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Abstract

This paper formalizes the idea that more hedging instruments may destabilize markets when
traders are heterogeneous and adapt their behavior according to experience based reinforce-
ment learning. We investigate three different economic settings, a simple mean-variance asset
pricing model, a general equilibrium two-period overlapping generations model with hetero-
geneous expectations and a noisy rational expectations asset pricing model with heterogeneous
information signals. In each setting the introduction of additional Arrow securities can desta-
bilize the market, causing a bifurcation of the steady state to multiple steady states, periodic
orbits or even chaotic fluctuations.
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“Our fundamental risks will thus be insured against, hedged, diversified, making for a safer world. By
lightening the burden of risk, a new democratic finance will encourage all of us to be more venturesome,
more inspired in our activities.”, Robert J. Shiller, The New Financial Order: Risk in the 21st Century,
Princeton University Press, 2003.

1 Introduction

Robert J. Shiller (2003) advocates an expansion of the number of risk hedging instru-
ments. We support his argument. But there are some issues of reinforcement learning,
price adjustment, potential instability and excess volatility in a world that has more
hedging instruments which we wish to discuss in this paper. Rajan (2005) has recently
raised similar concerns arguing that due to revolutionary changes in the financial sector
markets may be more exposed to financial turmoil. In particular, Rajan notes an ex-
plosive growth of investment instruments and global investment opportunities as well
as a different type of investment management, moving away from traditional banks
to mutual funds, insurance companies, pension funds and investment firms. Among
these investment managers, incentives based on relative performance as measured by
realized returns seem to play an increasingly important role. Before we begin, we em-
phasize that we do not dispute the potential welfare increasing effects of adding more
risk hedging instruments. Our concern is with the impact of adding more risk hedging
instruments upon adjustment paths towards new equilibria when a new risk hedging
instrument is added.

This paper formalizes the idea that more hedging instruments or derivative securities
may destabilize a market when traders are heterogeneous and learn from experience
based on realized returns. Here is a sketch of the idea. Consider a heterogeneous
agent intertemporal asset market where risk averse agents are learning the structure
of asset prices in the economy by using, for example, different prediction strategies
of future asset prices under some kind of reinforcement or evolutionary learning, for
instance as in Brock and Hommes (1997). Let there be S states of the world and a
finite number of contingent claims or risk hedging instruments available for n < S
states of the world. We model the risk hedging instruments as “Arrow” securities for
state s, 1 ≤ s ≤ n < S, each paying 1 if state s occurs and 0 otherwise. Elementary
Arrow securities are used here as a convenient analytical device, but may be viewed as
proxies for more realistic financial securities such as futures or derivative securities.
Now suppose a new risk hedging instrument, that is, a new Arrow security, is added
for state n + 1 < S. Then, since agents are risk averse, and since they can use the
new Arrow security to hedge out “extra” risk, they will now tend to place bigger po-
sitions on the market. Thus if an agent uses a predictor or purchases a “signal” and
that forecasting tool turns out to be on the “right side” of the market, it will return a
larger profit (because a larger position has been placed on the market), therefore it will
receive a stronger reinforcement. Under reinforcement learning this implies that more
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individuals will switch to using that particular forecasting tool. This, in turn, implies
that the learning system is now more likely to “overshoot”, i.e. to become unstable.
This intuitive idea will be formalized in three different model settings, and for each
we will show that adding more hedging instruments may destabilize market dynam-
ics. Our main tools of analysis stem from nonlinear dynamics and bifurcation theory
as treated for instance in Guckenheimer and Holmes (1983), Grandmont (1988), Ar-
rowsmith and Place (1994), Kuznetsov (1995) and Medio and Lines (2001). Early
economic applications of nonlinear dynamics have been discussed extensively in e.g.
Grandmont (1985, 1986) and Boldrin and Woodford (1990).

Our first model is a simple mean-variance two period trading framework based upon
Brock and Hommes (1998), which we use to expose the potential increased instability
of reinforcement learning in a minimalistic setting. In the model several prediction
strategies are available to the agents, who base their choice upon measures of past
performance. There is a large number of agents, and their behavior is described by a
discrete choice model which gives simple analytical forms for the choice probabilities;
see e.g. Anderson, de Palma and Thisse (1993) for many other economic applications.
We show that the critical value of a bifurcation parameter, marking the onset of insta-
bility, is ”smaller” when more Arrow securities are added. While this framework is
overly simple and is partial equilibrium, it has enough structure to expose the role of a
key lemma about nested positive definite matrices that enables us to show that “larger”
positions will be taken when there are more Arrow securities available to “hedge out”
risks. The larger position turns out to be enough to show that bifurcation towards in-
stability occurs “earlier” when there are more Arrow securities. We provide examples
where adding more Arrow securities leads to multiple steady states through saddle-
node bifurcations and to an unstable steady state through a Hopf bifurcation leading
to periodic and eventually even chaotic asset price fluctuations.

The second model is a two period general equilibrium overlapping generations (OG)
model. The OG-model has become a benchmark model in economic dynamics and
the possibility of complicated dynamical behavior has been pointed out in the pioneer-
ing work by Benhabib and Day (1982) and Grandmont (1985). A novel aspect of our
model is that agents have heterogeneous expectations about next period’s price of a
risky asset; see Brock and DeFontnouvelle (2000) for an earlier OG-model with het-
erogeneous beliefs. It turns out that a very similar result can be established in this more
complicated two-period OG-model. That is to say, a bifurcation in the dynamics of the
reinforcement learning system occurs “earlier” if more Arrow securities are added. A
quadratic approximation of the OG-model around the steady state leads in fact to the
same dynamics as in the first, mean-variance asset pricing model. In particular, local
bifurcations of the steady states in both frameworks coincide.

The third model is a noisy rational expectations asset pricing model in which agents
receive information signals about stochastic future dividends, following the pioneer-
ing work of Grossman and Stiglitz (1980). The dividend of the asset consists of a
sum of S independent random variables and each “Arrow security”, i, corresponds to
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a tradeable claim on the i-th random variable that makes up the sum of S independent
random variables. Agents have rational expectations about future asset prices in this
model, but they have heterogeneous information signals about future dividends. De-
Fontnouvelle (2000) and Goldbaum (2005, 2006) have also studied this type of model
with reinforcement learning. The novel aspect in our paper is how Arrow securities af-
fect market stability. We show that, when better information is more costly, again, for
much the same reason, bifurcation occurs earlier in the reinforcement learning system
when more Arrow securities are added. We provide an example where adding more
Arrow securities destabilizes the system through a period doubling bifurcation.

Our work exposes a tension within incomplete markets general equilibrium systems
where learning takes place. On the one hand adding Arrow securities helps to remove
heterogeneity in beliefs about different states of the world. For example, if there is an
Arrow security for every state of the world, then equilibration in the pricing of these
objects is a powerful force towards homogenization of beliefs. But on the other hand,
if agents in the model are using different strategies (e.g. different predictors of future
prices or different signals about future dividends) and the strategies are chosen accord-
ing to past performances, then increasing the number of Arrow securities may tend to
increase the potential for instability of the learning system. This is so because increas-
ing the number of risk hedging instruments enables an agent using a particular strategy
to take a larger position on the market while bearing the same amount of risk. Thus if
that strategy ends up performing relatively better than others, profits for that predictor
will tend to be larger and hence it will be reinforced more in a reinforcement learn-
ing system. For an extensive survey on incomplete markets see Magill and Quinzii
(1994) and references therein. General surveys on learning and bounded rationality
in economics include Evans and Honkapohja (2001), Grandmont (1998), Guesnerie
(2002), Kurz (1994), Marimon (1997) and Sargent (1993). Our work is also related
to the work on evolutionary selection and learning in complete and incomplete mar-
kets by, e.g., Blume and Easley (1992, 2006), Araújo and Sandroni (1999), Sandroni
(2000, 2005), Amir et al. (2005), Evstigneev et al. (2002), and Hens and Schenk-
Hoppé (2005). None of these papers however investigates how the addition of Arrow
securities affects market stability.

Before we get into details of the paper we must say something about the potential
generality of our result that more hedging instruments may destabilize markets. Ob-
viously this kind of result can not appear in a complete markets intertemporal general
equilibrium model with no learning of any kind. In this paper we show the result to
be valid in three different settings, a mean-variance asset pricing framework, a two-
period OG general equilibrium framework and an information dynamics framework.
We believe it might appear in generalizations of economic learning systems, such
as Arifovic (1994), Arthur (1994), Bullard (1994), Bullard and Duffy (1998,2001),
Marcet and Nicolini (2003), Schönhofer (1999) and Woodford (1990). Heterogeneous
expectations play an increasingly important role in economics and finance, and mod-
els with heterogeneous learning agents have been studied recently by e.g. Arthur et
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al. (1997), Branch (2004), Branch and Evans (2005, 2006), Brock and DeFontnou-
velle (2000), Brock et. al. (2005), Chiarella and He (2003), DeGrauwe and Grimaldi
(2005), DeLong et al. (1990ab), Gaunersdorfer (2000), Kirman (1993), LeBaron et
al. (1999), Scheinkman and Xiong (2004) and Sethi and Franke (1995); see LeBaron
(2006) and Hommes (2006) for two up to date reviews of learning in a heterogeneous
agent framework, Kirman (2006) for a recent discussion of the role of heterogeneity
and Barberis and Thaler (2003) for a survey of related work in behavioral finance.
Information dynamic financial models with heterogeneous information signals have
been studied recently by DeFontnouvelle (2000) and Goldbaum (2005, 2006).

From a methodological viewpoint we note that, in these different economic settings,
instability can arise through a Hopf, a saddle-node or a period doubling bifurcation.
Each of these three generic co-dimension one bifurcations toward instability can arise
when adding more Arrow securities. The examples discussed here in three different
economic settings thus provide all generic possibilities from a mathematical view-
point. For a mathematical treatment of generic co-dimension one bifurcations we refer
to Guckenheimer and Holmes (1983), Grandmont (1988), and Kuznetsov (1995).

This paper is organized as follows. Section 2 presents a simple two period mean
variance heterogeneous agent asset pricing model. This is a minimalist model for
determination of equilibrium asset prices, but it is enough to formalize the idea that
adding Arrow securities causes increased reinforcement of past successful predictors
and may generate instability. Section 3 develops a general equilibrium overlapping
generations asset pricing model with heterogeneous beliefs. Although this model is
not as analytically tractable as the first model, it is still tractable enough that we are
able to introduce reinforcement learning. We obtain a very similar result as we obtain
in the first model. In fact, a linear-quadratic approximation of the OG-model around
any homogeneous expectations steady state equilibrium yields the same dynamics,
up to higher order terms, as the mean-variance asset pricing framework. Section 4
introduces the third framework, a noisy rational expectations model, where dividends
are given by a sum of S independent random variables. The object that plays the
role of an Arrow security is now a claim on the i’th part of the dividend random
variable. Again we are able to show that under reinforcement learning, addition of
another claim to the existing set of claims causes bifurcation to occur “earlier.” It is of
interest to note that a key lemma on the behavior of nested positive definite matrices
plays an important role in the proofs of the result for all three models even though
the models are quite different. This is one reason why we think there is hope that our
kind of result can be generalized to more realistic settings such as models with longer
horizons. The paper closes with a summary, conclusions, and suggestions for future
research. Three Appendices provide a proof of the key matrix theoretic lemma, a proof
of the bifurcation structure of a two-type example of the mean-variance asset pricing
model as well as a self contained proof of existence of an equilibrium price vector in
the OG-model. The latter is included not only to make the paper self contained but
also to deal with some existence issues that seem difficult to find in the literature.
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2 Asset pricing model

In this section we extend the asset pricing model with heterogeneous beliefs of Brock
and Hommes (1997, 1998) by adding contingent claims or Arrow securities. There
are S possible states of the world in period t + 1. They occur with probabilities αs,
1 ≤ s ≤ S, which are independent of time and which are common knowledge. Agents
can buy risk free bonds and two types of risky assets, stocks and Arrow securities.
Bonds are bought at a fixed price 1 and pay R > 1 in the next period. Stocks are
bought at a market price p0

t at time t, and at time t+ 1 in state of the world s they pay
an amount

qs
t+1 = p0

t+1 + ys,

which is the sum of the new market price p0
t+1 and a dividend ys that depends on the

state of the world. Finally Arrow securities for state i are bought at a market price
pi

t and pay a quantity δs
i , which is 1 if s = i and 0 otherwise. However, markets are

incomplete and Arrow securities are only available for states 1, · · · , n, where n < S.

An agent’s demand for stock and the i’th Arrow security is denoted by z0
t and zi

t

respectively. Introduce vector notation by setting

z̃t = (z1
t , · · · , zn

t ) and zt = (z0
t , z̃t);

p̃t = (p1
t , · · · , pn

t ) and pt = (p0
t , p̃t)

δ = (δ1, · · · , δn) and
α = (α1, · · · , αn).

Introduce variance and covariances as

σ2 = Var qt+1,

ηi = Cov(qt+1, δi) and η = (η1, · · · , ηn),

Σ = Cov(δ).

Finally, let a > 0 be the coefficient of risk aversion and introduce the symmetric
(n+ 1, n+ 1)-matrix

V = aCov(qt+1, δ) = a

(
σ2 ηT

η Σ

)
. (1)

Note that V is just the covariance matrix of the uncertain payments of the stock and
the Arrow securities multiplied by the coefficient of risk aversion a. Note also that
V is singular if and only if the stochastic variable qt+1 is a linear combination of the
available Arrow securities. For instance, this will be the case when the market is
complete, i.e. when there is a full set of Arrow securities (n = S).
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The inner product of two vectors v and w is denoted by 〈v, w〉. With this notation,
if Wt is the current wealth of an agent, his next period’s wealth in state of the world s
is

W s
t+1 = R

(
Wt − p0

t z
0
t − 〈p̃t, z̃t〉

)
+ qs

t+1z
0
t + zs

t .

In state s the excess profit πs
t+1 due to trading the risky assets equals

πs
t+1 = W s

t+1 −RWt =

〈(
−Rp0

t + qs
t+1

−Rp̃t + δs

)
, zt

〉
.

Utility is assumed to be of mean–variance type:

Ut = Et πt+1 −
a

2
Vartπt+1 =

〈(
−Rp0

t + Etqt+1

−Rp̃t + Etδ

)
, zt

〉
− 1

2
〈zt, V zt〉. (2)

Note that this expression is of the form k(z) = 〈b, z〉 − 1
2
〈z, V z〉, and that V is a

positive symmetric matrix. From the identity

〈b, z〉 − 1

2
〈z, V z〉 =

1

2

〈
b, V −1b

〉
− 1

2

〈
z − V −1b, V (z − V −1b)

〉
,

it follows that k(z) is maximized for z∗ = V −1b, and that k(z∗) = 1
2
〈b, V −1b〉. Applied

to Ut, this yields the optimal demands

zt = V −1

(
−Rp0

t + Etqt+1

−Rp̃t + Etδ

)
. (3)

2.1 Homogeneous expectations. To obtain a benchmark, consider the case of ho-
mogeneous rational expectations. Arrow securities are endogenous to the system and
therefore their total supply is zero. The total supply of the stock is ζ0.

Denote expected dividends by ȳ =
∑
ysαs. If the market clears, that is, if total supply

equals total demand for the stock and for all Arrow securities, then we obtain using
equations (1) and (3)

−Rp0
t + Etp

0
t+1 + ȳ = ζ0aσ2,

−Rp̃t + α = ζ0aη, for i = 1, · · · , n.

