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Abstract

A finite set of agents jointly undertake a project. Depending on the aggregate of individual agent
characteristics the project runs losses or profits, which have to be shared. This paper adopts the mecha-
nistic view and concentrates on devices that a contingent planner may use in order to share the net profits.
The Moulin and Shenker (1994) representation theorem is used to show that additive mechanisms with
the constant returns property relate 1 to 1 to rationing methods. Refinements are discussed dealing with
monotonicity and equity properties that relate to the dispersion of shares. The second part introduces
the notion of a consistent solution. Each rationing method induced by a consistent mechanism is consis-
tent. If such mechanism is continuous as well, then the corresponding rationing method is parametric.
Most prevalent mechanisms (average, serial, Shapley-Shubik) are consistent as member of the class of
incremental mechanisms. Each interval consistent incremental mechanism is shown to be a composi-
tion of marginal mechanisms and the average mechanism. Immediately the average mechanism is the
unique strongly consistent solution. Finally a characterization of mechanisms within the general class is
discussed using super-additivity.

Keywords: cooperative production, cost sharing, mechanism design, investment, (parametric) rationing,
core, additivity, monotonicity

JEL-Classification: C70, D63, D70

1 Sharing variable returns

The simplest model of distributive justice is that of the rationing model as discussed in Moulin (2000).
As Moulin (2002) shows, this model is closely related to the more involved cost sharing model where
the amount to be shared is the costs for production of the aggregate of the individual demands. Israelsen
(1980) discusses a dual model where workers share the returns from a jointly owned production facility,
given the individual efforts or inputs. Both type of models have in common that for a given set of agents
N = {1, 2, . . . , n} and a list of individual characteristics q ∈ RN

+ there is an amount f (∑i qi) to be shared.
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The distinction between the models is the way that the size of a share of f (∑i qi) is perceived: higher cost
shares are depreciated, whereas higher production shares are appreciated. This paper abstracts from the
above interpretations and considers the more general (variable) profit sharing problem where each agent
i is endowed with some input characteristic qi which in turn affects the total profits of the project via
aggregation of the characteristics. This means that the profits of the project are described by a function f
that relates size of aggregate input characteristics to the degree of profitability of the project.

Apart from the standard cost sharing and production models, there are numerous other situations that fit
into this model.
Investment The scale of many enterprizes may demand for several investors. Then its successfulness will –
amongst others – depend on the level of total investments. Typically, the dependency of investments and net
profits possibly go in two directions: under-investment may well result in bankruptcy or shrinking business
whereas over-investment may lower average returns per invested unit.
Common pool problems Agents invest in harvesting. The total of investments affects both a production as
well as a cost component.
Consumer organizations Consumers pool demands in order to get better prices. The cost savings are
related to the size of the aggregate demands. Or consider the pooling of savings in order to get better rates
at bank.
The central question in all these problems is what the dispersion of the individual shares of the profits
should be. In many applications profits are shared proportional to the agent characteristics. As for instance
on stock-markets where an agents’ characteristic is the number of shares owned and dividends are paid per
share. Though the idea of proportionality is probably the oldest and the most widely spread, the literature
on distributive justice discusses and promotes other solutions as well.

The success and the desirability of a particular solution depends on the actual context of the problem.
The search for the ideal solution to an instance of a profit sharing problem can in general not be answered
and should be regarded as ambiguous. Nevertheless it may put forward principles of profit sharing in a more
general context within the sphere of a variety of problems. This paper follows the approach of the axiomatic
literature in that it discusses several structural properties and looks to characterize solutions satisfying them
(see e.g. Thomson (1999)). Some properties prescribe a solution in special cases of ”obvious” problems,
whereas others express an invariance of the solution to certain changes in the parameters of the problem. In
this respect the most prominent properties will be consistency, that pertains to variations of the set of agents
among whom the distribution of profits must take place, and additivity which allows a benevolent planner
to combine results for several instances of problems to solve the problem by a single instance.

2 Overview of the results and relation to the literature

The paper shows ways to generalize the standard production sharing model where it is the outputs that have
to be shared by agents having equal access rights for the production technology relative to their individual
investments such as labor. The technology is fully described by a production function that assigns to each
level of input the maximal output that can thus be generated. Then given a profile of individual investments
the corresponding produced output has be allocated. This paper generalizes this model by interpreting the
production function as a profit function. These profit functions may be decreasing, increasing, attain pos-
itive as well as negative values. The negative values are interpreted as costs. The class of problems with
non-decreasing profit functions are the production problems as in Israelsen (1982) and Moulin and Shenker
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(1992). Problems with non-increasing profit functions are the cost sharing problems as in Moulin (2002).
The same setup is chosen to address the problem of natural monopoly in Sharkey (1982) and Baumol et al.
(1982). This paper considers solutions concepts to the cooperative profit sharing problems, i.e. devices that
assign to each instance of a cooperative profit sharing problem a set of allocations.

Section 3 provides the basic setup for profits sharing problems, as well as the notion of a solution.
Numerous examples of solutions and mechanisms are provided. Special solutions are the mechanisms that
correspond to singletons. The solutions in this paper are all direct generalizations from the cost sharing
literature. Relevant examples in the mechanistic cost sharing literature include solutions like the average
cost sharing mechanism, the Shapley-Shubik mechanism (Shubik (1962), Sudhölter (1998), Young (1985)),
the serial mechanism (Moulin and Shenker (1992,1994)). Multi-valued solutions are defined as the cores
or imputation sets of relevant cooperative transferable utility games, one of which is the stand-alone profit
game that is inspired by the stand-alone cost game as in Young (1985, 1994).

Section 4 focusses on the relation between a specific class of mechanisms and the class of rationing
methods. More specifically, it is shown that positive and additive profit sharing mechanisms that satisfy
constant returns are characterized by monotonic and continuous rationing methods. This is an extension
of the characterization result of Moulin and Shenker (1994). It is shown that though the above class may
be considered rather small, the (huge) pessimistic core consists exactly of the solutions generated by it.
Properties are discussed as to describe how the individual shares of profits are related. Like equal treatment
of equals and profit- and loss monotonicity, which are variants of the ranking property in the cost sharing
literature. Then using these properties a refinement of the generalized Moulin and Shenker (1994) theorem
are derived. In addition, the average mechanism is the unique mechanism that satisfies a weak solidarity
property – that of nullity – as well.

Section 5 introduces concepts of consistency for profit sharing solutions that describes invariance of
solutions in a model with varying sets of agents. The proposed concepts are alternatives to those found in
the cost sharing literature (see, e.g., Young (1985), Moulin and Shenker (1994) and Sudhölter (1998)). Each
consistent mechanism in the class of mechanisms that is characterised in the previous section is represented
by a family of consistent rationing methods as in Young (1987) and Moulin (2000,2002). In addition, the
counterpart of Theorem 1 of Young (1987) is that each family of rationing methods that defines a continu-
ous, consistent and symmetric mechanism is parametric.
The class of incremental mechanisms is introduced that can be seen to generalize the notion of random order
value of Weber (1988). It is the class that corresponds to piecewise linear rationing methods. Each mecha-
nism that is represented by a family of consistent and piecewise linear rationing methods is consistent. As a
result most of the prevalent additive mechanisms in the literature are consistent. Nevertheless, there are just
a few that satisfy the stronger property of interval consistency, i.e., the mechanisms that combine the mar-
ginal mechanisms and the average mechanism. In other words, using the terminology of Moulin (2000) for
rationing methods, the irreducible interval consistent incremental mechanisms are the average mechanism
and the marginal mechanisms. This leads us to conclude that, basically, the average sharing mechanism is
the unique mechanism that is both incremental and strongly consistent. For each profits sharing problem
the solutions of the consistent incremental mechanisms are dense in the set of solutions generated by the
class of additive mechanisms with the properties positivity and constant returns. The results for set-valued
solutions are that the maximal consistent solution satisfying the bounds put forward by the pessimistic in-
dividual bounds is the pessimistic core.

Section 6 studies general (set) solutions and characterizes the mechanisms using a weakened form of
additivity together with properties like non-emptiness and bounds.
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3 The profit sharing problem and preliminaries

Throughout this paper we will restrict ourselves to a fixed and finite group of agents N = {1, 2, . . . , n} .
The group of agents is involved in a joint project. The successfulness of the project hinges upon a profile
of agent characteristics. One may think of a profile of individual demands, as in cost sharing, or a profile of
individual investments such as labor input or money. Each such a profile of agent characteristics, or inputs,
is summarized by a vector q ∈ RN

+ . It is assumed that the relation between the inputs and net profits or net
returns of the project are summarized by a profit function f : R+ → R; f (∑i∈N qi) indicates the returns
of the project in case of profile of inputs q ∈ RN . A special situation occurs when the aggregate level of the
agent characteristics is zero. It will be assumed that then f (0) = 0; nothing happens when the aggregate of
agent characteristics is zero. In the cost sharing context this condition is mostly understood as the absence
of fixed costs. In addition, it is assumed that a profit function is an absolutely continuous function of the
aggregate input variable1. In particular this means that such a function is differentiable almost everywhere
where. Then for any profit function f we will take f ′ : R+ → R to denote the function that equals the
derivative of f , if it exists, and that takes the value 0 otherwise. This function will be referred to as the
marginal profit function f ′. By absolute continuity each marginal profit function f ′ is Lebesgue integrable
and we may express total profits for at input level y in terms of the marginal profit function f ′, since for all
t ∈ R+ we have

f (t) =
∫ t

0
f ′ (s) ds.2

The set of all profit functions is denoted by F . Special functions are the zero function and the identity
defined by fz(y) = 0 and fid(y) = y for all y ∈ R+ respectively. We distinguish two special classes in F ,
F− and F+, the classes of all non-increasing and non-decreasing elements in F , respectively. An element
in F− is also referred to as cost function, when negative profits are interpreted as costs. The classes F− and
F+ are dual in the sense that f ∈ F− ⇔ − f ∈ F+. Each element f ∈ F can be written as the difference
of two elements of F+. In order to see this define f +, f− ∈ F+ by

f +(y) =
∫ y

0
max{ f ′(t), 0}dt (1)

f−(y) = −
∫ y

0
min{ f ′(t), 0}dt. (2)

Then f = f + − f−.
A profits sharing problem for the agents in S ⊆ N is an ordered pair (q, f ) consisting of a profit function
f ∈ F and a vector of inputs q ∈ RS

+, that summarizes the individual characteristics of the individual
agents; qi is the characteristic of agent i ∈ S. The set of all profit sharing problems for S is denoted RS;
moreover put R :=

⋃
S⊆N RS. The subset of RS of all profit sharing problems with c ∈ F+ is denoted

RS
+, and R+ :=

⋃
S⊆N RS

+. Similarly we define RS
− and R− as the class of all profit sharing problems

with profit function in F−; this is the class of all cost sharing problems.

