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Abstract

This article presents an equivalence notion of finite order stochastic processes. Local dependence mea-
sures are defined in terms of ratios of joint and marginal probability densities. The dependence measures
are classified topologically using level sets. The corresponding bifurcation theory is illustrated with
some simple examples.

1 Introduction

Bifurcation theory has been an extremely successful tool to investigate the qualitative (or structural) prop-
erties of deterministic nonlinear systems. But in many practical situations, deterministic models fit the
available data only imperfectly, and stochastic models are proposed to describe the behaviour of a given
system; the stochastic components can model genuinely random events, but they can also be introduced for
guantities of which not enough is known to describe them otherwise.

Motivated by the success of deterministic bifurcation theory, there have been several attempts to
develop bifurcation theory for stochastic processes; however, to find a natural replacement of the notion of
‘topological equivalence’ has been the main problem. For at the base of any bifurcation theory, there is a
notion of ‘form’ or ‘shape’, formalised as an equivalence relation between systems: two systems are said to
be of the same form if they are in the same equivalence class. A meaningful bifurcation theory can only be
developed if there are equivalence classes with non-empty interior; note that this presupposes a topology on
the space of systems. Elements in the interior of an equivalence class are ‘structurally stable’: if a system
parameter is changed slowly, the system will remain in the equivalence class and the form of the system
does not change. All other elements, associated to changes of form, are called ‘bifurcating’.

In this article, we quickly review the previously proposed notions of phenomenological and dy-
namical bifurcation of stochastic processes. We introduce a new equivalence relation, based on the depen-
dence structure of the process. This notion is related, and in some cases equal, to the better known copula
density of dependent stochastic variables. We show that our equivalence relation has ‘many’ structurally
stable elements and that it avoids some limitations of older notions. Finally, we illustrate it by giving several
applications.
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1.1 Phenomenological bifurcations

Without always stating it explicitly, in this article we shall always assume that the stochastic processes
considered are ergodic, and that they have therefore unique invariant probability distributions; we shall
moreover assume that these invariant distributions are absolutely continuous with respect to a measure of
the Lebesgue class, and that the corresponding probability density is a smooth differentiable function.

The natural first attempt to attain at a classification of stochastic processes is to apply the Morse
classification of real valued functions to invariant probability densities processes [3, 15]. The corre-
sponding equivalence relation is that of smooth coordinate transformations of domain and rangeeof
stable elements being Morse functions with all critical values distinct from each other. For the purposes of
this article, we shall call the equivalence relati®requivalencein analogy with the associated bifurcation
notion, which has been callgghenomenological bifurcatioor P-bifurcation(see Arnold [2], p. 471-473).

The main problem of this approach, acknowledged in [15], is that the equivalence classes are not
invariant under diffeomorphisms of the underlying space. For instanc@¢lgtand{Y;} be two processes
onR™ with invariant densitiepx andpy, and letp be an invertible transformation &™. If the processes
are related by; = ¢(X;), then the invariant densities are related as

Px(X) = pv(@(x)) [detDo(x)[;

we see that, in the language of physicists, the function value of the invariant density ‘depends on the coor-
dinates’. It is clear that equivalence classes are preserved if only volume-preserving diffeomorphisms are
admitted as coordinate changes, for whidatD¢(x)| = 1 for all x. Note that these comprise the class of
Riemannian isometries proposed in [15].

The restriction of admissible transformations to volume-preserving diffeomorphisms of the do-
main of the invariant densitp is necessary. For if all diffeomorphisms were admissible, then all processes
on the real line would be equivalent, since there is always a coordinate transformation such that the invariant
density of the transformed process is the uniform density on the unit interval. In the words of Zeeman [15]:
‘However, thigi.e. admitting all diffeomorphismsiould be exactly thewrongthing to do, because it would
render the tooli.e. P-equivalenceliseless by making everything equivalent ((th'e comments in square
bracket are our interpolations).

Underlying this difficulty is the fact that the probability densgfx), unlike the measurp(x) dx, is
not an invariant geometrical object. By consequence, P—equivalence is an inconvenient notion for practical
applications: for instance, recording data on linear or logarithmic scale might point to different conclusions.

1.2 Dynamical bifurcations

A second bifurcation notion for stochastic processes has been introduced by Arnold and his co-workers
(see [2] for an extensive exposition). We shall try to sketch its main ideas briefly using the simple first-order
process X } onR satisfying

X1 =0(X) + &, (1)

where the{g} is a sequence of independent and identically distributed random variables. This process
can be considered as a deterministic dynamical system on an infinite dimensional phas® spaces
follows. The elements af are the possible realisatioms= (&, €1, --) of the procesge }. Introducing

the projectiont(w) = & and the shific(®) = (&1, &, - -+ ), we have for instance that= 7o ¢'(®). Define

now the mapb onQ x R by

®(@,%) = (¢1(@), p2(0,X)) = (0(®),9(X) + 7(®)).



Note that this is a deterministic system; the stochastics are ‘hidden’ in the fact that the initial comditiQn
is unknown. The realisation§ of the process (1) are the values of the second componebit af, x).

Note that® is a skew system: the shift dynamigs in the space are driving the dynamice,
in R. For @, arandom fixed poinis defined as a map: Q — R, which satisfies the invariance condition

P2(0,5(0)) = &(p1())

for all (or almost all)w. Stability is now be defined in the usual way: a random fixed pbiig stable if
all nearby orbits converge ®. A random, or, following the terminology in [2fynamical bifurcatioror
D-bifurcationof the process occurs for instance if a random fixed point loses stability.

At this point, a drawback of the notion of dynamical bifurcation becomes apparent: to determine
stability of a random fixed point, two orbits df with identical noise realisations have to be compared. This
seems to make it rather difficult to apply the notion of D-bifurcation to practical problems (see however [4]
and related literature). We therefore leave aside this theory, and try rather to improve on the notion of
P-equivalence.

1.3 Local dependency structure

By considering stochastic analogues of concepts used in catastrophe theory, Hagtelhjag] arrived at a
classification for stochastic differential equations of diffusion type on the real line that is invariant under in-
vertible transformations. At the basis of this classification are level crossing statistics and derived quantities,
which are invariant under monotonous transformations of the underlasying space. Although level crossing
statistics can also be used for discrete time systems, the corresponding classification would be rather re-
strictive. The reason is that discrete time dynamical systems are ‘essentially richer’ than discretely sampled
continuous time diffusions, because finite time transition densities induced by diffusions only represent a
subclass of transition densities for discrete time dynamical systems.

Instead of level crossing statistics, we base our proposed equivalence relation on another function
that can be associated to stochastic processes of finite order. For the purposes of this introduction, we
explain the main ideas in the case of a first order pro¢&gson the real line; general definitions will be
given below. Assume therefore that the procps$g is generated by

XI+1 = g(xt) + &, (2)

where{g } is a sequence of independent, identically distributed (IID) innovations. Recall that equation (2)
imply a transformation law for probability densities. Assume Xas distributed with marginal probability
densityp', thatisP(a < X < b) = ff p'(x) dx, and thate; has densityp. Then the probability densitgt+!

of X1 is given by

t1

P (Xt 1) :/T(mllxt)p‘(xt)dxt,

wheret(x|y) = ¢(x—g(y)) is the transition probability density of the process.