Imposing the transversality condition that prices remain bounded, these equations are
solved by constant fundamental prices pt = p∗, given as

p0
∗ =

ȳ − ζ0aσ2

R− 1
, p̃∗ =

1

R

(
α− ζ0aη

)
. (4)

The terms involving ζ0 can be interpreted as the risk premium required by the investors
to hold the risky assets. These vanish if ζ0 vanishes.
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The elements of the matrix V in (1) can be computed. Recalling qs
∗ = p0

∗ + ys, we
obtain the variance and the covariances

σ2 =
∑

(ys − ȳ)2αs,

ηi =

(
αi(y

i − ȳ)− αi

∑
j

αj(y
j − ȳ)

)
= αi(y

i − ȳ),

Σij =

{
αi(1− αi) if i = j,
−αiαj if i 6= j.

2.2 Heterogeneous expectations. Consider now the case that agents are hetero-
geneous in their expectations or beliefs about future prices of the stock, but homoge-
neous with respect to everything else; in particular, we assume that every agent agrees
about V having the fundamental value of the homogeneous case.

There are H agent types, indexed by h. Equation (3) holds for each agent type, and
becomes

zht = V −1

(
−Rp0

t + Ehtqt+1

−Rp̃t + Etδ

)
= V −1Bht, (5)

or equivalently

V zht =

(
−Rp0

t + Ehtqt+1

−Rp̃t + Etδ

)
= Bht. (6)

HereBht may be interpreted as the belief vector of type h about the excess return of the
stock and the Arrow securities. Note that since the probabilities of states of the world
are assumed to be common knowledge, the expectation Etδ is the same for all types.
Also note that agents differ in their assessment of Ehtqt+1, but that they agree on V .
This simplifying assumption is made for analytical tractability of the heterogeneous
agent case, but it is supported by the observation that there may be more agreement
about the variance than about the mean. The assumptions have parallels in Brock and
Hommes (1998); they imply that all agents have the same risk perception as rational
fundamentalists.

Recall that qt+1 = p0
t+1 + y. We already assumed homogeneous and correct expecta-

tions about dividends, but agents have heterogeneous expectations about next period’s
price of the stock. It will be convenient to work with price deviations from the funda-
mental benchmark prices given by (4): x0

t = p0
t − p0

∗, x
i
t = pi

t − pi
∗. We assume price

expectations to be of the form

Ehtp
0
t+1 = p0

∗ + fht = p0
∗ + fh(xt−1, · · · , xt−L).

Here fh represents a function of past deviations from the fundamental (e.g. a techni-
cal trading rule) according to which type h beliefs that prices will deviate from their
fundamental benchmark.
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2.2.1 Market clearing. Let the fraction of agents following belief h at time t be
denoted as nht. As before, Arrow securities are endogenous to the system, and their
total supply is zero. Market clearing for the stock and the Arrow securities requires:∑

h

nhtz
0
ht = ζ0,

∑
h

nhtz̃ht = 0.

In deviations from the fundamental, equation (6) reads as

V zht = V

(
ζ0

0

)
+

(
−Rx0

t + fht

−Rx̃t

)
. (7)

or equivalently

zht =

(
ζ0

0

)
+ V −1

(
−Rx0

t + fht

−Rx̃t

)
. (8)

Adding these equations, weighted by fractions, and market clearing yields

Rx0
t =

∑
h

nhtfht, x̃t = 0. (9)

A number of important observations can now be made. First, according to (9), the
price deviations of the Arrow securities are zero, x̃t = 0, implying that the Arrow
securities are correctly priced. This is due to the fact that Arrow securities are short
lived, only one period, and all agent types h have correct beliefs about dividends and
their probability distribution. Secondly, when all types are fundamentalists, that is
if fht = 0 for all h, it follows from (9) that also the price deviations of the stock
are zero, x0

t = 0. Consequently, by (8), the demand for each Arrow security equals
zero; in this case Arrow securities are redundant. Note that this is actually always
true when all types h share the same belief, that is, if beliefs are in fact homogeneous,
since the total supply of Arrow securities is 0. In the case of heterogeneous beliefs
the demand for Arrow securities will be non-zero, as different types attempt to hedge
their risk. Finally, under heterogeneous beliefs about future prices the market price of
the risky asset will in general deviate from its fundamental benchmark. In fact, the
expression Rx0

t =
∑

h nhtfht in (9) is the same as in the asset pricing model without
Arrow securities in Brock and Hommes (1998). However, as we will see below, the
existence of Arrow securities will affect the magnitude of the fractions nht through the
evolutionary updating mechanism.

2.2.2 Fitness. In order to close the model, the evolution of the market shares nht has
to be specified. We assume that their market share is related to their fitness, measured
by some uht−1; the subscript t − 1 indicates that the fitness measure depends only on
past prices that are known. The fraction of agents using strategy type h will thus be
driven by “experience” or “regret” through reinforcement learning. Given the fitness

8



measure, the fraction of agents using strategy type h is determined by a multinomial
logit model:

nht =
eβuht−1

Zt

, Zt =
∑

h

eβuht−1 . (10)

where Zt is a normalization factor for the fractions nht to add up to 1. These fractions
are derived from a random utility model. Manski and McFadden (1981) and Anderson,
de Palma and Thisse (1993) give an extensive overview and discussion of discrete
choice models, in particular the multinomial logit model, and their applications in
economics. Brock and Hommes (1997) have applied this framework to selection of
expectations rules.

The crucial feature of (10) is that the higher the fitness of trading strategy h, the more
agents will select strategy h. The intensity of choice parameter β > 0 in (10) measures
how sensitive agents are to selecting the optimal prediction strategy. This intensity of
choice β is inversely related to the variance of the noise in the observation of random
utility. The extreme case β = 0 corresponds to noise with infinite variance, so that
differences in fitness cannot be observed and all fractions (10) will be equal to 1/H .
The other extreme case β = +∞ corresponds to the case without noise, so that the
deterministic part of the fitness is observed perfectly and in each period, all agents
choose the optimal forecast. An increase in the intensity of choice β represents an
increase in the degree of rationality with respect to evolutionary selection of strategies.

We look at two fitness measures for strategies: average profits and average risk–
adjusted profits.

Average profits. The first fitness measure to be considered is the average profit due
to trading risky assets, obtained by averaging actual profits πs

ht over the states of the
world:

uht =

〈(
−Rp0

t−1 + p0
t + ȳ

−Rp̃t−1 + α

)
, zht−1

〉
=

〈
V

(
ζ0

0

)
+

(
−Rx0

t−1 + x0
t

0

)
,(

ζ0

0

)
+ V −1

(
−Rx0

t−1 + fht−1

0

)〉
.

Since the nht depend only on fitness differences, not on the absolute level of fitness,
the fitness measure uht is split in a term u0t, which is the same for all types, and a
type–dependent contribution. It reads as:

uht = u0t +

〈(
−Rx0

t−1 + x0
t

0

)
+ V

(
ζ0

0

)
, V −1

(
fht−1

0

)〉
.
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Since u0t is independent of h and the discrete choice fractions (10) are independent
of the fitness level we can drop the term u0t. The matrices V and V −1 are symmetric.
After shifting V −1 to the other factor of the inner product and dropping u0t, the product
can be evaluated, yielding

uht = (V −1)00(x
0
t −Rx0

t−1)fht−1 + ζ0fht−1, (11)

where the subindex 00 refers to the element in the first column and first row in the
matrix (the row and column corresponding to the stock).

Average risk-adjusted profits. The second fitness measure is average risk-adjusted
profit, that is, average profits corrected for the risk taken when buying risky assets.
Average risk–adjusted profits is given by

uht =

〈(
−Rp0

t−1 + p0
t + ȳ

−Rp̃t−1 + α

)
, zht−1

〉
− 1

2
〈zht−1, V zht−1〉.

Notice that this fitness measure for strategy selection is consistent with mean–variance
maximization in (2). Using (5) and the realized excess return vector

Bt−1 =

(
−Rp0

t−1 + p0
t + ȳ

−Rp̃t−1 + α

)
,

we can rewrite risk–adjusted realized profits as

uht = 〈Bt−1, zh,t−1〉 − 1
2
〈zh,t−1, V zh,t−1〉

= 〈Bt−1, V
−1Bh,t−1〉 − 1

2
〈V −1Bh,t−1, V V

−1Bh,t−1〉

= 〈Bt−1, V
−1Bh,t−1〉 − 1

2
〈Bh,t−1, V

−1Bh,t−1〉.

(12)

In the special case where type h has rational expectations or perfect foresight, i.e.
Bh,t−1 = Bt−1, this expression simplifies to uR

t = 1
2
〈Bt−1, V

−1Bt−1〉. Now look at
the difference between risk–adjusted profits of type h and fully rational agents, i.e.

uht − uR
t = 〈Bt−1, V

−1Bh,t−1〉 − 1
2
〈Bh,t−1, V

−1Bh,t−1〉 − 1
2
〈Bt−1, V

−1Bt−1〉

= −1
2
〈Bt−1 −Bh,t−1), V

−1(Bt−1 −Bh,t−1)〉

= −1
2

〈(
xt − fh,t−1

0

)
, V −1

(
xt − fh,t−1

0

)〉
= −1

2
(V −1)00(xt − fh,t−1)

2.

(13)

Since uR
t is independent of h and the fractions are independent of the fitness level we

conclude that risk–adjusted profits are equivalent, up to a constant factor, to (minus)
squared prediction errors. In the case when there are no Arrow securities we have
(V −1)00 = 1/(aσ2) and the risk adjustment fitness measure coincides with Brock and
Hommes (1998).
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2.3 Adding Arrow securities. This subsection addresses the main theme of this
paper in the asset pricing setting with heterogeneous beliefs: what happens to the
dynamics under reinforcement learning when adding Arrow securities?

2.3.1 General mechanism To make the dependence on the number of Arrow se-
curities explicit, we write Vn for the (n + 1, n + 1)–matrix (1) in the case with n
Arrow securities. When we add an extra Arrow security to the system, the dynamical
behavior only changes through the term (V −1

n )00 in the fitness measure. Adding the
(n + 1)–th Arrow security the corresponding symmetric (n + 2, n + 2)–matrix takes
the form

Vn+1 =

(
Vn r
rT s

)
, (14)

where

r = (aCov(qt+1, δn+1), aCov(δ1, δn+1), · · · , aCov(δn, δn+1)),

and

s = aVar(δn+1).

To obtain information about (V −1
n+1)00, the following matrix lemma is useful. The proof

of the first part of this lemma can be established by a variation on the use of the formula
for the inverse of a partitioned matrix which uses the notion of Schur complement of
a submatrix of a matrix (Skogestad and Postlethwaite (1996, p. 499). The second part
can be established using Schur’s formula for the determinant of a partitioned matrix
(Skogestad and Postlethwaite (1996, p. 500)). In appendix A we give a self contained
proof.

LEMMA 1. LetQn be a symmetric (n, n)-matrix andQn+1 a symmetric (n+1, n+1)-

matrix of the form
(
Qn r
rT s

)
, where r is an n-vector and s a scalar, and let w̃ =

(w,w0), with w an n-vector and w0 a scalar. Then

〈
w̃, Q−1

n+1w̃
〉

=
〈
w,Q−1

n w
〉

+
(w0 − 〈r,Q−1

n w〉)2

s− 〈r,Q−1
n r〉

.

Moreover,

detQn+1 = detQn

(
s−

〈
r,Q−1

n r
〉)
.

Note that if w = (1, 0, · · · , 0), then (V −1
n )00 = 〈w, V −1

n w〉. Since both Vn and Vn+1

are symmetric positive matrices, we have detVn, detVn+1 > 0. Apply the lemma to
see that

s−
〈
r,Q−1

n r
〉

=
detQn+1

detQn

> 0,

11



and consequently that

(V −1
n+1)00 =

〈
w̃, V −1

n+1w̃
〉
≥
〈
w, V −1

n w
〉

= (V −1
n )00. (15)

In fact, (15) is a strict inequality except for hairline cases. This can be seen by noting
that since w0 = 0 and w = e1 is the first unit vector in our application of the lemma,
the inequality will be strict if and only if 〈r, V −1

n (e1)〉 6= 0, which will be the case for
typical choices of the dividends ys and the probabilities αs, except for hairline cases.
It may be more intuitive to work with

σ2
n =

1

a(V −1
n )00

, 0 ≤ n ≤ S − 1, (16)

which may be viewed as a measure of risk when there are n Arrow securities. The
(strict) inequalities (15) are equivalent to

σ2
0 > σ2

1 > · · · > σ2
S−2 > σ2

S−1 = 0, (17)

implying that the risk measure decreases when more Arrow securities are added to the
market, because more risk can be hedged.

We are now ready to formulate the main result within the mean-variance heteroge-
neous agent asset pricing framework. A typical feature of reinforcement or evolution-
ary learning systems as in Brock and Hommes (1997,1998) is a bifurcation route to in-
stability and complicated dynamics when the intensity of choice β to switch strategies
increases. We claim that adding Arrow securities leads to earlier primary bifurcations:

THEOREM 1. Consider the asset price dynamics with reinforcement learning in (9–
10). Let the fitness measure be given either by (i) average profits in (11) with zero
supply of outside shares, i.e. ζ0 = 0, or (ii) average risk-adjusted profits in (13). If
β∗0 is the primary bifurcation value in the case without Arrow securities, that is, β∗0 is
the critical value for which the steady state becomes unstable if there are no Arrow
securities, then for almost all dividends ys and probabilities αs the primary bifurcation
value β∗n for the system with n Arrow securities and incomplete markets (i.e. n < S)
satisfies

β∗n+1 < β∗n < β∗0 , 1 ≤ n < S − 2. (18)

Proof
The proof follows immediately from the inequality (15) or equivalently, the inequali-
ties (17). As discussed above, this inequality is strict if and only if 〈r, V −1

n (e1)〉 6= 0,
where

r = (aCov(qt+1, δn+1), aCov(δ1, δn+1), · · · , aCov(δn, δn+1)),

12



which will be the case for Lebesgue almost all choices of ys and αs. The fitness
given by average risk-adjusted profits (13) is proportional to (V −1

n )00 or, equivalently,
inversely proportional to σ2

n. The same holds for the fitness given by average profits
(11), when ζ0 = 0. Let β∗0 be the first bifurcation value when there are no Arrow
securities. Then the system with n Arrow securities will undergo its first bifurcation if

β

σ2
n

=
β∗0
σ2

0

, that is, if β = β∗0
σ2

n

σ2
0

def
= β∗n. (19)

From (17) we infer that

β∗0 > β∗1 > · · · > β∗S−2.

Consequently, with more Arrow securities the primary bifurcation comes earlier, that
is β∗n+1 < β∗n < β∗0 , 1 ≤ n < S − 2.

This theorem implies that, in the presence of more Arrow securities, the primary bifur-
cation at the onset of instability occurs earlier. In fact, if all other parameters including
the intensity of choice are fixed, adding Arrow securities may destabilize the market.
Within the mean-variance asset pricing framework this result holds in general for the
average risk-adjusted profit fitness measure. For the average profit fitness measure the
result can not be shown in full generality because of the extra, type dependent, term
ζ0fh,t−1 in the fitness measure (11). When outside supply of shares is zero, i.e. ζ0 = 0,
this term drops from the fitness and the result holds. If ζ0 > 0, the result may or may
not hold depending on the distribution of belief types.