1A function f : R+ → R is absolutely continuous if for all intervals [a, b] ⊂ R+ and ε > 0 there is a δ > 0 such that
for every finite collection of pairwise disjoint intervals (ak , bk) ⊂ [a, b] , k = 1, 2, . . . , n with ∑n

k=1 (bk − ak) < δ, we have
∑n

k=1 | f (bk)− f (ak)| < ε.
2This follows by the Fundamental Theorem in Lebesgue (1904).
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For any vector y ∈ RS and S ⊆ N define y (S) = ∑i∈S yi; denote the unit simplex {y ∈ RS
+
∣∣ y(S) = 1}

by ∆ (S). For A ⊆ R the indicator function I A : R → {0, 1} is defined by

I A(t) =
{

1 if t ∈ A,
0 else.

To each profit sharing problem R = (q, f ) ∈ R we associate the pessimistic profit sharing problem
(q, f P

R) where f P
R ∈ F is defined by

f P
R (y) =

 inf
{∫

T
f ′(s) ds

∣∣ T ∈ B([0, q(S)]); λ(T) = y
}

if y ∈ [0, q (S)] ,

f (y) if y > q (S) .
(3)

Here B ([0, q (S)]) stands for the Borel-σ-algebra on the interval [0, q (S)] and λ is the Lebesgue measure.
So the pessimistic profits function f P

R relates each level of aggregate inputs y ∈ [0, d (S)] to a specific
lower bound on profits that is the minimum of corresponding aggregate marginal profits on [0, q(S)]. In
cost sharing terms this is what Tijs and Koster (1998) defined by the pessimistic cost function. 3 It is easy
to show that each such pessimistic profits function f P

R is convex on the interval [0, q(S)].
Given a profit sharing problem (q, f ) ∈ RS, the focus is on ways to assign the total profits f (q (S)) for the
collective of agents S ⊆ N. For (q, f ) ∈ RS an element y ∈ RS with the property that y (S) = f (q (S))
is called a vector of profit shares or just share vector. A solution is a mapping Ψ that assigns for each
S ⊆ N to each (q, f ) ∈ RS a subset Ψ (q, f ) ⊆ RS of share vectors. In addition a solution Ψ is called
mechanism if it is single-valued, i.e. the set Ψ (q, f ) consists of precisely one element for all profit sharing
problems (q, f ) ∈ RS, S ⊆ N. The class of all solutions and mechanisms, resp., is denoted S and M.
By S+ we denote the class of solutions on R+, i.e., all mappings Ψ that assigns for each S ⊆ N and
(q, f ) in RS

+ a subset Ψ (q, f ) ⊆ RS of share vectors. Then M+ := M∩ S+. With slight abuse of
notation we will write Ψ(q, f ) = x whenever x is the unique element in Ψ(q, f ). The class of solutions and
mechanisms, resp., with properties P1, P2, . . . , Pk is denoted S(P1, P2, . . . , Pk) and M(P1, P2, . . . , Pk). A
solution Ψ ∈ S satisfies positivity (POS) if for all f ∈ F+ and x ∈ Ψ(q, f ) it holds that x ≥ 0. A solution
is nonempty (NE) if Ψ (q, f ) 6= ∅ for all profit sharing problems (q, f ). In particular M ⊆ S(NE) and
M+ ⊆ S+(NE). Now we will discuss the solutions that will be most prominent in this paper. The focus
will be on a fixed problem R = (q, f ) ∈ RS.

Examples of multi-valued solutions
The multi-valued solutions in this paper all stem from ideas in cooperative game theory applied to the co-
operative stand alone game (see, e.g., Young (1985, 1994)) and pessimistic game (Tijs and Koster (1998)).

• The most trivial (multi-valued) solution that comes to mind is the set of all share vectors, i.e. the set

A (q, f ) =
{

x ∈ RS ∣∣ x (S) = f (q (S))
}

.

• The imputation set is defined by

I(q, f ) =
{

x ∈ RS ∣∣ x(S) = f (q(S)), ∀i ∈ S, xi ≥ f (qi)
}

.

3A generalization of the pessimistic cost sharing problem to heterogeneous cost sharing problems is in Koster (2000).
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Related is the pessimistic imputation set, i.e., the set defined by

I P(q, f ) = I(q, f P
R). (4)

• The stand alone core (Young (1994)) is the set of all share vectors

C(q, f ) =
{

x ∈ RS ∣∣ x(S) = f (q(S)), ∀Q ⊂ S, x(Q) ≥ f (q(Q))
}

.

The related pessimistic core is defined by

CP(q, f ) = C(q, f P
R). (5)

Examples of mechanisms
The mechanisms below are direct generalizations of mechanisms that are better known from the cost sharing
literature. For a reference see Moulin (2002).

• The average cost sharing mechanism µAV determines the share vector

µAV (q, f ) =

 0 if q (S) = 0,
f (q (S))

q (S)
· q otherwise.

As a mechanism on R− it is better known as the average cost sharing mechanism (see e.g. Moulin
(2002)).

• Let Π (S) be the set of all mappings S → {1, 2, . . . , |S|}. For each σ ∈ Π (S) we define for
q ∈ RS

+ the numbers qσ
0 , qσ

1 , . . . , qσ
|S| by qσ

j = ∑`≤j qσ(j). Then for any σ ∈ Π(S), the corresponding

marginal mechanism µσ ∈ RS is defined by

µσ
i (q, f ) := f

(
qσ

σ−1(i)

)
− f

(
qσ

σ−1(i)−1

)
. (6)

So for each sharing problem µσ (q, f ) is the marginal vector with respect to the stand alone game
(see Young (1985)). The Shapley-Shubik mechanism Φ averages all marginal or incremental share
vectors, i.e., Φ (q, f ) = 1

n! ∑σ∈Π(N) µσ (q, f ).4 Define the pessimistic marginal mechanism with
respect to σ ∈ Π (N) by

µσ
p (q, f ) := µσ (q, f P

R) , for all R = (q, f ) ∈ RS. (7)

The pessimistic Shapley-Shubik mechanism ΦP is defined by ΦP (q, f ) = Φ(q, f P
R). Weber (1988)

discusses the class of random order values consisting of all mechanisms that are a convex combina-
tion of marginal mechanisms.

• For q ∈ RS
+ let σ ∈ Π(S) be such that qσ(i) ≤ qσ(j) ⇔ i ≤ j. Define numbers q∗0 , q∗1 , . . . , q∗|S|

by q∗0 = 0 and q∗j = ∑`≤j−1 qσ(`) + (|S| − j + 1)qσ(j). Then the serial mechanism µSR (see, e.g.,
Moulin and Shenker (1992)) is defined by

µSR
i (q, f ) = ∑

`≤σ(i)

f (q∗` )− f (q∗`−1)
|S| − ` + 1

for all f ∈ F , i ∈ S. (8)

4It is the Shapley value for the stand alone transferable utility game.
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4 Additive mechanisms and rationing methods

Additivity is propagated in the cost sharing literature as an accounting convention stating that decomposing
a cost sharing problem in several cost components should not alter the final solution to the problem. Instead
of focussing on several separate cost sharing problems, it is the property of additivity that allows for a single
operation of calculation of cost shares. The same interpretation can be adopted for general profit sharing
problems in those cases where it makes sense to calculate the shares in two problems with the same profile
of agent characteristics.

Additivity A mechanism µ satisfies ADD if

µ(q, f1 + f2) = µ(q, f1) + µ(q, f2)

for all input profiles q and f1, f2 ∈ F .

Suppose the profit function f is the additive compound of the functions f1 ∈ F+ and f2 ∈ F−. Then
f can be interpreted as the net revenues in the enterprize with profit function f1 and cost function f2. In
turn, additivity requires that costs and profits are treated symmetrically.

Examples of additive mechanisms are numerous, amongst them we find µAV, µσ, µSR and Φ. In this re-
spect I like to point at the excellent overview on additive cost sharing in Moulin (2002). In particular in this
work the power of the additivity as a mathematical tool becomes apparent.5

If marginal profits is constant relative to the agent characteristic, then it is reasonable if not compelling to
credit the individual agents the same fixed marginal returns per unit of the characteristic. Then in case the
agent characteristic is demand as in cost sharing models, or labor as in production models, then this would
prescribe the same price and return per unit for each of the agents. So, in linear cases where where no
externalities are present this amounts to the following property:

Constant Returns Ψ satisfies CR if Ψ(q, fϑ) = ϑq for all ϑ > 0.

All previously discussed solutions satisfy CR, except for A. In particular, the variety of mechanisms
in the class M(CR) is large, even if we would superimpose the additivity property. Nevertheless, within
the class M+ the set of all positive mechanisms with the properties ADD and CR is rather small in view
of the Moulin and Shenker (1994) representation theorem. They show the 1-1 correspondence between
rationing methods and additive cost sharing methods with CR property. Accordingly, each such cost sharing
mechanism distributes marginal costs at each relevant level in a fixed ratio among the agents, and the share
at each level is determined irrespective of the corresponding marginal costs. We will translate their result to
fit the present model.

A rationing problem for coalition S ⊂ N consists of a pair (q, t) ∈ RS
+×R+ such that q(S) ≥ t. These

are the most elementary problems in distributive justice and many types of problems can be modelled as

5Nevertheless, slowly a new branch develops in which non-additive methods are proposed and analyzed. See, e.g., Sprumont
(1998), Tijs and Koster (1998), Koster (2001), Hougaard and Petersen (2001). The pessimistic methods above are examples of
methods that are non-additive, and others are easily constructed by a composition µ ◦ ϕ of an additive mechanism µ together with
the non-additive transformation of the sharing problem ϕ : R = (q, f ) 7→ (q, f P

R).Koster (2002) defines the pessimistic serial cost
sharing mechanism that is a composite mapping with the serial cost sharing mechanism
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such; just to mention the literature on taxation problems (Young (1985)) and bankruptcy problems (Aumann
and Maschler (1985)).
A rationing method r for S associates to any rationing problem (q, t) a vector r(q, t) ∈ [0, q] such that
∑i∈S ri(q, t) = t. A rationing method is monotonic whenever t ≤ t′ implies r(q, t) ≤ r(q, t′) for all
t, t′, q ∈ RS

+. Then each such rationing method defines for all q ∈ RS
+ a monotonic (and continuous) path

t 7→ r(q, t) from 0 to q. A rationing method is called piecewise linear if the path t 7→ r(q, t) is piecewise
linear. Moulin and Shenker (1994) show the close relationship between rationing and cost sharing which
can be translated in the terminology of this paper:

Theorem 4.1 Moulin and Shenker (1994)
Let µ ∈ M+(POS, ADD, CR). Then there is for each S ⊆ N, q ∈ RS

+ a monotonic rationing method
r(q, ·) such that

µ(q, f ) =
∫ q(S)

0
f ′(t)dr(q, t) for all f ∈ F+. (9)

Theorem 4.1 states that a mechanism in M+(POS, ADD, CR) is fully characterized through its rationing
system, i.e., a family of rationing methods π :=

{
r(q, ·)

∣∣ q ∈ RS
+, S ⊆ N

}
, one for each input profile q.