Consider in particular the strictly stationary procg3gs} whereX;, and hence every, is dis-
tributed according to the invariant probability dengify= p. Denote the invariant joint probability density
of (X, % 1) by pt*1; this joint density does not depend band it is therefore equal tp'?. Moreover,
the measurg’?(x;, x2) dx; dx, is absolutely continuous with respectpix; ) p(xz) dx; dx,. By the Radon-
Nikodym theorem, the following Jacobian exists:

def PH2(xa, Xe) dadde _ PHA(x ) _ T(%fXa).

p(x1)p(x2)dxadxz  p(x1)p(x2)  P(x2)

f (Xl7 Xz)
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The functionf is called thedependency ratiof the process. Note thdtis identically 1 if X; and X1
are independent; the differentBx1,x2) — 1| can therefore be seen as a measure of the local dependency
structure of the process. Moreovérgcontains all essential information regarding the dependence structure
of the process: for if coordinates are chosen suchphgt= 1 forx € [0, 1] and 0 otherwise, thefi(xi, xz) =
pL?(x1,%2) = T(X2|X1) determines the entire process. By construction, dependency ratios are invariant —
as geometrical objects — under any invertible transformation the underlying space of the process under
consideration. Our notion of equivalent processes will be based on these ratios; invariance of the equivalence
classes under nonlinear invertible transformations is then obtained automatically.

Several other local dependence measures have recently been described in the statistical literature
(see e.g. [7], [8], and [10]). The dependence measures in this literature are various localised versions of the
Pearson correlation coefficient, and as such are motivated entirely differently than our dependency ratio. In
particular they do not share the invariance property with our dependency ratio.

The definition of our equivalence relation is a bit involved. We therefore postpone this definition
to section 3. First, in section 2, we give the definition of dependency ratio for more general processes, and
we show how this quantity is connected with other quantities like copula density, mutual information and
entropy of a stochastic process. In section 3, the definition of our equivalence relation is given, together with
topological properties of the associated equivalence classes. Applications are given in section 4.

2 Dependency ratios, copulas and information theory

Our attention will be restricted to stationary discrete time processes of finite order that are generated by
equations like
)(t = g(lena e 7X[71a st)-

Here the variableX; take values in some—dimensional orientable manifol, and theg; are identically

and independently distributed random variables. In most desesll be equal toR". We wish however

to bring out the dependency of the process on the variables chosen; in order to achieve this, a coordinate—
independent formulation is chosen. Considering the problem on a manifold will come at little extra cost.

2.1 Basic definitions
Recall that any stochastic procgs§} is given by the joint probabilities
PV (A - X Ar) = P{Xy € Ay, X, € Al
which are defined for ali—tuples(ty,---,t;) € Z‘. A stochastic process is callatrictly stationaryif its
finite dimensional joint probabilities are time invariant
plte — Pt1+h,---,tf+h’
for all (t1,---,t,,h). Two stochastic variableX andY are said to be equivalent in distribution, written

asX ~Y, if P(X € A) =P(Y € A) for every P-measurable seA. A strictly stationary proces§X;} is
said to be of orden if, for all k > n, the conditional distribution oX; givenX;_y, ..., X1 is a function of

(Xt—m te 7>([—l) Only:
X[ Xeokes - X1 ~ XX, - X 3)

A measure on a manifoldl is of Lebesgue clas# at every point of the manifold it is absolutely continuous
with respect to the Lebesgue measure in some (and hence any) coordinate dhastotfentable, there is
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avolume formon M: a differentiablen-form that is everywhere non-zero. It is clear that any volume form
is of Lebesgue class. We assume tdas orientable, and we fix a volume form &M, denoting it by d. It
will be assumed that the processes we are dealing with have all joint probalfitie of Lebesgue class,
with twice differentiable probability densitigst .

The transition probability density of a process of orderis given by

pl7... 7n+1(xla e 7Xf'l+1)
pla"ﬁn(xl’ “en ’Xn)
Note that from the order property, it follows that for> n

(4)

T(Xng1]X1, %) =

T(Xt|Xt_k, e ,Xt,]_) = T(Xt|xt*n7 e 7Xt71)~

Given any initial probability density ok, - - - , X, we can determine all joint probabilities by first determin-
ing

PO ) = (X, %) PN, %),
1.

p1,~--,n+2(xl7._. Xni2) = T(Xnt2lX2, - Xne1) T2 [Xa, - X0) P ’n(xla"' :Xn),

and then integrating out unwanted variables. In particular, the distributi®p, of- , X, 1 is obtained by

p2,'" !n+1(X27 e ,Xn+1) = /T(Xn+1|X1, T ,Xn) me 7n(X]J T 7Xn) Xm-

The central notion of dependency ratio of a stochastic process is given in terms of joint probability densities.
Definition. The n’th orderdependency ratiof of a strictly stationary stochastic proce§k; } is given by

(X1, Xnp1) = S ST YEY) _ T(Xns1|X1, -+, %n)
) s AN+ pl,...,n(XL .. ,Xn) pl(Xn+1) p(Xn+1) .

Note thatf is the Jacobian of the measupé " 1(xq, -+, Xn11)dXs - - - dXop1 With respect to the mea-
surept " (Xq, -, %) OXg - - A% - PH(Xny 1) OXny 1. In particular,f is chart-independent.

Proposition 1. If for two processes of order n the dependency ratios of order n are equal, then for exery m
n, the dependency ratios of order m are equal as well.

Proof.
We consider two processéX; } and{Y;} of ordern. It suffices to show that orden-equality of the depen-
dency ratio for anyn > nimplies, and is implied by, ordarequality. Form > n, we may write

ph™L Xy, Xmp1) = PR ™K Xm) T(Xmaa | X, Xim)

The dependency ratio ¢fX; }, for m> n, can be written as a function af+ 1 variables only:

Phom™ ko Xmen)  T0met [ Xmone o Xm) P (Xmeng s Xmg)

pl,...,m(XL o 7Xm) p(xm+l) p(Xm+1) - pl-,-»~;n()(m_n+1, ... ,Xm) p(Xm+1) )

which is nothing but the dependency ratio of oraein terms of the lash+ 1 variables of the vector
(X1,...,Xm+1). The dependency ratio ¥ } can be reduced similarly. Clearly, orderequality form > n
implies, and is implied by, orderequality. ||




2.2 Relation with copulas

For a strictly stationary real-valued time ser{eé§} with continuous joint cumulative distribution functions
(CDF)R,....1, (%, -+ ,%,) and marginal CDFF (x), the copula associated with a delay ve¢dr n; 1, ..., %)
is the quantity

Cn(ul, ey Un) = F]_,'”’nJrl(Fil(ul), ey Fil(un)),

whereu; € [0,1] for j =1,---,n+ 1. The correspondeing copula density function is

"G (U, ) Pt F R (), . F T (Un))
Cn(Ul,...,Un) = 3U1"'8Un - p(F_l(U1)>"'p(F_l(Un)) s

or
¢ (F(xa),...,F(Xn)) =

p(xa) - p(Xn)

In the case of a real valued first order time series, our definitions imply that the dependenéyxati@, 1)
is equal to the copula density functiop evaluated in the ‘standard’ coordinates, ux) = (F(x1),F(x2)),
which are equivariant under monotonously increasing transformatioxs of

Although then+ 1-dimensional copula&(us,...,un+1) characterises the dependence structure
within n+ 1 consecutive value_n, ... %), it does not take into account the ordering of the observations
in time. In time series analysis one is often interested in the question okhdepends ofX;_n, ..., X%_1).
It is then more natural to take into account the ordering of the observations in time and to focus on the condi-
tional distribution ofX; given past values of;. In this way, we are led to the definition of dependency ratio
given above. This allows, in principle, to distinguish between time reversals in processes of order higher
than one. For orders larger than one the dependency ratio can be expressed as:

o Cnia(F(Xa),- -, F(Xn41))
PO X0e) = = ) Fx))

2.3 Relation with information theory

Information theoretic dependence measures can often be expressed in terms of copulas. Well-known ex-
amples are mutual information and the redundancy, which both are special instances of Kullback-Leibler
divergences (relative entropies).

