– is higher than the fundamental risk. We refer the reader to the
recent survey by Barberis and Thaler (2003) and their many references.
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4 Complex dynamics

In the seventies and the eighties, due to the discovery of deterministic chaos, it became
widely known that simple nonlinear deterministic laws of motion can generate seemingly
unpredictable, chaotic fluctuations; see e.g. Medio and Lines (2001) for a mathematical in-
troduction. Dynamic HAMs are often highly nonlinear, for example due to the fact that the
weights or the fractions of the different trader types are time dependent. HAMs can therefore
generate complicated, chaotic fluctuations for a broad range of parameter settings. Chaotic
models offer the possibility to describe erratic, unpredictable movements in asset prices by a
simple, nonlinear ‘law of motion’, and this possibility has stimulated much research in this
area. In particular, a chaotic HAM with chaotic asset price fluctuations around a benchmark
fundamental may explain excess volatility. In a non-linear, chaotic market system arbitrage
trading is difficult and risky, because such a system is difficult to predict, especially when
it is buffeted with (small) noise representing e.g. news about economic fundamentals. In
this section, we review some nonlinear HAMs exhibiting periodic and chaotic asset price
fluctuations.

In the models in subsections 4.1 and 4.2 the price setting mechanism is not the classical
Walrasian market clearing framework, but rather a market maker who sets prices accord-
ing to aggregate excess demand. Subsection 4.1 discusses a continuous time model due to
Beja and Goldman (1980) and Chiarella (1992), allowing for limit cycles, whereas subsec-
tion 4.2 discusses a discrete time model due to Day and Huang (1990), exhibiting chaotic
asset price fluctuations, and a market maker model due to Farmer (2002) and Farmer and
Joshi (2002). Finally, subsection 4.3 discusses an exchange rate model with fundamental-
ists and chartists of DeGrauwe, Dewachter and Embrechts (1993), with the weights of both
trader types changing endogenously over time.

4.1 An early disequilibrium model with speculators

Beja and Goldman (1980) were among the first to consider a dynamic HAM with a stylized
representation of the market institution by a market maker who adjusts prices according to
aggregate excess demand. They argue that a real asset market does not operate as a perfect
Walrasian market, but that a price formation process admitting a finite adjustment speed that
allows for transactions at disequilibrium prices is a more accurate description. In their model
traders try to exploit these market imperfections and, at least partly, act on their perception
of the current price trend.

Movements in the asset price p are driven by aggregate excess demand with a finite adjust-
ment speed, i.e. the price change is given by

dp

dt
= Df

t + Dc
t , (24)

where Df
t and Dc

t represent excess demand of fundamentalists and chartists respectively. Let
w(t) denote the (exogenously generated) fundamental price that clears fundamental demand
at time t. Fundamental excess demand is assumed to be a linear function of the form

Df
t = a(w(t)− p(t)), a > 0, (25)
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where the coefficient a measures the relative impact of fundamental demand upon price
movements.

Let ψ(t) be the chartists’ assessment of the current price trend, and g(t) the (exogenously
given) return on alternative securities (e.g. ψ(t) could represent the return on stocks and g(t)
the return on bonds). Chartists’ excess demand is a linear function of the expected return
differential ψ(t)− g(t), that is,

Dc
t = b(ψ(t)− g(t)), b > 0, (26)

where the coefficient b measures the relative impact of speculator’s demand upon price move-
ments. According to (24-26), aggregate price change is given by

dp

dt
= a[w(t)− p(t)] + b[ψ(t)− g(t)] + e(t), (27)

where e(t) denotes an additional noise term. Speculators use an adaptive process for trend
estimation

dψ

dt
= c[

dp

dt
− ψ(t)], c > 0, (28)

where c is the adaption speed. The trend estimate ψ is thus adjusted upwards (downwards)
when the current price change is higher (lower) than expected.

A stability analysis of the 2-D linear system of differential equations (27-28) shows that the
system is stable if and only if a > c(b − 1). Hence, if the impact a of fundamental demand
is sufficiently large or if the impact b of speculative demand is low (b < 1), then the market
will be stable. However, when the market impact b of speculative demand becomes large
and/or when the adaption speed c with which speculators adapt their perceived price trend
becomes large, the system becomes unstable with exploding price oscillations. This simple,
behavioral model thus shows that, under a market maker scenario, speculative trading may
destabilize prices.

Chiarella (1992) considers a nonlinear generalization of the model, where linear chartists’
excess demand (26) is replaced by a nonlinear function h(·) of the expected return differen-
tial ψ(t)− g(t), that is,

Dc
t = h(ψ(t)− g(t)). (29)

The function h is nonlinear, increasing and S-shaped. More precisely, h satisfies (i) h′(x) >
0, (ii) h(0) = 0, (iii) there exists x∗ such that h′′(x) < 0 (> 0) for all x > x∗ (x <
x∗), and (iv) limx→±∞ h′(x) = 0. Although Chiarella (1992) does not provide a micro-
foundation for this aggregate excess demand function of chartists, he does provide behavioral
arguments why such a demand function may be reasonable. For example, each chartist may
seek to allocate a fixed amount of wealth between speculative risky assets and riskless bonds
so as to maximize intertemporal utility of consumption. The demand for the risky asset is
then proportional to the difference in expected return ψ − g, but is also bounded above and
bounded below due to wealth constraints. For a chartist, the individual demand function
would then be piecewise linear, and adding many such individual demand functions together
leads approximately to an S-shaped increasing aggregate excess demand function.

Chiarella (1992) focuses on the simplest case where the fundamental price and the return on
alternative investments are constant, w(t) ≡ w and g(t) ≡ g. The dynamics of the nonlinear
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model is then described by the 2-D system of differential equations

dp

dt
= a[w − p(t)] + h(ψ(t)− g) (30)

dψ

dt
= c[

dp

dt
− ψ(t)]. (31)

The nonlinear system has a unique steady state (p∗, ψ∗) = (w + h(−g)/a, 0). The local
stability analysis yields the same results as in Beja and Goldman (1980): a large market
impact of speculative demand (i.e. a large h′(−g)) and/or a high adaption speed c with which
speculators adapt their perceived price trend destabilizes the system. Moreover, Chiarella
(1992) shows that in the unstable case, a (unique) stable limit cycle exists along which price
and trend estimation of chartist fluctuate over time. The limit cycle and the corresponding
time series are illustrated in Figure 4.

Figure 4: Limit cycle and time series of price (p) and perceived price trend (ψ) by chartists. When the per-
ceived price trend is positive, the price change is reinforced by the speculators. The function h(x) = Tanh(λx),
with λ = 2, and other parameters are a = 0.5, w ≡ 1, g = 0 and c = 0.5.

4.2 Market maker models

Another early, stimulating and influential model with price setting by a market maker has
been introduced by Day and Huang (1990). The model is in discrete time and it is one of
the first models exhibiting complicated, chaotic asset price fluctuations around a benchmark
fundamental price, qualitatively similar to real stock market fluctuations, with bull markets
suddenly interrupted by market crashes.

There are three types of investors, α−investors, β−investors and market makers. The
α−investors base their investment decision upon a sophisticated estimate of the long run
investment value u in relation to the current price and on an estimate of the chance for cap-
ital gains and losses. The α−investors thus base their investment decision on a combination
of (long run) economic fundamentals, such as dividends, earnings, growth, etc., and an esti-
mate about the probability that an investment opportunity may disappear in the near future.
The excess demand, Dα

t , by α−investors as a function of the market price pt is given by

Dα
t = a(u− pt)f(pt), if p ∈ [m,M ],

α(p) = 0 if p < m or p > M,
(32)
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where u is the (constant) long-run investment value expected by the α−investors, a measures
the relative strength of their investment demand, and f(p) is a bimodal probability density
with peaks near the extreme values m and M . The α−investors believe that, when pt is close
to the topping price M , the probability of loosing a capital gain and experiencing a capital
loss is high, and if pt is close to the bottoming price m, the probability of missing a capital
gain by failing to buy is high.

The β−investors are less sophisticated than the α−investors. Their investment decision is
based upon a simple extrapolative rule of their expected investment value, us

t+1 = pt +
σ(pt − v), where v is the (constant) fundamental value of the asset. The β−investors thus
believe that the investment value of the asset can be extrapolated from past deviations from
the fundamental value. Excess demand of β−investors is given by

Dβ
t = δ(us

t+1 − pt) = b(pt − v), (33)

with b = δσ. Hence, β−investors buy (sell) when the price is above (below) its perceived
fundamental value. In contrast to the α−investors, β−investors do not take into account an
estimate of the probability of investment opportunities in the near future.

The third trader type are market makers who mediate transactions on the market out of equi-
librium by providing liquidity. The market maker sets a price and supplies stock out of his
inventory when there is excess demand and accumulates stock to his inventory when there is
excess supply. Aggregate excess demand of α− and β−investors is given by

ED(pt) = Dα
t + Dβ

t , (34)

and the change of the market makers’ inventory Vt of stock is

Vt+1 − Vt = −ED(pt). (35)

Prices are set by the market maker according to the price adjustment rule

pt+1 = g(pt) := pt + λED(pt), λ > 0, (36)

where the parameter λ is the speed of adjustment. This price adjustment rule is similar to the
classical price tâtonnement process. Day and Huang (1990) argue that the price adjustment
rule is determined by the market institution, and that the market maker should be viewed as
a stylized version of the specialist at the New York Stock Exchange.

When the probability distribution f(p) is bimodal, the price adjustment function g in (36) is
a non-monotonic 1-D mapping. Day and Huang (1990) consider a simple example f(p) =
(p − m + ε)−d1(M + ε − p)−d2 , for m ≤ p ≤ M and f(p) = 0 otherwise, whose graph
is illustrated in Figure 5. They show that for suitable values of the parameters, stock prices
exhibit chaotic fluctuations.

In these simulations, the fundamental value v and the long run investment value u are both
constant and equal to 0.5. Stock prices switch irregularly between bull markets with prices
rising above the fundamental and bear markets with prices dropping below the fundamen-
tal value. Prices are driven up (or down) by trend extrapolating β−investors, until they get
close to their topping (or bottoming) price where the excess demand of α−investors sharply
decreases (increases) causing the bull (bear) market to end. The β−investors (who may be
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Figure 5: Chaotic time series, with an initial state p0 just above the fundamental price 0.5, and graph of the
1-D map (36). Stock prices switch irregularly between bull and bear markets, as explained in the graphical
analysis for initial state p0 = 0.55 (right plot). Parameters: m = 0, M = 1, d1 = d2 = 0.5, ε = 0.0097,
u = v = 0.5, a = 0.2, b = 0.88 and λ = 1.

compared with noise traders) ‘follow market prices like sheep’ thus making the market for
α−investors (or better informed investors) whose behavior is exactly opposite. Day and
Huang (1990, p.307) also note that “the market makers must buy high from investors and
sell low to them, but the damage to their position can be offset by investments on their own
account and by their fees for conducting the market”.

More recently, Farmer (2002) and Farmer and Joshi (2002) have derived a similar price set-
ting rule, which they call the market impact function. In their model, there are N directional
traders who buy or sell a single risky asset by placing market orders, which are always filled.
Typically, the buy and sell orders of the directional traders do not match, but the excess de-
mand or excess supply is taken up from or added to the inventory of a market maker, who
increases (decreases) the price when there is net excess demand (supply). The market impact
function is the algorithm used by the market maker to set prices. To be more concrete, let
xi

t = xi(Pt−1, Pt−2, · · · , It−1) be the position of directional trader i at time t, where xi repre-
sents the trading strategy or decision rule of agent i depending on past prices Pt−1, Pt−2, · · ·
and exogenous information It−1. The net order ωi

t of directional trader i is given by

ωi
t = xi

t − xi
t−1. (37)

The aggregate net order is then

ω =
N∑

i=1

ωi. (38)

The market maker adjust prices according to

Pt+1 = Ptφ(ω), (39)

with φ an increasing function and φ(0) = 1. Taking logs a linear approximation yields

log Pt+1 − log Pt ≈ ω

µ
, (40)

where the parameter µ normalizes the order size and is called liquidity. The function φ is
referred to as the log linear market impact function. Writing pt = log Pt and adding a noise
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term εt (e.g. representing noise traders), the (log) price dynamics is given by

pt+1 = pt +
1

µ

N∑

i=1

ωi(pt, pt−1, · · · , It) + εt. (41)

Notice that this price updating rule is essentially the same as the market maker price ad-
justment rule in Beja and Goldman (1980), Day and Huang (1990) and Chiarella (1992), as
discussed above, except that pt now represents log price instead of price. The liquidity para-
meter µ in (41) is inversely related to the speed of adjustment λ in (36). Farmer (2002) and
Farmer and Joshi (2002) consider different types of directional traders, either using value
investment strategies (or fundamental trading strategies) based upon the perceived value of
the asset or using chartists, trend following trading strategies based upon past prices. They
show that trend following strategies induce short run positive autocorrelations in returns,
whereas value trading induces negative autocorrelations. Furthermore, they present a simple
HAM with value investors versus trendfollowers, where autocorrelations of returns are close
to zero and other stylized facts observed in financial time series, such as noise amplification,
excess volatility, excess kurtosis and clustered volatility, are also matched.