The mechanism corresponding to such family π will be denoted µπ .

Remark In the above characterizations we can not leave out POS. Consider the mechanism µ that equals
µAV except for all profits sharing problems for the agents in N = {1, 2}. In these cases put{

µ1(q, f ) = 1
2 f (2q1), and

µ2(q, f ) = f (q1 + q2)− 1
2 f (2q1).

Then µ is additive, satisfies CR, but not POS. Moreover, µ is not representable by a family of rationing
methods, since µ assumes information about profits outside the interval [0, q(N)], as opposed to all mech-
anisms representable as (9).

The above characterization result is easily extended to profits sharing mechanisms on R.

Proposition 4.2 Each µ ∈ M+(ADD) uniquely extends to µ̄ ∈ M(ADD).

Theorem 4.3 µ ∈ M(POS, ADD, CR) if and only if µ = µπ for some rationing family π = {r(q, ·)
∣∣ q ∈

RS
+}.

Below we will focus on some refinements of Theorem 4.3. First of all, note that in our model, except
for the labeling of the agents it is only their individual input that may influence a solution. Then, if two
agents can not be distinguished for these characteristics then it is reasonable to demand that they should be
treated equally by the solution.

Equal Treatment Ψ ∈ S satisfies ET if for all x ∈ Ψ(q, f ) it holds that xi = xj whenever qi = qj.

ET is weaker than the anonymity property in Moulin and Shenker (1992). Together with the properties
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POS,ADD,CR, equal treatment implies that the rationing methods for agents with equal inputs are the
same.

Proposition 4.4 µ ∈ M(POS, ADD, CR, ET) if and only if

(i) µ is generated by a rationing family π, i.e., µ = µπ ,

(ii) for all q ∈ RS
+ with qi = qj for some i, j ∈ S, r(q, ·) ∈ π, it holds ri(q, ·) = rj(q, ·)

Proof. POS,ADD,CR implies the functional representation as in Theorem 4.3. Now suppose that there is
q ∈ RS

+ and i, j ∈ S with qi = qj but that ri(q, ·) = rj(q, ·) does not hold. Then by continuity there is an
interval U ⊂ [0, q (S)] such that ri(q, ·) > rj(q, ·) on U. Consider f ∈ F defined by

f (y) =
∫ y

0
I U (t) dt for all y ∈ R+.

Then

µi (q, f ) =
∫ q(S)

0
I U (t) dri(q, t) >

∫ d(S)

0
I U (t) drj(q, t) = µj (q, f ) ,

contradiction.

Profit Monotonicity Ψ ∈ S satisfies PM if for all R = (q, f ) ∈ R+ it holds for all x ∈ Ψ(q, f ) that
xi ≥ xj if qi ≥ qj.

Profit monotonicity assures that, apart from the interpretation of the agent characteristics, the larger the
characteristic is the larger the gains. The next property formulates the dual, that when there are only losses
from the project, the ones with the larger inputs suffer more.

Loss Monotonicity Ψ ∈ S satisfies LM if for all R = (q, f ) ∈ R− it holds for all x ∈ Ψ(q, f ) that
xi ≥ xj if qi ≤ qj.

Both PM and LM can be considered weak: for all occurrences of mixed externality the axioms are even
vacuous. And, moreover, still they do not affect flexibility in treating pure losses differently from profits in
the sense that for µ ∈ M(PM, LM) and the dual problems (d, f ) ∈ R+, (q,− f ) ∈ R− it need not hold
that µ(q, f ) = −µ(q,− f ). Nevertheless, together with ADD this degree of freedom is lost. The following
shows that the dispersion of the shares in case of losses is the same for profits.

Proposition 4.5 Let Y ∈ {PM, LM}. Then µ ∈ M(POS, ADD, CR, Y) if and only if

(i) µ is generated by a rationing family π, i.e., µ = µπ ,

(ii) for all q ∈ RS
+, i, j ∈ S, r(q, ·) ∈ π, qi ≥ qj ⇒ ri(q, ·) ≥ rj(q, ·)

The proofs are similar to that of Proposition 4.4 and we omitted them for this reason. Notice that Propo-
sition 4.5 implies that any mechanism µ ∈ M(POS, ADD, CR, Y) for Y ∈ {PM, LM} satisfies ET.
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The representation of mechanisms by rationing families sees to shares of the same sign in case f ∈ F+
or f ∈ F−. A somewhat different property, but still related, is the following:

Null Ψ ∈ S satisfies NULL if for all (q, f ) ∈ RS with f (q(S)) = 0 it holds Ψ(q, f ) = {0}.

Notice that NULL suggests to comprise all information in the profits function into a single point of
evaluation as in case of µAV. Then on top of the characterizing properties in Theorem 4.3, by discarding
all intermediate information about marginal revenues, it is strong enough to pin down the set of eligible
candidates to a singleton.

Theorem 4.6 M(POS, ADD, CR, NULL) = {µAV}.

Proof. Take µ ∈ M(POS, ADD, CR, NULL). Then according to Theorem 4.3 there is a rationing family
π = {r(q, ·)

∣∣ q ∈ RS
+, S ⊆ N} such that µ = µπ . Now suppose that there is S ⊆ N, q ∈ RS

+ \ {0}
such that not r(q, t) = tq/q(S) for all t. By continuity of t 7→ ri(q, t) there are i ∈ S and intervals U, V in
[0, q(S)] such that {

ri(q, t) < tqi/q(S) for all t ∈ U, and
ri(q, t) > tqi/q(S) for all t ∈ V.

In particular we may choose U, V so that 0 < λ(U) = 2λ(V). Define f ∈ F by

f (y) =
∫ y

0
(2 · I V(t)− I U(t)) dt for all y ∈ R+.

Then

µi(q, f ) =
∫ q(S)

0
f ′(t)d ri(q, t) = 2

∫
V

d ri(q, t)−
∫

U
d ri(q, t)

> 2λ(V) · qi/q(S)− λ(U) · qi/q(S) = 0.

But also f (q(S)) = 0 and thus, by NULL, µi(q, f ) = 0 which gives the desired contradiction.

The above theorems makes clear that additivity is strong as a characterizing property since the combi-
nation with other reasonably weak properties leaves no other choice than the mechanisms induced by some
rationing family. Nevertheless, below we will show that despite the fact that this class of mechanisms might
be perceived as small, the induced range of profits shares is as large as the bounds of the pessimistic core
prescribe. The following result depends on two lemmata that are put in the Appendix.

Theorem 4.7 For any R = (q, f ) ∈ RS it holds

CP(q, f ) = {µ(q, f )
∣∣ µ ∈ M(POS, ADD, CR)}.

5 Consistency

Most of the properties discussed earlier describe relations between shares of different instances of profit
sharing problems. For example, ADD links profits sharing problems with different profits functions and
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ET connects outcomes on the basis of input profiles. This section focusses on the remaining element of the
profits sharing problem, that is the set of agents. In the economic theory there has been enormous inter-
est in consistency of ideas, that allows us to use similar principles with varying populations of interacting
agents. The basic idea is that a fair solution should still be perceived so when viewed by any subgroup of
agents. Young (1985, p19) states that a solution should be stable such that ’no subgroup should want to
”re-contract”’. This kind of stability that is usually referred to as consistency is studied in various fields
of economics. Moreover in the more recent literature Friedman (1997) considers consistency properties
in heterogeneous cost sharing problems. Davis and Maschler (1965) and Hart and Mas-Colell (1989) in-
troduce the property to the field of cooperative games, whereas Sudhölter uses these ideas for solutions
on cooperative cost sharing games. Other examples are Young (1985b) on taxation problems and Moulin
(1987) on a model of surplus sharing. 6

For rationing problems ideas of consistency are intuitive. A rationing method r is called consistent if it
holds for all rationing problems (q, x) and j ∈ S that

rS\{j}(q, x) = r(qS\{j}, x− rj(q, x)).

Hence, consistency states that upon removing an agent from the cooperative S, and taking all the resources
that are allocated to this agent, renewed allocation of the remaining pieces within the reduced society does
not make a difference as long as r is used. As Moulin (2002) puts it

‘changing the status of an agent from ”active participant” to ”passive expense of resources” does not alter
the overall distribution; removing one agent and his share of resources is of no consequence to other agents.
Thus Consistency is a decomposition property with respect to changes in the set of relevant agents.’

A family of rationing methods is called consistent if each of its members is. Moulin (2002) asks for a
concept of consistency according to which there is a one-to-one relationship to consistent mechanisms and
an (partial) answer is given below.

Suppose that the group of agents N face a profits sharing problem (q, f ) ∈ RN and that the mechanism
µ is used to calculate the individual shares. One of the agents in N, say i, leaves the problem by taking
his share µi(q, f ). Suppose that now the remaining collective of agents N \ {i} may renegotiate about the
problem of sharing the leftovers. Basically there are two options, one is to stick to the old solution and the
other is to recalculate the shares according to µ. Then µ is called consistent if it leaves the vector of shares
unchanged. This means that agents should not worry about renegotiating since basically nothing will help
them to improve upon the status quo. But the crucial point here is that in order to be able to apply a solution
like µ again, first there has to be a clear understanding what is actually the new profits sharing problem.
This amounts to a translation of the original problem into a reduced problem (q̄, f̄ ) ∈ RN\{i} where the
pre-paid amount µi(q, f ) is taken into account. Although it seems fairly reasonable to use q̄ = qN\{i} as
the new profile of inputs, it is harder to get consensus about the new profits function. This is illustrated in
the cost sharing literature where several reductions are proposed. Examples of studies of consistent solution
concepts for cost sharing problems are Moulin and Shenker (1994), Kolpin (1994), and Sudhölter (1998).
These studies learn that the above approach toward consistency is too stringent as the type of reduction
almost seems to define the consistent mechanism. Although the models of profit sharing and rationing are
closely related via the above characterization results, there seems to be more than only a technical problem

6Thompson (1996) gives a general overview on the use of consistency in the economic theory, and cost sharing problems in
particular.
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of specifying what consistency means in either models. Whereas there is a natural and very intuitive mean-
ing in the rationing model, a clear understanding for the profit sharing model is absent.