The Kullback-Leibler divergencketween two probability distributions with probability densities

p(x) andq(x) is defined as
D(p.a) = [ pixim (B9 )

Themutual information (X1 %) between two random variablXs andX,, is a dependence measure defined as
the Kullback-Leibler divergence between their joint probability density fungdiotix,, x2) and the product

of their marginalsp(x;)p(x2) (we consider the case with identical marginals, appropriate for stationary
time series). Sinc@'?(xy,x2) denotes the joint probability density function 0%, %), the integral over
p(X) = p(x1,X2) can be concisely expressed as an expectation, that is,

i) = [ [ P20030)In (W) dxy dxp = E [In (W)] :



which is non-negative and equals zero if and onbgifandX; are independent. This can be seen as follows:
the expected value of the random variaBle: p(X;)p(X2)/p>?(X1, X2) is

E[Z] = / / pl’z(xl,xZ)mdxldxzz 1

By convexity of the function Ifz~1) = —In(2), Jensen’s inequality gives
I(Xl;xz) = E[In(z_l)] > _In(E[Z]) =0,

and equality holds if and only i = 1 almost surely.
The generalisation of the mutual information to the multivariate case is known eetinedancy

pl,...,n-i-l(xl, e ’)(m_l) )]
R, - =E|In ,
(Xe;--Xnt1) [ ( P(X1) ... p(Xnp1)
which is zero if and only if X3, ..., Xn+1) are jointly independent, and positive otherwise. In analogy with

the above discussion on copulas, a generalisation which is more suitable within a time series context is the
entropy given by

Hix .- =E [In < ph (X, Xata)
(K21 X1, %n) pLN(Xg, ... %n) P(Xnt1)

)] =E[nf(x,...,%n1)]-

3 Equivalence notions

In this section we introduce and motivate our notion of equivalence of stochastic processes and we give
some of its fundamental properties.

3.1 Structural stability and bifurcations

We recall briefly the fundamentals of bifurcation theory. The two main ingredients of any such theory are a
topological spacX and an equivalence relation between elements.on elementf of X is structurally

stableif there is a neighbourhool( f) such that all elementgin that neighbourhood are equivalentftp

thatisg ~ f for all g € N(f). Intuitively speaking, a structurally stable eleméman be ‘perturbed’ slightly
without being pushed out of its equivalence class. Such an element is sometimes called ‘persistent’. Clearly,
the equivalence class of any structurally stable element is an open set. A structurally stable equivalence
class can be thought of as defining a set of elements of the same ‘shape’ or ‘form’ (see [14]): form remains
‘stable’ if perturbed slightly.

All elements ofX that are not structurally stable are calleifurcating This notion is usually
familiar from the context of parametrised families:Aifis someg-dimensional parameter, aidd— f, a
family of elements oK, theni = A is a bifurcating parameter value of the familyfif is not structurally
stable; it might be said that at bifurcating parameter values the ‘fornf, ofhanges. Since the set of
structurally stable elements is open, the set of bifurcating elements, and therefore also the set of bifurcating
parameter values in a parametrised family, is closed.

An equivalence relation will give rise to a useful bifurcation theoryXoanly if there at all exist
structurally stable elements. The optimal situation is attained if the set of structurally stable elements, while
not consisting of a single equivalence class, is ‘topologically big’, since then we will be able to associate
to ‘most’ elements a form. In a topological space, a set is ‘big’ if it is open and dense, or if it is at least a
countable intersection of open and dense sets (a so-called ‘generic’ or ‘second category’ set, see [11]).
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3.2 Strong equivalence

A natural requirement to impose on an equivalence relation of stochastic processes on a rivhisfibidt
processes which only differ by a diffeomorphismMf that is, which are the ‘same’ up to a coordinate
change, fall in the same equivalence class. Let for instédXgke {Y;} denote two first order processes on

M. We will certainly want to call two processes equivalent if there is a diffeomorplgisivl — M such

that the variable$Y:,Y;_1) and (@ (X ), 9(X_1)) are identically distributed. If this is the case, we dai]}

and{Y;} strongly equivalentLet fx(x1,X2) and fy(xz, %) denote the dependency ratios{o} and{Y;}
respectively; if the processes are strongly equivalent, it follows from the invariance of the dependency ratios
under diffeomorphisms that

fx(X]_,Xz) = fy((p(Xl),(p(Xz)) for all (X]_,Xz) €M x M. (5)

If we would take strong equivalence as our equivalence relation, in general we would obtain an
uncountable infinity of equivalence classes, and no class would be a neighbourhood to any of its points, that
is, no process would be structurally stable. To see this in a simple example, assufyeathafy are two
dependency ratios defined on the squaré, 1) x (—1,1) Cc R?, and that they are given as

fy (X1, X2) = ZT# + X2 4 X3, fy (X1, %) = 2?‘/ + X2+ V2.
Taking the invariant density in both cases tofig) = %I[,lyl] (x), wherela(x) denotes the indicator func-
tion, we have specified two stochastic processes. The (@i} is the only non-degenerate critical point
for both fx and fy; therefore, if fx and fy are strongly equivalent, we should have tldtx;,xp) =
(p(x1),p(x2)) satisfiesp(0,0) = (0,0). But there is no real-valued smooth diffeomorphigrauch that (5)
holds simultaneously witlp(0) = 0, for the values ofx and fy at (0,0) are different ifu # v. We see that
every value ofu defines a different equivalence class.

3.3 Topology of dependency ratios

In section 2 we have defined the dependency ratidann’th order proces$X; } by

pl,...,n+1(xla . ,Xn+1)
pL (X, -+ %) P(Xnt1)

this quantity is invariant under coordinate transformations, and it is therefore a characteristic of the stochastic
process.

As the space of dependency ratios is infinite dimensional, this characteristic itself is too fine-
grained to be useful to classify such processes. In the previous section we have seen that one way of
extracting ‘coarser’ information from a dependency ratidgs to determine the expected value of some
monotone transformation df. But defining equivalence of two ratios by equality of such expected values
would not lead to structurally stable elements, for a very small perturbation of the process might already
change the expected value.

Using however topological information of the dependency ratios turns out to give characteristics
that are sufficiently coarse. To give a very simple example: we clearly want to call two functions defined on
the same domain to be of different shape if they have a different number of nondegenerate critical points.
The number of such points is a numerical characteristic of the ‘shape’ of a function, and it in fact defines
an equivalence class. Moreover, if we choose a suitable topology on the set of functions, we find that the
equivalence classes are open sets, and that its members are structurally stable. We can specify different

f(X17 e ,Xn+1) =
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equivalence relations by taking into account more detailed information; for instance, we can classify the
critical points according to their topological type.