4.3 A chaotic exchange rate model

DeGrauwe, Dewachter and Embrechts (1993) introduce an equilibrium exchange rate
model with fundamentalists and chartists, following earlier work of Frankel and Froot
(1986,1990a). It is one of the first HAMs where the weights of the two investor types is
determined endogenously and fluctuates over time. The basic equation determining the ex-
change rate is

st = Xt(Et[st+1])
b, (42)

where st is the exchange rate in period t, Xt is an exogenous variable representing the un-
derlying economic fundamental driving the exchange rate, Et[st+1] is next period’s expected
exchange rate and the parameter b is a discount factor, 0 < b < 1.

The aggregate change in the expected future exchange rate consists of two components, a
forecast made by chartists and a forecast made by fundamentalists:

Et[st+1]/st−1 = (Ect[st+1]/st−1)
mt(Eft[st+1]/st−1)

1−mt , 0 ≤ mt ≤ 1, (43)

where Et[st+1] is the aggregate market forecast for next period’s exchange rate made at date
t, Ect[st+1] and Eft[st+1] are the forecasts made by chartists and fundamentalists, and mt

and 1−mt are the weights given to chartists and fundamentalists respectively.

Fundamentalists believe that the exchange rate returns towards its fundamental value s∗t at
rate α, 0 ≤ α ≤ 1, that is,

Eft[st+1]/st−1 = (s∗t−1/st−1)
α, (44)

where s∗t = X
1/(1−b)
t is the steady state equilibrium exchange rate s∗t obtained from (42).

Chartists look for patterns in past exchange rates and their forecast is

Ect[st+1] = f(st−1, st−2, ...st−N), (45)
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where N is the maximum lag used. DeGrauwe et al. (1993) mainly focus on moving average
rules for chartists of the form

Ect[st+1]

st−1

= (
SMA(st−1)

LMA(st−1)
)2γ, γ > 0 (46)

where SMA(st−1) and LMA(st−1) are short run and long run moving averages. According
to (46), when the short run moving average is above (below) the long run moving average,
chartists expect a future increase (decline) of the exchange rate. This type of technical trading
rule is employed frequently by financial practitioners. The parameter γ measures the rate at
which chartists extrapolate the past into the future. DeGrauwe et al. (1993) mainly focus on
the simplest moving average rules, with a one-period change short run rule

SMA(st−1) =
st−1

st−2

, (47)

and a simple two-period moving average for the long run, i.e.

LMA(st−1) = (
st−1

st−2

)0.5(
st−2

st−3

)0.5. (48)

Using the short run and long run moving averages (47) and (48), the chartists expected
change of the exchange rate (46) becomes

Ect[st+1]

st−1

= (
st−1

st−2

)γ(
st−3

st−2

)γ. (49)

We now turn to the endogenous determination of the weight mt of chartists. DeGrauwe et al.
(1993) postulate the following weighting function:

mt =
1

1 + β(st−1 − s∗t−1)
2
, β > 0. (50)

DeGrauwe et al. (1993, pp.75-76) present the following behavioral motivation. There is un-
certainty about the fundamental exchange rate equilibrium and fundamentalists have het-
erogeneous expectations about its true value. When the exchange rate is at its fundamental
equilibrium value, st−1 = s∗t−1, half of the fundamentalists will find that the market rate
is too low, and the other half will find it too high compared to their own estimate. Assum-
ing that all fundamentalists have the same degree of risk aversion and the same wealth, the
amount of foreign exchange bought by the first half equals the amount sold by the second
half. Hence, when the exchange rate equals its fundamental value, fundamentalists do not
influence the market and the market expectation will be completely dominated by chartists
(mt = 1). When the exchange rate deviates from its fundamental equilibrium value, the
weight of fundamentalists increases, at a rate measured by the parameter β. The endoge-
nous switching mechanism (50) for the weights of chartists and fundamentalists acts as a
“far from the fundamental equilibrium stabilizing force” on exchange rates. The more the
exchange rate deviates from its fundamental equilibrium, the higher the weight of funda-
mentalists and the stronger the exchange rate will be pushed back towards its fundamental
equilibrium value.
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In the simplest case, with the fundamental Xt ≡ 1 normalized to 1, and one-period short run
and two-period long run moving averages, the model can be written as

st = sφ1
t−1s

φ2
t−2s

φ3
t−3 (51)

mt =
1

1 + β(st−1 − 1)2
, (52)

with φ1 = b[1 + γmt − α(1−mt)], φ2 = −2bγmt and φ3 = bγmt. The unique fundamental
steady state is (s∗,m∗) = (1, 1). The model exhibits rich dynamical behavior ranging from
a stable steady state to (quasi-)periodic as well as chaotic dynamics. In particular, when the
parameter γ, measuring the rate at which chartists extrapolate a trend, is sufficiently large, the
fundamental steady state becomes unstable and chaotic exchange rate fluctuations around the
fundamental equilibrium rate arise, as illustrated in Figure 6. In the next Sections we discuss
HAMs with switching between trading strategies driven by evolutionary selection and social
interactions.

Figure 6: Strange attractor in the (st, st−1) (top left) and (st,mt) (top right) phase space and correspond-
ing chaotic time series of the exchange rate st (bottom left) and the weight of chartists mt (bottom right).
Parameters: b = 0.95, α = 0.65, γ = 3 and β = 10000.
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5 Interacting agents

In this section we discuss models in which individual agents interact stochastically. At first
sight one may think that, due to a law of large numbers, stochastic interactions average out
and can not affect aggregate variables. However, this is not the case. Even weak (local)
interactions among individuals may lead to strong dependencies and cause large movements
at the aggregate level. Aggregation of simple interactions at the micro level may generate
sophisticated behavior and structure at the macro level. An early model with interaction
effects has been introduced by Föllmer (1974), who considers an exchange economy with
random preferences with a probability law depending upon the agents’ environment. Using
results on interacting particle systems in physics, Föllmer (1974) shows that even short range
interaction may propagate through the economy and lead to aggregate uncertainty causing
a breakdown of price equilibria. In this section we discuss work on local interactions by
Kirman (1991,1993) and work on social interactions by Brock and Durlauf (2001ab)4. These
papers have been quite influential and stimulated much work in this area. For surveys on
interacting agent models see, for example, Brock (1993) and Kirman (1999); see also the
papers on path dependence in Arthur (1994) and the collection of articles in Gallegati and
Kirman (1999) and Delli Gatti et al. (2000).

5.1 An exchange rate model with local interactions

This section discusses an exchange rate model with fundamentalists and chartists introduced
by Kirman (1991). The model consists of two parts: an equilibrium model of foreign ex-
change rate and a model of opinion formation as described by the stochastic model of re-
cruitment proposed by Kirman (1993).

The stochastic recruitment model was motivated by an observed puzzle in biology concern-
ing the behavior of ants. When ants face two different but identical food sources, surprisingly
often the majority concentrates on one of the food sources, say with 80% of the population
on one food source and only 20% of the populations on the other. Moreover, after some
time these proportions suddenly switch. Ants facing a symmetric situation, thus collectively
behave in an asymmetric way. Kirman (1993) proposed a simple and elegant dynamic sto-
chastic model explaining this observed asymmetric, aggregate behavior. The model offers an
explanation for the behavior of ants, but here we follow Kirman’s discussion of the model
within a financial market framework. There is a fixed number of N agents. Agents must form
an opinion about next period’s price pt+1 of a risky asset and can choose between two opin-
ions, optimistic and pessimistic. The expectations of agents are affected by random meetings
with other agents. The state of the system is determined by the number k of agents holding
say the optimistic view, with k ∈ {0, 1, 2, ..., N}. Two agents meet at random. The first agent
is converted to the second agent’s view with probability (1− δ). There is also a small proba-
bility ε that the first agent will change his opinion independently. This (small) ε−probability
is necessary, in order to prevent the system to get stuck in the absorbing extreme states k = 0

4Related continuous time diffusion models of stock prices with stochastic interacting agents have been
pioneered by Föllmer and Schweizer (1993) and Föllmer (1994).
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or k = N . The state k then evolves according to

k → k + 1, with probability P (k, k + 1) = (1− k

N
)(ε + (1− δ)

k

N − 1
),

k → k − 1, with probability P (k, k − 1) =
k

N
(ε + (1− δ)

N − k

N − 1
),

k → k, with probability P (k, k) = 1− P (k, k + 1)− P (k, k − 1).

(53)

The stochastic process (53) is a simple Markov chain. Kirman investigates the equilibrium
distribution µ(k) of (53), and shows that the form of the equilibrium distribution µ(k) de-
pends on the relative magnitude of the parameters δ and ε:

• if ε < (1− δ)/(N − 1), then the equilibrium distribution is bimodal, with a minimum
at k/N ≈ 0.5 and maxima at the extremes k = 0 and k = N ;

• if ε = (1− δ)/(N − 1), then the equilibrium distribution is uniform;

• if ε > (1− δ)/(N − 1), then the equilibrium distribution is unimodal with a maximum
at k/N ≈ 0.5.

Note that this result does not depend on the size of the probabilities δ or ε itself, but rather
on their relative magnitudes. When the probability ε of self-conversion is low compared
to the probability (1 − δ) of being converted by the other trader, the limiting distribution
is bimodal with maxima at the extremes. In that case, a typical time series of the state k is
highly persistent and spends little time close to its average k = 0.5, but much more time close
to the extremes k = 0 and k = N , as illustrated in Figure 7. This equilibrium distribution
thus explains the asymmetric 80%-20% distribution of ants and its occasional flipping to a
20%-80% distribution and vice versa.

Figure 7: Fractions k/N of optimistic types, for N = 100, δ = 0.01 and ε = 0.05 (left plot) resp. ε = 0.002
(right plot). In the latter case (right plot) the equilibrium distribution is bimodal with peaks at 0 and 1 and the
time series is highly persistent and spends relatively much time close to the extremes. In the other case (left
plot) the fraction stays relatively close to 0.5, i.e. to a symmetric distribution of the two types, most of the time.

Kirman (1991) considers an exchange rate model where the fractions of chartists and funda-
mentalists are driven by the stochastic model for opinion formation. The exchange rate equi-
librium model is similar to the model of Frankel and Froot (1986), but Kirman (1991) pro-
vides a micro-foundation of asset demand. Agents can choose to invest in a risk free domestic
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currency paying a fixed interest rate r or in a risky foreign currency paying an uncertain (sto-
chastic) dividend yt+1 in period t+1, assumed to be IID with mean ȳ. Agent type i maximizes
expected utility from a mean-variance utility function U i(W i

t+1) = Ei[W
i
t+1] − µiVi[W

i
t+1],

where Ei and Vi denote agent type i’s belief about conditional expectation and conditional
variance of tomorrow’s wealth W i

t+1 and 2µi represents risk aversion. Agent type i’s demand
for foreign currency is then given by

di
t =

se
i,t+1 + ȳ − (1 + r)st

2αµi
, (54)

where se
i,t+1 represents agent type i’s expectation about the exchange rate st+1, ȳ is the mean

of the IID dividend process and α = V [st+1 + yt+1]. In the case of homogeneous, rational
expectations, the fundamental value of the exchange rate is given by

s∗ =
ȳ − 2αµiXt

r
, (55)

where Xt is the supply of foreign exchange. In the heterogeneous agents case of fundamen-
talists versus chartists, with fractions nt resp. 1− nt, market equilibrium yields

ntd
f
t + (1− nt)d

c
t = Xt. (56)

The expectations of fundamentalists and chartists about next period’s exchange rate st+1 are
given by5

se
f,t+1 = st−1 + v(s∗ − st−1), 0 ≤ v ≤ 1, fundamentalists (57)

se
c,t+1 = st−1 + g(st−1 − st−2)), g > 0, chartists. (58)

Fundamentalists believe that the exchange rate will move back towards its fundamental value
s∗, or equivalently, their expected change of the exchange rate is proportional to the observed
distance to the fundamental. In the special case v = 1 fundamentalists expect the exchange
rate to jump to its fundamental value s∗ immediately, whereas the other extreme case v = 0
corresponds to naive expectations where fundamentalists expect the exchange rate to follow
a random walk. Chartists extrapolate in a simple linear way and forecast the change of the
exchange rate to be proportional to the latest observed change; Kirman focuses on the case
g = 1.