There is a simple economic intuition behind the theorem. When there are more Arrow
securities, agents will take bigger positions in the risky asset because they can hedge
out more risk. Moreover, trading strategies that turn out to be on the right side of the
market will earn higher rewards and, under reinforcement learning, will attract more
followers. This may be seen from substituting the Arrow security equilibrium prices
x̃t ≡ 0 from (9) into the demand vector (8) to obtain

zht =

(
ζ0

0

)
+ V −1

n

(
−Rx0

t + fht

0

)
. (20)

The demand of type h for the stock is then given by

z0
ht = (V −1

n )00(fht −Rx0
t ) =

(fht −Rx0
t )

aσ2
n

. (21)

When the number of Arrow securities increases, the risk measure σ2
n decreases. Hence,

it is clear from (21) that the introduction of additional Arrow securities forces opti-
mistic (pessimistic) agents, with the same risk aversion coefficient a, to hold bigger
(smaller) positions in the stock. For example, optimistic traders who predict next pe-
riod’s asset price deviation fht from the fundamental price to grow faster than R times

13



the current positive deviation, that is, for whom fht − Rx0
t > 0, will take larger posi-

tions when there are more Arrow securities. Agents hold bigger positions because in
the presence of more Arrow securities they hedge out more risk. Moreover, strategies
that more accurately forecasted the price movement will attract more followers accord-
ing to the risk-adjusted fitness measure (13) and inequality (15). Similarly, strategies
that more accurately predicted the excess return x0

t − Rx0
t−1 will earn higher average

profits when there are more Arrow securities according to (11) and thus also attract
more followers. Stated differently, strategies that turned out to be on the “right” side
of the market will be rewarded and attract more followers.

2.4 Examples. In this subsection we present simple examples of bifurcation routes
to instability in the asset pricing model with heterogeneous beliefs and reinforcement
learning. In the first example the fitness measure is average realized profit, while in the
second example fitness equals average risk adjusted profits. In both examples, adding
Arrow securities destabilizes the system earlier and leads by a bifurcation route to
more complicated dynamical behavior.

Example 1. In the first example we take average profits (11) as the fitness measure.
Consider an example with three different purely biased forecasting rules. More pre-
cisely, let b > 0 be a constant, and let the forecast rules be given, in terms of deviations
from the fundamental benchmark, by:

f1t = 0, (22)
f2t = b, (23)
f3t = −b, (24)

Agents of type 1 are fundamentalists, who believe that prices will always be at their
fundamental value, or, equivalently, who expect price deviations from the fundamental
to be zero. Type 2 are optimists, who expect that the price of the good will always be
a constant amount b above the fundamental price, whereas type 3 are pessimists, who
always expect prices to be a constant amount b below the fundamental price. This
example is symmetric in the sense that the optimistic and the pessimistic strategy are
exactly balanced around the fundamental price. A consequence of this symmetry is
that the steady state price of the system coincides exactly with the fundamental price.

Brock and Hommes (1998, pp. 1258-1261) have studied this example in detail; they
have showed that a Hopf bifurcation occurs when the intensity of choice β increases.
For b = 0.2 and no Arrow securities, the Hopf bifurcation occurs for β = β∗0 ≈ 37.5.
Figure 1 plots the coefficient β(V −1

n )00 = β/(aσ2
n), where β = 3, as a function of

the number n of Arrow securities. According to lemma 1 this coefficient is (strictly)
increasing, and the figure illustrates that it blows up when the market approaches
completeness, that is, as the number of Arrow securities approaches the number of
states of the world, S = 40. Without Arrow securities the system is stable, since
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Figure 1: Plot of the coefficient β(V −1
n )00 = β/(aσ2

n) as a function of the number n
of Arrow securities, for two different probability distributions. There are S = 40 states
of the world, (a) in the left plot all with equal probabilities αi = 1/S, (b) in the right
plot with probabilities αi = pi(1 − p), i = 1, · · · , S − 1, and αS = 1 −

∑S−1
1 αi,

with p = 6/7. Dividends in state of the world i are given by yi = i−1. Other parameters
are β = 3, b = 0.2 and ζ0 = 0. Without Arrow securities (V −1)00 = 1/(aσ2) = 1, but
(V −1

n )00 = 1/(aσ2
n) increases as the number of Arrow securities increases and explodes

when n approaches the number of states S = 40. When the number of Arrow securities
increases from 22 to 23 for the uniform and from 16 to 17 for the geometric distribution,
the critical Hopf bifurcation value (indicated by the dotted line) is crossed, and the system
is destabilized.
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β = 3 < β∗0 = 37.5. As the number n of Arrow securities increases, the product
β(V −1

n )00 = β/(aσ2
n) crosses the critical bifurcation value β∗0 = 37.5 (indicated by

the dotted line), and the system becomes unstable when the number of Arrow securi-
ties increases from 22 to 23.

Example 2 Next consider an example with average risk-adjusted profits as the fit-
ness measure. This example is important, because it will also arise as a quadratic
approximation around a steady state in the overlapping generations general equilib-
rium framework in Section 3.

There are two types of traders, (near-)fundamentalists versus trend extrapolators, with
forecasting rules (in deviations from the fundamental benchmark):

f1t = ε, (25)
f2t = xt−1 + g(xt−1 − xt−2)). (26)

Type 1 agents use information about economic fundamentals and predict that the price
of the risky asset will be equal to its fundamental value. However, they make a (small)
error, ε, in computing this fundamental value. Type 2 are trend followers who do
not use fundamental information, but extrapolate the latest observed price change by
an extrapolation factor g. As before, agents try to learn the best forecasting strategy,
with fitness given by risk-adjusted profits, which according to (13) are proportional to
minus quadratic prediction errors; without loss of generality, we can put the constant
of proportionality equal to 1, so that fitnesses of the two strategies are given by:

u1t = −(xt−1 − ε)2, u2t = −(xt−1 − (1 + g)xt−3 + xt−4)
2.

Market fractions of the two types are given as

n1t =
eβu1

eβu1 + eβu2
=

1

1 + e−β(u1−u2)
, n2t = 1− n1t. (27)

Market equilibrium (9) gives the dynamics of the system

Rxt = n1tε+ (1− n1t)(xt−1 + g(xt−1 − xt−2)). (28)

To simplify the notation in the discussion below, it is convenient to introduce scaled
coordinates and scaled parameters by setting xt = εx̃t and β = ε−2β̃, so that

βu1 = β̃ũ1 = −β̃(x̃t−1 − 1)2,

βu2 = β̃ũ2 = −β̃(x̃t−1 − x̃t−3 − g(x̃t−3 − x̃t−4))
2,

Rx̃t =
1

1 + eβ̃(ũ1−ũ2)
+

(
1− 1

1 + eβ̃(ũ1−ũ2)

)
(x̃t−1 + g(x̃t−1 − x̃t−2)).

In what follows we work in scaled variables, but to ease notation we drop all tildes.
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Steady states. The system (28) has a steady state equilibrium x∗ ∈ R if x∗ satisfies
the equation

Rx∗ =
1

1 + eβ(x∗−1)2
+

(
1− 1

1 + eβ(x∗−1)2

)
x∗. (29)

To show that our example actually has a steady state, we consider the function

Fβ,R(x) = nβ(x) + (1− nβ(x))x−Rx,

where

nβ(x) =
1

1 + eβ(x−1)2
.

If Fβ,R(x∗) = 0, then the price evolution xt = x∗ for all t is a steady state equilibrium
of the dynamics in (28). We note that

Fβ,R(0) = nβ(0) > 0,

Fβ,R(1/R) = nβ(1/R) + (1− nβ(1/R))
1

R
− 1

= (1− nβ(1/R))

(
−1 +

1

R

)
< 0.

By the intermediate value theorem, there exists at least one x∗ ∈ (0, 1/R) such
that F (x∗) = 0. For either β > 0 sufficiently close to 0 or β sufficiently large, it
can be shown that this steady state equilibrium is actually unique; for intermediate
values of β, there may be several steady states. In fact, we can parametrize the steady
states as a function of β, by solving equation (29) for β. This yields

β = β(x∗) =
1

(1− x∗)2
log

1−Rx∗
(R− 1)x∗

.

The graph of this function is illustrated in Figure 2. In appendix B it is shown that,
as the intensity of choice β increases, the following bifurcation scenario occurs. For
β = 0, the steady state x∗ = 1/(2R − 1) = 1/(1 + 2r) ≈ 1 (recall that r = R − 1).
Since we are working in scaled variables, this steady state is close to ε, the predicted
steady state of type 1. As β increases, the steady state x∗(β) moves along the upper
part of the curve in Figure 2, and this steady state is stable. For β = βSN1 ≈ 5.5 two
additional steady states are created in a saddle-node bifurcation, one stable (the lower
one) and one unstable (the middle one). Note that these two steady states are closer to
the fundamental value x ≡ 0. As β increases, the steady state closest to the fundamen-
tal values loses stability through a Hopf bifurcation at βHopf ≈ 11.0. At βSN2 ≈ 13.6 a
second saddle-node bifurcation occurs, and the two upper steady states disappear. For
βHopf < β < βSN2 a stable steady states co-exists with an attractor around the funda-
mental steady state. Figure 3 shows a bifurcation diagram and a Lyapunov exponent
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Figure 2: Steady state bifurcation diagram of the system (28) for R = 1.1 in scaled
coordinates. Values of β are on the horizontal axis, values of x on the vertical axis. The
curve shown is the locus of the steady state equilibria x∗. Note that there occur two saddle
node (SN) bifurcations and one Hopf bifurcation, and that x∗ → 0, the true fundamental,
as β → ∞. To obtain unscaled coordinates, multiply the values on the horizontal axis
by ε−2 and those on the vertical axis by ε.

plot, illustrating the dynamical behavior after the Hopf bifurcation. After the Hopf
bifurcation (quasi-)periodic behavior occurs with a Lyapunov exponent close to 0. For
large values of β the dynamics becomes chaotic, with positive Lyapunov exponent.
Introduction of additional Arrow securities has the same effect as increasing the para-
meter β. For example, with S = 40 states of the world, all with equal probabilities
αi = 1/S, and dividends yi = i−1, as in the previous example, fixing β = 1 yields the
following dynamics depending upon the number n of Arrow securities (see Figure 4):

(i) unique stable steady state for n = 0 and n = 1;

(ii) co-existence of two stable steady states for 2 ≤ n ≤ 9;

(iii) co-existence of stable steady state and (quasi-)periodic attractor for n = 10
and n = 11;

(iv) (quasi-)periodic attractor, for 12 ≤ n ≤ 32

(v) chaotic behavior, for 33 ≤ n < S = 40
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(a) Bifurcation diagram
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Figure 3: Bifurcation diagram (a) and Lyapunov exponent plot (b) of system (28) for R =
1.1, g = 1.101 and ε = 1 in scaled coordinates. Values of β are on the horizontal axis,
values of x and the first Lyapunov exponent are on the vertical axis in the upper and lower
plot respectively.
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Figure 4: Plot of the coefficient β(V −1
n )00 = β/(aσ2

n) as a function of the number n of
Arrow securities (scaled variables). There are S = 40 states of the world, all with equal
probabilities αi = 1/S, with dividends yi = i − 1. Other parameters are β = 1 and
R = 1.1. Without Arrow securities (V −1)00 = 1/(aσ2) = 1, but (V −1

n )00 = 1/(aσ2
n)

increases as the number of Arrow securities increases and explodes when n approaches
the number of states S = 40. The first saddle node bifurcation value is crossed when the
number of Arrow securities increases from 1 to 2, the Hopf bifurcation value, where the
system is destabilized, is crossed at the increase from 9 to 10, and the second saddle node
value is crossed at the increase from 11 to 12.

3 Two period overlapping generations model

In this section we study reinforcement learning in a general equilibrium two period
overlapping generations (OG) framework. OG models with adaptive learning have
e.g. been studied by Grandmont (1985), Bullard (1994), Marcet and Sargent (1989),
Schönhofer (1999) and Bullard and Duffy (2001). A novel feature of this section is
that we consider heterogeneous beliefs and investigate how Arrow securities affect the
stability of the system. An earlier OG model with heterogeneous beliefs (but without
Arrow securities) has been studied in Brock and DeFontnouvelle (2000).

3.1 Setup. Consider a world where agents live for two periods. They have endow-
ments w1 and w2 in their respective ‘young’ and ‘old’ periods. Their consumptions c1
and c2 in these periods give them utility equal to u1(c1) + u2(c2). The functions u1

and u2 are assumed to be continuous on [0,∞), (infinitely) differentiable on (0,∞),
monotonically increasing and to have a strictly negative second derivative everywhere;
in particular, they are assumed to be strictly concave. Moreover, it is assumed that
u′i(c) →∞ as c→ 0 for i = 1, 2.

Young agents can consider to sell part of their endowment to the old agents living at the
same time, obtaining either a long–lived risky asset that pays an uncertain dividend ys

in the next period, or an Arrow security for state i, paying δs
i in state s. As before,
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there are S states of the world and n Arrow securities, 0 ≤ n < S. The price of the
consumptions good is normalized to 1. Young agents demand z0

t units of the risky
asset at the market price p0

t , and zi
t units of the i’th Arrow security at price pi

t, subject
to their budget constraints

c1t + p0
t z

0
t + 〈p̃t, z̃t〉 = w1, cs2t = w2 + (p0

t+1 + ys)z0
t + 〈δs, z̃t〉,

where we use the same vector notation z̃t = (z1
t , · · · , zn

t ) and p̃t = (p1
t , · · · , pn

t ) as
before. The demand z0

t for the risky asset and z̃t for the Arrow security maximizes
their expected utility

Ut = u1(c1t) + Etu2(c2t)

= u1(w1 − p0
t z

0
t − 〈p̃t, z̃t〉) + Etu2

(
w2 + (p0

t+1 + ys)z0
t + 〈δs, z̃t〉

)
.

Assuming u1 and u2 to be strictly increasing smooth concave functions, utility is max-
imized whenever the derivatives of Ut with respect to the demands vanish:

∂Ut

∂zt

=

(
∂Ut

∂z0
t

,
∂Ut

∂z̃t

)
= (0, 0), (30)

where

∂Ut

∂z0
t

= −u′1
(
w1 − p0

t z
0
t − 〈p̃t, z̃t〉

)
p0

t (31)

+ Etu
′
2

(
w2 + (p0

t+1 + ys)z0
t + 〈δs, z̃t〉

)
(p0

t+1 + ys),

and

∂Ut

∂z̃t

= −u′1
(
w1 − p0

t z
0
t − 〈p̃t, z̃t〉

)
p̃t (32)

+ Etu
′
2

(
w2 + (p0

t+1 + ys)z0
t + 〈δs, z̃t〉

)
δs.

3.2 Homogeneous agents. Total outside supply of the risky asset is assumed to be
constant through time; it is denoted by ζ0. Total supply of each Arrow securities is
zero, thus equilibrium prices are found by substituting

p0
t = p0

∗, p̃t = p̃∗, z0
t = ζ0, z̃t = 0,

into equation (30), yielding

u′1(w1 − p0
∗ζ

0)p0
∗ = Etu

′
2

(
w2 + (p0

∗ + ys)ζ0
)
(p0
∗ + ys), (33)

pj
∗ =

u′2

(
w2 + (p0

∗ + yj)ζ0
)

u′1(w1 − p0
∗ζ

0)
αj, j = 1, · · · , n. (34)
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If there is a positive outside supply of risky assets ζ0 > 0, we can locate sufficient
conditions for the existence of an equilibrium price. For, if p0

∗ = 0, the left hand side
of (33) equals 0 while the right hand side of the same equation is positive. Likewise,
as p0

∗ → w1/ζ
0, the left hand side increases beyond all positive bounds, while the right

hand side remains finite. By the intermediate value theorem, there is at least one p0
∗ > 0

satisfying (33); we chose one of these, and we refer to it as the fundamental price of
the risky asset. Equation (34) then yields the corresponding fundamental prices p̃∗ of
the Arrow securities.

In the case of zero outside supply of risky assets, equations ((33)) and ((34)) can be
solved for the fundamental prices

p0
∗ =

Ey
u′1(w1)

u′2(w2)
− 1

and pj
∗ =

u′2(w2)

u′1(w1)
αj, j = 1, · · · , n.