In this paper I will suggest a way out of this problem as follows. As it is not clear which reduction
fits the practical situation best, the proposal is to include all problems that could possibly serve as a proper
description of a reduction. Then in general a solution will be called consistent if any sharing vector in
the original solution is still available for the remaining agents in the profits sharing problem with respect to
some reduction. Crucial again is what should count as an admissible reduction. I will highlight the approach
in this paper by an example.

Example
Consider a production facility jointly owned by three agents N = {1, 2, 3}. The agents characteristic is
the amount of labor in hours they offer as input and assume that the production technology is described by
the function p(y) = y2; that is, if aggregate labor input is y hours then the total of output generated is y2.
Suppose that the inputs of the agents is given by the profile q = (1, 2, 3) and that µAV is used as mechanism
to share the output. Then the resulting share vector is µAV(q, p) = (6, 12, 18). Suppose that only one agent
can be at work at a time so that they work in shifts. If in the following an interval [v, w] indicates a shift
from time v to w then consider the following schedule, si denotes the time that agent i is active:

s1 = [0, 1
2 ) ∪ [5 1

2 , 6], s2 = [2, 4), s3 = [ 1
2 , 2) ∪ [4, 5 1

2 ).

This means that first agent 1 works for 30 minutes, then agent 3 for 90 minutes, etcetera. Check that
according to this scheme the average profits reflect exactly the marginal productivity of the agents. Now
suppose it is agent 2 that leaves the problem. One possible reduction is the one where the full information
about marginal production at hours where the remaining agents 1 and 3 were active is kept intact. In other
words, if the time that agent 2 worked are ”cut out” then a possible reduced problem is (qN\{2}, h∗) where
h∗ ∈ F is given by

h∗(y) =
{

h(y) if y ≤ 2,
h(y + 2)− p(4) if y > 2.

Similarly, if agent 1 would leave then this would result in the reduction (qN\{1}, h∗∗) with

h∗∗(y) =
{

h(y + 1
2 )− h( 1

2 ) if 0 ≤ y ≤ 5,
h(y + 1)− h(6) + h(5 1

2 )− h( 1
2 ) if y > 5.

The above schemes are not at all unique in the sense that other schedules exist that correspond to the
marginal productivity of the agents as well. Just consider the following schedule:

s∗1 = [2 1
2 , 3 1

2 ), s∗2 = [0, 1) ∪ [5, 6], s∗3 = [1, 2 1
2 ) ∪ [3 1

2 , 6).

Then if we want to cancel out the levels at which the leaving agent was at work then this scheme would
result in a different reduction than (q∗, h∗) namely the reduction by agent 2 could as well be defined by
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(qN\{2}, h̄) with

h̄(y) =
{

h(y + 1)− 1 if 0 ≤ y ≤ 4,
h(y + 2)− 12 if y > 4,

As in the above example a plausible reduction will address different levels of input to the leaving agent,
such that both the aggregate of these levels equals the input characteristic and the corresponding marginal
profits the share of the agent. /

For any bounded set U ∈ B ([0, ∞)) and y ∈ R+ define Uy ⊂ [0, ∞) as the smallest interval containing
[0, y] such that λ

(
Uy \U

)
= y. Then the reduced profits function with respect to U, fU , is defined by

fU (y) =
∫

Uy
f ′ (t) I R+\U (t) dt, for all y ∈ R+.

So fU ∈ F takes for each input level y the total of marginal returns of the first y levels outside U. For any
R = (q, f ) ∈ RS and i ∈ S define Q(Ψ, R, i) as the set of all T ∈ B ([0, q (S)]) such that

(i) λ (T) = qi,
(ii)

∫
T f ′ (s) ds ∈ Ψi (q, f ) .

Then T ∈ Q(Ψ, R, i) can be interpreted as a set of input levels that simultaneously represent agent i’s
individual input (condition (i)) and his share of profits (condition (ii)).

A solution Ψ is consistent if each restriction of a share vector in the original solution is available for some
reduced profits sharing problem. Then if this holds for all reductions, Ψ is called strongly consistent.
Formally:

Consistency (CO)
For all R = (q, f ) ∈ RS, i ∈ S, and y ∈ Ψ(R) there exists U ∈ Q(Ψ, R, i) such that yS\{i} ∈
Ψ(qS\{i}, fU).

Strong Consistency (SCO)
For all R = (q, f ) ∈ RS, i ∈ S, y ∈ Ψ(R), it holds Q(Ψ, R, i) 6= ∅, and U ∈ Q(Ψ, R, i) =⇒ yS\{i} ∈
Ψ(qS\{i}, fU).

Below we focus on a version of consistency that is weaker than SCO but stronger than CO. It requires
consistency in general and consistency with respect to any reduction by intervals:

Interval Consistency (ICO)
Ψ ∈ S(CO) and for all R = (q, f ) ∈ RS, i ∈ S, y ∈ Ψ(R) it holds that I = [t, t + qi] ∈ Q(Ψ, R, i)
implie that yS\{i} ∈ Ψ(qS\{i}, f I). Note that S(SCO) ⊂ S(ICO) ⊂ S(CO).

So the above notions of consistency require that any eligible share vector in the solution should be feasible
by a proper choice of the reduction. Consistency requires at least one suitable reduction whereas strong
consistency requires invariance of the solution with respect to any reduction that fits. Analogously, the
notion of (strong) interval consistency restrict the attention to specific reductions, i.e., those induced by
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intervals.
The gap between these notions of consistency and others found in the cost sharing literature is eminent.

The approaches towards consistency as in Moulin and Shenker (1994), Kolpin (1994), and Sudhölter (1998)
and Kolpin (1994) are all alike in the sense that the reduction consists of the reduced demand profile together
with a truncated cost function. For instance, consider consistency as in Moulin and Shenker (1994), where
for (q, c) ∈ RS

− and i ∈ S and cost sharing mechanisms Ψ the reduced cost function is determined by

f̄ (y) = max {c (y)−Ψi (q, c) , 0} learns that7
(

qS\{i}, c̄
)

would only be a reduction in the above sense

if Ψi (q, c) = c (qi) . The problem with the approach in Sudhölter (1998) is that the Davis-Maschler and
Hart-Mas-Collell reduced games do not correspond to reduced profits sharing problems anymore since the
condition f (0) = 0 is in general not satisfied. However, the new proposal requires a more subtle approach
in that the size of the truncation should counterbalance the share of the agent that goes away. The next
example shows that the proposed consistency is rather weak and it leaves space for most of the discussed
solution concepts.

Example 5.1 The marginal mechanisms µσ are consistent but not strongly consistent. Consider R =
(q, f ) ∈ RS. First observe that clearly Ti :=

[
qσ

σ−1(i)−1, qσ
σ−1(i)

]
∈ Q (µσ, R, i) for all i ∈ S. Then(

qS\{i}, fTi

)
is a reduced profits sharing problem with respect to i. Moreover, according to µσ the same

ordering of the remaining agents is used to calculate the individual shares in the reduced profits sharing
problem. Then the immediate consequence is that nothing changes for the agents k with σ (k) < σ (i) .
Now consider an agent k with σ (k) > σ (i) . Then using the notation qt

j := ∑j∈S\{i}:σ(j)≤t qj we get

µσ
k

(
qS\{i}, fTi

)
= fTi

(
qσ(k)

j

)
− fTi

(
qσ(k)−1

j

)
=

= f
(

qi + qσ(k)
j

)
− f

(
qi + qσ(k)−1

j

)
=

= f

 ∑
j∈S:σ(j)≤σ(k)

qj

− f

 ∑
j∈S:σ(j)<σ(k)

qj

 = xσ
k (q, f ) .

This means that µσ is consistent (also in the sense of Moulin and Shenker (1994)). Nevertheless, µσ is not
strongly consistent. To see this consider the problem R = (q, f ) ∈ R{1,2,3} with f (y) =

∫
[0,y] I[0,1]∪[2,3] (t) dt

and q = (1, 1, 1) . Suppose that σ (i) = i for all i ∈ {1, 2, 3} . Then µσ (q, f ) = (1, 0, 1) . Then

[2, 3] ∈ Q (µσ, R, 1), but xσ
2

(
q{2,3}, f[2,3]

)
= 1 6= µσ

2 (q, f ) . In a similar way one may prove that the
pessimistic marginal sharing mechanisms µσ

p are consistent but not strongly so. /

Theorem 5.2 If µ = µπ is consistent, then π is a consistent rationing family.

7Moulin and Shenker (1994) also discuss a restricted type of consistency, namely consistency restricted to only the smallest agents.
It is used as a characterizing property for the serial cost sharing mechanism (Moulin and Shenker (1992)). Kolpin (1994) generalizes
this idea through baseline consistency to the heterogeneous goods cost sharing model.
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Proof. Define Γt : R → R+ by Γt(y) = min{y, t} for all y ∈ R+. Then for all x ∈ [0, q(S)]

µ(q, Γx) =
∫ q(S)

0
Γ′x(t)dr(q, t) = r(q, x).

Moreover, for each j ∈ S we have for R = (q, Γx), [x − µj(q, Γx), x] = [x − rj(q, x), x] ∈ Q(µ, R, j).
But then it holds by CO for all x ∈ [0, q(S)] that

rS\{j}(q, x) = µS\{j}(q, Γx) = µ(qS\{j}, Γx−rj(q,x)) = r(qS\{j}, x− rj(q, x)).

The theory of distributive justice is often concerned with stable allocation schemes that are robust
against small changes in the parameters that define the allocation problem at hand. In the rationing the-
ory this stability is formulated through continuity. A rationing method r is called continuous if it is jointly
continuous in both arguments, i.e., (q, t) 7→ r(q, t) is continuous for all rationing problems (q, t).
Similarly, a mechanism will be called continuous if small changes in both the profit function and agent
characteristics do not cause huge relative differences in the corresponding shares. More specifically:

CONT Mechanism µ is continuous if for each S ⊆ N the mapping RS
+×R+ defined by (q, t) 7→ µ(q, Γt)

is continuous.

Remark Notice that the notion can be considered weak for the reason that continuity encompasses small
changes in base functions Γt only. In order to avoid the hybrid character of CONT one may consider the
replacement by the following properties that sees to a clear-cut distinction between continuity aspects of
profits and agent characteristics:
Profit-continuity For each S ⊆ N and q ∈ RS

+ the mapping R+ → RS
+ defined by t 7→ µ(q, Γt) is contin-

uous.
Input-continuity For each S ⊆ N the mapping RS

+ → RS
+ defined by q 7→ µ(q, Γt) is continuous on

{q
∣∣ q(S) ≤ t}.