Substituting the expectation rules (57) and (58) in the market equilibrium equation (56) and
solving for the equilibrium exchange rate yields the difference equation

(1 + r)st = [1− vnt + g(1− nt)]st−1 − g(1− nt)st−2 + ȳ − 2αµiXt. (59)

In deviations xt = st − s∗ from the fundamental benchmark this simplifies to

(1 + r)xt = [1− vnt + g(1− nt)]xt−1 − g(1− nt)st−2. (60)

5We choose a specification where st−1 is the most recent observation used in the forecasts of st+1. Kirman
discusses a specification where st is used as the most recent observation to forecast st+1, but in that case the
HAM generates exploding exchange rate paths. As Kirman (1991, p.364) notes when expectations are based
on earlier observations (such as st−1) the HAM allows for symmetric bubbles, both rising and falling. The
approach chosen here is similar to the asset pricing model of Brock and Hommes (1998), as discussed in
Section 8, and the forecasting rules (57) and (58) are the same as in Gaunersdorfer and Hommes (2005).
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Kirman’s exchange rate model with fundamentalists versus chartists is thus given by (60)
with the fraction nt = kt/N evolving according to the (exogenous) Markov chain (53)6. It is
easily verified that when all agents are fundamentalists, i.e. nt ≡ 1, (60) yields

xt =
1− v

1 + r
xt−1, (61)

which is a stable linear system with eigenvalue λ = (1 − v)/(1 + r). In the other extreme
case when all agents are chartists, i.e. nt ≡ 0, (60) reduces to

xt =
1 + g

1 + r
xt−1 − g

1 + r
xt−2. (62)

For g = 1 (62) has a pair of stable complex eigenvalues. Notice however that, if the time
period of the model is one day, the daily domestic interest rate r is very close to 0 so that
these complex eigenvalues are in fact close to a unit root +1. These complex roots become
unstable when g increases beyond 1+r, that is, when chartists expect the change in exchange
rates to be larger than the risk free gross return.

Figure 8: Time series of exchange rates (left plot) and fraction of fundamentalists (right plot). Parameters:
N = 100, ε = 0.002, δ = 0.01, r = 0.01, v = 0.5 and g = 0.8. Exchange rates switch irregularly between
phases of high volatility when the market is dominated by chartists and low volatility when the market is
dominated by fundamentalists.

In periods when the market is dominated by fundamentalists, the exchange rate st is stable
and is pushed towards its fundamental value s∗. In contrast, when the market is dominated
by chartists, the exchange rate is driven by a stable, but near unit root process for g = 1
or an unstable process when g > 1 + r. A typical example of simulated time series of the
exchange rate and the fraction of fundamentalists is illustrated in Figure 8. The fraction nt

of fundamentalists is driven by the stochastic recruitment model with the same parameters
as in Figure 7 (right plot) and is therefore highly persistent, switching between two different
phases where one of the two groups dominates the market. When chartists (fundamentalists)
dominate the market, i.e. when nt is close to 0 (1), volatility of the exchange rate fluctua-
tions is high (low). This HAM therefore captures, at least qualitatively, the phenomenon of
volatility clustering, with exchange rates switching irregularly between phases of high and

6Kirman (1991, pp.359-360) describes a slightly more complicated way of determining the fractions of the
two types. Agents try to assess the majority opinion, but observe nt = kt/N with noise. If agent i’s observation
qit = nt + εit ≥ 1/2(< 1/2), then he acst as a fundamentalist (chartist).
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low volatility. Kirman and Teyssière (2002) discuss stylized facts, such as clustered volatil-
ity and long memory, generated by the model in more detail. Section 6 of this chapter also
discusses stylized facts generated by HAMs. A related model with interaction through a ran-
dom communication structure has been introduced by Cont and Bouchaud (2000); see also
the survey of Kirman (1999).

5.2 Social interactions

Social interaction among individuals refers to a situation where the utility or payoff of an
individual agent depends directly upon the choices of other individuals in their reference
group, in addition to the dependence which occurs through the intermediation of markets.
When the spillovers are positive, i.e. when the payoff is higher if others behave similarly,
social interactions induce a tendency for conformity among members of the reference group.
Social interactions may explain large cross-group variations, when different groups conform
to alternative, self-reinforcing behavior. In the absence of a coordination mechanism social
interactions can lead to multiple equilibria. Social interactions may cause a large social mul-
tiplier, meaning that small changes in private utility may cause large changes at the aggregate
level.

Schelling (1971) introduced one of the first models with some form of social interaction.
He considered a model where individuals have preferences over their neighborhood of racial
composition and showed that, even when these preferences are relatively weak, it may lead to
pronounced residual segregation. Brock and Durlauf (2001ab) have written excellent surveys
on social interaction models in economics and developed a general class of social interaction
models. A key feature of their models, following Brock (1993) and Blume (1993), is the
use of discrete choice models with interaction effects. Their approach leads to analytically
tractable models that can be used in estimating social interaction effects using the discrete
choice framework of Manski and McFadden (1981). In this section we discuss a simple
binary choice model with social interactions, closely following the presentation in Brock
and Durlauf (2001a); the interested reader is referred to Brock and Durlauf (2001b) and their
references for detailed discussions of more general social interactions models.

Each individual of a population of N agents makes a binary choice ωi ∈ {−1, +1}. Let
ω−i = (ω1, . . . ωi−1, ωi+1, . . . ωI) denote the choices of all agents other than i. Individual
utility derived from choice ωi consists of three components:

V (ωi) = u(ωi) + S(ωi, µ
e
i (ω−i)) + ε(ωi). (63)

Here u(ωi) represents private utility associated with choice ωi, S(ωi, µ
e
i (ω−i)) represents so-

cial utility depending upon choice ωi of individual i as well as upon the conditional probabil-
ity measure µe

i (ω−i) agent i places on the choice of other agents and ε(ωi) is an idiosyncratic
random utility term IID distributed across agents. Instead of a general dependence of social
utility on the conditional probability measure µe

i (ω−i), it is often assumed that social utility
depends upon agent i’s expectation m̄e

i of other individual choices j given by the average of
subjective expected values me

i,j , i.e.

m̄e
i =

1

N − 1

∑

j 6=i

me
i,j. (64)
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We focus on the case of global interaction, where the average (64) is taken over the entire
population, i.e. over all individuals j different from i. One may also consider local interaction
by restricting the average over the reference group of an individual i.

Brock and Durlauf (2001a) focus on simple and tractable parametric representations of both
the social utility term and the probability density of the random utility term. Assuming con-
stant cross partial derivatives leads to two functional forms for social utility. The first form is
given as a multiplicative interaction between individual and expected average choices, that
is,

S(ωi, m̄
e
i ) = Jωim̄

e
i . (65)

This form is referred to as proportional spillover, because the percentage change in individ-
ual utility from a change in the mean choice level is constant. The second parametrization of
social utility with constant partial derivatives captures the pure conformity effect as consid-
ered by Bernheim (1994), and is given by

S(ωi, m̄
e
i ) = −J

2
(ωi − m̄e

i )
2. (66)

Notice that this form penalizes choices far from the mean more strongly than the proportional
spillover case. Using the fact that ω2

i = 1, (66) can be rewritten as

−J

2
(ωi − m̄e

i )
2 = Jωim̄

e
i −

J

2
(1 + (m̄e

i )
2). (67)

This shows that (65) and (66) only differ in levels, but coincide on the terms including in-
dividual choices. Therefore, these two different parameterizations of social utility lead to
the same discrete choice probabilities as discussed below. In what follows we focus on the
proportional spillover specification for social utility in (65).

A standard way to obtain a convenient parametrization for the choice probabilities is to as-
sume that the random utility terms ε(−1) and ε(1) in (63) are independent and extreme-value
distributed, so that the difference in errors are logistically distributed,

Prob{ε(−1)− ε(1) ≤ x} =
1

1 + exp(−βx)
, β ≥ 0. (68)

Under this assumption the probability for individual choices is given by the logit model
probability

Prob{ωi} =
exp(β[u(ωi) + Jωim̄

e
i ])∑

νi∈{−1,1} exp(β[u(νi) + Jνim̄e
i ])

. (69)

The parameter β is called the intensity of choice and it is inversely related to the level of
random utility ε(ωi). In the extreme case β = ∞ the random utility term will vanish and all
agents will choose the alternative with highest utility. In the other extreme case β = 0 the
effect of the random utility term will dominate both individual and social utility and each
alternative will be chosen with probability 1/2.

Since the errors ε(ωi) are independent across agents, the joint probability distribution over
all choices is given by

Prob{ω} =
exp(β[

∑N
i=1(u(ωi) + Jωim̄

e
i )])∑

ν1∈{−1,1} . . .
∑

νN∈{−1,1} exp(β[
∑N

i=1 u(νi) + Jνim̄e
i ])

. (70)
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This probability structure is equivalent to the so-called mean field version of the Curie-Weiss
model of statistical mechanics, see e.g. Brock and Durlauf (2001b) for further discussion.

For the binary choice model the private utility function can be replaced by a linear private
utility function ũ(ωi) = hωi + k, with h and k chosen such that h + k = u(1) and −h + k =
u(−1). This linearization is possible since the linear functions coincide with the original
private utility function on the support of the binary choices (but this trick does not work
when more than two choices are possible). Notice that the parameter h = (u(1)−u(−1))/2,
i.e. h is proportional to the difference in private utility between the two alternatives. Using
this linearization and reintroducing expectations of individual choices in (64), the expected
value of individual choice ωi is given by

E[ωi] = 1 · exp(βh + βJ(N − 1)−1 ∑
j 6=i m

e
i,j)

exp(βh + βJ(N − 1)−1
∑

j 6=i m
e
i,j) + exp(−βh− βJ(N − 1)−1

∑
j 6=i m

e
i,j)

(−1) · exp(−βh− βJ(N − 1)−1 ∑
j 6=i m

e
i,j)

exp(βh + βJ(N − 1)−1
∑

j 6=i m
e
i,j) + exp(−βh− βJ(N − 1)−1

∑
j 6=i m

e
i,j)

= Tanh(βh + βJ(N − 1)−1 ∑
j 6=i m

e
i,j).

(71)
Brock and Durlauf (2001a) now impose a self-consistent equilibrium or rational expectations
equilibrium condition me

i,j = E[ωj] for all i, j. A rational expectations or self-consistent
equilibrium must satisfy

E[ωi] = Tanh(βh + βJ(N − 1)−1
∑

j 6=i

E[ωj]). (72)

By symmetry it follows that E[ωi] = E[ωj], for all i, j, hence a self-consistent, rational
expectations equilibrium average choice level m∗ must satisfy

m∗ = Tanh(βh + βJm∗). (73)

Brock and Durlauf (2001a) show that a rational expectations equilibrium always exists and,
depending upon the parameters, multiple equilibria may exist. More precisely:

• if βJ < 1, then (73) has a unique solution;

• if βJ > 1 and h = 0, then (73) has three solutions: 0, one positive solution m+ and
one negative solution m−;

• if βJ > 1 and h 6= 0, then there exists a threshold H (depending on βJ) such that

– for |βh| < H , (73) has three solutions, one of which has the same sign as h, and
the others possessing opposite signs;

– for |βh| > H , (73) has a unique solution with the same sign as h.
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Notice that the possibility of multiple equilibria depends on the intensity of choice β, the
strength of social interactions J and the difference h in private utility between the two
choices. In particular, for each β and J when the difference h is large enough, the equilib-
rium is unique. Multiplicity of equilibria is most likely when the difference in private utility
among alternatives is small and the choice intensity and/or social interaction are strong.

Brock and Durlauf (2001a) also briefly discuss dynamic stability of the steady states of
expected choice levels under the assumption of myopic expectations, that is, agents use last
period’s choice level mt−1 as their expectation of others’ individual choices. In that case, the
dynamic version of (73) becomes

mt = Tanh(βh + βJmt−1). (74)

Since f(m) = Tanh(βh + βJm) is an increasing function of m, it follows easily that (i) if
(74) has a unique steady state, then it is globally stable, and (ii) if (74) has three steady states,
then the middle one is locally unstable, whereas the smallest and largest steady states both
are locally stable. In the case of multiple steady states, the system thus settles down in one
of its extremes, where a vast majority of individuals choose one strategy or the other. A large
social multiplier exists in such circumstances, that is, small differences in individual utility
may lead to large changes at the aggregate level.

6 Heterogeneity and important stylized facts

An important motivation for HAMs has been to explain the stylized facts observed in fi-
nancial market data. An immediate advantage of a HAM compared to a representative ra-
tional agent model is that heterogeneity easily generates large trading volume consistent
with empirical observations. Other important stylized facts of financial time series at the
daily frequency that have motivated much work on HAMs are: (i) asset prices follow a near
unit root process, (ii) asset returns are unpredictable with almost no autocorrelations, (iii)
the returns distribution has fat tails, and (iv) financial returns exhibit long range volatility
clustering, i.e. slow decay of autocorrelations of squared returns and absolute returns. Facts
(i) and (ii) are consistent with a random walk model with a representative rational agent.
However, for example, Cutler, Poterba and Summers (1989) have shown that a substantial
fraction of stock market fluctuations can not be explained by macroeconomic news and that
large moves in stock prices are difficult to link with news about major economic or other
events. Therefore, a rational agent model has difficulty in explaining fact (iii). One of the
most important empirical stylized facts observed in many financial time series is clustered
volatility, that is, asset price fluctuations are characterized by phases of high volatility inter-
spersed with phases of low volatility. Mandelbrot (1963) was the first to observe this phe-
nomenon. In time series econometrics the class of (generalized) autoregressive conditional
hetereroskedastic (G)ARCH-models, pioneered by Engle (1982), has become very popular
to describe volatility clustering. However, since news about economic fundamentals do not
seem to arrive in clusters of high and low volatility, there is no satisfactory representative
rational agent explanation of this phenomenon.