To have a positive equilibrium price, it is sufficient to have Ey > 0 and u′1(w1) >
u′2(w2). These conditions are not directly obvious. However, if u′1(w1) < u′2(w2), no
agent will want to sell the risky asset, for his increase in utility in the first period will
never be compensated by the decrease of utility in the second period, no matter how
good the price. If the outside supply is non-zero, this argument does not hold since
then all agents can hold a positive amount of the asset.

In general there will be multiple equilibria. Indeed there can even be an equilibrium
price that is negative if limited liability does not hold. See Brock (1990) for discus-
sion of the role of limited liability in eliminating negative price equilibria and how to
construct examples of multiple equilibria.

In the special case of additively separable utility as in (33), differentiation with respect
to p0

∗ shows that the term u′1(w1 − p0
∗ζ

0)p0
∗ is increasing in p0

∗ if u′1 > 0, u′′1 < 0. One
can also show that

∂

∂p0
∗

(
Etu

′
2

(
w2 + (p0

∗ + ys)ζ0
)
(p0
∗ + ys)

)
= Etu

′′
2

(
w2 + (p0

∗ + ys)ζ0
)
ζ0(p0

∗ + ys) + Etu
′
2

(
w2 + (p0

∗ + ys)ζ0
)

= Etu
′
2(c

s
2)

(
1 +

cs2u
′′
2(c

s
2)

u′2(c
s
2)

ζ0(p0
∗ + ys)

w2 + ζ0(p0
∗ + ys)

)
,

where cs2 = w2 + (p0
∗ + ys)ζ0. Notice that the sign of the last expression is the same as

the sign of the term in brackets since u′2 > 0. Look at the case w2 = 0. The quantity
(1+cs2u

′′
2(c

s
2))/u

′
2(c

s
2) is just one minus the Arrow–Pratt relative risk aversion measure.

Thus, if the Arrow–Pratt relative risk aversion is always greater than one, for w2 = 0,
the right hand side of (33) is decreasing so we have a unique positive equilibrium price
for this case.
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3.3 Heterogeneous agents. We are primarily interested in conditions for which
the equilibrium found above is stable under reinforcement learning of heterogeneous
agents, and how this stability depends on the number of Arrow securities. If prices
are close to their equilibrium values, demands will be close to their respective equilib-
rium values. Demands are of the form z0

ht and z̃ht; they are combined in the demand
vector zht = (z0

ht, z̃ht). Also prices are collected in the price vector pt = (p0
t , p̃t).

Heterogeneity is restricted to the agent’s expectation of the future price. As in section 2
we assume that an agent of type h expects this to be

Ehtp
0
t+1 = p0

∗ + fht = p0
ht+1.

As before, fh represents a function of past deviations from the fundamental according
to which type h beliefs that prices will deviate from their fundamental benchmark.

3.3.1 Demands. We shall determine the demands of an agent of type h. Given a
price vector p, this agent determines his demands for the risky asset and the Arrow
securities by maximizing the utility function

Uht(zht) = u1(w1 − 〈pt, zht〉) + Ehtu2

(
w2 + (p0

ht+1 + ys)z0
ht + 〈δs, z̃ht〉

)
(35)

Denoting consumption of the agent in period j with chj , the second order derivatives
of the function U with respect to z read as

∂2Uht

∂(z0
ht)

2
= u′′1(ch1)(p

0
t )

2 + Ehtu
′′
2(c

s
h2)(p

0
ht+1 + ys)2,

∂2Uht

∂z0
ht ∂z

j
ht

= u′′1(ch1)p
0
tp

j
t + u′′2(c

j
h2)(p

0
ht+1 + yj)αj,

∂2Uht

∂(zj
ht)

2
= u′′1(ch1)(p

j
t)

2 + u′′2(c
j
h2)αj,

∂2Uht

∂zj
ht∂z

k
ht

= u′′1(ch1)p
j
tp

k
t , if k 6= j.

In particular, the Hessian Hzht
Uht is negative definite; hence there is a unique demand

vector zht = z(pt, p
0
ht+1) solving the maximization problem, which is differentiable as

a function of pt.

3.3.2 Fitness. The average realized utilities uht+1 are obtained by replacing in the
expression (35) for Uht idiosyncratic expectations p0

ht+1 of the price of the risky as-
set by its realization p0

t+1, taking for the demands zt the realized demands zht and
averaging over all states s:

uht+1 = u1(w1 − 〈pt, zht〉) + Eu2

(
w2 + (p0

t+1 + y)z0
ht + 〈δ, z̃ht〉

)
. (36)
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Note that at the beginning of trading period t, the most recent price known is pt−1, and
the most recent realized utility known is uht−1. This utility determines the fraction nht

of traders following type strategy h at the beginning of trading period t, through rein-
forcement learning as discussed in Section 2:

nht = eβuht−1/Zt, Zt =
H∑

h=1

eβuht−1 .

3.3.3 Prices. So far, we have determined demand and fitness of a trader of type h.
Assume now that there are H trader types in the market. Market clearing requires

H∑
h=1

nhtz
0
ht = ζ0, and

H∑
h=1

nhtz̃ht = 0, j = 1, · · · , n. (37)

There is a large literature on existence of equilibrium prices in incomplete markets;
see e.g. Magill and Quinzii (1996) for an overview and the recent discussion in Cass
(2006). However, most existence proofs are concerned with homogeneous expecta-
tions. Heterogeneous expectations imply that the demands for Arrow securities may
move differently for different trader types, which is an additional source of technical
difficulties. For an existence proof taking heterogeneous characteristics into account
see, e.g., Grandmont and Younes (1972). In order to be self-contained, in the appen-
dix we demonstrate the existence of an equilibrium price vector for these markets with
heterogeneous expectations; here we only give an outline of the argument.

Let P denote the set {p ∈ Rn+1 | pj > 0 for j = 0, 1, · · · , n} of positive price vectors.
We construct a homotopy of the problem from the homogeneous situation where all
agents have the same expectations about future prices to the heterogeneous situation
we are interested in. It is straightforward to show uniqueness and non-degenerateness
of the price equilibrium in the homogeneous case.

We will construct a compact and convex subsetK ⊂ P with piecewise smooth bound-
ary ∂K, which is such that along the homotopy, for every pt ∈ ∂K, the aggregate
excess demand vector z̄t(pt) =

∑H
h=1 nhtzht(pt) does not vanish. Then it follows

from topological arguments (index theory) that there is a price vector p̂t ∈ K such
that z̄t(p̂t) = 0. The details of the proof can be found in section C of the appendix.

3.4 Dynamics close to a steady state equilibrium. We are mainly interested in
the reinforcement learning dynamics within this general equilibrium OG framework.
It turns out that a linear approximation of the learning dynamics around a homoge-
neous steady state equilibrium has essentially the same structure as the evolutionary
selection dynamics in the mean-variance asset pricing model with heterogeneous be-
liefs in Section 2. This result can be derived under the general assumption that utility
of agents of type h at time t is of the form

Uht(zht) = U(zht, pt, p
0
ht+1), (38)
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where U(zht, pt, p
0
ht+1) is strictly concave in zht. In fact, we make the stronger as-

sumption that the Hessian matrix HzU(z, p, p0
+) is negative definite for all arguments.

To derive a linear approximation of the price dynamics under reinforcement learning,
we will need a quadratic approximation of the utility function. In order to keep no-
tation to a minimum, we shall give the general results about U without time indices,
replacing t + 1 by a mere ‘+’, while results for our specification (35) are given with
time indices.

Let pt = p∗ be an homogeneous equilibrium price vector, whose existence we have
shown in subsection 3.2, let moreover p0

∗ be the equilibrium price of the risky asset
and let z̃∗ = 0 and z̃0

∗ = ζ0 be the corresponding steady state demand of type h.
Demands zh are solutions of the equation

DzU(zh, p, p
0
h+) = 0.

As the Hessian matrix HzU is negative definite everywhere, the implicit function the-
orem yields that

Dzh(p∗, p
0
∗) = − [HzU ]−1

(
DpDzU Dp0

h+
DzU

)
;

all expressions on the right hand side are evaluated at (z∗, p∗, p
0
∗). We expand Uh =

U(zh, p, p
0
h+) around the point (zh∗, p∗, p

0
∗), to obtain

U(zh, p, p
0
h+) = U(z∗, p, p

0
h+) + 〈Bh, zh − z∗〉

− 1

2
〈zh − z∗, V (zh − z∗)〉+ O(3). (39)

Here the first term U(z∗, p, p
0
h+) contains all terms up to second order in (p− p∗) and

(p0
h+−p0

∗), and O(3) denotes terms O(‖zh−z∗‖α‖p−p∗‖β|p0
h+−p0

∗|γ) with α+β+γ =
3. For the quadratic and linear terms in zh − z∗ in (39) we introduced

V = −HzU(z∗, p∗, p
0
∗)

and

Bh = B(p, p0
h+)

= DzU(z∗, p∗, p
0
∗)

+DpDzU(z∗, p∗, p
0
∗)(p− p∗) +Dp0

+
DzU(z∗, p∗, p

0
∗)(p

0
h+ − p0

∗)

= −A(p− p∗) + (p0
h+ − p0

∗)b, (40)

with A = −DpDzU(z∗, p∗, p
0
∗) and b = Dp0

+
DzU(z∗, p∗, p

0
∗), and where we used

that DzU(z∗, p∗, p
0
∗) = 0. We find consequently that the first order Taylor expansion

of zh around (p∗, p
0
∗) reads as

zh(p, p
0
h+) = z∗ +Dzh(p∗, p

0
∗)

(
p− p∗
p0

h+ − p0
∗

)
+ O

(
‖p− p∗‖2 + |p0

h+ − p0
∗|2
)

= z∗ + V −1Bh + O
(
‖p− p∗‖2 + |p0

h+ − p0
∗|2
)
.

(41)
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Notice that the linear part of the demand is of the same form as in the mean-variance
asset pricing model in equation (8).

To simplify notation for our utility specification (35), quantities qs
∗ = p0

∗ + ys, κ1 =
w1 − p0

∗ζ
0 and κs

2 = w2 + qs
∗ζ

0 are introduced. Instead of prices, we take as basic
quantities price deviations xt = pt − p∗ from the equilibrium values. The vector Bht

reads as

Bht = −u′1(κ1)

(
x0

t

x̃t

)
+ Etu

′
2(κ2)

(
fht

0

)
+ζ0

[
u′′1(κ1)x

0
t

(
p0
∗
p̃∗

)
+ Etu

′′
2(κ2)fht

(
q∗
δ

)]
.

(42)

The matrix V reads

V = u′′1(κ1)

(
(p0
∗)

2 p0
∗p̃

T
∗

p0
∗p̃∗ p̃∗p̃

T
∗

)
+ Etu

′′
2(κ2)

(
(q∗)

2 q∗δ
T

q∗δ δδT

)
.

Note that δδT is the matrix with elements δiδj etc.; also note that V is positive definite,
due to the differential strict concavity of u1 and u2.

3.4.1 Market clearing. Market clearing reads as∑
h

nhzh(p, p
0
h+) =

(
ζ0

0

)
. (43)

As zh(p∗, p
0
∗) = z∗ = (ζ0, 0) for all types h, (43) is satisfied for the equilibrium price

vector (p, p0
h+) = (p∗, p

0
∗). The implicit function theorem implies that p can be solved

from (43) for prices close to the fundamental price if the matrix

Dp

∑
h

nhzh(p∗, p
0
∗) =

∑
h

nhDpzh(p∗, p
0
∗) = −V −1DpDzU(z∗, p∗, p

0
∗) (44)

is invertible. Since V −1 is known to be invertible, this is equivalent to the condition
that A = −DpDzU(z∗, p∗, p

0
∗) is invertible. This is an assumption we have to make in

the general treatment.

For the specification (35), we have

A = u′1(κ1)I − u′′1(κ1)ζ
0

p
0
∗ 0 · · · 0
...

...
...

pn
∗ 0 . . . 0

 , (45)

and since this matrix is lower triangular with positive diagonal elements, it is certainly
invertible.

Consequently, there is a constant η > 0 and a smooth function

ϕ : {p0
h+ : |p0

h+ − p0
∗| < η for all h} → R,
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such that the price

pt = ϕ(p0
1+, · · · , p0

H+)

solves equation (43); that is, the price p clears the market.

Making use of the fact that the matrix V is independent of h and of equation (41),
market clearing (43) implies

∑
h

nhBh = O

(
‖x‖2 +

∑
h

|fh|2
)
.

Substituting from (40) Bh = −A(p − p∗) + (p0
h+ − p0

∗)b = −Ax + fhb, using the
implicit function theorem to solve for x and the invertibility of A, this can be rewritten
to

x = A−1b
∑

h

nhfh + O

(∑
h

|fh|2
)
.

For our specification it follows, using (42), that

x0
t =

Etu
′
2(κ2) + ζ0Etu

′′
2(κ2)(p

0
∗ + y)

u′1(κ1)− ζ0p0
∗u

′′
1(κ1)

∑
h

nhtfht + O

(∑
h

|fht|2
)
. (46)

The coefficient in front of the sum is independent of t; by analogy to the mean-variance
asset pricing model in section 2, it will be denoted by 1/R. Note that in the case when
the outside supply of the risky asset vanishes, i.e. if ζ0 = 0, then R simplifies to
u′1(w1)/u

′
2(w2) and (46) simplifies to

x0
t =

1

R

∑
h

nhtfht + O

(∑
h

|fht|2
)
, x̃j

t = 0 + O

(∑
h

|fht|2
)
. (47)

In this special case, a linear approximation of the equilibrium price dynamics in the
OG setup in (47) yields the same price dynamics as in the asset pricing model (9) in
Section 2. In the general case, using (46) and (42), the prices of the Arrow securities
are given as

x̃t = ζ0

(
1

R

u′′1(κ1)

u′1(κ1)
p̃∗ +

Etu
′
2(κ2)

u′1(κ1)

Etu
′′
2(κ2)δ

Etu′2(κ2)

)∑
h

nhtfht + O

(∑
h

|fht|2
)
.

(48)

Note that the evolution of the prices of the Arrow securities is driven by the evolution
of the prices of the risky asset.
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3.4.2 Fitness. The fitness uh+ of each strategy, which is taken to be average realized
utility, can be computed as soon as the realized price p0

t+1 is known. Introduce the
vector

B = B(p, p0
+), (49)

which is the realization of the vector Bh = B(p, p0
h+) in (40). Note that B is the

same for all types h. Using equation (39) for U and equation (41) for zh, we can write
average realized utility as

uh+ = U(zh, p, p
0
+) (50)

= U(z∗, p, p
0
+) + 〈B, zh − z∗〉 −

1

2
〈zh − z∗, V (zh − z∗)〉+ O(3)

= U(z∗, p, p
0
+) +

〈
B, V −1Bh

〉
− 1

2

〈
Bh, V

−1Bh

〉
+ O(3)

= U(z∗, p, p
0
+) +

1

2

〈
B, V −1B

〉
− 1

2

〈
B −Bh, V

−1(B −Bh)
〉

+ O(3).

Note that (50) is similar to the fitness expression (12) in the mean-variance asset pric-
ing model in Section 2. Realized utility has a direct interpretation as a measure of the
mismatch B − Bh between realization and expectation. This is seen by introducing
the non-Euclidean vector norm ‖x‖V −1 =

√
〈x, V −1x〉 and writing

uh+ = U(z∗, p, p
0
+) +

1

2

〈
V −1B,B

〉
− 1

2

〈
B −Bh, V

−1(B −Bh)
〉

+ O(3)

= C − 1

2
‖B −Bh‖2

V −1 + O(3);

here C is the same for all types. We compute, using (40) and (49)

B −Bh = (x0
+ − fh)b.

and

uh+ = C − 1

2

〈
b, V −1b

〉
(x0

+ − fh)
2 + O

(∑
h

|fh|3
)
.