Then a mechanism that is both profit- as well as input-continuous is continuous. /

Young (1987) defines the rich class of parametric rationing methods that contains numerous classic ra-
tioning methods like the proportional method and the uniform gains and uniform losses method.

Let f : D → R be a real-valued function where D ⊂ R2 is a set in R+ × [0, Λ] for some Λ ∈ R+ ∪ {∞}.
It is assumed that for any (z, λ) ∈ D it holds that f (z, 0) = 0, f (z, Λ) = z and λ 7→ f (z, λ) is non-
decreasing and continuous. Then for such an f there is a unique rationing method r such that

ri(x, t) = f (xi, λ) where λ is a solution of ∑
i∈S

f (xi, λ) = t.

This r is then called the parametric rationing method for f . It is easily seen that such a method is
consistent.8 Young (1987) characterizes the parametric methods as the methods that satisfy equal treatment,
consistency and continuity, a result that is useful in the present framework of mechanisms as well.

8The class of parametric rationing methods is rich and contains for example the proportional rationing method, uniform gains and
uniform losses methods. See for further references Moulin (2002).
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Lemma 5.3 If µ ∈ M(CR, ADD, POS) is continuous then µ = µπ and π is a family of continuous
rationing methods.

Proof. Consider µ = µπ ∈ M. Then without loss of generality it may be assumed that π consists of the
rationing methods defined by

r(q, t) := µ(q, Γt).

Then clearly continuity of µ implies continuity of the method r.

Moreover, he proves the result that this class consists precisely of the methods that satisfy equal treat-
ment of equals, continuity and consistency. This will be of use to characterize mechanisms. First I will
introduce parametric rationing methods formally.

Theorem 5.4 Any µ ∈ M(POS, ADD, CR, CO, ET, CONT) is represented by a parametric rationing
family.

Proof. By Proposition 4.4 it follows that the rationing family satisfies equal treatment. Then by Theorem 1
in Young (1987) and Lemma 5.3 the result obtains.

Proving results the other way around is more complex. Till this very moment I am not sure whether
each consistent rationing method induces a consistent profit sharing mechanism. Nevertheless, below I
will prove that consistency is transferred smoothly between the models of rationing and profit sharing as far
as the incremental mechanisms and piecewise linear rationing methods are concerned.

All of the earlier examples of additive mechanisms have in common that a finite number of intermedi-
ate levels of input determines the final solution, as the profits increments of two consecutive levels is split
amongst the agents in a fixed ratio. Recall the random order values in this respect, by which shares are
determined on basis of the intermediate input levels of coalitional aggregate inputs. Here I will discuss
a more general class of mechanisms, each of one splits increments related to other intermediate levels of
input as well.

A mechanism µ is called an incremental mechanism if for each q ∈ RS
+ there is an integer k ∈ N,

vectors α1, α2, . . . , αk ∈ ∆(S) and x ∈ Rk+1
+ such that

µ(q, f ) =
k

∑
`=1

α` ( f (x`)− f (x`−1)) for all f ∈ F , (10)

and where 0 = x0 ≤ x1 ≤ . . . ≤ xk = q(S). Then each such mechanism µ satisfies CR if only

k

∑
`=1

α` (x` − x`−1) = q.

In that case µ ∈ M+(POS, ADD, CR) and the corresponding rationing family π =
{

r(q, ·)
∣∣ q ∈ RS

+
}

is determined by the piecewise linear mappings t 7→ r(q, t) such that

∂

∂ t
r(q, t) = α` for all t ∈ (x`−1, x`) (11)
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in case x` 6= x`−1. The set of all incremental mechanisms is denoted MI . Notice that MI ⊂ M+. Then
MI forms a generalization of the class of incremental methods and random order mechanisms as in Weber
(1988).

Examples

• The average mechanism is an incremental mechanism with

k = 1, xk = q(S), αk =
q

q(S)
whenever q(S) > 0.

• For q ∈ RS
+ there is a permutation σ ∈ Π(S) that such that qσ(i) ≤ qσ(j) ⇔ σ(i) ≤ σ(j) for all

i, j ∈ S. Then take k = |S| and

x` = ∑
p≤σ−1(`)−1

qσ(p) + (|S| − ` + 1)qσ(`) and α`i =

 1/(|S| − ` + 1) if σ(i) ≥ `,

0 else.

The corresponding incremental mechanism is the serial mechanism.

• Each marginal mechanism µσ is incremental with x`, α` such that

x` = ∑
p≤σ−1(`)

qσ(p) and α`i = 1 ⇐⇒ σ(i) = `.

• Shapley-Shubik mechanism: the x`’s are generated by the aggregate investments {q(U)
∣∣U ⊆ S}

and

α`i = 1/|S|! · #

σ ∈ Π(S)
∣∣ [x`−1, x`] ⊆

 ∑
j;σ−1(j)<i

qj ∑
j;σ−1(j)≤i

qj

 .

• An example of a mechanisms that is not incremental is µσ
p.

The next result is that there is a one–to–one correspondence between the consistent incremental mech-
anisms and the consistent piecewise linear rationing methods.

Theorem 5.5 µ ∈ MI(POS, ADD, CR) is consistent if and only if µ = µπ and π is a consistent family
of piecewise linear rationing methods.

One may easily verify that the rationing methods corresponding to the earlier mentioned incremental
mechanisms are all consistent. Then an implication of Theorem 5.5 is that:

Corollary 5.6 The mechanisms µAV, µSR, µσ, Φ are all consistent.

Moulin (2000) introduces the notion of a reducible rationing method. Basically, a rationing method is
reducible if there is an ordered partition of the set of agents and for each element in the partition a (differ-
ent) rationing method such that the final allocation can be determined in two steps: (1) for each element in
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the induced ordered partitioning of a coalition S it is prescribed what units are available for this group of
agents, (2) these units are shared among the corresponding agents according to the rationing method asso-
ciated with this element in the partition. This two step procedure will be used for the profit sharing model
as well. A mechanism will be called reducible if there is a non-trivial ordered partition N of N, such that
profit shares may be calculated by different mechanisms to certain profit sharing problems induced by the
ordered partition. Formally this procedure is as follows.

Consider an ordered partition N = (N(1), N(2), . . . , N(κ)) of N, where κ is an integer smaller than
|N|. Given N , R = (q, f ) ∈ RS define for k = 1, . . . , κ the profit function f k

R ∈ F by

f k
R(y) = f

(
∑

`≤k−1
q(N(`) ∩ S) + y

)
− f

(
∑

`≤k−1
q(N(`) ∩ S)

)

for all y ∈ R+.
A mechanism µ ∈ M is reducible if there is a non-trivial ordered partition N = (N(1), N(2), . . . , N(κ))
of N together with mechanisms µ1, . . . , µκ ∈ M such that for each (q, f ) ∈ RS, i ∈ S ∩ N(k) it holds

µi(q, f ) = µk
i (qS∩N(k), f k

R).

Then µ is also called the composition of the mechanisms µ1, . . . , µκ . So, as an analogue to the rationing
model, here the ordered partition is used to address the different profit levels to the elements in the induced
partition. The corresponding profit sharing problem consists of the relevant agent characteristics together
with a profit function that carries all the information of the original problem of the relevant profit levels.

Theorem 5.7 µ ∈ MI(POS, ADD, CR) is interval consistent if and only if it is a composition of the
average mechanism and marginal mechanisms.

Corollary 5.8 There is exactly one strongly consistent mechanism in MI(POS, ADD, CR) and that is
µAV.

Proof. First we will show that actually µAV is strongly consistent. Consider a reduction of the problem
R = (q, f ) ∈ RS with respect to agent i ∈ S, say (qS\{i}, fT), where T ∈ Q (µAV, R, i) . Then

µAV(qS\{i}, fT) =
qS\{i}

q(S\{i}) fT(q(S\{i})) (12)

=
qS\{i}

q(S\{i})

{
f (q(S))− qi

q(S)
f (q(S))

}
=

qS\{i}
q(S\{i})

q(S\{i})
q(S)

f (q(S)) = µAV
S\{i}(q, f ). (13)

In order to show the uniqueness it is enough to point out that any reducible mechanism is not strongly
consistent. Then Theorem 5.7 shows that only µAV remains. This looks like exploiting the ideas of Example
5.1.
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Remark In fact one may prove that the unique strongly consistent mechanism in M(POS, ADD, CR) is
µAV. A proof is available upon request.

Corollary 5.9 Suppose Y ∈ {ET, LM, PM}. The unique interval consistent incremental mechanism in
M(POS, ADD, CR, Y) is µAV.

These are applications from the properties of the rationing methods.
Note that the above proofs are also sound within the class of cost sharing problems, and may serve to iden-
tify the different cost sharing mechanisms.

Below there is a first characterization of the pessimistic core. It is the maximal consistent solution in the
pessimistic imputation set.

Theorem 5.10 If Ψ ∈ S(CO) and Ψ(R) ⊆ I P(R) for all R ∈ R, then Ψ(R) ⊆ CP(R) for all R ∈ R.

The below result shows that in a way the consistent incremental mechanisms are dense in the set of all
mechanisms represented by a family of rationing methods.

Lemma 5.11 Suppose that for a specific q̄ ∈ RU
+, U ⊆ N there is a rationing method r̄ such that t 7→

r̄(q̄, t) is monotonic and piecewise linear. Then there is a rationing family π = {r(q, ·)
∣∣ q ∈ RS

+, S ⊆
N} such that (i) r(q̄, ·) = r̄(q̄, ·) and (ii) µπ ∈ MI(POS, ADD, CR, CO).

Proof. There are numbers 0 = x̄0 < x̄1 < . . . < x̄k−1 < x̄k = q̄(S) and ᾱ1, . . . , ᾱk ∈ ∆(U) such that

∂

∂ t
r̄(q̄, t) = ᾱ` for all t ∈ (x̄`−1, x̄`).

The definition of r is completed as follows. Take S ⊆ N and q ∈ RS
+. Define U∗ = {j ∈ U∩ S

∣∣ qj = q̄j}.
Determine x1, x2, . . . , x|U∗ | by putting x0 = 0 and for ` = 1, 2, . . . , k

x` = x`−1 + (1− ᾱ`(U \U∗))(x̃` − x̃`−1).