In this section we discuss the HAM introduced in Lux (1995,1998) and Lux and Marchesi
(1999,2000), which has been successful in explaining the stylized facts (i)-(iv) simultane-
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ously. In particular, clustered volatility arises through the interaction and switching between
fundamental and chartist trading strategies. Other HAMs explaining these stylized facts in-
clude Brock and LeBaron (1996), Arthur et al. (1997), Youssefmir and Huberman (1997),
LeBaron et al. (1999), Farmer and Joshi (2002), Kirman and Teyssière (2002), Hommes
(2002), Iori (2002), Giardina and Bouchaud (2003) and Gaunersdorfer and Hommes (2006).

6.1 Socio-economic dynamics of speculative markets

The model of Lux (1995,1998) and Lux and Marchesi (1999,2000) describes an asset market
with a fixed number N of speculative traders, divided in two groups, fundamentalists and
chartists. Fundamentalists’ trading is based upon the fundamental price: they sell (buy) when
the price is above (below) the fundamental value. Chartists or technical analysts pursue a
combination of imitative and trend following strategies. At time t, there are nc

t technical
analysts and nf

t fundamentalists in the market, nc
t+nf

t = N . The chartists are subdivided into
two subgroups: at time t, n+

t of them are optimistic (bullish) and n−t are pessimistic (bearish),
n+

t + n−t = nc
t . The number of fundamentalists and (optimistic and pessimistic) chartists

changes over time, but to keep the notation simple, we suppress the time index below. The
model contains three elements: (1) chartists switching between optimistic and pessimistic
beliefs; (2) traders switching between a chartist and a fundamental trading strategy, and (3)
a price adjustment process based upon aggregate excess demand.

Contagion behavior of chartists
Chartists switch between an optimistic and a pessimistic mood, depending upon the majority
opinion and upon the prevailing price trend. The first element, the contagion behavior, can
be motivated as in Keynes’ beauty contest that traders try to forecast ‘what average opinion
expects average opinion to be’. This element is similar in spirit to Kirman’s model of opinion
formation and Brock and Durlauf’s social interaction effects, as discussed in Section 5. An
opinion index, representing the average opinion among non-fundamentalist traders, is defined
as

x =
n+ − n−

nc
, x ∈ [−1, +1]. (75)

Obviously, x = 0 corresponds to the balanced situation where the number of optimists equals
the number of pessimists, whereas x = +1 (resp. x = −1) corresponds to the extreme case
where all chartists are optimists (resp. pessimists). It is also useful to define the proportion
of chartist traders as

z =
nc

N
, z ∈ [0, +1]. (76)

The probabilities for chartists’ switching between pessimistic and optimistic depend upon
the opinion index x and the price trend (in continuous time) ṗ = dp/dt. Let

U1 = α1x + α2
ṗ

ν1

, α1, α2 > 0, (77)

where the parameters α1 and α2 measure the sensitivity of traders to the opinion index (i.e.
the behavior of others) resp. their sensitivity to price changes. The switching probabilities
are formalized following the synergetics literature, originally developed in physics for in-
teracting particle systems (e.g. Haken (1983)). The probabilities π+− and π−+ that chartists
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switch from pessimistic to optimistic and vice-versa are given by

π+−(x) = ν1
nc

N
eU1 , π−+(x) = ν1

nc

N
e−U1 , ν1 > 0. (78)

The parameter ν1 measures the frequency of this type of transition, while the term nc/N
represents the probability for a chartist to meet a chartist.

Switching between chartists and fundamentalists
Agents can also switch between chartists and fundamentalists strategies. These switches are
driven by expected or realized excess profits. For chartists, realized excess profit per unit is
given by (y + dp/dt)/p − r, where y are (constant) nominal dividends of the asset and r is
the average (risk adjusted) real return from other investments. It is assumed that y/pf = r,
so that at the steady state fundamental price the return from the asset will equal the average
return on other investments.

Fundamentalists believe that the asset price will revert back to its fundamental value pf , and
therefore will buy (sell) the asset when its price is below (above) the fundamental value.
Fundamentalists expected excess profit is then given by s|(p− pf )/p|. The parameter s > 0
may be interpreted as a discount factor, since these are expected excess profits realized only
when the price has returned to its fundamental value. Let

U2,1 = α3(
y + ṗ/ν2

p
−R− s|p− pf

p
|), (79)

U2,2 = α3(R− y + ṗ/ν2

p
− s|p− pf

p
|), (80)

where α3 measures the sensitivity of traders to differences in profits. The probabilities to
switch from fundamentalists to optimistic chartist, from optimistic chartist to fundamental-
ists, from fundamentalist to pessimistic chartist resp. from pessimistic chartist to fundamen-
talists are given by:

π+f = ν2
n+

N
eU2,1 , πf+ = ν2

nf

N
e−U2,1 , (81)

π−f = ν2
n−

N
eU2,2 , πf− = ν2

nf

N
e−U2,2 , (82)

where ν2 > 0 is a parameter measuring the frequency of this type of transition. Notice the
inclusion of the terms nf/N , n+/N , n−/N in the probabilities (81-82), representing the
probabilities for a fundamentalist to meet an optimistic chartist, etc. U1, U2,1 and U2,2 in fact
play the role of a fitness measure determining the switching probabilities, similar to Brock
and Hommes (1997, 1998)7. There is an asymmetry in the fitness measure for chartists and
fundamentalists however, since chartists’ switching is driven by realized profits, whereas
fundamentalists’ switching is driven by expected arbitrage profits which will not be realized
until the price has reversed to its fundamental value. Goodhart (1988) pointed out that this
asymmetry may bias traders towards chartist strategies. The asymmetry also reflects ‘limits
to arbitrage’ of fundamentalists.

7Obviously, these probabilities need to be restricted to the unit interval [0, 1]. Note that if one normalizes
the expressions for π+− and π−+ in (78), π+f and πf+ in (81), resp. π−f and πf− in (82) by dividing by
their sum, expressions similar to the discrete choice or logit model probabilities used in Brock and Hommes
(1997,1998) are obtained (see Sections 7 and 8).
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Price formation
Price changes are determined by a market maker according to aggregate excess demand of
chartists and fundamentalists (cf. Section 4). A chartist buys (sells) a fixed amount tc of the
asset per period when he is optimistic (pessimistic). Using the opinion index x in (75) and
the proportion of chartists z in (76), excess demand by chartists is

EDc = (n+ − n−)tc = xzNtc ≡ xzT c, T c ≡ Ntc, (83)

where T c denotes the maximum trading volume of chartists. Fundamentalists buy (sell) when
the asset price is below (above) its fundamental value, and their excess demand is

EDf = nfγ(pf − p) = (1− z)Nγ(pf − p) ≡ (1− z)T f (pf − p), T f ≡ Nγ, (84)

where γ > 0 measures the reaction speed of fundamentalists to price deviations from the
fundamental and T f is a measure of the trading volume of fundamentalists.

A market maker adjusts prices according to aggregate excess demand by

dp

dt
= β[EDc + EDf ] = β[xzT c + (1− z)T f (pf − p)], (85)

where β denotes the speed of adjustment.

In their numerical simulations, Lux and Marchesi (1999, 2000) use a stochastic process for
the market maker price adjustment. The market maker is assumed to adjust the price to
the next higher (lower) possible value (one cent say) within the next time increment with a
certain probability depending upon aggregate excess demand. It is also assumed that there
are some noise traders or liquidity traders in the market whose asset demand is random,
or alternatively excess demand is observed by the market maker with some imprecision,
captured by a noise term µ, normally distributed with standard deviation σµ. The transition
probabilities for an increase or decrease of the price by an amount ∆p = ±0.01 are then
given by

π↑p = min{max{0, β(ED + µ)}, 1},
π↓p = min{−min{0, β(ED + µ)}, 1}.

(86)

6.2 Dynamical behavior and time series properties

A formal analysis of this kind of stochastic interacting agent system is possible using the so-
called master equation for the time evolution of the probability distribution in order to derive
differential equations describing a first order approximation of the dynamics of the first mo-
ment, i.e. the mean, of the stochastic variables. This approach originates from elementary
particle systems in physics and has been followed in the synergetics literature (e.g Haken
(1983)) and its applications to social science (e.g. Weidlich and Haag (1983)); see also Aoki
(1994, 2002) and references therein for a more detailed treatment and (macro)economic ap-
plications. For the current stochastic system the set of differential equations has been derived
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in Lux (1995, 1998)8. The change in the opinion index is governed by:9

dx

dt
= (

dn+

dt
− dn−

dt
)/nc − (n/(nc)2)

dnc

dt

= z[(1− x)π+− − (1 + x)π−+] + 0.5(1− z)(1− x2)(π+f − πf+ + πf− − π−f ),

= 2zν1[Tanh(U1)− x]Cosh(U1) + (1− z)(1− x2)ν2[Sinh(U2,1)− Sinh(U2,2)],
(87)

while the change of the proportion of chartists is governed by

dz

dt
=

dnc

dt
/N = 0.5(1− z)z(1 + x)(π+f − πf+) + 0.5(1− z)z(1− x)(π−f − πf−),

= (1− z)z(1 + x)ν2Sinh(U2,1) + (1− z)z(1− x)ν2Sinh(U2,2).
(88)

Equations (85), (87) and (88) constitute a highly nonlinear 3-D system of differential equa-
tions. The system has three types of steady states:

(i) x∗ = 0, p∗ = pf , with arbitrary 0 ≤ z ≤ 1,

(ii) x∗ = 0, z∗ = 1, with arbitrary p, and

(iii) z∗ = 0, p∗ = pf , with arbitrary −1 ≤ x ≤ +1.

The most important steady states are of type (i), with the price at its fundamental value, a bal-
anced proportion between optimists and pessimists and an arbitrary proportion of chartists;
there exists a continuum of steady states of type (i). At type (ii) steady states the market
is completely dominated by chartists, with balanced proportion between optimists and pes-
simists, and an arbitrary price level. Type (iii) steady states correspond to the other extreme
where the market is completely dominated by fundamentalists, with the price at its funda-
mental value. These extreme cases (ii) and (iii) act as absorbing states of the system. In the
numerical simulations of Lux and Marchesi (1999, 2000) these absorbing states are avoided
by additional borderline conditions.

Concerning the (in)stability of steady state type (i) it should first be noted that, since for
any 0 ≤ z ≤ 1 such a steady state exists, the corresponding Jacobian matrix of the mean
value differential equation system has a zero root, or equivalently, the corresponding discrete
system has a unit root. For the stochastic system one thus expects that the proportion of
chartists z follows a path close to a random walk, especially when the price is close to the
fundamental and the proportions of optimists and pessimists are balanced. Lux (1997) and
Lux and Marchesi (2000) provide precise (in)stability conditions of steady states of type
(i), which can be summarized as follows. When the parameters α1, α2 and α3 measuring
traders sensitivity w.r.t. the opinion index, price changes and profits are larger than some
critical value, all steady states of type (i) are repelling. When these sensitivity parameters are
below their critical value, the (in)stability depends upon the corresponding proportion z∗ of
chartists; when this proportion z∗ exceeds a critical value, the steady state becomes repelling.

8Lux (1997) uses the master equation approach to derive an approximate system of differential equations
describing the dynamical behavior of the first two moments, the mean and the co-variances, of the stochastic
variables.

9Recall that Sinh(y) = (ey − e−y)/2, Cosh(y) = (ey + e−y)/2 and Tanh(y) = Sinh(y)/Cosh(y).

38



8

10

12

14

16

18

20

2500 5000 7500 10000

P

8

10

12

14

16

18

20

2500 5000 7500 10000

PF

-.06

-.04

-.02

.00

.02

.04

.06

2500 5000 7500 10000

R

.0000

.0005

.0010

.0015

.0020

.0025

.0030

2500 5000 7500 10000

RSQ

-1.2

-0.8

-0.4

0.0

0.4

0.8

1.2

2500 5000 7500 10000

X

.0

.1

.2

.3

.4

.5

.6

.7

.8

2500 5000 7500 10000

Z

-.12

-.08

-.04

.00

.04

.08

.12

.16

.20

25 50 75 100 125 150 175 200

R RSQ RABS

Figure 9: Time series of prices (top left), fundamental price (top right), returns (second panel, left), squared
returns (second panel, right), opinion index (third panel, left), fraction of chartists (third panel, right) and
autocorrelation patterns (bottom panel) of returns, squared returns and absolute returns. Parameters: N = 500,
ν1 = 3, ν2 = 2, β = 6, Tc(≡ Ntc) = 10, Tf (≡ Nγ) = 5, α1 = 0.6, α2 = 0.2, α1 = 0.5, pf = 10, y = 0.004,
R = 0.0004, s = 0.75 and σµ = 0.05.
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Figure 9 shows simulated time series of the model as well as autocorrelations of returns,
squared returns and absolute returns10. In this simulation, the price stays fairly close to its
fundamental value most of the time, because for these parameter values the steady states
of type (i) are not unstable11. Prices follow a near unit root process and financial returns
are unpredictable with little autocorrelations (except some small negative autocorrelations
at the first lag). Autocorrelations of squared returns and absolute returns are positive and
decay slowly, showing long range volatility clustering. The high volatility phase is due to
noise amplification through the interactions of agents at the micro-level and coincides with
a large proportion of chartists in the market whose opinion is more or less balanced. Returns
also exhibit fat tails and Lux and Marchesi (1999,2000) show that the tail of the returns
distribution follows a power law.