The fractions are then given as

nht = e−β( 1
2〈b,V −1b〉(x0

t−1−fht−2)2+O(
P

k |fht−2|3))
/
Zt,

where Zt is such that
∑

h nht = 1.

We have for our specification, using (42)

Bt =− u′1(κ1)

(
x0

t

x̃t

)
+ Etu

′
2(κ

s
2)

(
x0

t+1

0

)
+ ζ0

[
u′′1(κ1)x

0
t

(
p0
∗
p̃∗

)
+ Etu

′′
2(κ

s
2)x

0
t+1

(
p0
∗ + ys

δs

)]
;
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hence

b = Etu
′
2(κ

s
2)

(
1
0

)
+ ζ0Etu

′′
2(κ

s
2)

(
p0
∗ + ys

δs

)
. (51)

From the matrix lemma 1 and equation (15) it follows as in section 2 that 〈b, V −1b〉
increases whenever an Arrow security is added.

3.4.3 Dynamics. We have now derived the price dynamics under reinforcement
learning close to the homogeneous expectations equilibrium p∗, in the OG setup with
general utility function of the form (38). The dynamics is given by

xt = A−1b
∑

h

nhtfht + O

(∑
h

|fht|2
)
, (52)

nht = e
−β

�
1

σ2
n

(x0
t−1−fht−2)2+O(

P
k |fht−2|3)

� /
Zt, (53)

where, as before, A = −DpDzU(z∗, p∗, p
0
∗), b = Dp0

+
DzU(z∗, p∗, p

0
∗), Zt is such

that
∑

h nht = 1, and where σ2
n = 1/〈b, V −1b〉, with n the number of Arrow securities

available. Recall from lemma 1 and (17) that

σ2
0 > σ2

1 > · · · > σ2
S−2 > σ2

S−1 = 0. (54)

We shall make the assumption that at equilibrium, the belief’s biases are small. This
means that when prices have been at equilibrium p∗ in the past, all types forecast a
price close to equilibrium p∗. Precisely, we assume that

fht(xt−1, xt−2, · · · , xt−L) = εf 0
h + O(‖(xt−1, xt−2, · · · , xt−L)‖). (55)

We are now ready to state the main theorem for the OG setup:

THEOREM 2. Consider the OG price dynamics with Arrow securities and reinforce-
ment learning close to a homogeneous expectations equilibrium p∗, given by (52-53)
and beliefs fh as in (55). If ε > 0 is sufficiently small, then the following holds.

If β∗0 is the primary bifurcation value in the case without Arrow securities (n = 0), that
is, if β∗0 is the critical value for which the steady state becomes unstable if there are
no Arrow securities, then for almost all dividends ys and probabilities αs the primary
bifurcation value β∗n for the system with n Arrow securities and incomplete markets
(i.e. n < S − 1) satisfies

β∗n+1 < β∗n < β∗0 , 1 ≤ n < S − 2. (56)
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Proof
It turns out to be convenient to introduce scaled price deviations

x̃t =
1

ε
xt =

1

ε
(pt − p∗),

a scaled intensity of choice parameter β̃ = ε2β, and scaled beliefs

f̃ht(x̃t−1, x̃t−2, · · · ) =
1

ε
f(εx̃t−1, εx̃t−2, · · · ) = f 0

h + O(‖(x̃t−1, x̃t−2, · · · )‖).

However, we shall drop all the tildes immediately, taking note of the fact that we are
working in local variables close to the steady state equilibrium.

In these local variables, the dynamics take the form

xt = A−1b
∑

h

fht e−(β/σ2
n)(x0

t−1−fht−2)2
/
Zt + εψ(xt−1, · · · ; β, ε).

Here ψ is a smooth function of its arguments, and Zt =
∑

h e−(β/σ2
n)(x0

t−1−fht−2)2 . Let
L be the maximum lag length of the forecasting rules fh. Introduce the correspond-
ing (n+ 1)(L+ 2)-dimensional dynamical system

Φn(xt−1, · · · , xt−L; β, ε) = (57)
A−1b

∑
h fht e−(β/σ2

n)(x0
t−1−fht−2)2

/
Zt + εψ(xt−1, · · · ; β, ε)

xt−1
...

xt−L+1,


where n is the number of Arrow securities. Consider first the dominant term of the
dynamics in the case of no Arrow securities, that is, equation (57) with ε = 0 and n =
0. Assume that the steady state equilibrium (xt−1, · · · , xt−L+2) = (0, · · · , 0), which
corresponds to pt = p∗ for all t, loses stability in a generic bifurcation at β = β0

c .

Denoting by [v]k the k’th component of the vector v, we note that

[Φn(x; β, 0)]1 = A−1b
∑

h

fht e
− β

σ2
n

(x0
t−1−fht−2)2

/
Zt

= A−1b
∑

h

fht e
−β(σ2

0/σ2
n)

σ2
0

(x0
t−1−fht−2)2

/
Zt

=

[
Φ0

(
x; β

σ2
0

σ2
n

, 0

)]
1

.

It is clear that if β∗0 is the first bifurcation value for Φ0 as β increases towards infinity,
then Φn will undergo its first bifurcation if

β
σ2

0

σ2
n

= β∗0 , that is, if β = β∗0
σ2

n

σ2
0

def
= β∗n. (58)
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From (54) we infer that

β∗0 > β∗1 > · · · > β∗S−2.

Now, since the first bifurcation has been assumed to be generic, it will persist if the
dynamics are changed by a sufficiently small perturbation. (For these concepts, see
Kuznetsov (1995), in particular the discussion following definition 2.14).

In particular, there is ε0 > 0 and continuous functions βn
∗ (ε), define on [0, ε0], such

that Φn(x; β, ε) undergoes its first bifurcation at βn
∗ (ε) as β increases from 0 to infinity.

Though the relation (58) fails to hold in general for ε > 0, continuity of the βn
∗ (ε)

implies, if necessary after taking ε0 smaller, that

β0
∗(ε) > β1

∗(ε) > · · · > βS−2
∗ (ε).

for all 0 ≤ ε ≤ ε0. Note that this equation holds equally well for the original unscaled
parameter, as was claimed in the theorem.

3.4.4 Relation between OG-setup and asset pricing model. We have seen that
the dynamics of the OG setup close to equilibrium, is similar to the dynamics in the
asset pricing model in Section 2. In fact, by choosing an appropriate utility function,
the dynamics of the OG-model coincides exactly with the asset pricing dynamics.
Consider the utility function

U(zh, p, p
0
h+) = −R〈p, zh〉+ p0

h+z
0
h +

〈(
y
α

)
, zh

〉
− 1

2
〈z, V z〉, (59)

with p = (p0, p̃) and V = a

(
σ2 ηT

η Σ

)
. This is in fact a mean-variance utility func-

tion with the Arrow securities, spanning the part of the risk that can be hedged, play-
ing the role of a risk free bond yielding a gross risk free return R. We now follow
the OG-setup, with utility as in (59), to derive the dynamics around a homogeneous
equilibrium.

A homogeneous (fundamental) price equilibrium can be found by solving

0 = DzU(z∗, p∗, p
0
∗) = −Rp∗ + p0

∗e0 +

(
y
α

)
− ζ0V e0,

where e0 = (1, 0, · · · , 0) ∈ Rn+1. Noting that V e0 =

(
aσ2

aη

)
, this is solved by

p0
∗ =

1

R− 1

(
y − ζ0aσ2

)
p̃∗ =

1

R

(
α− ζ0aη

)
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We compute

A = −DpDzU(z∗, p∗, p
0
∗) = R · I and b = −Dp0

+
DzU(z∗, p∗, p

0
∗) = e0,

where I denotes the (n+ 1)× (n+ 1) identity matrix. We finally find, as in (52), that
the dynamics around the homogeneous price equilibrium are given approximately by

xt = A−1b
∑

nhtfht + O

(∑
h

|fht|2
)
,

that is

x0
t =

1

R

∑
nhtfht + O

(∑
h

|fht|2
)
,

x̃t = 0 + O

(∑
h

|fht|2
)
.

Note that the linear part of these equations coincides exactly with (9). In fact, when
utility is quadratic in z, as in (59), all higher order terms O(

∑
h |fht|2) drop out, and

the system exactly coincides with (9).

3.4.5 Example. By way of example, we consider the OG model with agents choos-
ing between the two belief types, near fundamentalists versus trend followers as in
(25-26), that is

f1t = ε,

f2t = x0
t−1 + g(x0

t−1 − x0
t−2).

It follows from equations (46) and (48) that close to the homogeneous equilibrium, the
dynamics of the system are of the form

Rjxj
t = n1tε+ n2t

(
x0

t−1 + g(x0
t−1 − x0

t−2)
)

+O
(
ε2 + ‖(x0

t−1, x
0
t−2, · · · )‖2

)
, j = 0, · · · , n

where 1/R0 and 1/Rj are the factors in front of the terms
∑

h nhtfht in equations (46)
and (48) respectively.

After introducing scaled variables x0
t = εx̃0

t , fht(x
0
t−1, · · · ) = εf̃ht(x̃

0
t−1, · · · ) and

dropping tildes, these equations take the form

Rjxj
t = n1t + n2t

(
x0

t−1 + g(x0
t−1 − x0

t−2)
)

+ O(ε), j = 0, · · · , n. (60)
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The (scaled) version of the fractions, derived from equation (53), taking β̃ = β/ε2 and
dropping the tilde again, is

nht = e
−β

�
1

σ2
n

(x0
t−1−fht−2)2+O(ε)

� /
Zt h = 1, 2. (61)

Note that for the singular scaling ε = 0, the system consisting of equation (60) for j =
0 and equation (61) is exactly equal to the (scaled) version of system (28) and (28);
therefore, its bifurcation diagram is given by Figure 2. If ε > 0 is sufficiently small,
then, by a genericity argument as in the proof of theorem 2, the bifurcation diagram of
the system is but a small perturbation of the diagram given in Figure 2. In particular,
the bifurcation values βSN1 , βHopf and βSN2 will only shift slightly.

We conclude that, in this example of the OG-setup adding Arrow securities leads to
the same bifurcations as illustrated in Figure 4. This example shows that a bifurca-
tion route to multiple steady states and complicated dynamics arises in the OG price
dynamics with reinforcement learning.

4 Information dynamics

In this section a third model setup is considered, namely a rational expectations asset
pricing models with heterogeneous information signals about future dividends, in the
spirit of Grossman and Stiglitz (1980). DeFontnouvelle (2000) and Goldbaum (2005,
2006) have studied this type of model with heterogeneous traders and reinforcement
learning. The main novel feature here is to investigate how the introduction of addi-
tional Arrow securities affects the stability of an asset pricing system with heteroge-
neous information and reinforcement learning.

A risky asset is traded at market price p0
t . It pays a dividend y0

t , which is assumed to
be the sum of N independent Gaussian random variables:

y0
t = y1

t + · · · ,+yN
t , (62)

with yk
t ∼ N(ȳk, σ2

k), 1 ≤ k ≤ N . The dividend y0
t is hence normally N(ȳ0, σ2

0)
distributed, with ȳ0 =

∑
k ȳk and σ2

0 =
∑

k σ
2
k.

We assume that there are tradeable hedging instruments living for one period, which
are traded at a price pk

t and pay a dividend yk
t before perishing. These instruments are

only available for 1 ≤ k ≤ n < N ; they will be termed information assets in the rest
of the paper. Moreover, traders can buy a bond at price 1 whose supply is infinitely
elastic, paying R > 1 each period.

Individual traders are indexed by i. Before the market opens, each trader i obtains a
private signal sk

it about the dividends of the n hedging instruments, as well as a signal
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ŝit about the non-hedgeable part of the risky asset. These signals are given by

sk
it = yk

t + εk
it, k = 1, · · · , n,

ŝit =
∑N

j=n+1 y
j
t + ε̂it ≡ ŷt + ε̂it,

(63)

where ŷt =
∑N

j=n+1 y
j
t is the non-hedgeable part of the dividends, the noise terms εk

it

and ε̂it are normal random variables with mean 0 and variances σ2
ik, σ̂2

i ; the εk
it are

uncorrelated with each other and with the yk
t , 1 ≤ k ≤ n.

Trader i buys z0
it units of the risky asset and zk

it units of the k’th information asset.
Introduce price, demand, dividend and signal vectors by

pt = (p0
t , p

1
t , · · · , pn

t ),

zit = (z0
it, z

1
it, · · · , zn

it),

yt = (y0
t , y

1
t , · · · , yn

t ), and
sit = (s1

it, · · · , sn
it, ŝit).

Assuming agents to have correct expectations about dividends, that is Eity
k
t = ȳk,

expected profit of trader i due to trading equals

πit = Eit(p
0
t+1)z

0
it +

n∑
k=0

(ȳk −Rpk
t )z

k
it

= Eit(p
0
t+1)z

0
it + 〈ȳ −Rpt, zit〉.

In the model, agents are myopic expected utility maximizers. The expected utility of
trader i is taken to be risk–adjusted profits, conditioned on the signals sit:

Uit = E (πit|sit)−
a

2
Var (πit|sit) . (64)

4.1 Equilibrium price dynamics. We first derive the equilibrium price dynamics.

4.1.1 Conditioning on signals. To evaluate the utility of the agents, the distribution
of πit given sit has to be determined. Recall that all random variables are normally
distributed. We need the joint distribution of (πit, sit), which, being normal, is charac-
terized by its expected value and its variance-covariance matrix. The expectations of
belief of agent i about πit and sit read as

Eπit = Eitp
0
t+1z

0
it + 〈ȳ −Rpt, zit〉,

Esk
it = ȳk, k = 1, · · · , n,

Eŝit =
N∑

j=n+1

ȳj.
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Recalling that ŷt =
∑N

j=n+1 y
j
t and introducing ¯̂y = Eŷt and σ̂2 = Var ŷt, the

variance-covariance matrix of (πit, sit) can be written as

Σπs =



n∑
j=1

(z0
it + zj

it)
2σ2

j + (z0
it)

2σ̂2 (z0
it + z1

it)σ
2
1 · · · (z0

it + zn
it)σ

2
n z0

itσ̂
2(

z0
it + z1

it

)
σ2

1 σ2
1 + σ2

i1 · · · 0 0
...

... . . . ...
...(

z0
it + zn

it

)
σ2

n 0 · · · σ2
n + σ2

in 0

z0
itσ̂

2
j 0 · · · 0 σ̂2 + σ̂2

i


The following standard lemma can be found for instance in Anderson and Moore
(1979), p. 25.

LEMMA 2. Let X , Y be multivariate normal variables, with joint expectation

(µX , µY ) and variance-covariance matrix
(

ΣXX ΣXY

ΣT
XY ΣY Y

)
. Then the conditional

expectation and variance of X given Y = y is given by

E(X|Y = y) = µX +ΣXY Σ−1
Y Y (y−µY ), Var(X|Y = y) = ΣXX−ΣXY Σ−1

Y Y ΣT
XY .

Applying the lemma yields for the conditional expectation

E(πit|sit) = Eitp
0
t+1z

0
it + 〈ȳ −Rpt, zit〉

+
∑n

j=1(z
0
it + zj

it)
σ2

j

σ2
j +σ2

ij
(sj

it − ȳj) + z0
it

σ̂2

σ̂2+σ̂2
i
(ŝit − ¯̂y).

(65)

The conditional variance of πit reads as

Var(πit|sit) =
n∑

j=1

(
z0

it + zj
it

)2
σ2

j

(
1−

σ2
j

σ2
j + σ2

ij

)
+ (z0

it)
2σ̂2

(
1− σ̂2

σ̂2 + σ̂2
i

)
.