In any case, we need a function topology on the set of dependency ratios; we cho@3e the
topology, which is the ‘coarsest’ topology for which the number of nondegenerate critical points defines
open equivalence classes. Recall that inGh&opology are-neighbourhood\, ( f) of a functionf : M — R
defined on a compact manifoM consists of all functiong such that, with respect to a fixed Riemannian
metric and the induced norm|x on the tangent spac&gM we have

|£(X) —g(X)Ix, IDF (X) — Dg(X)|x, [D*f (x) — D*g(x)|x < &

If M is a noncompact manifold, the constaats 0 are replaced by positive functioagx) > 0 onM in the
above definition; in this context the topology obtained is called the ‘str6Agbpology (see e.g. [6]).

As argued above, specifying an equivalence notion on the space of dependency ratios of stochastic
processes induces a notion of stochastic bifurcation. In the following we shall sometimes use the words
‘process’ and ‘dependency ratio’ indiscriminately; in particular, a ‘structurally stable process’ will denote
a stochastic process whose dependency ratio is a structurally stable element under the equivalence relation
under consideration. A first rough formulation of our definition would be the following: we propose to
call two dependency ratios of stochastic processes equivalent, if every non-degenerate critical point of a
certain type of the first dependency ratio can be mapped to a critical point of the same type of the second
dependency ratio by a transformationMfx M induced by a diffeomorphism &f. In the next section, we
shall make this more precise.

3.4 Ratio equivalence on compact manifolds

Let M be anm-dimensional orientable compact manifold avigl; 1 the (n+ 1)-fold Cartesian produd¥l x
--- x M; denote byr, : M1 — M the projection on thé'th component

(X1, Xnp1) = Xp.

An n'th order dependency ratio is a real valued function defineMgm.

Recall the following definitions (see e.g. [5], subsections 10.2 and 10.4, p. 79 and p. 86 respec-
tively). If f:U — R is a twice continuously differentiable function defined on an operUsetR", a
pointx € U is acritical point of f if the derivative off vanishes ak: Df(x) = 0. The valuef (x) of f at
a critical pointx is called thecritical value of f atx. A critical point x is non-degenerat# the Hessian
matrix H f (x) corresponding to the second derivatiéf (x) of f atx is invertible. The number of negative
eigenvalues of this matrix is called tlilorse) indexof the critical point. Clearly, the notions of critical
point, critical value, index and non-degeneracy carry over to functions defined on manifolds.

Our definition is based on the critical points of a given dependency ratio; this makes it necessary
to restrict attention to twice differentiable ratios only, and to consideCthiinction topology introduced
above on the space of these ratios. For in@hyeighbourhood of a given function, there are other functions
to be found with a different number of critical points; and the same is true foCameighbourhood of a
function that has itself at least one critical point.

Definition. If M is a manifold, a twice differentiable dependency ratioM;,;.1 — (0, ) is calledregular
if all its critical points are non-degenerate, if no two critical values are equal and if no two critical points
have the same image under any projectmpnfor £ € {1,--- ,n+ 1}.



Since the manifold$1 and M, 1 are compact, a regular dependency ratio has only finitely many critical
points{&;,-- -, &}; we assume that these are ordered such that the corresponding criticalwatubs; )

are in ascending order, that i,< v;j if i < j. We associate to the critical poift its indext; (see sub-
section 3.2). Note that € t; < m(n+1). In this way we obtain thendex sequenced ) = (ti,--- ,t) of a
regular dependency ratia

Definition. Two order n processes defined on a compact manifold M, with dependency rafidd f.; —
(0,0), are calledratio equivalent, if either both f and g are non-regular, or if f and g are both regular and

1. their index sequences are equal,

2. there is a diffeomorphismp : M — M, homotopic to the identity mapping on M, such that the map
@ : Mp1 — Mp.1 defined as

P0a, -+ as1) = (@), 9(011)) (6)
maps the i'th critical point of f to the i'th critical point of g.

It follows from the first point that the number of critical points fondg is equal as well.
The following two propositions tell us that this definition has good properties: we can characterise
all structurally stable processes, and these form an open and dense set in the space of all stochastic processes.

Proposition 2. On a compact manifold M, a dependency ratio is structurally stable under ratio equivalence
if and only if it is regular.
Proposition 3. On a compact manifold M, the set of regular dependency ratios is everywhere dense.

The proofs of these propositions can be found in appendix A.

3.5 Ratio equivalence for non-compact manifolds

Though the results for compact manifolds are already useful in themselves, in practice most stochastic
processes are defined on the non-compact mani8ld The direct generalisation of the notion of ratio
equivalence is given in the following definition.

Definition. Two processes on a manifold M aseakly ratio equivalent, if they are ratio equivalent on
each compact set that is the closure of a bounded submanifold.af M

As the following example shows, this notion is unfortunately too weak for our purposes.

Example. Consider two first order processg% } and{Y;} on the interval(—1,1) with invariant densi-
tiesp(x) = %I[—l,l](x) and dependency ratios

fx (Xl,Xz) =1- }X]_Xz + }X‘?’, and fy(Xl,Xz) =1+ }X]_Xz — }X‘;’
2 4 2 4

Both ratios have a unique critical point of index 1 at the origin, and hence they are ratio equivalent on
compact sets. But if we consider the valuesfgpfand fy along the curvey(t) = (t,t) ast | —1, we note
that fx o y(t) approaches the infimum dk on (—1,1) x (—1,1), while fy o y(t) approaches the supremum
of fy on the same space. That means in particular thétig close to—1, the probability is very low that
Xi11 is close to—1 as well, whereas I; is close to—1, the probability is rather high th#t. ; is close to—1
as well. Weak ratio equivalence is not sufficiently fine to distinguish between these processes. 1
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For our second generalisation, we restrict ourselves to processes defined on a subclass of manifolds which
we call manifolds of ‘constant type’; these are defined as follows.

Let M be an orientablen-dimensional manifold. If there exists a famify; } of bounded open
submanifolds-with-boundary & depending on a real parameter T, for whichM; € My if t <t/, J; M; =
M and for whichd M is a smooth boundary for every- T, then we call M; } anexhaustiorof M. Moreover,
we say that an exhaustion is obnstant typef there is a constanT > 0 such thatoM; and dM, are
diffeomorphic for allt,t’ > T. A manifoldM that admits an exhaustion of constant type will itself be called
to be ofconstant typeFor instance, the plane is a manifold of constant type with exhauRfiea{x ¢ R? :
IX||? < t}, whereas the plane with all points with integer coordinates removed is not a manifold of constant
type.

A convenient way to define an exhaustionhfis to take a differentiable real valued functidn
on M such that for a fixed pointg € M and a metriad on M we have thatl(x) — c asd(Xp,X) — o, and
setMy = {xe M : J(x) < t}. If all values ofJ larger thanT are regular, then it follows from Morse theory
thatdM, is diffeomorphic todMy fort,t’ > T, and consequently théM; } is an exhaustion dl of constant
type.

Consider the set

(Mt)n—i-l =M x M x---x M C Mn_;,_]_.