Lux and Marchesi (1999, 2000) note that these results are fairly robust w.r.t. choices of the
parameters. However, Egenter, Lux and Stauffer (1999) show that a puzzling ‘finite size ef-
fect’ occurs, that is volatility clustering tends to disappear when the number of agents N
tends to infinity. This finite size effect seems to be due to some law of large numbers. As N
becomes large, the random fluctuations in the opinion index become smaller and the popula-
tion of chartists remains close to being balanced. As a result, the market becomes dominated
by fundamentalists and price changes are mainly driven by fundamentals. Nevertheless, this
type of HAM matches some important stylized facts remarkably well. In the last 5 years,
physicists have done quite a lot of work in finance in particular looking for scaling laws in
financial market data. The power law decay of the returns distribution and of autocorrela-
tions of squared returns are examples of such a scaling law. For a discussion and overviews
of this literature see e.g. Farmer (1999), Mantegna and Stanley (2000), Bouchaud (2001),
Cont (2001) and Mandelbrot (2001ab).

10I would like to thank Thomas Lux and Timur Yusupov for providing these simulations.
11The Jacobian matrix of the steady state has a unit root due to existence of a continuum of steady states. Lux

(1997,1998) shows that, for different parameter values the steady state becomes repelling and stable periodic
cycles and chaos can occur. In the unstable case, prices persistently deviate from the fundamental value.
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7 Costly sophisticated versus cheap simple rules

Herbert Simon (1957) already stressed information gathering and processing costs as an
obstacle to fully rational, optimal behavior. Agents must either face search and informa-
tion gathering costs in using sophisticated, optimal rules or may choose to employ free and
easily available simple rules of thumb that perform “reasonably well”. In this section we
discuss HAMs where agents can choose between costly, sophisticated strategies and simple,
but cheap rules of thumb. Simple strategies include naive expectations, adaptive expecta-
tions, trend extrapolation, simple technical trading rules, etc. Sophisticated strategies are e.g.
fundamental market analysis or predictions of macro economic quantities such as growth, in-
flation or unemployment, which usually require costly information gathering. In subsection
7.1 we briefly discuss some early, stimulating examples due to Conlisk (1980), Evans and
Ramey (1992) and Sethi and Franke (1995), whereas subsection 7.2 discusses the model of
Brock and Hommes (1997a) of endogenous selection of costly, sophisticated versus cheap,
simple expectations rules.

7.1 Examples

An interesting and early dynamic model with costly optimizers versus cheap imitators has
been introduced by Conlisk (1980). There are two types of agents, rational optimizers and
simple imitators, who try to minimize a quadratic loss function depending upon their choice
and an exogenously generated stochastic state of the economy. Optimizers pay a cost for
their optimal strategy, to cover the cost of analyzing the decision problem at hand, searching
the market or preparing or reading consumer reports, etc. Non-optimizers’ behavior is imita-
tive and they adapt their behavior in the direction of last period’s observed average optimal
choice. Non-optimizers “will make mistakes, but avoid the costs of avoiding mistakes”. The
mix between the two types evolves over time according to the relative average performance
of the two strategies. Conlisk (1980) shows that if the average loss for imitators exceeds
the costs for optimizers, imitators can not survive and in the long run optimizers completely
dominate the economy. Stated differently, “Imitation can have no redeeming merit when op-
timization is cheap enough” (Conlisk, 1980, p.282). In contrast, if the cost of optimizing is
substantial imitators will not disappear but can survive, and both optimizers and imitators
will coexist in the long run. Note that in this model the state of the economy evolves accord-
ing to an exogenous stochastic process and is not affected by the behavior of the optimizers
and imitators.

Evans and Ramey (1992) consider a dynamic macroeconomic model where calculation of
rational expectations is costly. Agents have preferences over expectational errors and calcu-
lation costs, and in each period choose optimally whether or not to calculate expectations
at costs C or keep the same expectation at no costs. The strategy choice is coupled endoge-
nously to the market dynamics. Evans and Ramey discuss the possibility of different types
of equilibria. In a calculation equilibrium agents start close enough to a REE, it is optimal to
never calculate and the system stays close to the REE. Two stage equilibria are characterized
by the system starting off far from REE, so that all agents choose to calculate until the point
where the system is close enough to REE and it becomes optimal for all agents to switch
to ‘never calculate’. Sethi and Franke (1995) consider a macroeconomic model with evolu-
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tionary dynamics and endogenous switching between naive agents using costless adaptive
expectations and sophisticated agents using costly rational expectations. Dynamics of output
are driven by exogenous shocks to production costs. Strategy fractions are updated according
to the relative success of the strategies. Naive agents generally persist in the market, espe-
cially when optimization is costly. Both in Evans and Ramey (1992) and Sethi and Franke
(1995) market dynamics and strategy selection are endogenously coupled and the state of
the economy and the population of strategies co-evolve over time. These examples however
are globally stable: in the absence of any exogenous random shocks to the economy, both
dynamic models converge to a globally stable steady state with all agents using the simple,
freely available strategy.

7.2 Rational versus naive expectations

Brock and Hommes (1997a), henceforth BH97a, introduce a model of endogenous, evolu-
tionary selection of heterogeneous expectations rules. In particular, BH97a consider evolu-
tionary switching between a costly sophisticated forecasting strategy, such as rational ex-
pectations, versus a free, simple rule of thumb strategy such as naive expectations. They
introduce the concept of Adaptive Rational Equilibrium Dynamics (ARED), an endogenous
coupling between market equilibrium dynamics and evolutionary selection of expectations
rules. The ARED describes evolutionary dynamics among competing prediction strategies,
in which the state of the economy and the distribution of agents over different expectation
rules co-evolve over time.

Agents can choose between H different (prediction) strategies and update their choice over
time. Strategies that have been more successful in the recent past are selected more often
than less successful strategies. More precisely, the fraction nht of traders using strategy h are
updated according to an evolutionary fitness measure or performance measure, such as (a
weighted sum of) past realized profits. All fitness measures are publically available (e.g. pub-
lished in newspapers), but subject to noise e.g. due to measurement error or non-observable
characteristics. Fitness of strategy h is given by a random utility model

Ũht = Uht + εht, (89)

where Uht is the deterministic part of the fitness measure and εht represents the noise in the
observed fitness of strategy h at date t. Assuming that the noise εht is IID across types and
drawn from a double exponential distribution, in the limit as the number of agents goes to in-
finity, the probability that an agent chooses strategy h is given by the well known multinomial
logit model or ‘Gibbs’ probabilities

nht =
exp(βUht)

Zt

, Zt =
H∑

h=1

exp(βUht), (90)

where Zt is a normalization factor for the fractions nht to add up to 1. Manski and McFadden
(1981) and Anderson, de Palma and Thisse (1993) give an extensive overview and discussion
of discrete choice models, in particular the multinomial logit model, and their applications in
economics. The crucial feature of (90) is that the higher the fitness of trading strategy h, the
more agents will select strategy h. The intensity of choice parameter β > 0 in (90) measures
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how sensitive agents are to selecting the optimal prediction strategy. This intensity of choice
β is inversely related to the variance of the noise εht. The extreme case β = 0 corresponds to
noise with infinite variance, so that differences in fitness cannot be observed and all fractions
(90) will be equal to 1/H . The other extreme case β = +∞ corresponds to the case without
noise, so that the deterministic part of the fitness is observed perfectly and in each period,
all agents choose the optimal forecast. An increase in the intensity of choice β represents an
increase in the degree of rationality w.r.t. evolutionary selection of strategies12.

BH97a employ the classical cobweb framework to study a HAM with two prediction strate-
gies, costly rational versus free naive expectations. A related, artificial cobweb economy
with genetic algorithms learning is studied by Arifovic (1994). The cobweb model describes
fluctuations of equilibrium prices in a market for a non-storable consumption good. The
good takes one period to produce, so that producers must form price expectations one pe-
riod ahead. Applications of the cobweb model mainly concern agricultural markets, such as
the classical examples of cycles in hog or corn prices. Supply S(pe

t ) is a function of pro-
ducer’s next period expected price, pe

t and is derived from expected profit maximization,
that is, S(pe

t ) = argmaxqt
{pe

t qt − c(qt)} = (c′)−1(pe
t), where c(·) is the cost function.

BH97a assume a quadratic cost function c(q) = q2/(2s), so that the supply curve is linear,
S(pe

t ) = spe
t , s > 0. Consumer demand is linearly decreasing in the market price pt and

given by D(pt) = a− dpt, d > 0.13

Producers can choose between two different forecasting rules. They can either buy a sophis-
ticated, rational expectations (perfect foresight) forecast at positive per period information
cost C ≥ 0, or freely obtain the simple, naive forecast. The two forecasting rules are thus
pe

1,t = pt and pe
2,t = pt−1. Market equilibrium in the cobweb model with rational versus naive

expectations and linear demand and supply is given by

a− dpt = n1,t−1sp
e
1,t + n2,t−1sp2,t = nR

t−1spt + nN
t−1spt−1, (91)

where n1,t−1 = nR
t−1 and n2,t−1 = nN

t−1 are the fractions of producers using the rational
respectively naive predictor, at the beginning of period t. Notice that producers using RE have
perfect foresight, and therefore must have perfect knowledge about the market equilibrium
equation (91), including past prices as well as the fractions of both groups. Consequently,
rational agents have perfect knowledge about the beliefs of all other agents. The difference
C between the per period information costs for rational and naive expectations represents an
extra effort cost producers incur over time when acquiring this perfect knowledge. Solving
(91) explicitly for the market equilibrium price yields

pt =
a− nN

t−1spt−1

d + nR
t−1s

. (92)

12The probabilities (90) are also used in game theory, in quantal response equilibria introduced by McKelvey
and Palfrey (1995), where β = ∞ corresponds to a Nash equilibrium. Blume (1993) also uses the same type
of probabilities in a game theoretic setting and argues that β = ∞ corresponds to the noise free case where
all weight is given to best response(s). Nadal et al. (1998) argue that the logit probabilities (90) can be derived
as an optimal response in an exploration-exploitation trade off. They derive (90) from maximizing a linear
combination of past profit and new information (using entropy as a measure), with β being the weight given to
past profit.

13Goeree and Hommes (2000) extend the analysis of the cobweb model with rational versus naive expecta-
tions to the case of nonlinear (but monotonic) supply and demand.
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When all agents have rational expectations, pt ≡ p∗ = a/(d + s), for all t ≥ 1, that is,
the price jumps immediately to its steady state value p∗ where demand and supply intersect.
When all agents have naive expectations (92) reduces to the linear difference equation pt =
(a − spt−1)/d, leading to the familiar up and down price oscillations around the steady
state p∗. Price oscillations under naive expectations are stable (unstable) under the familiar
‘cobweb theorem’ condition s/d < 1 (s/d > 1).

To complete the model, the fractions of traders using either rational or naive expectations
must be specified. As discussed above, these fractions are updated according to a publically
available evolutionary fitness measure associated to each predictor. BH97a focus on the case
with the most recent realized net profit as the performance measure for predictor selection.14

For the rational resp. the naive forecasting strategies with linear supply, the realized profits
in period t are given by

πR
t = pt S(pt)− c(S(pt)) =

s

2
p2

t , (93)

πN
t = pt S(pt−1)− c(S(pt−1)) =

s

2
pt−1(2pt − pt−1). (94)

Notice that the net realized profit for rational expectations is given by πR
t − C, where C is

the per period information cost that has to be paid for obtaining the perfect forecast. The
fractions of the two groups are determined by the logit discrete choice model probabilities,
as discussed above. The fraction of agents using the rational expectations predictor in period
t equals

nR
t =

exp(β(πR
t − C))

exp(β(πR
t − C)) + exp(β πN

t )
, (95)

and the fraction of agents choosing the naive predictor in period t is

nN
t = 1− nR

t . (96)

A key feature of this evolutionary predictor selection is that agents are boundedly rational, in
the sense that most agents use the predictor that has the highest fitness. From (95-96) we have
that nR

t > nN
t whenever πR

t − C > πN
t , although the optimal predictor is not chosen with

probability one. The intensity of choice, i.e. the parameter β, measures how fast producers
switch between the two prediction strategies. For β = 0, both fractions are fixed over time
and equal to 1/2. In the other extreme case β = ∞ (the neoclassical limit) all producers
choose the optimal predictor in each period.

The timing of predictor selection in (95) is important. In (92) the old fractions nR
t−1 and nN

t−1

determine the new equilibrium price pt. This new equilibrium price pt is used in the fitness
measures (93) and (94) for predictor choice and the new fractions nR

t and nN
t are updated

according to (95) and (96). These new fractions in turn determine the next equilibrium price
pt+1, etc. Equilibrium prices and fractions thus co-evolve over time. BH97a called the cou-
pling between the equilibrium price dynamics and adaptive predictor selection an Adaptive
Rational Equilibrium Dynamics (ARED) model.

