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Abstract

In nonparametric tests for serial independence the marginal distribution of the data acts
as an infinite dimensional nuisance parameter. The decomposition of joint distributions in
terms of a copula density and marginal densities shows that in general empirical marginals
carry no information on dependence. It follows that the order of ranks is sufficient for
inference, which motivates transforming the data to a pre-specified marginal distribution
prior to testing. As a test statistic we use an estimator of the marginal redundancy,
which has some desirable properties in the case of transforming to uniform marginals. We
numerically study the finite sample properties of these tests when the data are transformed
to uniform as well as normal marginals. The performance of the tests is compared with that
of the BDS test as well as with a parametric rank-based test against ARCH alternatives.
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1 Introduction

Specifying a parametric family for time series data can be risky when testing for serial
independence. Consider, for instance, a family of processes where at least one of the pa-
rameters affects both the dependence structure and the marginals (for instance the ARCH
parameter in an ARCH(1) model). Because maximum likelihood estimators are typically
not invariant under monotonically increasing transformations of the data, a misspecifi-
cation of the marginals may affect estimated parameter values, and hence lead to false
conclusions concerning dependence in the data.

To illustrate this, we generated a large number of sequences of independent and iden-
tically distributed (i.i.d.) data from a mixture of two normals with zero mean: X; = oy,
where {&;} is a sequence of independent standard normal variables, while oy = 0.5 with
probability 0.9, and 0, = 4.0 with probability 0.1. For each of these simulated time se-
ries we tested whether the ARCH parameter was significantly different from zero using a
standard generalized likelihood ratio test for the restriction # = 0 in the ARCH model:
X; = Ve, hy = v+ 0X2%,, & ~ N(0,1). Repeating this for 1,000 sequences at the
nominal size of 0.05 for a sample size n = 100 gave rise to a rejection rate of 0.150, while
the rejection rate for i.i.d. normal data of the same sample size was only 0.013. The test
being conservative, taking into account the size distortion leads to an even higher rejection
rate of 0.185. Clearly, when used as a test for serial independence, this parametric test can
have a large type I error under misspecified marginals. The over-rejection occurs because
the likelihood is affected by the marginals, and hence misspecified marginals can lead to
wrong conclusions regarding parameters.

Marginals are generally uninformative about the dependence structure within a time
series. For instance, consider, for a strictly stationary time series process {X;}, t € Z,
the distribution of the delay vector X} := (X;_m+1,...,X;)". Assuming that it has a
continuous distribution, its joint probability densities function (pdf) can be decomposed
into a product of the copula density ¢, and a product of marginals:

X (@1, 2m) = e (Fx(21), ..o, Fx(@m)) fx(21) X -+ X fx(@m).

The null hypothesis of serial independence, which amounts to Ho: fx,_ .., (21,...,Tm) =
fx(z1) %X fx(xy), form =1,2,..., can be rephrased in terms of the copula density only,
i.e. without reference to marginals: Hy: ¢, (ug, ..., uy) =1, for u; € [0,1],i=1,...,m.

Since the null hypothesis does not impose any structure on the marginals, one might
actually ignore marginal information altogether when doing inference. A straightforward
way of doing this would be to transform the observed time series {X;} ; to uniform
marginals prior to applying a test for serial independence, e.g. via the empirical cumulative
distribution function (CDF) Fx(X;) = #{s € {1,...,n}|Xs < Xi}/n, or as we prefer, a
slight modification of that:

b _ #{se{l,...,n}X; < X;}

b n+1 '
The convention to divide by n + 1 rather than n avoids complications with the largest
observation when applying the inverse normal CDFs to these uniformized observations. By




construction, transforming the data to a canonical marginal distribution, all information
in the marginals is ignored. Of course, compared to the parametric case this may lead to
inefficiencies, since often information from marginals improves the accuracy of parameter
estimators. However, the risks associated with possible model misspecification will be
avoided.

__In the present context it is natural to study the empirical distribution of m-histories
(Ui—mi1s---,Up), t =m, ..., n, which is known as the empirical copula of (X; 11, ..., X}).
Indeed, all statistics that we will consider are functions of the empirical copula of the data
at hand. In some cases, such as for the ARCH-copula test discussed below, the values Uj
enter the statistics via the inverse normal CDF @, i.e. through ®~(Uj).