This set can be decomposed intd2component manifold$C/ }E\':l; each component is a Cartesian prod-
ucts ofk factorsdM; andn+ 1 — k factorsM, for k=0,--- ,n+ 1. We order these components such that

a product of more factorsl; precedes a component with less, and for components with equal numbers of
factorsM;, the component with more factohd; in the first/ positions precedes a component with less,
with ¢ taking the values 2, --- 'n+ 1 consecutively. That is,

OMy x My x My precedes M; x dM; x IM;,
and

OM; x My x IV precedes JdM; x dM; x M.

In the important special case thdtis one-dimensional, the componéatVi; )1 consists of a finite number
of points. By definition, we consider these point as non-degenerate critical points, associating the index O to
them by default.

In the following three definitionsM is a manifold of constant type with exhausti¢h} and
corresponding ordered decompositif®' } of (M;)n.1; by |- |x we denote a norm induced from a fixed
Riemannian metric as in subsection 3.3. Moreover, the restrictiohtofC/ is denoted byf! with the
index j always ranging from 1 to"21.

Definition. A dependency ratio f on M is well-behaved at infinity if there are constants ¢T > 0 such
that for every t> T

1. for every j there is a compact se1j K Qj such that\thj (X)|x >cif x e Qj\Ktj, unless qt is O-
dimensional, and

2. ftj is weakly ratio equivalent tot‘;ffor allt,t/ >T.

Definition. A dependency ratio f on M is well-behavedif f is well-behaved at infinity andtjfis
regular on G for every jand everyt T.

11



Definition.  If M is a manifold of constant type, two well-behaved dependency ratios f and g are called
ratio equivalent, if there is a value of t such thaf and ¢ are weakly ratio equivalent for every j.

Note that if f andg are weakly ratio equivalent on each compor(antor a single value > T, they are in
fact equivalent for all such values, singe~ ft‘, forallt,t’ > T.

Example. With this definition, we can distinguish between the two rafigsand fy introduced at the end
of the previous subsection. Sgt=1t/(t+ 1), and consider the exhaustitin= (—a;, &) of (—1,1). Note
thatd(l; x I;) can be decomposed into

G =(-a,a)x{-a,a}, ={-a.a}lx(-a.a), G ={-a.a}lx{-aa}.

Restricted taG! andC?, neither fx nor fy have any critical points. The s&f consists of four isolated
critical points, which are critical by definition. The maximum &f restricted toC? is assumed in the
points (a;, —a ), whereasfy takes its minimum there. Since the only diffeomorphisnCdhomotopic to
the identity is the identity itself, corresponding critical pointsfgfand fy cannot be mapped onto each
other. |

The following propositions describe the topological properties of ratio equivalence. The results are weaker
than in the compact case, as was to be expected; we obtain that well-behaved processes are stable elements
of ratio equivalence. However, restricted to the space of processes that are well-behaved at infinity, the
well-behaved processes form again an open and dense set.

The next proposition is a corollary to propositions 2 and 3.

Proposition 4. On a manifold M of constant type, a well-behaved dependency ratio is stable with respect
to the strong topology under ratio equivalence.

The proof of this propaosition is given in appendix A.

4 Examples

4.1 Stochastic dynamics on the circle

As an illustration of a stochastic process on a compact manifold, we consider the stochastic dynamical
system on the unit circls! = St defined by

Xer1 = X +asin(X) +0.25sirf (%) +0.25+&,1 mod 2r, (7)

with {&} 1ID andN(0, 5?) distributed. The state variable is taken modukg ®e represent states by points
on the interval—x, ). For the above system we fix at the value O and consider qualitative changes in
the stochastic dynamics as/aries. The term @5(sir?(x_1) + 1) is added to break the— —x symmetry
of the dynamics. In the symmetric case some particular additional properties arise which will be discussed
in the next subsection.

Figure 1 shows a contour plot for the dependency ratior values ofa decreasing from-0.85
to —0.95. Fora= —0.85, the contour plot shows two extrema, a maximum and a minimum, together with
two saddle points. These are the minimal number of critical points of each type that can be attained for a
non-degenerate functiohon the torusvl, = S' x S'. As the bifurcation parameterdecreases, the system
shows a stochastic bifurcation at whi€hilevelops a new local extremum, together with a new saddle point.

12
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Figure 1: Level sets for the mafy = X;_1 +asin(X-1) +0.25 sin’-(xt_l) +0.25+ g for decreasing values
of a (top panels). The lower panels show the invariant probability density. of

4.2 Antisymmetric dynamics

In applications dynamical systems are often symmetric. Though we leave the theoretical development of
our equivalence relation for symmetric systems for later work, we want to make some remarks about this
situation. We restrict to processes that are the sum of an antisymmetric deterministic part and a unimodal
symmetric noise term (e.g. Gaussian). Surprisingly, it turns out that for these systems the ‘ratio bifurcation’
coincides with &-bifurcation.

Consider the process

><[+l = g(xt) +8t7

whereg(x) is a smooth odd function, that is, for whigf—s) = —g(s). Theg are independent and identi-
cally distributed according to a symmetric unimodal distribution. It can be readily checked that the deter-
ministic dynamics is equivariant under the transformatien —x. Because this transformation affects both
Xi—1 andX;, the effect on the joint variable_1, X;) is a point reflection in the origin.

For the conditional density of; givenX;_; = X, one may write

L2(%; . x 1. (/% —g(x
Px,.a/x (X2[X1) = T(Xe[X1) = pp((xll’)Z) =h <23(1)>
whereh(-) is the probability density function &f; we have thah(s) = h(—s) and thath has a unique local
maximum ats= 0. The mapg(-) as well as the probability density functidi-) are assumed to be twice
continuously differentiable.
Moreover we assume that the process has an invariant degigitywhich is unique and twice
continuously differentiable. These conditions pfx) can easily be met by imposing some additional re-

guirements org andh. For instance, a sufficient condition is that for eaghthe support o%h (%‘(X"))
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is M (strong mixing). If the invariant density is unique, it is necessarily an even function, since otherwise its
mirror imagep(—x) would be a different invariant density.
Our aim is to examine the properties of the dependency ratio

pH2(x,%) 1 X2 —9g(X1)
X2) " ( )

foux) = o otxe) ~ o 5

near the origin. We see that

1 —X—g(-x)) 1 Xo—g(x) ) _
(o) = gon( )= o0 (- )= o

c op(x c

It follows that the partial denvanve% and 5~ af vanish at the pointxi,x2) = (0,0), so that the origin is
always critical. The index of this critical pomt is determined by the Hessian midtfi¢0,0). If g is odd
andhis even and unimodal, we have

p'(0) =0, g’(0) =0, h'(0) =0, and h"(0)<O0.

After some algebra one finds that the Hessian evaluated at the origin reduces to

g(0)? 90
_ o "
Hf(O,O)_G3p(O) —-g(0) 1- h”(()()J)ppEg

Sinceh”(0) is negative, the Hessian matrix has a negative determinant if and only if the second derivative
of the invariant density(x) satisfies
p”(0) <O,

in which case the origin is a saddle-point. If howepé(0) > 0, the determinant is positive, while the trace
of the matrix is negative, and the dependency réfia, xo) has a local maximum at the origin.