14The case where the performance measure is realized net profit of the most recent past period, leads to a
two-dimensional dynamical system. The more general case, with a weighted sum of past net realized profits
as the fitness measure, leads to higher dimensional systems, which are not as analytically tractable as the two-
dimensional case. In this more general higher dimensional case however, numerical simulations suggest similar
dynamic behavior.
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The model has a unique steady state (p∗, n∗) = (a/(d + s), 1/(1 + exp(βC/2)), with p∗ the
price where demand and supply intersect. When there are no costs for rational expectations
(C = 0), at the steady state the fractions of the two types are exactly balanced. In contrast, for
positive information costs for rational expectations (C > 0), n∗ < 0.5, so that at the steady
state most agents use the naive forecasting rule. This makes sense, because at the steady state
both forecasting rules yield exactly the same forecast, and most agents then prefer the cheap,
naive forecast.

If the familiar cobweb stability condition s/d < 1 is satisfied, implying that the model is
stable under naive expectations, then the heterogeneous cobweb model with rational versus
naive expectations has a globally stable steady state, for all β. Prices will then always con-
verge to p∗, and the fraction of rational agents converges to n∗. More interesting dynamics
occur when the cobweb model is unstable under naive expectations.

Assume that the market is unstable under naive expectations, that is, s/d > 1:

1. without information costs (C = 0), the steady state is globally stable for all β;

2. with positive information costs (C > 0), there is a critical value β1 such that the steady
state is (globally) stable for 0 ≤ β < β1 and unstable for β > β1. At β = β1 a period
doubling bifurcation occurs and a stable 2-cycle is created;

3. as β increases from 0 to +∞ a rational route to randomness occurs, that is, a bifur-
cation route from a stable steady state to a strange attractor occurs and chaotic price
fluctuations arise.

Figure 10 shows an example of a strange attractor, with corresponding chaotic time series
of prices pt and fractions nR

t of rational producers. Numerical simulations suggest that for
(almost) all initial states (p0,m0) the orbit converges to this strange attractor. For a high
intensity of choice price fluctuations are characterized by an irregular switching between a
stable phase, with prices close to the steady state, and an unstable phase with fluctuating
prices, as illustrated in Figure 10. There is a strikingly simple economic intuition explaining
this switching behavior when the intensity of choice is large. Suppose we take an initial state
close to the (locally unstable) steady state. Most agents will use the cheap, naive forecasting
rule, because it does not pay to buy a costly, sophisticated forecasting rule that yields an
almost identical forecast. With most agents using the cheap, naive predictor prices diverge
from the steady state, start fluctuating, and net realized profits from the naive predictor de-
crease. At some point, it becomes profitable to buy the rational expectations forecast, and
when the intensity of choice to switch predictors is high, most agents will then switch to ra-
tional expectations. As a result, prices are driven back close to the steady state, and the story
repeats. Irregular, chaotic price fluctuations thus result from a (boundedly) rational choice
between cheap ‘free riding’ and costly sophisticated prediction15.

Price fluctuations in this simple evolutionary system are thus characterized by an irregular
switching between a low volatility phase with prices close to the fundamental steady state
and a high volatility phase with large amplitude price fluctuations. The evolutionary system

15Brock and Hommes (1997a) show that for a large intensity of choice, the ARED-cobweb model is close to
having a so-called homoclinic orbit, a notion already introduced by Poincaré around 1890, and one of the key
features of a chaotic system; see Hommes (2005) for a recent, more detailed discussion.
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Figure 10: Chaotic time series of price deviations from the steady state (top left) and fractions of rational
agents (bottom left) and the corresponding strange attractor in the (x, nR)-phase space (right plot), where
x = p− p∗ is the deviation from the steady state price. Parameters are: β = 5, a = 10, d = 0.5, s = 1.35 and
C = 1.

has a locally destabilizing force due to cheap free riding and a far from the steady state
stabilizing force of sophisticated prediction. In this simple evolutionary system, in contrast
to the Friedman hypothesis, simple and sophisticated types co-exist in the long run with their
fractions fluctuating over time. Due to information gathering costs, rational agents can not
drive out naive agents.

Several extensions of the BH97a framework have been considered recently. Branch (2002)
investigates the cobweb model with three (rational, adaptive and naive) expectation rules,
and Laselle et al. (2005) investigate the case of rational versus adaptive expectations. The
same evolutionary framework is applied to an overlapping generations monetary economy
by Brock and de Fontnouvelle (2000) and to a Cagan type monetary model by Chiarella and
Komin (1999). Branch and McCough (2004) investigate the cobweb model with evolutionary
replicator dynamics and obtain similar results; Droste et al. (2002) investigate evolutionary
replicator dynamics in a Cournot duopoly model with a Nash rule versus a best reply rule.
Branch and Evans (2005) consider a HAM where agents can choose between a number of
misspecified econometric models, with a dual learning process of agents learning the model
parameters by ordinary least squares (OLS) and strategy fractions updated according to rel-
ative performance. De Fontnouvelle (2000) applies the ARED to a financial market model,
where agents can choose to buy information about future dividends with high precision, or
obtain information with low precision for free. Another recent contribution along these lines
is Goldbaum (2005). In the next subsection we discuss an application of the BH97a evolu-
tionary framework to an asset pricing model.
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8 Asset pricing model with heterogeneous beliefs

In this section we discuss Adaptive Belief Systems (ABS) as introduced by Brock and
Hommes (1998), henceforth BH98, a financial market application of the evolutionary se-
lection of expectation rules introduced by Brock and Hommes (1997a). An ABS is in fact
a standard discounted value asset pricing model derived from mean-variance maximization,
extended to the case of heterogeneous beliefs. Agents are boundedly rational and select a
forecasting or investment strategy based upon its recent, relative performance. An ABS may
be seen as a stylized, to some extent analytically tractable, version of more complicated ar-
tificial markets and is in fact similar to the SFI model of Arthur et al. (1997b) and LeBaron
et al. (1999) (see also the chapter of LeBaron). A convenient feature of an ABS is that it can
be formulated in terms of deviations from a benchmark fundamental and therefore an ABS
can be used in experimental and empirical testing of deviations from the RE benchmark.

8.1 The model

Agents can either invest in a risk free asset or in a risky asset. The risk free asset is perfectly
elastically supplied and pays a fixed rate of return r; the risky asset (e.g. a stock or a stock
market index) pays an uncertain dividend. Let pt be the price per share (ex-dividend) of the
risky asset at time t, and let yt be the stochastic dividend process of the risky asset. Agents
are myopic mean-variance maximizers so that the demand zht per trader of type h for the
risky asset is given by

zht =
Eht[pt+1 + yt+1 − (1 + r)pt]

aVht[pt+1 + yt+1 − (1 + r)pt]
=

Eht[pt+1 + yt+1 − (1 + r)pt]

aσ2
. (97)

Eht and Vht denote the ‘beliefs’ or forecasts of trader type h about conditional expectation
and conditional variance of excess return pt+1 + yt+1 − (1 + r)pt and a is the risk aversion
parameter. Bold face variables denote random variables at date t+1. For analytical tractabil-
ity, the conditional variance Vht = σ2 is assumed to be equal and constant for all types.16 Let
zs denote the supply of outside risky shares per investor, assumed to be constant, and let nht

denote the fraction of type h at date t. When there are H different trader types, equilibrium
of demand and supply yields

H∑

h=1

nht
Eht[pt+1 + yt+1 − (1 + r)pt]

aσ2
= zs. (98)

BH98 focus on the special case of zero supply of outside shares, i.e. zs = 0, for which the
Walrasian market clearing price satisfies17

(1 + r)pt =
H∑

h=1

nhtEht[pt+1 + yt+1]. (99)

16Gaunersdorfer (2000) investigates the case with time varying beliefs about variances and Chiarella and He
(2002) study heterogeneous risk aversion.

17Brock (1997) motivates this special case by introducing a risk adjusted dividend y#
t+1 = yt+1 − aσ2zs,

and after dropping the superscript “#” obtains the market equilibrium equation (99).
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It is well known that in a homogeneous world where all agents have rational expectations, the
asset price is completely determined by economic fundamentals and given by the discounted
sum of expected future dividends:

p∗t =
∞∑

k=1

Et[yt+k]

(1 + r)k
. (100)

In general, the properties of the fundamental price p∗t depend upon the stochastic dividend
process yt. In the special case of an IID dividend process yt, with constant mean E[yt] = ȳ,
the fundamental price is constant and given by18

p∗ =
∞∑

k=1

ȳ

(1 + r)k
=

ȳ

r
. (101)

Heterogeneous beliefs
We now discuss traders’ expectations about future prices and dividends. As discussed above,
beliefs about the conditional variance Vht = σ2, for all h, t, are assumed to be equal and
constant for all types. Beliefs about future dividends are assumed to be the same for all
trader types and equal to the true conditional expectation, that is, Eht[yt+1] = Et[yt+1], for
all h, t; in the special case of IID dividends this simplifies to Eht[yt+1] = ȳ. All traders are
thus able to derive the fundamental price p∗t in (100) that would prevail in a perfectly rational
world. Traders nevertheless believe that in a heterogeneous world prices may deviate from
their fundamental value p∗t . It is convenient to introduce the deviation from the fundamental
price:

xt = pt − p∗t , (102)

Beliefs about the future price of the risky asset are of the form

Eht[pt+1] = Et[p
∗
t+1] + fh(xt−1, ..., xt−L), for all h, t. (103)

Each forecasting rule fh represents a model of the market (e.g. a technical trading rule)
according to which type h believes that prices will deviate from the fundamental price. We
use the short hand notation fht = fh(xt−1, ..., xt−L).

An important and convenient consequence of these assumptions concerning traders’ beliefs
is that the heterogeneous agent market equilibrium equation (99) can be reformulated in
deviations from the benchmark fundamental as

(1 + r)xt =
H∑

h=1

nhtEht[xt+1] =
H∑

h=1

nhtfht. (104)

In this general setup, the benchmark rational expectations asset pricing model is nested as a
special case, with all forecasting strategies fh ≡ 0. In this way, the adaptive belief systems
can be used in empirical and experimental testing whether asset prices deviate significantly
from a benchmark fundamental.

Evolutionary selection of strategies
The evolutionary part of the model, describing how beliefs are updated over time, follows

18Brock and Hommes (1997b), for example, discuss a non-stationary example, where the dividend process
is a geometric random walk; see also Hommes (2002).
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the endogenous selection of forecasting rules introduced by Brock and Hommes (1997a) as
discussed in subsection 7.2. The fractions nht of trader types are given by the multinomial
logit probabilities of a discrete choice:

nht =
exp(βUh,t−1)

Zt−1

, Zt−1 =
H∑

h=1

exp(βUh,t−1). (105)

Uh,t−1 is the fitness measure of strategy h evaluated at the beginning of period t. A natural
candidate for evolutionary fitness is (accumulated) realized profits, given by

Uht = (pt + yt −Rpt−1)
Eh,t−1[pt + yt −Rpt−1]

aσ2
+ wUh,t−1, (106)

where R = 1 + r is the gross risk free rate of return and 0 ≤ w ≤ 1 is a memory parameter
measuring how fast past realized profits are discounted for strategy selection.19 We will focus
on the simplest case with no memory, i.e. w = 0, so that fitness Uht equals the most recently
observed realized profit. Fitness can now be rewritten in deviations from the fundamental as

Uht = (xt −Rxt−1)(
fh,t−1 −Rxt−1

aσ2
). (107)

8.2 Few-type examples

BH98 have investigated evolutionary competition between simple linear forecasting rules
with only one lag, i.e.20

fht = ghxt−1 + bh, (108)

where gh is a trend parameter and bh a bias parameter. It can be argued that, for a forecasting
rule to have any impact in real markets, it has to be simple. For a complicated forecasting
rule it seems unlikely that enough traders will coordinate on that particular rule so that it
affects market equilibrium prices. Notice that for gh = bh = 0 the linear forecasting rule
(108) reduces to the forecast of fundamentalists, i.e. fht ≡ 0, believing that the market
price will be equal to the fundamental price p∗, or equivalently that the deviation x from the
fundamental will be 0. Notice also that the forecasting rule (108) uses xt−1 (or pt−1) as the
most recently observed deviation (or price) to forecast xt+1 (or pt+1), because the market
equilibrium equation (98) has not revealed the equilibrium price pt yet when forecasts for
pt+1 are formed. A convenient feature of this setup is that the market equilibrium price pt is
always uniquely defined at all dates t.