(66)

Note that the expressions

τ j
i =

σ2
j

σ2
j + σ2

ij

and τ̂i =
σ̂2

σ̂2 + σ̂2
i

can be viewed as a measure of the precision of the signals: if the variance of the
signal sj

it or ŝit is infinite, the corresponding precision τ j
i or τ̂i equals zero, while if the

variance of the signal vanishes, the signal is perfect and its precision equals unity. We
introduce the vector of precisions of agent i, τi = (τ 1

i , · · · , τn
i ).
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4.1.2 Demands. The expected utility Uit of agent i, given by (64), is strictly concave
in the demands zit. Its maximum is a solution of the first order necessary conditions.
Vanishing of the first order derivatives of the utilities with respect to the demands leads
to

0 =
∂Uit

∂z0
it

= Eitp
0
t+1 + ȳ0 −Rp0

t +
n∑

j=1

τ j
i (sj

it − ȳj) + τ̂i(ŝit − ¯̂y)

− a

(
n∑

j=1

(z0
it + zj

it)σ
2
j (1− τ j

i ) + z0
itσ̂

2(1− τ̂i)

)
,

and

0 =
∂Uit

∂zk
it

= ȳk −Rpk
t + τ k

i (sk
it − ȳk

t )− a(z0
it + zk

it)σ
2
k(1− τ k

i ).

Solving the last equation for zk
it yields the demand for the k’th information asset by

agent i:

zk
it = −z0

it +
ȳk −Rpk

t + τ k
i (sk

it − ȳk)

aσ2
k(1− τ k

i )
. (67)

Substituting this expression in the first equation and solving for z0
it yields the demand

for the risky asset by trader i

z0
it =

1

aσ̂2(1− τ̂i)

(
Eitp

0
t+1 + ȳ0 −Rp0

t −
n∑

j=1

(ȳj −Rpj
t) + τ̂i(ŝit − ¯̂y)

)

=
1

aσ̂2(1− τ̂i)

(
Eitp

0
t+1 + ¯̂y + τ̂i(ŝit − ¯̂y)−R

(
p0

t −
n∑

j=1

pj
t

))
. (68)

These expressions show that demand increases when the agent receives positive sig-
nals and signal precision increases. More precisely, suppose that agent i obtains a
positive signal about the k-th information asset, i.e. suppose sk

it − ȳk > 0. Then
the demand zk

it for the k-th information asset increases when the signal precision τ k
i

increases. Similarly, suppose that agent i obtains a positive signal about the non-
hedgeable part of the dividends, i.e. suppose ŝit − ¯̂y > 0. Then the demand for the
risky asset z0

it increases when the precision τ̂i about the non-hedgeable part of the div-
idends increases. Obviously, the demand for the risky asset also increases when the
price of one of the Arrow securities increases. Finally, notice that when the precision
τ k
i of the signal increases and approaches 1, the demand for the k−the information

asset tends to (minus) infinity, while when the precision τ̂i increases and approaches
1, the demand z0

t for the risky asset tends to (minus) infinity.
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4.1.3 Equilibrium. Assume that the individual traders, indexed by i, can be divided
into H types, indexed by h = h(i). A trader type is characterized by its belief Ehtp

0
t+1

about the future asset price, as well as by the precisions τ k
h and τ̂h of the signals it gets.

If the total number of traders is equal to M , we denote by nht the fraction of traders
of type h at time t; that means, at time t there will be Mnht traders of type h in the
market. If the outside supply of risky assets per trader is given by ζ0, using (68) and
(63) equilibrium of supply and aggregate demand for the risky asset, Mζ0 =

∑
i z

0
it,

is equivalent to

Mζ0aσ̂2 = M
∑

h

nht

(1− τ̂h)

(
Ehtp

0
t+1 + ¯̂y −R

(
p0

t −
n∑

k=1

pk
t

))

+M
∑

h

nht
τ̂h

1− τ̂h
(ŷt − ¯̂y) +

∑
i

τ̂h(i)ε̂it

1− τ̂h(i)

.

(69)

In (69), the fractions appear to be weighted by the factor (1 − τ̂h)
−1. Introduce

weighted fractions n̂ht by introducing ŵht = nht/(1 − τ̂h), Ŵt =
∑

h ŵht, and set-
ting n̂ht = ŵht/Ŵt. This means that types with high precision get relatively higher
weights n̂ht. Also introduce market precision

〈τ̂〉 =
∑

h

n̂htτ̂h =

∑
h

nht

1−τ̂h
τ̂h∑

h
nht

1−τ̂h

(70)

Notice that market precision 〈τ̂〉 is time dependent, since the fractions nht are time de-
pendent, but we will not use a time index to keep notation as simple as possible. Using
this notation, and dividing by MŴt the equilibrium equation (69) can be rewritten as

ζ0aσ̂2

Ŵt

=
∑

h

n̂ht

(
Ehtp

0
t+1 + ¯̂y −R

(
p0

t −
n∑

k=1

pk
t

))

+
∑

h

n̂htτ̂h(ŷt − ¯̂y) +
1

MŴt

∑
i

τ̂h(i)ε̂it

1− τ̂h(i)

.

We let the number of agents M go to infinity, while keeping the type fractions nht

fixed. Applying the law of large numbers yields (under reasonable conditions, see
Hellwig (1980)) that the last term tends to zero, i.e.∑

i τ̂h(i)ε̂i/(1− τ̂h(i))

M
∑

h nht/(1− τ̂h(i))
→ 0.

We therefore obtain

p0
t −

n∑
j=1

pj
t =

¯̂y

R
+ 〈τ̂〉 ŷt − ¯̂y

R
+

1

R

H∑
h=1

n̂htEhtp
0
t+1 −

aσ̂2ζ0

RŴt

. (71)
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Similarly, using (67) and (63) market clearing for the information assets,
∑

i z
k
it = 0,

yields

0 = −M
∑

h

nhtz
0
ht +M

∑
h

nht
ȳk −Rpk

t + τ k
h (yk

t − ȳk)

aσ2
k(1− τ k

h )
+
∑

i

τ k
h(i)εit

aσ2
k(1− τh(i))

= −Mζ0 +M
∑

h

nht

aσ2
k1− τ k

h

(ȳk −Rpk
t + τ k

h (yk
t − ȳk)) +

∑
i

τ k
h(i)εit

aσ2
k(1− τh(i))

.

(72)

Setting wk
ht = nht/(1 − τ k

h ), W k
t =

∑
hw

k
ht, n̂

k
ht = wk

ht/W
k
t and dividing by MW k

t

we get

aσ2
kζ

0

W k
t

=
∑

h

n̂ht(ȳ
k −Rpk

t ) +
∑

h

n̂htτ
k
h (yk

t − ȳk) +
∑

i

τ k
h(i)εit/(1− τh(i))

MW k
t

.

(73)

Introduce the market precision for the k−th information asset as

〈τ k〉 =
∑

h

n̂htτ
k
h =

∑
h

nht

1−τk
h
τ k
h∑

h
nht

1−τk
h

(74)

As above, letting the number of agents M go to infinity, while keeping the type frac-
tions nht fixed and applying the law of large numbers yields under reasonable condi-
tions that the last term tends to zero, that is∑

i τ
k
h(i)ε̂i/(1− τ k

h(i))

M
∑

h nht/(1− τ k
h(i))

→ 0.

We obtain the price of the k-th information asset:

pk
t =

ȳk

R
+ 〈τ k〉y

k
t − ȳk

R
− aσ2

kζ
0

RW k
t

. (75)

Combining these equations (75) and (71) yields the equilibrium price for the risky
asset

Rp0
t = ȳ0 +

n∑
k=1

〈τ k〉(yk
t − ȳk) + 〈τ̂〉(ŷt − ¯̂y) (76)

+
H∑

h=1

n̂htEhtp
0
t+1 − ζ0

(
1

Ŵt

+
n∑

j=1

1

W j
t

)
.
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4.2 The model with a short lived asset and reinforcement learning. The pricing
equation (76) contains a term n̂htEhtp

0
t+1 representing heterogeneous beliefs about

the future price of the risky asset. One could study this model with heterogeneous
beliefs in a way similar to the mean-variance asset pricing model in Section 2 or the
OG-model in Section 3. Here, we are mainly interested in the information dynamics
under reinforcement learning and how the introduction of Arrow securities affects the
information dynamics. Therefore we focus on the simplest case where the risky asset
is short lived and perishes after one period so that p0

t+1 = 0. As an example, one may
think of a future on an agricultural commodity, such as corn or soybeans. In the case
of a short lived asset heterogeneous beliefs about the future price of the asset does not
play any role, and agents are only heterogeneous in their information signals about
future dividends. Without loss of generality, we also assume zero outside supply of
the risky asset, i.e. ζ0 = 0.1 In this simple setup, the equilibrium pricing equation (76)
simplifies to

Rp0
t = ȳ0 +

n∑
k=1

〈τ k〉(yk
t − ȳk) + 〈τ̂〉(ŷt − ¯̂y). (77)

4.2.1 General setup. In this subsection we derive general expressions for expected
utility and average realized utility, for each type of agents. Each type h is characterized
by a precision vector (τ 1

h , · · · , τn
h ; τ̂h). To simplify notation, we drop the time index

below. Introduce

δk = yk − ȳk, δ̂ = ŷ − ¯̂y. (78)

Recall from (64), (65) and (66) that expected utility of agent type h is given by

Uh =
n∑

k=0

(ȳk −Rpk)zk
h +

n∑
k=1

τ k
h (δk + εk

h)(z
0
h + zk

h) + τ̂h(δ̂ + ε̂h)z
0
h

− a

2

(
n∑

k=1

σ2
k(1− τ k

h )
(
z0

h + zk
h

)2
+ σ̂2(1− τ̂h)

(
z0

h

)2)

As before, we can write this as Uh = 〈Bh, z〉 − 1
2
〈z, Vhz〉, where

Bh =


ȳ0 −Rp0 +

∑n
k=1(δ

k + εk
h)τ

k
h + (δ̂ + ε̂h)τ̂h

ȳ1 −Rp1 + (δ1 + ε1
h)τ

1
h

...
ȳn −Rpn + (δn + εn

h)τn
h


1For a positive outside supply the last term in eq. (76) could simply be included in the dividend term ȳ0, which

would then be termed a risk adjusted dividend.
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and

Vh = a


∑n

k=1 σ
2
k(1− τ k

h ) + σ̂2(1− τ̂h) σ2
1(1− τ 1

h) · · · σ2
n(1− τn

h )
σ2

1(1− τ 1
h) σ2

1(1− τ 1
h) . . . 0

...
... . . . ...

σ2
n(1− τn

h ) 0 . . . σ2
n(1− τn

h )

 .

The inverse of Vh is given by

V −1
h =

1

aσ̂2(1− τ̂h)



1 −1 −1 . . . −1

−1 1 + σ̂2(1−τ̂h)

σ2
1(1−τ1

h)
1 . . . 1

−1 1
. . . . . . ...

...
... . . . . . . 1

−1 1 . . . 1 1 + σ̂2(1−τ̂h)
σ2

n(1−τn
h )


.

Optimal demands are, as before, given by

zh = V −1
h Bh =



¯̂y −R(p0 −
∑

k p
k) + τ̂h(δ̂ + ε̂h)

aσ̂2(1− τ̂h)

−
¯̂y −R(p0 −

∑
k p

k) + τ̂h(δ̂ + ε̂h)

aσ̂2(1− τ̂h)
+
ȳ1 −Rp1 + τ 1

h(δ1 + ε1
h)

aσ2
1(1− τ 1

h)
...

−
¯̂y −R(p0 −

∑
k p

k) + τ̂h(δ̂ + ε̂h)

aσ̂2(1− τ̂h)
+
ȳn −Rpn + τn

h (δn + εn
h)

aσ2
n(1− τn

h )


.

Using the pricing equations (71) and (75), realized demands read as

zh =



τ̂h(δ̂ + ε̂h)− 〈τ̂〉δ̂
aσ̂2(1− τ̂h)

− τ̂h(δ̂ + ε̂h)− 〈τ̂〉δ̂
aσ̂2(1− τ̂h)

+
τ 1
h(δ1 + ε1

h)− 〈τ 1〉δ1

aσ2
1(1− τ 1

h)
...

− τ̂h(δ̂ + ε̂h)− 〈τ̂〉δ̂
aσ̂2(1− τ̂h)

+
τn
h (δn + εn

h)− 〈τn〉δn

aσ2
n(1− τn

h )


.

From this, we obtain the realized utility

uh =
1

2

〈
Bh, V

−1
h Bh

〉
=

[
(τ̂h − 〈τ̂〉)δ̂ + τ̂hε̂h

]2
aσ̂2(1− τ̂h)

+
n∑

k=1

[
(τ k

h − 〈τ k〉)δk + τ k
hε

k
h

]2
aσ2

k(1− τ k
h )

.
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We note that

E
(
τ k
hε

k
h

)2
aσ2

k(1− τ k
h )

=

(
τ k
h

)2
σ2

hk

aσ2
k(1− τ k

h )
=

σ4
k

(σ2
k + σ2

hk)
2

σ2
hk

σ2
k

1

1− σ2
k

σ2
k+σ2

hk

= τ k
h ,

and a similar equality holds for the hatted variables. The average realized utility is
now easily seen to be equal to

Euh =
(τ̂h − 〈τ̂〉)2

a(1− τ̂h)
+

n∑
k=1

(τ k
h − 〈τ k〉)2

a(1− τ k
h )

+
1

a

(
τ̂h +

∑
k

τ k
h

)
, (79)

with market precisions 〈τ̂〉 and 〈τ k〉 as defined as in (70) and in (74). The last term
reflects that average realized utility will be higher when the precision of the signals
is higher. Note however that the first two terms reflect that average realized utility is
high if the difference between type precision and market precision is large, and this
effect becomes stronger when the precision is higher and approaches 1. This means
that it pays to deviate from average market precision, especially for better informed
types. Moreover, the distribution of the information assets themselves do not enter into
this utility other than by the precisions: to the traders they are sources of randomness
on which they have a certain amount of information, measured by the precisions τ k

h

and τ̂h.

Finally, similar to sections 2 and 3 the new fractions are determined by reinforce-
ment learning based on past average realized utilities according to the familiar discrete
choice probabilities:

nht =
eβEuh,t−1

Zt

, Zt =
∑

h

eβEuh,t−1 . (80)

4.3 Adding more Arrow securities. We now return to the main theme of this pa-
per within the current setup with heterogeneous information signals: what happens to
the information dynamics under reinforcement learning, when more Arrow securities
are added to the market?

4.3.1 A general result with H information types. Traders are heterogeneous in
the precision of their signals across markets, but the current setup still allows for a
wide class of heterogeneous precision vectors specifying the precisions in the risky
asset market and each of the n Arrow security markets. Consider a simple structure of
informational heterogeneity, where each type h has the same precision in each market,
that is,

τ 1
h = ... = τn

h = τ̂h = τh, h = 1, · · · , H. (81)
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With this information structure, better informed traders have better information for all
markets. We also assume that better information is more costly. Let the information
precisions of the H types be ranked according to

1 > τ1 > τ2 > · · · > τH ≥ 0. (82)

Higher costs for better informed types means

C1 > C2 > · · · > CH ≥ 0. (83)

We assume that the costs of information precision τh is the same for each market, so
that the total costs for type h is proportional to the number of markets. Using (79), net
utilities are given by

Euh =
n+ 1

a

(
τh +

(τh− < τ >)2

1− τh
− Ch

)
. (84)

Because of the multiplicative factor n+ 1, it is immediately clear that adding another
information asset to the system will magnify differences in averaged realized utility
and therefore may destabilize the system. Hence, we have shown the following:

THEOREM 3. Consider the price dynamics in (77) with reinforcement learning in
(80) based on average realized utility in (79), information heterogeneity structure as
in (81) and (82), and costs of information as in (83). If β∗0 is the primary bifurcation
value in the case without Arrow securities, that is, if β∗0 is the critical value for which
the steady state becomes unstable if there are no Arrow securities, then the primary
bifurcation value β∗n for the system with n Arrow securities and incomplete markets
(i.e. n < N ) satisfies

β∗n+1 < β∗n < β∗0 , 1 ≤ n < N. (85)

This implies that for the information dynamics with heterogeneous information sig-
nals, we have a similar result that in the presence of more Arrow securities the primary
bifurcation to instability occurs earlier. Adding an Arrow security to the system causes
the primary bifurcation in the information dynamics to occur earlier.