Apparently, the critical point at the origin changes from a saddle point to a local maxinp/iOif
becomes positive. Because this is exactly the condition for which the local maximp(w)cdt the origin
changes to a local minimum with a pair of maxima bifurcating off, it follows that for antisymmetric maps
with symmetric unimodal noise, the ‘ratio bifurcation’ coincides with a phenomenological bifurcation.

4.2.1 Onthe circle

We illustrate this by figure 2 which shows the level sets of the dependency ratio, as well as the invariant
density, for the map

Xep1 = a(o.ssinm) +0.255ir(2X¢)) Fe,

where agairM is the unit circleS' and whereg; ~ N(0, 672 ;) with 62 ; = 0.6 — 0.12co$X;). The noise
variance is made state dependent to avoid the critical poifit, &) to bifurcate simultaneously with the
bifurcation at the origin. As noted above, the local minimunp{r) atx = 0 occurs exactly whefi(xz,x)
develops a local maximum at the origin. This is related to the fact that the denominator of the dependency
ration contains a product of marginals which simultaneously develop a local minimum.
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Figure 2: Level sets for the maf.; = a(O.S sin(%) + 0.25 sir(ZX[)) + &41 With &1 ~ N(O, o{il) and

Gt2+l = 0.6—0.12co$X;) for increasing values af (upper panels) and the corresponding marginal density
functions (lower panels). The levels are not uniformly spaced.

4.2.2 Ontherealline

When we derived the coincidence oPebifurcation and a copula bifurcation at the origin in the antisym-
metric case, apart from the global requirement of symmetry of the invariant density, only local arguments
were used. Therefore, provided that we confine ourselves to cases with symmetric invariant densities, the
result that &P-bifurcation coincides with a (local) ratio bifurcation, directly extends to stochastic dynamics
on the real line.

As an example we consider the stochastic proced® defined by

X1 = tanhaX) + &41. (8)

Figure 3 shows the level sets of the dependency ratio and the corresponding invariant probability density
function for this map witiN(0, 52) distributed noise, taking = 0.7.

Note that the bifurcation parameter value differs from that of the analogous deterministic system
(o = 0): for the tanh map the stochastic analogue of the usual pitchfork bifurcateoa: dtis shifted to a
larger value ofa. Apparently the value of the bifurcation depends on the noise level. A natural question,
therefore, is whether for increasing noise levels the bifurcation parameter merely shifts, or whether the
bifurcation can disappear altogether.

Intuitively, if the map is bounded and has a small range relative to the noise level, the dynamics
is mainly governed by the noise and the deterministic part has little influence on the dynamics. In fact a
simple argument shows that if the noise is fixed at a sufficiently large level, and if the family of odd maps
{ga} is uniformly bounded, then there is no phenomenological bifurcation=a0, and therefore also no
ratio bifurcation aix;,x2) = (0,0), for symmetric processes of the form

X1 = 0a(X) + &1 ()]
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Figure 3: Level sets for the mafy, 1 = tanh(aX) + &1 with &1 ~ N(0,0.5%) for increasing values ai
(top panels) and corresponding marginal density function (lower panels).

density

The argument runs as follows. By stationarity the invariant densgtiyould satisfy

P9 = [ 2h (X‘g“‘)> p(s)ds

(6 (0

A necessary condition fgo(x) to have a local minimum at= 0 is thatp”(0) > 0, where

1 —0a(9)
// 0 — /*h// _ga\-j/ d :
70 = [ o (2 ) pojas
Sinceh(s) is a unimodal probability density function, its second derivati{s) is negative in a neighbour-
hood ofs= 0. It follows that, forg, uniformly bounded, for large the integral on the right hand side of
the last equation may remain negativeaagries.

4.3 Estimated dependency ratios from time series

In order to see whether dependency ratios can be used for classification of processes of which only a time
series is available, a common situation in empirical applications, we estimate dependency ratios from sim-
ulated time series. We generate relatively short seigs from the stochastic models considered earlier

in this section; we estimate from these series bivariate invariant densities and use them to reconstruct the
dependency ratios. It is well known [1, 13] that fixed bandwidth nonparametric kernel density estimates
become rather poor in regions with only few observations. One way to avoid this would be to use a data
driven adaptive bandwidth which depends on the density locally, becoming larger as fewer observations are
present locally. Instead of using an adaptive bandwidth we suggest, for real valued time series, to transform
the data using the probability integral transform, that is, we construct

U = Be(X) = rank of X a::ong{Xs}N&l‘
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This amounts to transforming the invariant distribution to a uniform distribution on the unit interval, which
tends to stabilise the estimation of the dependency ratio as the marginals no longer need to be estimated.
In the case of first order ratios, the estimated empirical dependency ratio is equal to the empirical copula
density

~

1 N—-1
f(u,u2) = N_1 t; Kp(up —Uj,uz = Uiy 1).
HereKp(uy, Up) is a bivariate probability kernel, which we take to be the commonly used Gaussian kernel:

Ko (U, Up) — 1 @)@

B v 2rb

To avoid ‘probability mass’ from disappearing out of the unit square by this smoothing procedure, we impose
periodic boundary conditions M = S and reflecting boundary conditionshf = RR.

a=0.9 a=1.7
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Figure 4: First 1000 values (top panels) of 4000 consecufjvealues generated by the map, 1 =
tanh(aX) + &1 with &1 ~ N(0,0.5%). for a= 0.9 (left) anda = 1.7 (right). The lower panels show
the corresponding empirical level sets estimated with a Gaussian kernel (bandwidtio7).

Figure 4 shows level sets of the empirical dependency ratio obtained from time series of length
4000 from the symmetric hyperbolic tangent map given in equation (8) for different parameter values. The
dependency ratio is estimated by smoothing the empirical copula with a bivariate normal probability density
function (bandwidthb = 0.07). The empirical dependency ratio clearly reflects the fine structure of the
theoretical dependency ratio.

Figure 5 shows an attempt at performing a similar reconstruction for the asymmetric sine map
given by equation (7). In this case the topology of the reconstructed level sets does not correspond with that
obtained earlier; this is due to estimation error. Probably longer time series (along with smaller bandwidths
for the smoothers) are required for this case. We consider the optimal estimation and the related issue of
data requirements for estimating dependency ratios as an important area for future research.
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Figure 5: First 1000 values (top panels) of 4000 conseciivealues generated by the mp.; = X; +
asin(X) + 0.25sirf(X) + 0.25+ & 1 with &1 ~ N(0,0.7?) for a= —0.85 (left) anda = —0.95 (right).
The lower panels show the level sets of the corresponding empirical dependency ratio.
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A Proofs of the topological properties

In this appendix, the topological properties given in section 3 are proved.

A.1 Proofs of the propositions

We repeat the statements of propositions 2 and 3 for the convenience of the reader.

Proposition 2.  On a compact manifold M, a dependency ratio is structurally stable under ratio equiva-
lence if and only if it is regular.

Proposition 3. On a compact manifold M, the set of regular dependency ratios is everywhere dense.

Proof.
These propositions are direct corollaries from the following two lemmas.

Lemmal. If Miscompactandif f My, 1 — R is aregular dependency ratio, then there is a constantO
such that every g N¢(f) is regular and equivalent to f.
Lemma 2. If M is compact, the set of regular dependency ratios is dense in4fieflogy.