This section presents two simple examples of ABS, an example with three and an example
with four competing linear forecasting rules (108). The ABS becomes (in deviations from

19We focus on the case where there are no differences in the costs for the strategies.
20Brock and Hommes (1998, pp.1246-1248) also discuss a 2-type example with a costly rational expectations

or perfect foresight forecasting rule fht = xt+1 versus pure trend followers, and show that the fundamental
steady state may become unstable and multiple, non-fundamental steady states may arise. Global dynamics in
such an example are difficult to handle, because the system is only implicitly defined. Such implicitly defined
evolutionary systems cannot be solved explicitely and often they are not even well-defined. See also Arthur
(1995) and Hommes (2001) for a discussion of a fully rational agent type within a heterogeneous agents setting.
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the fundamental):

(1 + r)xt =
H∑

h=1

nht(ghxt−1 + bh) + εt (109)

nh,t =
exp(βUh,t−1)∑H

h=1 exp(βUh,t−1)
(110)

Uh,t−1 = (xt−1 −Rxt−2)(
ghxt−3 + bh −Rxt−2

aσ2
), (111)

where εt is a small noise term representing uncertainty about economic fundamentals, e.g.
random outside supply of the risky asset. The timing of the coupling between the market
equilibrium equation (109) and the evolutionary selection of strategies (110) is important.
The market equilibrium price pt (or deviation xt from the fundamental) in (109) depends
upon the fractions nht. The notation in (110) stresses the fact that these fractions nht depend
upon past fitnesses Uh,t−1, which in turn depend upon past prices pt−1 (or deviations xt−1)
in periods t − 1 and further in the past. After the equilibrium price pt (or the deviation xt)
has been revealed by the market, it will be used in evolutionary updating of beliefs and
determining the new fractions nh,t+1. These new fractions nh,t+1 will then determine a new
equilibrium price pt+1 (or deviation xt+1), etc. In the ABS, market equilibrium prices and
fractions of different trading strategies thus co-evolve over time.

Fundamentalists versus opposite biases
The first example of an ABS has three trader types, fundamentalists and two purely biased
belief, optimists and pessimists expecting a constant price above or below the fundamental
price:

f1t = 0 fundamentalists (112)
f2t = b b > 0, positive bias (optimists) (113)
f3t = −b − b < 0, negative bias (pessimists). (114)

For low values of the intensity of choice β, the 3-type evolutionary system is stable and the
asset price converges to its fundamental value. However, as the intensity of choice increases
the fundamental steady becomes unstable due to a Hopf bifurcation and the dynamics of
the ABS is characterized by cycles around the unstable steady state. This example shows
that, even when there are no information costs for fundamentalists, they cannot drive out
other trader types with opposite biased beliefs. In the evolutionary ABS with high intensity
of choice, fundamentalists and biased traders co-exist with their fractions varying over time
and asset prices fluctuating around the unstable fundamental steady state. Moreover, Brock
and Hommes (1998, p.1259, lemma 9) show that as the intensity of choice tends to infinity
the ABS converges to a (globally) stable cycle of period 4. Average profits along this 4-cycle
are equal for all three trader types. Hence, if the initial wealth is equal for all three types,
then in this evolutionary system in the long run accumulated wealth will be equal for all three
types. This example suggests that the Friedman argument that smart fundamental traders will
drive out simple habitual rules of speculative traders is not true in general.

Fundamentalists versus trend and bias
The second example of an ABS is an example with four trader types, with linear forecasting
rules (108) with parameters g1 = 0, b1 = 0; g2 = 0.9, b2 = 0.2; g3 = 0.9, b3 = −0.2 and

50



0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

P
re

di
ct

io
n 

E
rr

or

Prediction Horizon

chaos    

 5% noise

10%      

30%      

40%      

Figure 11: Chaotic (top left) and noisy chaotic (top right) time series of asset prices (deviations from fun-
damental value) in ABS with four trader types. Strange attractor (middle left) and enlargement of strange
attractor (middle right). Belief parameters are: g1 = 0, b1 = 0; g2 = 0.9, b2 = 0.2; g3 = 0.9, b3 = −0.2
and g4 = 1 + r = 1.01, b4 = 0; other parameters are r = 0.01, β = 90.5 and w = 0. The bottom plot
shows forecasting errors for the nearest neighbor method applied to noisy chaotic returns series, for different
noise levels (see the text). All returns series have close to zero autocorrelations at all lags. The benchmark case
of prediction by the mean 0 is represented by the horizontal line at the normalized prediction error 1. Nearest
neighbor forecasting applied to the purely deterministic chaotic series leads to much smaller forecasting errors
(lowest graph). A noise level of say 10% means that the ratio of the variance of the noise term εt in (109) and
the variance of the deterministic price series is 1/10. As the noise level slowly increases, the graphs are shifted
upwards. Small dynamic noise thus quickly deteriorates forecasting performance.

g4 = 1 + r = 1.01, b4 = 0. The first type are fundamentalists again and the other three
types follow a simple linear forecasting rule with one lag. The dynamical behavior is illus-
trated in Figure 11. For low values of the intensity of choice, the 4-type ABS is stable and
the asset price converges to its fundamental value. As the intensity of choice increases, as
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in the previous three type example, the fundamental steady becomes unstable due to a Hopf
bifurcation and a stable invariant circle around the unstable fundamental steady state arises,
with periodic or quasi-periodic fluctuations. As the intensity of choice further increases, the
invariant circle breaks into a strange attractor with chaotic fluctuations. In the evolution-
ary ABS fundamentalists and chartists co-exist with fractions varying over time and prices
moving chaotically around the unstable fundamental steady state.

This 4-type example shows that when traders are driven by short run profits, even when
there are no information costs, fundamentalists cannot drive out other simple trend following
strategies and fail to stabilize price fluctuations towards its fundamental value. As in the three
type case, the opposite biases create cyclic behavior, but apparently trend following strategies
turn these cycles into unpredictable chaotic fluctuations.

The (noisy) chaotic price fluctuations are characterized by irregular switching between
phases of close-to-the-EMH-fundamental-price fluctuations, phases of ‘optimism’ with
prices following an upward trend, and phases of ‘pessimism’, with (small) sudden market
crashes, as illustrated in Figure 11. In fact, in the ABS prices are characterized by an evolu-
tionary switching between the fundamental value and temporary speculative bubbles. In the
purely deterministic chaotic case, the start and the direction of the temporary bubbles seem
hard to predict. However, once a bubble has started, in the deterministic case, the burst of the
bubble seems to be predictable in most of the cases. In the presence of small noise however,
as illustrated in Figure 11 (top right), the start, the direction as well as the time of burst of
the bubble all seem hard to predict.

In the deterministic chaotic as well as the noisy chaotic case, the autocorrelations of returns
are close to zero, so there is little linear predictability in this model. In order to investigate
the (un)predictability of this market model in more detail, we employ a so called nearest
neighbor forecasting method to predict the returns, at lags 1 to 20, for the purely chaotic as
well as for several noisy chaotic time series, as illustrated in Figure 1121. Nearest neighbor
forecasting looks for past patterns close to the most recent pattern, and then yields as the
prediction the average value following all nearby past patterns. It follows essentially from
Takens’ embedding theorem that this method yields good forecasts for deterministic chaotic
systems. Figure 11 shows that as the noise level increases, the forecasting performance of the
nearest neighbor method quickly deteriorates. Hence, in our simple nonlinear evolutionary
ABS with noise it is hard to make good forecasts of future returns. The market is close
to being efficient in the sense that there is “no easy free lunch”. However, the market is
inefficient in the sense that prices exhibit persistent deviations from fundamental value, due
to self-fulfilling temporary speculative bubbles driven by short run profit opportunities.

Recently several modifications of ABS have been studied. In BH98a the demand for the risky
asset is derived from a constant absolute risk aversion (CARA) utility function. Chiarella and
He (2001) consider the case with constant relative risk aversion (CRRA) utility, so that in-
vestors’ relative wealth affects asset demand and realized asset price, and study wealth and
asset price dynamics in such a heterogeneous agents framework22. Anufriev and Bottazzi
(2005) characterize the type of equilibria and their stability in a HAM with CRRA utility

21See e.g. Kantz and Schreiber (1997) for an extensive treatment of nonlinear time series analysis and fore-
casting techniques such as nearest neighbors. I would like to thank Sebastiano Manzan for providing the nearest
neighbor forecasting plot.

22In the artifical market of Levy et al. (1994), asset demand is also derived from CRRA utility.
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and an arbitrary number of agents. Chiarella, Dieci and Gardini (2002,2006) use CRRA util-
ity in an ABS with a market maker price setting rule. Chiarella and He (2003) and Hommes,
Huang and Wang (2005) investigate an ABS with a market maker price setting rule, and
find similar dynamical behavior as in the case of a Walrasian market clearing price. Chang
(2005) studies the effects of social interactions in an ABS with a Walrasian market clearing
price. DeGrauwe and Grimaldi (2005ab) recently applied the ABS framework to exchange
rate modeling. A related stochastic model with heterogeneous agents and endogenous strat-
egy switching similar to the ABS has recently been introduced in Föllmer et al. (2005).
Scheinkman and Xiong (2004) review related stochastic financial models with heterogeneous
beliefs and short sale constraints.

8.3 Many trader types

In most HAMs discussed in this chapter the number of trader types is small, restricted to two,
three or four. Analytical tractability can only be obtained at the cost of restriction to just a few
types. Brock, Hommes and Wagener (2005), henceforth BHW05, have recently developed a
theoretical framework to study evolutionary markets with many different trader types. They
introduce the notion of Large Type Limit (LTL), a simple, low dimensional approximation of
an evolutionary market with many trader types. BHW05 develop the notion of LTL within a
fairly general market clearing setting, but here we focus on its application to the asset pricing
model.

Recall that in the asset market with H different trader types, the equilibrium price (104), in
deviations xt from the fundamental benchmark, is given by

xt =
1

1 + r

H∑

h=1

nhtfht. (115)

Using the multinomial logit probabilities (105) for the fractions nht we get

xt =
1

1 + r

∑H
h=1 eβUh,t−1fht∑H

h=1 eβUh,t−1
. (116)

The equilibrium equation (116) determines the evolution of the system with H trader types -
this information is coded in the evolution map φH(x, λ, θ):

φH(x, λ, θ) =
1

1 + r

∑H
h=1 eβU(x,λ,θh)f(x, λ, θh)∑H

h=1 eβU(x,λ,θh)
, (117)

where x = (xt−1, xt−2, · · ·) is a vector of lagged deviations from the fundamental, λ is a
structural parameter vector (e.g. the risk free interest rate r, the risk aversion parameter a,
the intensity of choice β, etc.) and the belief variable θh is now a multidimensional stochastic
variable which characterizes belief h. At the beginning of the market, a large number H of
beliefs is sampled from a general distribution of beliefs. For example, all forecasting rules
may be drawn from a linear class with L lags,

ft(θ0) = θ00 + θ01xt−1 + θ02xt−2 + · · ·+ θ0Lxt−L, (118)

with θ0h, h = 0, · · · , L, drawn from a multivariate normal distribution.
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The evolution map φH in (117) determines the dynamical system corresponding to an asset
market with H different belief types. When the number of trader types H is large, this dy-
namical system contains a large number of stochastic variables θ = (θ1, ..., θH), where the θh

are IID, with distribution function Fµ. The distribution function of the stochastic belief vari-
able θh depends on a multi-dimensional parameter µ, called the belief parameter. This setup
allows to vary the population out of which the individual beliefs are sampled at the beginning
of the market.

Observe that both the denominator and the numerator of the evolution map φH in (117) may
be divided by the number of trader types H and thus may be seen as sample means. The
evolution map ψ of the large type limit is then simply obtained by replacing sample means
in the evolution map φH by population means:

ψ(x, λ, µ) =
1

1 + r

Eµ

[
eβU(x,λ,θ0) f(x, λ, θ0)

]

Eµ

[
eβU(x,λ,θ0)

] =
1

1 + r

∫
eβU(x,λ,θ0)f(x, λ, θ0)dνµ∫

eβU(x,λ,θ0)dνµ

. (119)

Here θ0 is a stochastic variable which is distributed in the same way as the θh, with distribu-
tion function Fµ. The structural parameter vectors λ of the evolution map φH and of the LTL
evolution map ψ coincide. However, whereas the evolution map φH in (117) of the heteroge-
neous agent system contains H randomly drawn multi-dimensional stochastic variables θh,
the LTL evolution map ψ in (119) only contains the belief parameter vector µ describing
the joint probability distribution. Taking a large type limit thus leads to a huge reduction in
stochastic belief variables.

BHW05 prove an LTL-theorem, saying that, as the number H of trader types tends to in-
finity, the H-type evolution map φ converges almost surely to the LTL-map ψ. The LTL
theorem implies that the corresponding LTL dynamical system is a good approximation of
the dynamical behavior in a heterogeneous asset market when the number of belief types H
is large. In particular, all generic and persistent dynamic properties will be preserved with
high probability. For example, if the LTL-map exhibits a bifurcation route to chaos for one of
the structural parameters, then, if the number of trader types H is large, the H-type system
also exhibits such a bifurcation route to chaos with high probability.