4.3.2 Two type example. In this subsection, we present an explicit example in
which a bifurcation occurs when more Arrow securities are added to the market. Con-
sider the situation where there are only two types of traders, for which τ j

h = τ̂h = τh,
h = 1, 2. We assume that type 1 traders are better informed, i.e., 0 ≤ τ2 < τ1 < 1,
and that better information is more costly, i.e. C = C1 − C2 ≥ 0.

Market precisions 〈τ j〉 and 〈τ̂〉 at time t are equal to

〈τ〉 =

n1tτ1
1− τ1

+
(1− n1t)τ2

1− τ2
n1t

1− τ1
+

1− n1t

1− τ2

=
n1t(τ1 − τ2) + τ2(1− τ1)

n1t(τ1 − τ2) + (1− τ1)
. (86)
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Note that, as the fraction n1 of better informed increases from 0 to 1, market precision
〈τ〉 increases from τ2 to τ1. Using average realized net utility in (84), the difference in
utility is equal to

Eu1 − Eu2 =
(n+ 1)

a

τ1 − τ2
(1− τ1)(1− τ2)

(
(〈τ〉 − 1)2 − C

)
, (87)

where n is the number of Arrow securities as before and C = C1 − C2 ≥ 0. Notice
that when better information comes at no costs, i.e, if C = 0, then the better informed
type 1 will always outperform the lesser informed type 2. Using (80) the fraction of
type 1 is given by

n1,t =
eβEu1,t−1

eβEu1,t−1 + eβEu2,t−1
,

Re-writing this expression, we obtain

n1,t =
1

1 + e−β(Eu1,t−1−Eu2,t−1)
= fτ1,τ2,β,C,n(n1t). (88)

Equations (86), (87) and (88) together fully specify the dynamics of the fraction of
better informed traders. The graph of the one-dimensional (1-D) map fτ1,τ2,β,C,n is
illustrated in Figure 5. The reader may easily check that fτ1,τ2,β,C,n is always decreas-
ing. The Figure illustrates an example with τ1 = 0.35, τ2 = 0, C1 = 0.5, C2 = 0.
The information dynamics converge to a steady state when there are no Arrow secu-
rities; this steady state will be destabilized as more Arrow securities are introduced in
the market. When the system is unstable, it converges to a stable 2-cycle, with up and
down oscillations. Adding Arrow securities thus leads to a period doubling bifurcation
in the information dynamics. Along the 2-cycle, agents switch between buying better
but costly information and a free riding on cheap information strategy.

5 Concluding Remarks

Developments in the financial sector have created many more possibilities for hedging
risk. It has been argued recently, e.g., by Rajan (2005), that under some conditions
markets may be exposed to more financial-sector turmoil than in the past. We have
formalized this idea in three different model settings, a simple mean-variance asset
pricing framework, a general equilibrium OG-model and a noisy rational expectations
model with heterogeneous information signals. Hedging instruments are represented
by Arrow securities, which may be viewed as a proxies for more complicated financial
contingent claims. Within each of the three model settings we have shown that, when
agents adapt their behavior based upon reinforcement learning, a general mechanism
for potential instability applies. In particular, the presence of more Arrow securities
causes the primary bifurcation at the onset of instability to occur earlier. Moreover,
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Figure 5: Information dynamics for two types, τ1 = 0.35, τ2 = 0. Parameter values
are β = 10, a = 1, C1 = 0.5, C2 = 0. In the picture the number of information assets is
increasing from 0 to 10. The fixed point is losing stability in a period-doubling bifurcation
as the number n of information assets increases.

adding Arrow securities to the market may destabilize experience based market dy-
namics. We have provided explicit examples where adding Arrow securities triggers
generic bifurcation routes (Hopf, saddle-node or period-doubling) to complex dynam-
ics.

How general are these results? Clearly, they will not always hold. There may be
other, stabilizing forces that offset the potential instability. For example, for analytic
tractability we have have focussed on a two-period setting. An interesting question
is what happens if we increase the time horizons of agents in the model and decrease
the rates at which agents discount the future. This kind of force increases intertem-
poral smoothing which should lead to the result that risk sharing is not impeded by
the incompleteness of markets. That in turn, we would conjecture, should mitigate
any forces towards instability. See Levine and Zame (1996), (2001) for this kind of
argument.

Furthermore one might think that increasing the horizon towards infinity and decreas-
ing the discount rate towards zero might unleash forces that drive out any agent beliefs
that are not fully structural rational expectations. Indeed the papers of Blume and
Easley (2006) and Sandroni (2000) show exactly this type of result in an infinite hori-
zon intertemporal general equilibrium complete markets setting. However, Beker and
Chattopadhyay (2005) have recently shown that this result does not hold in certain
incomplete markets settings. Blume and Easley (2006) also show that the market se-
lection hypothesis may fail when markets are incomplete.
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Parenthetically we remark that the papers of Blume and Easley and Sandroni study
belief heterogeneity and learning when there is agent disagreement about the proba-
bilities of the states of the world that ”drive” the formation of prices whereas we study
agent disagreement and learning about the future prices themselves. It might be argued
that the probabilities of the states of the world are ”objective” in the sense that how
well the markets function in pricing securities does not impact these state probabilities,
so they might be ”easier” to learn. Whereas asset prices themselves are impacted by in-
teractions of traders within the markets. It seems plausible that in this ”extra layer” of
complexity, market agents could form beliefs about other market agents beliefs, and so
on, much like Keynes’s famous beauty contest metaphor. Such an expectational ”hall
of mirrors” should not play a role in the learning of the ”objective” state probabilities
themselves. We believe the study of differences in learning of ”objective” state prob-
abilities such as the probability of earnings at some future date being some specific
amount versus learning the prices of assets that are claims on such future earnings is
an important topic for future research. See Magill and Quinzii (1994) for pioneering
work in this area, see Santos and Woodford (1997) for general techniques for dealing
with bubbles and other issues that arise in infinite horizon general equilibrium models,
and see Beker and Chattopadhyay (2005) and Sandroni (2005) for recent works on the
impact of incomplete markets on forcing homogeneity of beliefs.

But this work on infinite horizon general equilibrium models with incomplete and
complete markets does not treat learning systems. What would happen if this work
were generalized to include reinforcement learning like that discussed in our current
paper? We do not know and this is an important topic for future research. However,
we would like to make an educated guess here. We think that a good guess would
be this. Bifurcations towards instability would still tend to occur “earlier” when more
risk hedging markets are added because this still would tend to allow (and encour-
age) agents to take larger positions whatever their predictors about the future may be.
Hence under reinforcement learning this force will still lead to stronger reinforcement
for relatively successful predictors. Thus we believe the potential for increased insta-
bility of reinforcement learning will still be present in more general markets. How-
ever, we also believe that increased horizons, lower discount rates, and more Arrow
securities will cause increased homogenization of beliefs (i.e. increased concentration
towards predictors that more closely approximate fully structural rational expectations
predictors, even if these predictors are more costly, provided costs are sufficiently
modest). Which force will “win”? The search for an answer in more elaborate models
will be an exciting area for future research.
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A Proof of the lemma

Here the proof of the matrix lemma 1 is given.

LEMMA 3. Let Qn+1 be a symmetric matrix of the form
(
Qn r
rT s

)
, and let w̃ =

(w,w0). Then

〈
w̃, Q−1

n+1w̃
〉

=
〈
w,Q−1

n w
〉

+
(w0 − 〈r,Q−1

n w〉)2

s− 〈r,Q−1
n r〉

.

Moreover,

detQn+1 = detQn

(
s−

〈
r,Q−1

n r
〉)
.

Proof
Set ξ̃ = (ξ, ξ0), and let w̃ = Qn+1ξ̃. First ξ̃ will be determined, and then the quadratic
form

〈
w̃, Q−1

n+1w̃
〉

is evaluated by computing
〈
w̃, ξ̃

〉
.

In components, w̃ = Qn+1ξ̃ reads as

w = Qnξ + ξ0r,

w0 = 〈r, ξ〉+ ξ0s.

Solving ξ in terms of w and ξ0 yields

ξ = Q−1
n w − ξ0Q

−1
n r.

Substitution into the second equation yields a relation for ξ0:

ξ0 =
w0 − 〈r,Q−1

n w〉
s− 〈r,Q−1

n r〉
.

From this, the vector ξ is obtained as

ξ = Q−1
n w +

〈r,Q−1
n w〉 − w0

s− 〈r,Q−1
n r〉

Q−1
n r.

Finally,〈
w̃, Q−1

n+1w̃
〉

=
〈
w̃, ξ̃

〉
= 〈w, ξ〉+ w0ξ0

=
〈
w,Q−1

n w
〉

+
〈r,Q−1

n w〉 − w0

s− 〈r,Q−1
n r〉

〈
w,Q−1

n r
〉

+
w2

0 − 〈r,Q−1
n w〉w0

s− 〈r,Q−1
n r〉

=
〈
w,Q−1

n w
〉

+
(w0 − 〈r,Q−1

n w〉)2

s− 〈r,Q−1
n r〉

.
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This proves the first statement of the lemma. For the second statement, let C be
the orthogonal matrix such that Qn = CT ΛC, with Λ a diagonal matrix, let C̃ =(
C 0
0 1

)
and, finally, let v = CT r. Then

detQn+1 = det C̃TQn+1C̃ = det

(
CT 0
0 1

)(
Qn r
rT s

)(
C 0
0 1

)
= det

(
Λ v
vT s

)
= det Λ

(
s−

∑
i

v2
i

λi

)
= det Λ

(
s−

〈
v,Λ−1v

〉)
= detQn

(
s−

〈
r,Q−1

n r
〉)
.

B Proof of bifurcations in 2-type example

In this appendix we investigate local stability and bifurcation of steady states in the 2-
type example with (near-)fundamentalists versus trend followers, with fitness given by
risk-adjusted profits, as discussed in section 2. To investigate the stability of the steady
states, we linearize the dynamics at a steady state equilibrium x∗ by writing xt =
x∗ + yt, leading to

Rx∗ +Ryt = n1∗ + n2∗x∗

+ (n1t − n1∗) + (n2t − n2∗)x∗ + n2t(yt−1 + g(yt−1 − yt−2)).

This simplifies to

Ryt = (n1t − n1∗)(1− x∗) + (1− n1t)(yt−1 + g(yt−1 − yt−2)).

Note that u2∗ = 0 and u2t = −(yt−1 − yt−3 − g(yt−3 − yt−4))
2. We compute

n1t − n1∗ =
1

1 + e−β(u1t−u2t)
− 1

1 + e−β(u1∗−u2∗)

= −2β(x∗ − 1) eβ(x∗−1)2

(1 + eβ(x∗−1)2)
2 yt−1 + O(‖(yt−1, · · · , yt−4)‖2).

This yields the linearized dynamics

Ryt =
2β(x∗ − 1)2 eβ(x∗−1)2

(1 + eβ(x∗−1)2)
2 yt−1 + (1− n1∗)(yt−1 + g(yt−1 − yt−2))

+ O(‖(yt−1, · · · , yt−4)‖2).
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Bifurcations. Introduce

c1 = c1(β, ε) =
1

R

2β(x∗ − 1)2 eβ(x∗−1)2

(1 + eβ(x∗−1)2)
2 , c2 =

1

R
(1− n1∗) .

Then the characteristic equation of the linearized dynamics is

σ2 = c1σ + c2((1 + g)σ − g)

or

σ2 − (c1 + (1 + g)c2)σ + gc2 = 0.

Its roots σ1,2 satisfy

σ1 + σ2 = c1 + (1 + g)c2, σ1σ2 = gc2.

Necessary for a saddle-node bifurcation is that σ1 = 1. This implies

gc2 = σ2 = (σ1 + σ2)− σ1 = c1 + (1 + g)c2 − 1,

yielding the condition

c1 + c2 = 1.

Likewise, a period-doubling bifurcation may be obtained only if σ1 = −1, yielding

gc2 = −σ2 = −(σ1 + σ2) + σ1 = −c1 − (1 + g)c2 − 1,

yielding

c1 + (1 + 2g)c2 = −1.

Since c1, c2 > 0, this possibility is excluded.

Finally, the necessary condition for a Hopf bifurcation is that σ1 = σ2 and |σ1| = 1,
but σ1 6= ±1, leading to

gc2 = 1 and |c1 + (1 + g)c2| < 2.

This can be simplified to

gc2 = 1 and − 3 < c1 + c2 < 1.
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Asymptotics. We return to the steady state equation (29). If we solve this equation
for the exponent u = β(x∗ − 1)2 of the exponential, we obtain

u = log

(
1

R− 1

1

x∗
− R

R− 1

)
. (89)

We see that u is strictly decreasing in x∗. Note for instance that the locus of equilibria
given in figure 2 can be described as a regular curve parametrized by u.

Moreover, in terms of u, the expressions for c1 and c2 read as

c1 =
2

R

u eu

(1 + eu)2
, c2 =

1

R

eu

1 + eu
.

If β = 0, then u = 0 and c1 = 0 and c2 = 1/(2R). Since 0 < x∗ < 1/R, we have
that (x∗ − 1)2 > (1− 1/R)2 uniformly in β. Therefore, if β →∞, then u→∞ and

n1 → 0, c1 → 0, c2 →
1

R
.

Saddle-node bifurcation. The saddle-node condition c1 + c2 = 1 reads
2

R

u eu

(1 + eu)2
+

1

R

eu

1 + eu
= 1,

and after some re-writing

u =
1

2
(1 + eu)(R e−u +R− 1). (90)

Denoting the right hand side by ρ(u), we compute the derivative

ρ′′(u) =
1

2
(R− 1) eu +

1

2
R e−u,

and we see that ρ′′ > 0 for all u, and hence that ρ is convex. Since the number of
intersections of a line with the graph of a convex function is at most two, we conclude
from equation (90) that we have at most two saddle-node bifurcation points. Moreover,
we have a cusp bifurcation point if the two saddle-node points coincide, which is
equivalent to the condition ρ′(u) = 1. This condition reads as

(R− 1) eu −R e−u − 2 = 0.

Rearranging and completing the square yields

e2u − 2

R− 1
eu − R

R− 1
= 0,(

eu − 1

R− 1

)2

=
1 +R(R− 1)

(R− 1)2
,

eu =
1 +

√
1 +R(R− 1)

R− 1
,

since the other root is always negative. We see that we have a unique cusp bifurcation
in the system.
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Hopf bifurcation. The Hopf bifurcation condition gc2 = 1 reads

1 = gc2 =
g

R

(
1− 1

1 + eu

)
,

yielding

u = log
R

g −R
. (91)

Substitution in equation (89) yields that

R

g −R
=

1

R− 1

1

x∗
− R

R− 1
,

resulting in

x∗ =
g −R

R(g − 1)
.

Substituting this back into u = β(x∗ − 1)2 and using relation (91) yields

βHopf =

(
g −R

R(g − 1)
− 1

)−2

log
R

g −R

=
R2

g2

(g − 1)2

(R− 1)2
log

R

g −R
.

Note that we still have to verify the Hopf inequality condition that the eigenvalues are
complex. For this we compute c1 + c2, making use of (91) and of c2 = 1/g. This
yields

c1 + c2 =
1

g
+ 2

g −R

g2
log

R

g −R
=

1

g

(
1 + 2

g −R

g
log

R

g −R

)
.