From lemma 1 we infer that regular ratios are structurally stable. If howkisa structurally stable ratio,
there is a neighbourhodd = N¢(f) such that everyg € U is equivalent tof. But as the regular ratios
are dense, according to lemma 2, there is a regular ratibwhich then equivalent té. By definition of
equivalence, the ratib itself has to be regular. The propositions follow. |

For non-compact manifolds of constant type, the following result is essentially a corollary of the results for
compact manifolds.

Proposition 4. On a manifold M of constant type, a well-behaved dependency ratio is stable with respect
to the strong topology under ratio equivalence.
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Proof.

Let f be a well-behaved dependency ratio, and Mt} be an exhaustion dfl. Let moreoveil > 0 andc; >
0 be such that for everyt’ > T we have tha®M; anddMy are diffeomorphic, for every componeftt;}
of (Mt)n;1 the restrictionf,! of f to C! is weakly ratio equivalent td; and there is a compact st such

that|DfJ (x)|x > ¢ if x e C/\K{. _
For everyt > T and everyj, there is then a constaat > 0 such that for everg ¢ Ngt,-(f) in the

C2-topology on(M)ny1, the restrictiongtj of g to Qj is weakly ratio equivalent tdtj. Let & = min; g,
ande(x) = max{& |X € (My)ns1}. It follows thatN,(f) is an open neighbourhood dfin the strongC?-
topology, such that everye N (f) is ratio equivalent td . [ |

A.2 Proofs of the lemmas

It remains to demonstrate the lemmas. For this, we first need the following technical result. In the statement
of the lemma, a ball of radiusaround 0 is denoted B, that is,B, = {x € R¥|||x|| < r}; also we have

If —9llczuy = max max|D! f (x) — Dlg(x)|.

0<j<2 xeU

Lemma 3. LetU C R be a bounded open set, and letW — R be a € function with Df(0) = 0 and
H f(0) non-degenerate. Then there exist constagtgo > 0 such that B, c U and that for ever) < § < &
and0 < n < no there is ane > 0, such that every function g satisfyifi§ — gf|cy) < € has a unique non-
degenerate critical poing € Bs with |g(y) — f(0)| < n, with g having the same indexygs f atO.

Proof.
For a matrixA, let[|Al| = maxy -1 ||AX| denote the matrix norm &. SinceH f(0) is non-degenerate, there
is a constant > 0 such that/H f (0)~1|| = c. Moreover, by continuity there is thensa > 0, such that

[Hf '(x)[|<2c  forall xeBs,.
Introducey =g— f andh; = f +t(g— f) = f +ty. Thenhy = f andh; = g. We shall solve the equation
Dhy(x) =0 (10)
fort € [0,1], using the implicit function theorem. Note that
Hh(x) = Hf(X) +tHy(x) = Hf (x) (I +tHf(x) THy(x)),
and consequently that

IHT00~
HTO)~H[IHy (I

-1
MR~ < T

Taking|t| < 1, x € Bs, and||y||c2 < (4¢) 1, we obtain
IHRe ()] < 4e.

In particular, we can apply the implicit function theorem to sotve x(t) from (10), first around = 0, and
then around every value offor which x(t) € Bs,. Note that sincédh, is non-degenerate everywhere, the
index of the critical point cannot change.

20



Furthermore
Dhi(x) =Df(0)+Df(x) —Df(0) +tDy(x) = /OlH f(sx)xds+tDy/(x)
=H f(O)x+/01(H f(sX) —H f(0))xds+tDy/(x).

By the continuity ofH f, there exists G< J, < 61 such that||H f(x) — Hf(0)|| < 1/(2c) for all x € Bg,.
Recalling the estimatgAx|| > [|A~2(|72||x||, it follows for 0 < § < &, that if [t| < 1, ||X|| = & and |y <
6/(2c), then

1
IDh ()| > [IH £ (0) |~ x| —/O [Hf(sx) —HT(O)]l[|x][ds—t|[Dy(x)]|
o0 o6

We have obtained the priori statement thax(t) ¢ dBs for all valuest € [0, 1] for which x(t) is defined.
Thereforex(t) can be continued to= 1, yieldingy = x(1).
To show thai(t) is the unique solution of (10) iBg, takey € Bs such thaty # x(t), and compute

(puttingys = X(t) 4 s(y — x(t))):
Dh(y) = DI (y) ~ Dh(x(t)) = | Hiy(ys)(y—x(0))ds
IOy x(O)+ [ (Hf(5) ~HIO)y—xD)ds+t [ Hy(y(y—x() s

It follows, as in the previous paragraph, thj&h; (y)|| > O for allt. But theny cannot be a critical point.
Finally, if v(t) = ht(x(t)) denotes the critical value &f, we see by differentiating that

%1’ = aart]t(x(t)) - Dht(x(t))%)t( = y(x(1));

consequently

1

07— £(0) = (1) =v(0) = [ yixv)e.

0

and|g(y) — f(0)| < maxg; [w(X)|.
Puttingdo = 62, no =1 ande = min{4—1c, %, n} yields the statement of the lemma. [ |

Lemmal. IfMiscompactandif f M, 1 — Risaregulardependency ratio, then there is a constant0
such that every g N¢(f) is regular and equivalent to f.

Proof.
Let X = (X1, - ,Xn+1) @ndy = (yi1,---,Yn+1) denote points itM, 1. Note that therr,(x) = x, etc. For a
metricd on M, define

Oh+1(Xy) = max 1d(ﬂe(><)7 m(y)).

Thend,; is a metric orMp_ ;.
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Let X1, ---, X be the critical points off, ordered such that, = f(x;) < f(x;) =v; if i < |.

Putvg = 0; thenvg < v1. Introduce

§=omin M—vil, o= min min d(m(x)zx));
then { is the smallest absolute difference of two critical values, ani the smallest distance of two
projections of critical points oM.

For everyi, choose a neighbourhodtf of x; and a coordinate char : W — RMM+Y)  such
thatx(x;) = 0, and setfi = f ox 1. By assumptiorDf;(0) vanishes andH f;(0) is nondegenerate. For
everyi, take 0< & < o such thaBs C x;(W) and such that 0 is the only critical point &fin By,

By the lemma, we can fingl > 0, such that every functiayp defined on (W) with || fi — gil|c2 < &
has a unique nondegenerate critical pgirin Bs, with | fi(0) — gi(yi)| < {/2 and withy; having the same
indextj as 0.

Introduce the open sdth = x(l(Bgi) C M1, and letC = M1\ U; Ui; note thaC is compact, and
that df £ 0 onC. Therefore, there i§ > 0, such thatify € Nco(f), then dy# 0 onC as well. Moreover, for
everyi there isgj such thag € N, (f), then in the chart; we have thal| fi — gi[|c2 < &. Sete = ming<j<k .

Finally, we have to provide a diffeomorphisp: M — M, homotopic to the identity, such that

D(x) = (pom(X)), o mi1(x))

mapsy; = % () to x;.
Note that by the choice af;, no two projections of the set onM intersect:

m, (Vi) N, (Uiy) = 0, forall 1<ii<ir<k, 1</1</l<n+1l

Fix i and¢, and consider om,(U;) a differentiable curve(t), defined for 0<t < 1, such that(0) = m,(X;)
andy(1) = m(y;i). Construct a vector fieldki; on M such thaty(t) = X,(y(t)) for0<t <1 andX;, =0
on M\ m;(U;).