Write S \U∗ = {i1, i2, . . . , i|S\U∗ |} such that ip < ip+1 for all p = 1, 2, . . . , |S \U∗|. Moreover define
xk+` = xk+`−1 + qi` for all ` = 1, 2, . . . , |S \U∗|. In addition define α1, α2, . . . , αk ∈ ∆(S) by

α`j =


ᾱ`j

ᾱ`(U∗)
if j ∈ U∗,

0 if j ∈ S \U∗,

Moreover αk+1, αk+1, . . . , αk+|S\U∗ | are vectors in ∆(S) such that αk+` has all zeroes except for coordinate
corresponding to agent i`, which takes value 1. Then, finally, define the monotonic and piecewise linear
rationing method r(q, ·) by

∂

∂ t
r(q, t) = α` for ` = 1, 2, . . . , k + |S \U∗|.
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In this way we obtain a family of rationing methods π = {r(q, ·)
∣∣ q ∈ RS

+, S ⊆ N} that specifies a
consistent incremental mechanism µπ .

Theorem 5.12 For each µ ∈ M(POS, ADD, CR) and q ∈ RS
+ there is a sequence {µk}k=1,2,... of

mechanisms in MI(CO) such that µ(q, f ) = limk→∞ µk(q, f ) for all f ∈ F .

Proof. Let µπ̄ ∈ M(POS, ADD, CR), with π̄ = {r̄(q, ·)
∣∣ q ∈ RS

+, S ⊆ N} the corresponding rationing
family. Take q̄ ∈ RS

+. The mapping t 7→ r̄(q̄, t) is continuous. For each n ∈ N and k = 1, 2, . . . , 2n define
a number tn

k = k2−n q̄(S). Define the piecewise linear rationing method r̄n(q̄, ·) by putting

∂

∂ t
r̄n(q̄, t) =

r̄(q̄, tn
k )− r̄(q̄, tn

k−1)
tn
k − tn

k−1
for t ∈

(
tn
k−1, tn

k
)

,

for each k = 1, 2, . . . , 2n and with tn
0 = 0. Use Lemma 5.11 to construct a rationing family π(n) =

{rn(q, ·)
∣∣ q ∈ RS

+, S ⊆ N} such that rn(q̄, ·) = r̄n(q̄, ·) and µn := µπ(n) is consistent. Then since
rn(q, ·) → r(q, ·) uniformly we have µn(q, f ) → µ(q, f ) for n → ∞, for each f ∈ F .

6 From solutions to mechanisms by super-additivity

Below we will start with set solutions and state a corresponding generalized additivity property. It states
that a contingent planner should profit from combining return sharing problems in the sense that the set of
available options does not shrink by doing so. Compare this with additivity, that requires invariance with
respect to such an operation. But first we need some extra notation. Given S ⊆ N, X, Y ⊂ RS we define
the direct sum of X and Y as the set X ⊕ Y := {z

∣∣ ∃x ∈ X, y ∈ Y, z = x + y} and the scalar product
αX :=

{
αx
∣∣ x ∈ X

}
.

Super-additivity A solution Ψ is super-additive (SADD) if it holds that

Ψ(q, f1)⊕Ψ(q, f2) ⊆ Ψ(q, f1 + f2),

for all f1, f2 ∈ F , q ∈ RS
+, S ⊆ N.

Super-additivity states that combining several sharing problems into one does not limit the eligible set of
shares as a solution. Of course, the class S(SADD) contains the set of all additive mechanismsM(ADD).

Zero property A solution Ψ satisfies Z if Ψ(q, fz) = {0} for all q ∈ RS
+, S ⊆ N.

Proposition 6.1 S(NE, SADD, Z) = M(ADD).

Proof. First we will show that M(ADD) ⊆ S(NE, SADD, Z). Take µ ∈ M(ADD). Then for all q

µ(q, fz) = µ(q, fz) + µ( fz) = 2µ( fz),

hence µ(q, fz) = 0. Take Ψ ∈ S(NE, SADD, Z). By SADD and Z we have for each (d, f ) ∈ R

Ψ(q, f )⊕Ψ(q,− f ) ⊆ Ψ(q, f + (− f )) = Ψ(q, fz) = {0}.
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By NE both Ψ(q, f ) and Ψ(q,− f ) have at least one element. Hence it can not be the case that one of these
sets has more than one element since that would mean that Ψ(q, f ) ⊕ Ψ(q,− f ) contains more than one
element. Then Ψ(q, f ) = {x}, Ψ(q,− f ) = {y} implies x + y = 0 and Ψ(q, f ) = −Ψ(q,− f ).

Boundedness A solution Ψ satisfies B if for all for all f ∈ F it holds that Ψ(q, f ) is bounded in RS

for all investment profiles q ∈ RS
+. To be precise, for each (q, f ) ∈ RS there exists a γ > 0 such that

‖Ψ(q, f )‖ < γ.

When a solution is unbounded, then there is at least one agent that is extremely exploited by another.
Hence B is regarded a weak property, stating that finite differences in investment do not lead to arbitrary
large differences in the shares of profit. It can be interpreted as a very weak incentive property for investing.
Voluntary cooperation is more likely to occur if there are upper bounds on cost shares as well as lower
bounds on return shares.

The properties NE, SADD, and Z are logically independent: C satisfies SADD and Z but not NE, CP

satisfies NE, Z, but not SADD, whereas A satisfies both NE and SADD but not Z.

Proposition 6.2 S(NE, SADD, B) = M(ADD).

Proof. It is sufficient to show that S(NE, SADD, B) ⊆ S(NE, SADD, Z). Suppose there exists

Ψ ∈ S(NE, SADD, B) \ S(NE, SADD, Z).

Then there is q ∈ RS
+ and x ∈ RS \ {0} such that x ∈ Ψ(q, fz). Then by induction and SADD it follows

that {2kx}k∈N, contradicting B.

Logical independence

• C satisfies SADD and B. It fails to be non-empty for some returns sharing problems. To see this,
just consider any non-zero investment profile and a concave returns function. Then even the set of
imputations is empty.

• CPsatisfies B and NE, but does not satisfy SADD. Since for q = (1, 2) and f1(y) = min{y, 1} en
f2(y) = max{y− 1, 0} we have

CP(q, f1) = {x ∈ R2
∣∣ x1 ≤ 1, x2 ≤ 1, x1 + x2 = 1}

CP(q, f2) = {x ∈ R2
∣∣ x1 ≤ 1, x2 ≤ 2, x1 + x2 = 2}

In particular (1, 0) ∈ CP(q, f1) and (1, 1) ∈ CP(q, f2). Then CP cannot be sub-additive since
CP(q, f1 + f2) = {q} and (1, 0) + (1, 1) 6= q.

• The set of all share vectors A(d, f ) =
{

x ∈ RS
∣∣ x(S) = f (d(S))

}
for (d, f ) ∈ RS defines a

solution that satisfies the properties SADD and NE, except B.
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A Appendix

Lemma A.1 Let R = (q, f ) ∈ RS and take y ∈ CP(R). Then for each i ∈ S there is a ∈ [0, q(S \ {i})]
such that yi = f P

R (a + qi)− f P
R (a) .

Proof. Let i ∈ S and define g : [0, ∞) → R by g (t) = f P
R (t + qi)− f P

R (t) . Then g (0) = f P
R (qi) ≤ yi

and g (q (S\ {i})) = f P
R (q (S))− f P

R (q (S\ {i})) ≥ yi. The latter inequality follows from the fact that
y ∈ CP (q, f ) since f P

R (q (S)) = y (S) and f P
R (q (S\ {i})) ≤ y (S\ {i}) . Recall that f P

R is convex and
thus continuous. Then by continuity of g there exists a such that g (a) = yi.

Lemma A.2 Let R = (q, f ) ∈ RS. For each x ∈ [0, q(S)] there is Tx ∈ B([0, q(S)]) such that
f P
R(x) =

∫
Tx

f ′(t)dt and λ(Tx) = x. The sets can be taken such that x ≤ y =⇒ Tx ⊆ Ty.

Proof. Take x ∈ [0, q(S)]. For z ∈ R+ we define Dz :=
{

t ∈ [0, q(S)]
∣∣ f ′(t) ≥ z

}
. Then let z(x) :=

sup
{

z ∈ R+
∣∣ λ(Dz) ≥ x

}
. We distinguish two cases, λ(Dz) = x and λ(Dz(x)) > x. We will show

that the choice of Tx := Dz(x) serves our goal. To see this, just take an arbitrary T ∈ B([0, q(S)]) with
λ(T) = x, T 6= Tx. Then in particular for t ∈ T \ Tx it holds that f ′(t) < z(x) and therefore∫

T\Tx
f ′(t)dt ≤ z(x) · λ(Tx \ T) ≤

∫
Tx\T

f ′(t)dt.

As a consequence ∫
Tx\T

f ′(t)dt =
∫

T∩Tx
f ′(t)dt +

∫
T\Tx

f ′(t)dt

≤
∫

T∩Tx
f ′(t)dt +

∫
Tx\T

f ′(t)dt

=
∫

Tx
f ′(t)dt.
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So f P
R(x) = sup

{∫
T f ′(t)dt

∣∣ λ(T) = x
}

=
∫

Tx
f ′(t)dt. Now for the second case assume that λ(Dz(x)) >

x. This means that
λ({t ∈ [0, q(S)]

∣∣ f ′(t) = z(x)}) > λ(Dz(x))− x.

Determine t′ ∈ [0, q(S)] with

λ([0, t′] ∩
{

t ∈ [0, q(S)]
∣∣ f ′(t) = z(x)

}
) = λ(Dz(x))− x.

Now take Tx := Dz(x) \ ([0, t′] ∩ {t ∈ [0, q(S)]
∣∣ f ′(t) = z(x)}). Then λ(Tx) = x and the rest is proved

analogously to the first case. Besides, it should be clear from the presented construction that Tx ⊆ Ty
whenever x ≤ y.

Lemma A.3
Let f : [0, y] → R be increasing and convex such that f (0) = 0. Then for any α ∈ [0, 1] there is an
interval I = [t, t + αy] ⊆ [0, y] such that

α f (y) = f (t + αy)− f (t). (14)

Proof. Define g : [0, (1− α)y] → R+ by g(t) = f (t + αy)− f (t). Convexity of f implies

g(0) = f (αy) ≤ α f (y) = f (y)− (1− αy) f (y) ≤ f (y)− f ((1− α)y) = g((1− α)y).

Hence by continuity of g there is t ∈ [0, (1− α)y] such that g(t) = α f (y).

Lemma A.4 For any µ ∈ S(ADD, POS, CR), Q(µ, R, i) 6= ∅ for all R ∈ R.

Proof. Take R = (q, f ) ∈ RS, i ∈ S. By Theorem 4.7 and Lemma A.1 there is an interval T = [a, a + qi]
such that

∫
T f ′(t)dt = f P

R(a + qi)− f P
R(a). Moreover we may choose sets U, V ∈ B([0, q(S)]), U ⊆ V

such that
∫

U f ′(t)dt = f P
R(a) and

∫
V f ′(t)dt = f P

R(a + qi). Then V \U ∈ Q(µ, R, i).