For example, in the case of linear forecasting rules (118) with three lags (L = 3), the corre-
sponding LTL becomes a 5-D nonlinear system given by

(1 + r)xt = µ0 + µ1xt−1 + µ2xt−2 + µ3xt−3 (120)
+η(xt−1 −Rxt−2 + aσ2zs)(σ2

0 + σ2
1xt−1xt−3 + σ2

2xt−2xt−4 + σ2
3xt−3xt−5),

where η = β/(aσ2). BHW05 show that a bifurcation route to chaos, with asset prices fluc-
tuating around the unstable fundamental steady state, occurs when η increases. This shows
that a rational route to randomness can occur in an asset market with many different trader
types, when traders become increasingly sensitive to differences in fitness (i.e. an increase in
the intensity of choice β) or traders become less risk averse (i.e. a decrease of the coefficient
of risk aversion a). In a many trader types evolutionary world fundamentalists will in general
not drive out all other types and asset prices need not converge to their fundamental value.

Recently Diks and van der Weide (2003,2005) have generalized the notion of LTL and intro-
duced so-called Continuous Belief Systems (CBS), where the beliefs of traders are distributed
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according to a continuous density function. The beliefs distribution function and the equilib-
rium prices co-evolve over time. Assuming a suitable performance measure, e.g. quadratic
in the belief parameter θ, the evolution of the distribution of beliefs is determined by the
evolution of the first two moments, and analytical expressions for the change of the mean
and the variance over time can be obtained. The LTL theory discussed here as well as its
extensions can be used to form a bridge between an analytical approach and the literature on
evolutionary artificial market simulation models reviewed in LeBaron (2002,2006).

9 Concluding remarks and future perspective

The work on heterogeneous agent modeling within the new paradigm of behavioral eco-
nomics, behavioral finance and bounded rationality is rapidly expanding. This chapter has
reviewed HAMs emphasizing models that, at least to some extent, are analytically tractable.
The development and analysis of these models requires a combination of analytical and
computational tools. The review shows a development from very simple, early models in the
seventies and the eighties based on somewhat ad hoc assumptions (e.g. ad hoc demand or
supply functions, fixed fractions using the different strategies) to more sophisticated models
in the nineties based on micro foundations (e.g. local interactions, social utility, asset de-
mand derived from myopic mean-variance maximization) with switching between different
strategies according to an evolutionary fitness measure based upon recent realized perfor-
mance and social interaction effects. Markets are viewed as complex adaptive systems, with
the evolutionary selection of expectations rules or trading strategies endogeneously coupled
to the market (dis-)equilibrium dynamics. Prices, volume and the population of beliefs and
strategies co-evolve over time. In this behavioral world the “wilderness of bounded rational-
ity” is disciplined by parsimony and simplicity of strategies and their relative performance as
measured by recent profits, forecasting errors and social utility. Aggregation of interactions
of individuals at the micro-level may explain structure and stylized facts at the macro-level.

Dynamic HAMs are highly nonlinear systems, generating a wide range of dynamical be-
haviors, ranging from simple convergence to a stable steady state to very irregular and un-
predictable fluctuations which are highly sensitive to noise. Sophisticated traders, such as
fundamentalists or rational arbitrageurs typically act as a stabilizing force, pushing prices in
the directions of the RE fundamental value. Technical traders, such as feedback traders, trend
extrapolators and contrarians typically act as a destabilizing force, pushing prices away from
the fundamental. When the proportion of chartists believing in a trend exceeds some criti-
cal value, the price trend becomes reinforced and the belief becomes self-fulfilling causing
prices to deviate from fundamentals. Nonlinear interaction between fundamental traders and
chartists can lead to deviations from the fundamental price in the short run, when price trends
are reinforced due to technical trading, and mean reversion in the long run, when more agents
switch back to fundamental strategies when the deviation from fundamental price becomes
too large. Asset prices switch irregularly between temporary bull and bear markets, and are
very unpredictable and highly sensitive to noise. Fractions of the different trading strategies
fluctuate over time and simple technical trading rules can survive evolutionary competition,
and on average chartists may earn profits comparable to the profits earned by fundamental-
ists or value traders. In financial market applications, simple HAMs can mimic important
stylized facts, such as persistence in asset prices, unpredictability of returns at daily horizon,
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mean reversion at long horizons, excess volatility, clustered volatility and fat tails in asset
returns. These models also generate high and persistent trading volume in sharp contrast to
no trade theorems in RE models. High trading volume is mainly caused by differences in
beliefs. Volatility in asset prices is driven by news about economic fundamentals, which is
amplified due to the interaction of different trading strategies. Self-fulfilling trend following
investment strategies may cause persistent deviations from fundamental values.

Much more work in this area remains to be done and of the many open issues that remain
we can only mention a few. We have seen examples of HAMs where non-rational, non-
fundamental traders survive competition in the market. Under which conditions is this true?
This important question has also been addressed from a theoretical perspective in the recent
evolutionary finance literature. Blume and Easley (1992,2002) have shown that in a gen-
eral equilibrium setting, when markets are incomplete, rational agents are not always able
to drive out non-rational traders. Sandroni (2000) shows that in a complete market, agents
who do not make accurate predictions are driven out of the market by agents who make ac-
curate predictions.23 Evstigneev et al. (2002), Hens and Schenk-Hoppé (2005) and Amir et
al. (2005) investigate market selection of portfolio rules and investment strategies in asset
markets. Applying the theory of random dynamical systems they show that in an incomplete
market with short lived assets a unique evolutionary stable strategy distributing wealth ac-
cording to expected relative payoffs accumulates all wealth. It is an open question whether
this result holds for infinite lived assets. It is also an open question whether the Brock and
Hommes type of instability will survive in a general equilibrium framework with consump-
tion.

Another important issue is how memory in the fitness measure affects stability of evolu-
tionary adaptive systems and survival of technical trading (see Brock and Hommes (1999)).
This question is related to heterogeneity in investors’ time horizon, both their planning and
their evaluation horizon. In a computational framework this problem has been addressed by
LeBaron (2002), but simple, analytically tractable models are not available yet. Most dy-
namic HAMs focus on a market with one risk free and one risky asset, and little attention has
been paid to multi risky asset markets. Westerhoff (2004) recently considered multi-asset
markets, where chartists can switch their investments between different markets for risky
assets. The interaction between the different markets causes complex asset price dynamics,
with different markets exhibiting co-movements as well as clustered volatility and fat tails of
asset returns. In another recent paper, Böhm and Wenzelburger (2005) apply random dynam-
ical systems to investigate the performance of efficient portfolios in a multi-asset market with
heterogeneous investors. A final important question concerns futures or derivative markets.
In a homogeneous, rational agent world futures markets are stabilizing because agents can
hedge risk and thus force prices closer to their fundamental values. But what happens in a het-
erogeneous world with boundedly rational agents? Are futures markets stabilizing because

23There is an important difference between Sandroni (2000) and e.g. the approach of Brock and Hommes
(1997a,1998). Sandroni assumes heterogeneity in expectations about future states of the world, generated by an
exogenous stochastic process. These beliefs affect asset prices, but do not affect realized states of the world, so
that agents with correct beliefs have a comparative advantage in realized utility and asset prices converge to RE
prices. In contrast, Brock and Hommes assume correct beliefs about dividends for all agents, but heterogeneous
beliefs about prices. These beliefs endogenously affect realized prices. For example, optimistic traders may then
survive in the market when enough traders share their optimism, causing the asset price to increase above its
RE fundamental value and giving optimists a relatively high return on their investment decision.
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risk can be hedged, or will boundedly rational agents take larger positions and destabilize
markets?

Expectations play a key role in dynamic HAMs. It is remarkable that relatively little work
in laboratory experiments and survey data analysis has focused on dynamic selection of ex-
pectation strategies. We mention three recent contributions, and emphasize that much more
work needs to be done; see also the chapter of Duffy (2006) for an extensive discussion of
the relationship between human subject laboratory experiments and agent-based modeling.
Branch (2004) uses survey data on inflation expectations of households to estimate a version
of the dynamic HAM of Brock and Hommes (1997), with naive expectations, adaptive ex-
pectations and a VAR-forecasting rule. The dynamic HAM fits the survey data best (better
than the corresponding homogeneous agent models) with time varying proportions of the
three expectations types inversely related to each predictor’s MSE. Adam (2005) presents an
experimental monetary sticky price economy in which output and inflation depend on ex-
pected future inflation. Participants are asked to forecast inflation for about 50 periods, and
the average expectation determines next period’s output and inflation. In the experimental
sessions, output and inflation display considerable persistence and regular cyclical patterns.
Such behavior emerges because subjects inflation expectations fail to be captured by ratio-
nal expectations functions, but instead are well described by simple forecast functions using
only one period lagged output and inflation as explanatory variables. Hommes et al. (2005)
conduct laboratory experiments, where individuals are asked to forecast an asset price for
50 periods, with realized prices determined endogenously in the laboratory by the Brock-
Hommes (1998) asset pricing model with feedback from individual forecasts. In this simple
stationary environment, in most cases the asset price does not converge to its fundamental
value. Agents learn to coordinate on a common, simple prediction rule, e.g. a simple linear
trend following rule, and asset prices oscillate around the fundamental value exhibiting short
run bubbles and long run mean reversion.

Although there are already quite a number of HAMs, only few attempts have been made to
estimate a HAM on economic or financial data. An early attempt has been made by Shiller
(1984), who presents a HAM with smart money traders, having rational expectations, ver-
sus ordinary investors (whose behavior is in fact not modeled at all). Shiller estimates the
fraction of smart money investors over the period 1900-1983, and finds considerable fluc-
tuations of the fraction over a range between 0 and 50%. More recently, Baak (1999) and
Chavas (2000) estimate HAMs on hog and beef market data, and found evidence for the het-
erogeneity of expectations. For the beef market Chavas (2000) finds that about 47% of the
beef producers behave naively (using only the last price in their forecast), 18% of the beef
producers behaves rationally, whereas 35% behaves quasi-rationally (i.e. use a univariate au-
toregressive time series model of prices in forecasting). Winker and Gilli (2001) and Gilli and
Winker (2003) estimate the model of Kirman (1991,1993) (see subsection 5.1) with funda-
mentalists and chartists, using the daily DM-US$ exchange rates 1991-2000. Their estimated
parameter values correspond to a bimodal distribution of agents, and Gilli and Winker (2003,
p.310) conclude that “... the foreign exchange market can be better characterized by switch-
ing moods of the investors than by assuming that the mix of fundamentalists and chartists
remains rather stable over time”. Westerhoff and Reits (2003) also estimate an HAM with
fundamentalists and chartists to exchange rates and find considerable fluctuations of the mar-
ket impact of fundamentalists. In a recent paper, Boswijk, Hommes and Manzan (2005) use
yearly data of the S&P500 index, 1890-2003, to estimate a version of the Brock and Hommes
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(1998) asset pricing model with two types of strategies and switching of strategies driven by
short run profits. Their estimation yields two different regimes, one stable mean-reverting
and one unstable trending regime. Fractions of the two types change considerably over time,
and especially in the nineties, the fraction of trend followers becomes large, suggesting that
the strong rise in stock prices in the nineties has been exaggerated by trend extrapolation
driven by short run profits. All these empirical papers suggest that heterogeneity is important
in explaining the data, but much more work is needed to investigate the robustness of this
empirical finding.

Much of the work on HAMs is computational and theoretically oriented, but little work has
been done on policy implications. The most important difference with a representative ra-
tional agent framework is perhaps that in a heterogeneous boundedly rational world, asset
price fluctuations exhibit excess volatility. If this is indeed the case, it has important policy
implications e.g. concerning the debate on whether a Tobin tax on financial transactions is
desirable. In an interesting recent paper, Westerhoff and Dieci (2005) use a HAM to inves-
tigate the effectiveness of a Tobin tax. Investors can invest in two different speculative asset
markets. If a Tobin tax is imposed on one market, it is stabilized while the other market is
destabilized; if a tax is imposed on both markets, price fluctuations in both markets decrease.
Another example of a policy oriented paper is Westerhof (2004), who investigates the effec-
tiveness of trading brakes in a HAM. Although much more work is needed to be conclusive
on these important issues, these are interesting results illustrating how HAMs can be used to
investigate policy issues in future work.

The paradigm of agent-based, behavioral economics, behavioral finance and bounded ratio-
nality is rapidly expanding. Heterogeneity is likely to play a key role in this approach, and
agent-based computational HAMs deserve high priority in future work. Will an analytical
approach survive within more computational oriented research in the 21st century? Com-
putational models are becoming increasingly important and have the advantage that many
aspects at the micro level and details of the interaction among agents can be modeled and
simulated on a computer. But a problem with large computer simulation models is that there
are too many degrees of freedom and too many parameters. For example, in a computational
model often there are many places where noise enters the model at the micro-level, which
makes it very difficult to assess the main causes of observed stylized facts at the aggregate,
macro level. The search for a (large) computational agent-based HAM capturing the stylized
facts as closely as possible deserves high priority. But at the same time one would like to find
the simplest behavioral HAM (e.g. in terms of number of parameters and variables), with a
plausible behavioral story at the micro level, that still captures the most important stylized
facts observed at the aggregate level. The simplest HAM can then be used to estimate behav-
ioral heterogeneity in laboratory experimental and/or empirical time series data. Simple and
parsimonious HAMs can thus help to discipline the wilderness of agent-based modeling.
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