LetX = 3; /X . The time-1 magp = &% has the required properties. ||

Lemma2. If M is compact, the set of regular dependency ratios is dense in&hieflogy.

Proof.
Recall that the joint densities of arth order stochastic process propagate via the Perron-Frobenius operator
(see e.qg. [9]), giving the equation

t

p

t—n

Lt (Xt—n+l» e ,Xt) = /M T(Xt|Xt,n, T ,th]_) p vm’t_l(xtfn’ o ’Xt*l) dthn-

If the process has a unique invariant densitys, - - - , Xn), the process with the transition probability density

q(%—n, X—n+1s- - 5 %)
p(xt—m e 7Xt—l)

has the same invariant density if q is small enough, such that i§ indeed a probability density, and
if [y dd%_(ny1)+j =0 forevery 1< j <n+1.

For every point € M, we can find a chast = (x!,--- ,x™) on M, such thak(&) = 0. Take§ > 0
such thatl = x 1(B;) andV = x~1(Bys) are in the domain ok. Let ¢,y : M — R be smooth functions
such thatp =1 onU, ¢ =0 onM\V, andy =0 onU UM\V and f, ydx > 0.

%(Xt|xt—na e >Xt*1) = T(Xt|xt*n7 e 7thl) +
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For1<j<m,let{;: M — R be defined by setting

xlp+Bjy on V,
0=94" "
on M\V.

Moreover, setp(X) = ¢ + Boy. The constant$; are chosen such thgj, ¢; dx =0 for all j.

Forx € Mpy1, letx = (X,--- ,X+1) be a chart such thad’x) = 0. For 1<i<n+1,1<j<
m, andp: M1 — R a function that is everywhere positive (this will be the invariant probability den-
sity p"™1(xn, 1) later on), define

(%) T i (%) _ fao(xa) -l - fni1.0(ni1)
bo(x)  p(X) p(x) ‘

Writing X = (X, -+ , X", we find that

axljd 0 otherwise.

ﬁj(x) =

It follows that foré > O sufficiently small and(y) € Bs x - - - x Bg, the differentials of the functioriqgj oX
are linearly independent vectorsTjiMn.1.

Choose for everx € My, 1 such a value fol¥, and setJy = x*l(Bs X .-+ x Bg). SinceM is
compact, it is covered by a finite number of thg sayUy,, - - ,Uy, . Set

q|] = pLXk

Thenq /p is a finite collection of functions oM,;1 such that their differentials spafjM,;1 at every
pointx e Mn+1. Moreover

/q!‘jnjngzo
M

for all /.

Recall the remark made at the beginning of the proof; let the stochastic process defined by the tran-
sition probability 7 (X, 1|X1,--- ,X,) have invariant probability densitigs-*(x,,--- , %) and dependency
ratio

pLoM(Xg, -+, %) P (Xnt1) P (%)

f(X]_, t 7Xn+1) =
Let moreovera = (a}‘l-) be such that

k q” X17 ’ 7Xn+1)
Jpl ."Xn>

T(Xng1|X1, -+, X%n +Z

defines a parameterised joint probability density: this is always the case|Ei1]thare sufficiently small,
since the transition probability density is assumed to be positive everywhere on the compact nvnifold
Then the dependency ratio of the new process is given by

q|]
)= f(x
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wherea = (af) € AC RX™""1), whereA is an open neighbourhood of 0.

Recall the definition of transversality (see e.qg. [5], definition 10.3.1, p. 8X)aifidY are smooth
manifolds,W a smooth submanifold of, the mapf : X — Y smooth, andk € X, then f intersectsV
transversally ax, if either f(x) ¢ W or f(x) € W and Ty (x)Y = Tr,yW + df(x) (TXX). More generally, we
say thatf intersectdV transversally af\ C X, if f intersectdV transversally ax for everyx € A.

We have the theorem that & X andY are smooth manifoldd)V a smooth submanifold of
andf : Ax X — Y a smooth map which intersedstransversally, then the set of poirts A for which fy =
f(a,.) : X =Y intersectdV transversally is everywhere denseAifsee [5], theorem 10.3.3, p. 85).

The derivative d of a functionf : M — R on a manifoldM defines a sectioa of the cotangent
bundleT*M; in a sufficiently small neighbourhoddi of a point inM, the restrictionT;M of the bundle tdJ
is isomorphic tdJ x R™, and the section takes the forstx) = (x,Df(x)). The zero sectioiy of T*M,
which is isomorphic taM, is locally of the formU x {0}.

The sectiorsis transversal td/p at a pointx € My, if eithers(x) & Mo, or if

T T"M = dS(X) M + T 0)Mo = (I, H (X)) R™+R™ x {0}.

Note that this is equivalent to saying tt&s transversal tdlg everywhere if and only if the functioh has
only nondegenerate critical points. Such a function is callesyalar functionor aMorse function

Consider now the functiog : Ax M — R and the associated mag: Ax M — T*M given
by s(a,x) = (X, dyg(a,X)). Note thatsis transversal td/o, since in local coordinates

0 I

ds(a,X) T2 AX M+ Ty )Mo = K
( )(a,x) (x0)¥I0 (dpqn'il Hxg(a,x)

) RKm(n+l) x RM+RM x {0}7
and since by construction tth{fj /p™1) spanR™ everywhere oM. By the theorem mentioned above, the
set ofa € Afor whichga = g(a,.) is a regular function which is everywhere denséin

For everye > 0, we can choosa so small thatg = g, is a regular function and € N (f),
whereN(f) is a neighbourhood in th@é* topology. It remains to show that by a second arbitrarily small
perturbation, we can achieve regularity of the dependency ratio.

Note that since is a regular function, its critical points are isolated. Denote themzby: -, Xn.
Assume that the points up toxy_1 have different critical values, and that they are suchtpigd;) # m,(x;)
ifl<i<j<k-1.

We choose a neighbourhobdC My 1 of Xk such thatJ is contained in the domain of a chart
for which x(x) = 0, and such thax, is the only critical point ofg in U. Letac R™™1 be such that
(a, Hg(O)*1a> # 0, where(x,y) denotes the inner product of the vectriandy; the inverse oHg(0) exists
sinceg is nondegenerate in 0; and the set of vectothat do not satisfy the condition form a union of a
smooth manifold of codimension 1 with the poiftt}.

Consider the function

() = h(t. ) = g(x) —t § &L,
1]

The critical points oh; are determined by the equation

This equation can be solved using the implicit function theorem areuad andt = 0 sinceHg(0) is
invertible. For the solutiom = x(t), we find

%1((0) = rl) Hg(0) la (11)
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Note that by the assumption anthis derivative is nonzero. We restrict the possible choicgfofther by
requiring that
dx 1 1
TCE*E(O) - EE*BHQ(O) a#0.

Moreover, ifv(t) = h(x(t)), then

dv
a(t) = —%aierjk"‘tht(X) = —%aiijj",

and

2
‘;t;’ (0) = —;<a, Hg(0) *a) # 0. (12)

Because of our choices, there are only finitely many valuésafwhichv(t) is equal to one of the critical
valuesg(x1), ---, g(xk—1), or for which the projectionsr,(xx) and m,(x;) coincide for some K i < k
and 1< ¢ <n+ 1. From equations (11) and (12) it follows that the set of valugsaebiding these special
values is everywhere dense in a neighbourhoad-00. This finishes the proof of the lemma. [ |
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