Recalling that c1, c2 > 0, this yields the inequality condition

g −R

g
log

R

g −R
<
g − 1

2
(92)

or

−g −R

R
log

g −R

R
<
g(g − 1)

2R
.

Note that since limx↓0 x log x = 0, this condition is satisfied if 0 < g−R� 1, that is,
when g > R but g sufficiently close to R.
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Figure 6: Bifurcation diagram in terms of the coefficients c1 and c2. The curve is plotted
for values of u = β(x∗ − 1)2 between u = 0, corresponding to the point (c1, c2) =
(0, 1/(2R)), and u = ∞, corresponding to (c1, c2) = (0, 1/R). Note that x∗ decreases
monotonically along the curve.

C Proof of the existence of an equilibrium price

In this section, the existence of an equilibrium price in the two periods overlapping
generations model will be shown.

C.1 Formulation of the problem. The model is populated by many agents. Each
agent lives for two periods. In period i, he obtains an endowment wi of some con-
sumption good that is non-storable. We assume that these endowments are the same
for all agents.

In the first period it is common knowledge that in the second period, the world can be
in S different states; state j occurs with probability αj . The agents can trade a risky
asset and n Arrow securities. The j’th Arrow security is bought at a price pj; if in the
next period, the state of the world is equal to j, this Arrow security pays a dividend 1,
otherwise 0, before perishing. The risky asset is bought at a price p0 and yields a
dividend ys in state of the world s.

There are H different types of agents; an agent of type h is characterized by the fact
that he expects to sell the risky asset in the second period at a price p0

ht+1. For a
given price vector (p0, p1, · · · , pn), trader type h determines his demand zh(p) =
(z−1

h (p), z0
h(p), · · · , zn

h(p)); here z−1
h is his demand of the consumption good in the

first period; ζ0 + z0
h his demand of the risky asset (so in what follows z0

h represents
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excess demand for the risky asset) and zj
h, for j = 1, · · · , n, his demand of the j’th

Arrow security. The trader determines these demands by maximizing his expected
utility

Uh(z
−1
h , z0

h, zh; p) =u1(c1h) +
S∑

s=1

u2(c
s
2h)

subject to the restrictions

0 ≥ z−1
h +

n+1∑
j=0

pjzj
h,

c1h = w1 + z0
h ≥ 0,

cs2h = w2 + (p0
ht+1 + ys)(ζ0 + z0

h) + zs
h ≥ 0, s = 1, · · · , n,

cs2h = w2 + (p0
ht+1 + ys)(ζ0 + z0

h) ≥ 0, s = n+ 1, · · · , S.

In this setup, equilibrium is defined as a price vector p for which the aggregate excess
demand of all assets vanishes:

H∑
h=1

nhtz
j
h(p) = 0, j = −1, 0, · · · , n.

It is assumed that u1 and u2 are strictly concave, and that they moreover satisfy the
following Inada conditions:

lim
c↓0

u′j(c) = ∞, and lim
c→∞

u′j(c) = 0, j = 1, 2.

C.2 Reformulation of the problem.

Reducing the number of states of the world. To treat the individual optimization
problem, it is convenient to combine the utilities in the states s = n + 1, · · · , S,
for which there are no Arrow securities available, into a new utility function. Define
for this y∗ = minn+1≤s≤S y

s, set ᾱj = αj for j = 1, · · · , n and ᾱn+1 =
∑S

s=n+1 αs

and introduce

ū2

(
wn+1

2 + (p0
ht+1 + y∗)z

0
h

)
ᾱn+1 =

S∑
s=n+1

u2

(
w2 + (p0

ht+1 + ys)(ζ0 + z0
h)
)
αs.

Note that ū2 is strictly concave, and that limc↓0 ū
′
2(c) = ∞ and limc→∞ ū′2(c) = 0. In

this way, we reduce the possible states of the world to n+ 1. Introduce also

qj
h = pn+1

ht+1 + yj, j = 1, · · · , n, qn+1
h = pn+1

ht+1 + y∗.
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Normalizing prices. As a second transformation, introduce new prices p̂ by setting

p̂0 =
1∑n+1

k=1 p
k
, pj =

p̂j

p̂0
, for j = 1, · · · , n+ 1.

Note that
∑n+1

j=1 p̂
j = 1.

Each agent faces now the transformed problem of maximizing

Uh = u1(w1 + z−1)

+
n∑

j=1

u2

(
w2 + qj

h(ζ
0 + z0) + zj

)
ᾱj + ū2

(
w2 + q0

h(ζ
0 + z0)

)
ᾱn+1,

subject to the budget restriction
∑n

k=−1 p̂
kzk ≤ 0.

The price p̂−1 is interpreted as the price of the consumption good in terms of which the
trades in the first period are performed. As an effect of these transformations, prices
are now restricted to the (compact) unit simplex

∆ =

{
p̂ ∈ Rn+2

∣∣∣ n+1∑
k=0

p̂k = 1, p̂j ≥ 0, j = 0, · · · , n+ 1

}
.

In the following, we shall drop the hats on the prices.

Short selling restrictions. The traders face the following short selling restriction on
the risky asset

z0
h ≥ −w2

q0
h

= m0
h.

If the total supply of the risky asset is denoted by ζ0, we have

H∑
h=1

n0
hz

0
h = ζ0.

Combining this equality with the short selling constraints, it follows that

z0
h ≤ ζ0 +

H∑
k=1
k 6=h

n0
k

n0
h

w2

q0
k

= M0
h .

Using this inequality, we can also bound the demand for the Arrow securities from
below

zj
h ≥ −qj

hz
0
h − w2 ≥ −qj

hM
0
h − w2 = mj

h.

Introduce also the constants

m = min
h

min
j
mj

h and M = max
h

max
j
M j

h. (93)
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Normalizing assets. Using the assets we have, we construct a new, second, set of as-
sets, such that the j’th new asset pays nothing in any state of the world except the j’th.
Roughly speaking, the risky asset is used to construct an additional Arrow security
that pays nothing in the first n states of the world and 1 in state n + 1. It is important
to note that this new set of assets is different for different types of agents.

Taking now the new (n + 1) Arrow securities as basic assets, we look for the corre-
sponding demands z̃ and prices p̃ such that the two forms of the system are equivalent.
For this, we obviously need to have that

z̃j = qj
hz

0 + zj, j = 1, · · · , n, z̃0 = q0
hz

0.

Denote the matrix of this transformation by Ah, that is: z̃ = Ahz. Its inverse is given
by the equations

zj = z̃j − qj
h

q0
h

z̃0, j = 1, · · · , n, z0 =
1

q0
h

z̃0.

It follows that the prices of the new securities read as

p̃j = pj, j = 1, · · · , n, p̃0 =
1

q0
h

p0 −
n∑

k=1

qk
h

q0
h

pk.

Note that we have the following bounds on the transformed demands (recall that m <
0 < M and that m < zj

h < M for all j and M ):

z̃j ≤ qj
hM +M ≤M max

j
max

h
(qj

h + 1) = M̃, (94)

z̃j ≥ qj
hm+m ≥ mmax

j
max

h
(qj

h + 1) = m̃. (95)

Finally, we also introduce

v0(ω
0 + z̃0) = u1(w1 + z−1),

v1(ω
1 + z̃1) = ū2(w2 + q0

h(ζ
0 + z0))α0,

vj+1(ω
j+1 + z̃j+1) = u2(w2 + qj

h(ζ
0 + z0) + zj)αj, j = 1, · · · , n.

Note that we defined the ωk implicitly through these equations as

ω0
h = w1, ω1

h = w2 + q0
hζ

0, ωj
h = w2 + qj

hζ
0, j = 1, · · · , n.

C.3 Nonvanishing demands. We shall show that for a certain region close to the
boundary of the price simplex ∆ of the original prices, aggregate demand of at least
one of the agents for at least one of the assets grows beyond all bounds. Since total
supply of any asset is bounded, aggregate demand cannot vanish for such a price.
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In the following we shall drop the index h on all quantities. The demand z̃ of type h
is given by the unique solution to the following maximization problem

maximize Ũ(z̃) =
n+1∑
k=0

vk(ω
k + z̃k) restricted to b̃(z̃) =

n+1∑
k=0

p̃kz̃k = 0.

It necessarily is determined by the following Lagrange equations

∇Ũ = λ∇b̃, b̃ = 0.

The first equation reads as

v′k(ω
k + z̃k) = λp̃k, k = 0, · · · , n+ 1 (96)

First induction step. To show that demand of at least one asset is unlimited in a
region close to the boundary of the asset, we proceed inductively. The first induction
step is discussed at length. For a given 0 < ε1 � 1, consider the region Cj of the price
simplex for which

0 < p̃k < ε1 if k 6= j.

We consider two cases: p̃j z̃j ≤ −δ and p̃j z̃j > −δ .

In the first case

δ ≤ −p̃j z̃j =
n+1∑
k=0
k 6=j

p̃kz̃k ≤ ε1

n+1∑
k=0
k 6=j

z̃k,

which implies that
δ

ε1

≤ z̃k

for at least one k 6= j. Choosing

0 < ε1 <
δ

M̃
,

where M̃ is as defined in (94) ensures that for p ∈ Cj aggregate demand is non-zero.

In the second case p̃j z̃j > −δ, we have that

λp̃j = v′j(ω
j + z̃j) < v′j

(
ωj − δ

p̃j

)
< v′j

(
ωj − δ

1− ε1

)
,

which implies that

λ <
v′j

(
ωj − δ

1−ε1

)
1− ε1

≤ max
j

v′j

(
ωj − δ

1−ε1

)
1− ε1

def
= K1.

From equation (96) we obtain then for k 6= j that

K1ε1 > λp̃k = v′k(ω
k + z̃k).

As vk satisfies the Inada conditions, we find that there is a value κ1 > 0 such that
if 0 < ε1 < κ1, then z̃k > M̃ .
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General induction step. The proof of the general (i’th) induction step runs along the
same lines. Let N = {0, · · · , n + 1}. For 2 ≤ i ≤ n + 1, we consider a set J =
{j1, · · · , ji} ⊂ N of i indices, as well as its complement J c = N\J . Both sets are
necessarily non-empty.

Consider the region CJ of the price simplex that satisfies

0 <
∑
j∈J

p̃j < εi if j ∈ J c,

and, for any set J− of i− 1 indices

εi−1 ≤
∑
j∈J−

pj if j ∈ J−.

As before, we investigate two cases:
∑

j∈J p̃
j z̃j ≤ −δ and

∑
j∈J p̃

j z̃j > −δ .

In the first case

δ ≤ −
∑
j∈J

p̃j z̃j =
∑
j∈Jc

p̃j z̃j ≤ εi

∑
j∈Jc

z̃j,

which implies that

δ

εi

≤ z̃j

for at least one j ∈ J c. Choosing

0 < εi < min

{
εi−1,

δ

M̃

}
,

with M̃ as in (94) ensures that for p ∈ CJ aggregate demand is non-zero in this case.

In the second case
∑

j∈J p̃
j z̃j > −δ, we re-write this condition as

0 <
∑
j∈J

p̃j

(
z̃j +

δ∑
j∈J p̃

j

)
.

It follows then that for at least one index k ∈ J we have

0 < z̃k +
δ∑

j∈J p̃
j
< z̃k +

δ

1− εi

.

This leads to the inequality

λp̃k = v′k(ω
k + z̃k) < v′k

(
ωk − δ

1− εi

)
.
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As before we conclude, since p̃k ≥ εi−1

λ ≤ max
j

v′j

(
ωj − δ

1−εi

)
εi−1

def
= Ki.

From equation (96) we obtain then for all j ∈ J c that

Kiεi > λp̃j = v′j(ω
j + z̃j).

As vj satisfies the Inada conditions, we find that there is a value κi > 0 such that
if 0 < εi < κi, then z̃j > M .

C.4 The homotopy argument. As a result of the previous subsection, we find that
the price simplex ∆h of every type h contains a closed, compact, convex set Ph such
that Ph has no point in common with the boundary of the simplex, and such that for
every price vector

p ∈ Σh = ∆h\Ph,

the aggregate demand of at least one of the assets does not vanish.

Definition of the homotopy. We construct a homotopy of the heterogeneous problem
to a homogeneous one, for which we actually know the equilibrium. This is done by
introducing a homotopy parameter ξ ∈ [0, 1], and by introducing

qs
h(ξ) = Ep0

t+1 + ξ(p0
ht+1 − Ep0

t+1) + ys.

Note that now all individual price simplexes and all individual demands depend on ξ.
Moreover, for ξ = 0 all agents are homogeneous in that they agree on the expected
price (and on everything else), whereas the situation we are interested in is obtained
for ξ = 1.

We also define the sets

∆(ξ) =
⋂
h

∆h(ξ), P (ξ) =
⋂
h

Ph(ξ), Σ(ξ) = ∆(ξ) ∩
⋃
h

Σh(ξ).

Note that ∆(ξ) and P (ξ) are convex and compact, as they are the intersection of con-
vex and compact sets. Moreover, note that the aggregate demand vector field is defined
on the interior of ∆(ξ).

We shall show the following: for ξ = 0, the system has a unique price equilibrium,
and the index of the aggregate demand vector field on the boundary on P (0) does not
vanish. Since we know that the aggregate demand vector field does not vanish on Σ(ξ)
for any ξ, it follows that the index of the aggregate demand vector field on P (1) is equal
to 1 as well, and that therefore there exists a price equilibrium for the heterogeneous
problem. It remains therefore to find a solution to the homogeneous problem and to
determine its index.
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Solution to the homogeneous problem. If all agents are the same, the excess demand
vector in equilibrium vanishes a priori and the first order conditions read as

u′1(w1) = λp−1,

u′2
(
w2 + (Ep0

t+1 + ȳ)ζ0
)
(Ep0

t+1 + ȳ) = λp0,

u′2(w2)αj = λpj, j = 1, · · · , n.

These conditions can be solved for the equilibrium prices p∗ and the corresponding
Lagrange multiplier λ∗; note that these prices are unique.

In order to compute the index of the aggregate demand vector field on the boundary
of P (0), it is sufficient to compute the local index of the unique equilibrium for ξ = 0.
For this, consider prices

pj(ε) = pj
∗ + εp̄j.

As in subsection C.2, after a linear transformation we can as well consider maximizing
the utility function

Ũ =
n+1∑
j=0

vj(ωj + zj)

under the restriction
∑

j p
j(ε)zj = 0. Note that the local index of the equilibrium p∗

does not change under this linear transformation.

For every ε, we can maximize Ũ under the budget restriction to obtain the excess
demands zj(ε) = εz̄j + O(ε2) and the multiplier λ(ε) = λ∗ + ελ̄ + O(ε2). The
Lagrange equations read for j = 0, · · · , n+ 1 as

v′j(ωj + zj(ε)) = λ(ε)pj(ε).

Taking derivatives left and right with respect to ε and then setting ε = 0 yields

v′′j (ωj)z̄
j = λ∗p̄j + λ̄pj

∗. (97)

Doing the same with the budget restriction gives∑
j

pj
∗z̄

j = 0. (98)

If we now multiply equation 97 with z̄j and sum over j, using (98) we obtain∑
j

p̄j z̄j(p̄) =
1

λ∗

∑
j

v′′j (ωj)
(
z̄j
)2
< 0, (99)

since all vj’s have been assumed to be strictly concave.
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Setting z̄ = (z̄0, · · · , z̄n+1), we can now define a map ψ : Sn+2 → Sn+2 by

ψ(p̄) =
1

‖z̄(p̄)‖
z̄(p̄).

It is a consequence of equation (99) that this map is homotopic to the map p 7→ −p
on Sn+2. But the degree of the latter map is ±1. Then so is the degree of ψ; but then
the index of the excess demand vector field is nonvanishing as well. Together with
the remarks above, this completes the proof of the existence of a heterogeneous price
equilibrium.
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