Proof of Proposition 4.2
Let µ ∈ M+(ADD). If there is an extension of µ to R then it must be µ̄ ∈ M defined by µ̄(q, f ) =
µ(q, f +)− µ(q, f−) for all (q, f ) ∈ R. We will show that µ̄ ∈ M(ADD). Take any f1, f2 ∈ F+. Then
we have f +

1 + f +
2 − ( f1 + f2)+ ∈ F+ and ( f1 + f2)− − f−1 − f−2 ∈ F+ and

µ̄ (q, f1) + µ̄ (q, f2)− µ̄ (q, f1 + f2) =
µ
(
q, f +

1
)
− µ

(
q, f−1

)
+ µ

(
q, f +

2
)
− µ

(
q, f−2

)
− µ

(
q, ( f1 + f2)

+
)

+ µ
(

q, ( f1 + f2)
−
)

=

µ
(
q, f +

1 + f +
2
)
− µ

(
q, ( f1 + f2)

+
)

+ µ
(

q, ( f1 + f2)
−
)
− µ

(
q, f−1 + f−2

)
=

µ
(

q, f +
1 + f +

2 − ( f1 + f2)
+
)

+ µ
(

q, ( f1 + f2)
− − f−1 − f−2

)
=

µ
(

q,
(

f +
1 + f +

2 − ( f1 + f2)
+
)

+
(
( f1 + f2)

− − f−1 − f−2
))

=
µ (q, f1 + f2 − ( f1 + f2)) = 0.

This proves ADD.
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Proof of Theorem 4.3
Take µ ∈ M(POS, ADD, CR). Then in particular µ ∈ M+(POS, ADD, CR). By Theorem 4.1 there is
a rationing family π for µ. Then by Proposition 4.2 there is a unique extension µ̄ of µ to M(ADD) and

µ̄ (q, f ) = µ
(
q, f +)− µ

(
q, f−

)
=
∫ q(S)

0

(
f +)′ (t) dr(q, t)−

∫ q(S)

0

(
f−
)′ (t) dr(q, t)

=
∫ q(S)

0

(
f + − f−

)′ (t) dr(q, t) =
∫ q(S)

0
f ′ (t) dr(q, t).

Moreover µ = µ̄ and we are there. The other way around is easy.

Proof of Theorem 4.7.
The proof of the inclusion ”⊇” is easy and essentially done in Tijs and Koster (1998). We will now prove
”⊆”. Basically the argument is to choose a partition of the interval [0, q (S)] such that each member in this
partition is associated with a particular agent such that the corresponding marginal profits equal the share
according to y ∈ CP (q, f ) . Then this partition is used to define a rationing method r(q, ·). Then any set
of rationing methods for other input profiles completes the definition of the necessary rationing family π.
At this point we may assume without loss of generality that S = N and that we made a choice for the
rationing methods r(q′, ·) for all q′ 6= q. Then our objective is to find r(q, ·) such that µπ (R) = y. Let
T1 = [a1, a1 + q1] be an interval as in Lemma A.1 for agent 1 and let f1 = f P

R. Define a new profits sharing
problem R2 = (q2, f2) by q2 := qN\{1} and

f2 (y) =
{

f1 (y) if y ≤ a1,
f1 (a1) + f1 (y + q1)− f (a1 + q1) if y > a1.

Notice that f2 is convex and that for this reason f P
R2

= f2. Application of Lemma A.1 to R2 and agent
2 gives us a set T2 = [a2, a2 + q2] such that f2 (a2 + q2) − f2 (a2) = y2. Then we proceed as follows.

Having defined R2, R3, . . . , Ri and intervals T1, T2, . . . , Ti, Tk = [ak, ak + qk] ⊆
[
0, ∑j≥kqj

]
, we define

Ri+1 by
(

qN\{1,2,...,i}, fi+1

)
where fi+1 ∈ F is given by

fi+1 (y) =
{

fi (y) if 0 ≤ y ≤ ai,
fi (ai) + fi (y + qi)− fi (ai + qi) if y > ai.

Notice that fi+1 is convex on
[
0, ∑j≥i+1qj

]
such that f P

Ri+1
= fi+1. Then by application of Lemma A.1

there is a ai+1 ∈
[
0, ∑j≥i+2qj

]
with the property that fi+1 (ai+1 + qi+1) − fi+1 (ai+1) = yi+1. Then

define Ti+1 = [ai+1, ai+1 + qi+1] . Define for each i ∈ N a function gi : [0, ∞) → R+ by

gi (y) =
{

y if y ≤ ai,
y + qi if y > ai.

In addition define U1 := T1 and for i ∈ N\ {1} let Ui ⊆ [0, q (N)] be defined by Ui := (g2 ◦ g3 ◦ . . . ◦ gi) (Ti) .
Then these sets U1, U2, . . . , Un have the following properties{

λ(Ui ∩Uj) = 0 if i 6= j, and
λ (Ui) = λ (Ti) = qi for all i ∈ N.
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Assume without loss of generality that {Ui}i∈N constitutes a partition of [0, q(S)]. Now define the rationing
method r(q, ·) by

rk(q, t) =
∫ t

0
I Uk (s)ds for all t ∈ [0, q(S)], k ∈ N.

Then

yk =
∫

Tk

f ′k (t) dt =
∫

gk(Tk)
f ′k−1 (t) dt = . . . =

∫
(g2◦g3◦...◦gk)(Tk)

f ′1 (t) dt

=
∫

Uk

( f P
R)′ (t) dt =

∫ q(S)

0
I Uk (t) ( f P

R)′ (t) dt =
∫ q(S)

0
( f P

R)′ (t) drk(q, t).

Proof of Theorem 5.5
Step 1: First I will show that any incremental mechanism µ ∈ M(POS, ADD, CR) defined by (10) is
consistent if and only if for all S ⊆ N, q ∈ RS

+ and j ∈ S it holds that for all f ∈ F

µ(qS\{j}, f ) =
k

∑
`=1

α̃` { f (x̃`)− f (x̃`−1)} ,

where x̃ ∈ Rk+1 and α̃1, α̃2, . . . , α̃k ∈ ∆(S \ {j}) are given for each ` = 1, 2, . . . , k by

x̃` = ∑
1≤p≤`

(1− αpj)
(
xp − xp−1

)
, (15)

α̃` =

{ α`

α`(S \ {j}) if α`(S \ {j}) > 0,

0 else.
(16)

Let R = (q, f ) ∈ RS, j ∈ S and α, x be as in (10) and α̃, x̃ as in (15) and (16), respectively. We will show
that there is a set U ∈ Q(µ, R, j) such that µS\{j}(q, f ) = µ(qS\{j}, fU). Define for each ` ∈ {1, 2, . . . , k}
the convex function f` : [x`−1, x`] → R by

f`(y) = inf
{∫

T
f ′(t)dt

∣∣ T ∈ B([x`−1, x`]), λ(T) = y
}

. (17)

According to Lemma A.3 (in the Appendix) there is for each ` an interval I` = [t`, t` + α`j (x` − x`−1)] ⊂
[x`−1, x`] such that f`(t` + α`j (x` − x`−1))− f`(t`) = α`j f` (x` − x`−1). As in Lemma A.2 each inter-
val I` corresponds to a set U` ∈ B([x`−1, x`]) such that∫

U`

f ′(t)dt = α`j f`((x` − x`−1) = α`j ( f (x`)− f (x`−1)) .

Then in particular U = ∪`U` ∈ Q(µ, R, j). By construction we have

fU(x̃`)− fU(x̃`−1) =
(

1− α`j

)
( f (x`)− f (x`−1)) .
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Hence for all i ∈ S \ {j}

µi(qS\{j}, fU) =
k

∑
`=1

α̃`i ( fU(x̃`)− fU(x̃`−1)) = ∑
`;α`j 6=1

α`i
1− α`j

·
(

1− α`j

)
( f (x`)− f (x`−1))

= ∑
`;α`j 6=1

α`i ( f (x`)− f (x`−1)) =
k

∑
`=1

α`i ( f (x`)− f (x`−1)) = µi(q, f ).

Notice that the fourth equality is due to the fact that α`j implies α`i = 0.

Now the second part of the statement. Suppose that µ ∈ MI(POS, ADD, CR, CO) and that for q ∈ RS
+

there are x ∈ Rk+1 and α̃1, α̃2, . . . , α̃k ∈ ∆(S) as in (10) and (11). We will show that the fact that µ is
consistent implies the equalities (15) and (16). Lemma 5.11 below shows that the vectors x ∈ Rk+1

+ and
α1, α2, . . . , αk can be used together with (15) and (16) to define a mechanism µπ ∈ MI(POS, ADD, CR, CO)
such that µ(q, f ) = µπ(q, f ) for all f ∈ F . We will show that µ(qS\{j}, f ) = µπ(qS\{j}, f ) for all
f ∈ F . For t ∈ R+ we define Rt = (q, Λt) where Λt : R+ → R+ is the slant function defined by
Λt(y) = max{y− t, 0} for all y ∈ R+. We will show that µ(qS\{j}, Λt) = µπ(qS\{j}, Λt) for all t ≥ 0.
Obviously this holds whenever t > q(S \ {j}) as Λt(y) = 0 for all y ∈ [0, q(S \ {j})]. Consider the map
h : [0, q(S \ {j})] → R+ defined by h(t) = t− µj(q, Λt). Then h is non-decreasing and continuous and,
moreover, h([0, q(S)]) = [0, qS\{j}]. This means that for each t ∈ [0, q(S \ {j})] and t∗ ∈ h−1(t) that for
each U ∈ Q(µ, Rt, j) and V ∈ Q(µπ , Rt, j) where Rt = (q, Λt) it holds

(Λt∗)U = (Λt∗)V = Λt.

Then

µπ
(

qS\{j}, Λt

)
= µπ

(
qS\{j}, (Λt∗)V

)
= µπ

S\{j} (q, Λt∗) =

= µS\{j} (q, Λt∗) = µ
(

qS\{j}, (Λt∗)U

)
=

= µ
(

qS\{j}, (Λt∗)U

)
= µ

(
qS\{j}, Λt

)
.

Moulin and Shenker (1994) show that two additive mechanisms coincide whenever they yield the same
share vectors for slant functions. The same reasoning can be adopted here in order to conclude that
µ(qS\{j}, f ) = µπ(qS\{j}, f ) for all f ∈ F . Now, finally, observe that two incremental mechanisms
only determine the same share vectors if they allow for the same formulation in terms of x and α’s as in
(10).

Step 2:
Suppose r belongs to a family π of consistent and piecewise linear rationing methods, and that for q ∈ RS

+
there are x0, x1, . . . , xk with 0 = x0 < . . . < xk = q(S) and α1, . . . , αk ∈ ∆(S) such that for any
` ∈ {1, 2, . . . , k} and t ∈ [x`−1, x`]

r(q, t) =
`−1

∑
h=1

αh(xh − xh−1) + α`(t− x`−1) (18)
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Now I will prove that r is consistent if and only if for all t ∈ [x̃`−1, x̃`]

r(qS\{j}, t) =
`−1

∑
h=1

α̃h(x̃h − x̃h−1) + α̃`(t− x̃`−1), (19)

where x̃`, α̃` are defined by the equalities (15) and (16). First notice that by piecewise linearity the mappings
t 7→ r(q, t) and y 7→ r(qS\{j}, y) are both differentiable almost everywhere. Hence, by consistency, it holds
for i ∈ S \ {j} and almost all t ∈ [x`−1, x`] that

α`i =
∂

∂ t
ri(q, t) =

∂

∂ t
ri(qS\{i}, t− rj(q, t))

=
∂

∂ y
ri(qS\{j}, y)

∣∣∣∣
y=t−rj(q,t)

· ∂

∂ t
(t− rj(q, t))

=
∂

∂ y
ri(qS\{j}, y)

∣∣∣∣
y=t−rj(q,t)

· (1− α`j)

=
∂

∂ y
ri(qS\{i}, y)

∣∣∣∣
y=t−rj(q,t)

· α`(S \ {j}).

The constant α`(S \ {j}) = 0 if and only if x`−1 − rj(q, x`−1) = x`−1 − rj(q, x`−1), hence we may
conclude that for any y ∈ (x`−1 − rj(q, x`−1), x`−1 − rj(q, x`−1)) the derivative of the mapping y 7→
r(qS\{j}, y) is constant. Now define x̄0, x̄1, . . . , x̄k and ᾱ1, ᾱ2, . . . , ᾱk by

x̄` = x` − rj(q, x`)

ᾱ` =
{

α` · α`(S \ {j})−1 if α(S \ {j}) > 0,
0 else

Then it holds that for all t ∈ [x̄`−1, x̄`]

r(qS\{j}, t) =
`−1

∑
h=1

ᾱh(x̄h − x̄h−1) + ᾱ`(t− x̄`−1).

Notice that the above definitions of x̄` and ᾱ` match that of x̃` and α̃` in equations (15) and (16), respectively,
since

x` − rj(q, t) = x` −
`

∑
h=1

αhj(xh − xh−1)

=
`

∑
h=1

(xh − xh−1)−
`

∑
h=1

αhj(xh − xh−1)

=
`

∑
h=1

(1− αhj)(xh − xh−1).
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Then Step 1 together with Step 2 complete the proof of the theorem.

Proof of Theorem 5.7
Suppose µ is an interval consistent incremental mechanism. Then in particular µ is consistent. Consider
q ∈ RS

++. Then there is k ∈ N and for each ` ∈ {1, 2, . . . , k} a real number x` ∈ [0, q(S)] and vector
α` ∈ ∆(S) as in (definition) such that

µ(q, f ) =
k

∑
`=1

α` { f (x`)− f (x`−1)} , for all f ∈ F . (20)

Consider functions fn : R+ → R by fn(x) = enx − 1 for all x ≥ 0, n ∈ N and define Rn = (q, fn).
Then for each n such fn is strictly convex. In particular this means that for each j ∈ N there is precisely
one interval I(n, j) = [tj

n, tj
n + qj] ∈ Q(µ, Rn, j) for each n ∈ N. Define f j

n = ( fn)I(n,j) for each n ∈ N.
Distinguish the following cases: (i) there is only one agent j with positive αkj, or αkj = 1, and (ii) there are
at least two agents i and j with αki, αkj > 0.

Case (i): Suppose that xk − xk−1 < qj. Then tj
n < xk−1 for all n ∈ N and for large n it holds

µj(q, fn) ≥ αkj { fn(xk)− fn(xk−1)}
= fn(xk)− fn(xk−1)

> fn(tj
n + qj)− fn(tj

n).

But this means that I(n, j) 6∈ Q(µ, Rn, j) for large n, contradiction. Hence it must be that xk − xk−1 = qj.
Then α`j = 0 for all ` 6= k.

Case (ii): Suppose that there is a subsequence {tj
h(n)}n∈N of {tj

n}n∈N such that tj
h(n) ≤ x̃k−1 for all

n ∈ N. Since µ is interval consistent we have for each n ∈ N that µS\{j}(q, fn) = µ(qS\{j}, f j
n). By Step

1 in the proof of Theorem 5.5 it must hold for all n ∈ N, i ∈ S \ {j}

k

∑
`=1

α`i { fn(x`)− fn(x`−1)} − α̃`i

{
f j
n(x̃`)− f j

n(x̃`−1)
}

= 0, (21)

By distinguishing the powers in this sum we must have

lim
n→∞

αki { fn(xk)− fn(xk−1)} − α̃ki

{
f j
n(x̃k)− f j

n(x̃k−1)
}

= 0. (22)

For all n we have

f j
h(n)(x̃k)− f j

h(n)(x̃k−1) = fh(n)(x̃k + qj)− fh(n)(x̃k−1)− µj(q, fh(n)).

Then use the expression for µj(q, fh(n)) to see that (22) is equivalent with

lim
n→∞

αki

{
fh(n)(xk)− fh(n)(xk−1)

}
+

−α̃ki

{
fh(n)(xk)− fh(n)(xk−1 − qj + αkj(xk − xk−1))− αkj( fh(n)(xk)− fh(n)(xk−1))

}
= 0.
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Since αki − α̃ki(1− αj`) = 0, the terms with the highest argument xk vanish, so we get

lim
n→∞

−αki fh(n)(xk−1)− α̃ki

{
− fh(n)(xk−1 − qj + αkj(xk − xk−1)) + αkj fh(n)(xk−1)

}
= 0. (23)

Since αki > 0 it must hold that αkj(xk − xk−1) = qj. By interchanging the role of i and j we see that also
αki(xk − xk−1) = qi. In particular for any agent p with αkp > 0 it holds that αkp(xk − xk−1) = qp and
therefore

xk − xk−1 = ∑
j∈S;αkj>0

αkj(xk − xk−1) = ∑
j∈S;αkj>0

qj,

hence for each i with αki > 0 it holds that

αki =
qi

∑j∈S;αkj>0 qj
and α`i = 0 for all ` 6= k (24)

Proof of Theorem 5.10
Part (i): Take y ∈ CP (q, f ) for (q, f ) ∈ RS, S ⊆ N. Let i ∈ S, Q ⊂ S \ {i} . According to Lemma
A.1 there is an interval [a, a + qi] ⊆ [0, q (S)] such that yi = f P

R (a + qi)− f P
R (a) . Consider a family of

measurable sets {Tz}z∈[0,q(S)] as in Lemma A.2. Consider T = Ta+qi \ Ta. Then it holds
∫

T f ′ (s) ds =
yi ∈ CP (q, c)i . Moreover λ (T) = qi, so T ∈ Q (CP, S, i) . Let RT := (q, fT) . By y ∈ CP (q, f ) it holds
y (Q ∪ {i}) ≥ f P

R (q (Q ∪ {i})) , so

y (Q) ≥ f P
R (q (Q ∪ {i}))− yi =

=
∫

Tq(Q∪{i})
f ′ (s) ds−

∫
T

f ′ (s) ds =
∫

Tq(Q∪{i})\T
f ′ (s) ds

≥ inf
{∫

U
f ′ (s) ds

∣∣U ∈ B ([0, q (S)] \ T) , λ (U) = q (Q)
}

= inf
{∫

U

(
f ′T
)
(s) ds

∣∣U ∈ B ([0, q (S \ {i})]) , λ (U) = q (Q)
}

= ( fT)P
RT

(q (Q)) .

By variation of Q and the fact that y (S \ {i}) = fT (q (S \ {i})) we conclude that yS\{i} ∈ CP (RT) .

Part (ii): Let Ψ be a consistent solution. Then we need to show that Ψ(R) ⊆ CP (R) for all problems
R = (q, f ) ∈ R. We will start with a proof for R ∈ RN and a similar reasoning applies for arbitrary
R ∈ RS. So assume Ψ ∈ S(CO), R ∈ RN , and x ∈ Ψ(R) ⊆ I P(R). Then it suffices to prove that
for any S ⊆ N, x(S) ≤ f P

R(q (S)). By consistency it holds that there is a T1 ∈ Q (Ψ, R, {1}) such
that xN\{i} ∈ Ψ(qN\{1}, fT1). Put R1 =

(
q, fT1

)
, then by consistency there is a T2 ∈ Q

(
Ψ, R1, {2}

)
such that xN\{1,2} ∈ Ψ(qN\{1,2}, ( fT1)T2).Put R2 = (qN\{1,2}, ( fT1)T2). This procedure may now be re-
peated for the agents 3, 4, ..., n. In this way we obtain profit sharing problems R0, R1, . . . , Rn−1, and Rn,
such that R0 = R, and for i ∈ N, Ri = (qN\{1,2,...,i}, f i) ∈ RN\{1,2,...,i} is such that f i = f i−1

Ti−1
for
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some Ti−1 ∈ Q(Ψ, Ri−1, {i}) with the property that xN\{1,2,...,i} ∈ Ψ(Ri). In particular by definition of a
reduction it holds for all i ∈ N

xi =
∫

Ti

(
f i
)′

(s)ds. (25)

Define increasing bijections gi : [0, q(N\{1, 2, . . . , i− 1}] → [0, q(N\{1, 2, . . . , i− 1})− λ(Ti)] by

gi(s) = λ([0, s]\Ti) for all s ∈ [0, q(N\{1, 2, . . . , i− 1})].

Note that
λ(gi(U)) = λ(U) for all i ∈ N. (26)

Next, define
T∗i := g−1

1 ◦ g−1
2 ◦ . . . ◦ g−1

i−1(Ti) for i ∈ N.

The collection
{

T∗1 , T∗2 , . . . , T∗n
}

satisfies the following three properties:

a) λ(T∗i ∩ T∗j ) = 0 for all i 6=, j, since g`’s are bijections,
b) λ(T∗i ) = qi for all i ∈ N, by (26) , and
c) xi =

∫
T∗i

f ′(s)ds for all i ∈ N, by (25) .

Hence

x(S) = ∑
i∈S

∫
T∗i

f ′(s)ds ≥ inf
{∫

T
f ′(s)ds

∣∣ T ∈ B([0, q(N)]); λ(T) = q(S)
}

= f P
R(q (S)).
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