The idea of transforming to ranks dates back to Spearman’s rank correlation (Spearman,
1904). For an overview of various rank-based statistical methods, see the book by Lehmann
and D’Abrera (1998). Also Hallin and co-authors (1985, 1988) have worked on rank-based
tests, but with a focus on optimal tests against specific alternatives (such as ARMA). Here
we consider a nonparametric test that is perhaps not optimal against a specific alternative,
but is consistent against any unspecified fixed alternative. We perform simulations to
establish the power. To get an idea of the performance relative to a parametric test
designed against a specific alternative, we compare the power with that of a parametric
copula-based test against ARCH. The proposed method shares the information theoretical
test statistics with Diks and Manzan (2002), but differs in the approach and motivation.
Diks and Manzan (2002) aim at determining the order of a time series process, which
involves conditional independence rather than independence. Here the aim is to construct
nonparametric tests for serial independence with power against a wide range of alternatives.

After introducing the test statistic and the permutation procedure for establishing the
statistical significance of the test statistic in section 2, we discuss the bandwidth selection
problem in section 3.2 and propose a multiple bandwidth procedure. Section 5 describes
the results of the simulations that were performed to compare the new tests with the BDS
test as well as with a parametric test against ARCH copulas. Section 6 concludes.

2 Test statistic

Consider a sample from a strictly stationary time series process: {X;}? ;. The null hy-
pothesis is:
Hy: X, consists of i.i.d. observations

and we wish to test this against general alternatives with dependence of order p = m — 1.
Under the null hypothesis the elements of the delay vector X}" = (X;_41,...,X;) are
independent for each so-called ‘embedding dimension” m > 1.

As motivated above, the test statistics under consideration are functions of the empirical
probability integral transform {U;} of {X;}. In general the values U, may enter the test
statistic via the inverse CDF of another distribution with a given marginal CDF, G, say,
through Y; = G71(U;). We denote the associated marginal probability density function by
91(y), and the joint density of the m-dimensional delay vectors Yi" := (Y;_i1,...,Y:) by
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gm(y). Pompe (1993) has shown that the following relation holds in the case where g(y)
is the UNIF(0,1) density:

/ g, (y™) dy™ > / g1 (y" ) dy™ ! / 9i(y) dy,
m Rm—1 R

with equality if and only if ¢,,(y) = [[;~; ¢1(y;). Pompe stated this in terms of an informa-
tion theoretical notion called marginal redundancy: let H,, = In me g% (y,,) dy,, > 0, then
the marginal redundancy of order m is defined as R,,(Y;—m+1, ..., Yi-1;Yy) = Hpy— Hppo1 —
H; > 0. It is a measure for the amount of information that Y;_,,.1,...,Y;_1 contain about
Y;. In terms of the redundancy, the claim is

Rm:Hm_ mfl_HIZO

with equality if and only if g,,(y) = [[/~, 91(v:), as long as {Y;} has a UNIF(0,1) marginal
distribution. For other marginals this inequality need not hold, and the redundancy may
become negative. Although this inequality can be used for constructing a consistent test,
this does not guarantee that the test has highest power for particular alternatives. For the
simulation study we therefore take a slightly more general approach. In general one need
not restrict attention to uniform marginals, but could also estimate the redundancy for any
canonical marginal CDF by estimating the redundancy for {Yt} where YV, = G~ (Ut)
the worst case this leads to a loss of power, but since we implement all tests as permutation
tests, there is no risk of an increased type I error. In the simulations below we focus
on transforming to uniform and normal marginals before estimating the corresponding
redundancy, and in both cases implement a one-sided test, rejecting the null hypothesis
if the estimated redundancy is too large. Although there might be exotic examples of
joint distributions with normal marginals for which the redundancy would be negative, in
practice we find that also in the non-uniform case this one-sided test performs better than
a two-sided one.

We use plug-in kernel density estimators for evaluating the quantities H,,. The density
estimator evaluated at Y" = (Y;_,41,...,Y;) is

rm 1N
(Y1) = et 2 MY =Y ) = TErxad D) | CUNEEUNENNE

Jj=m s=1

where the last equality expresses the fact that we assume that the kernel factorizes,
i.e. satisfying Kj,(z) = [, kn(2") where z is a vector with elements z',... 2™, and
kn(+) a one-dimensional pdf with scale parameter h, so that kj(s) = k1(s/h). Although
the results presented in this paper are based on the Gaussian kernel function kp(s) =

(2%)_%h_1 exp (—s?/(2h?)), the theory can be developed for general probability kernels,
i.e. kernels that are non-negative and normalized such that [, s;(2)dz = 1. Note that
this normalization differs from that used in the chaos literature, where x,(0) is usually
normalized to 1. This is purely a matter of convention and is done here to emphasize the
close connection between correlation integrals and kernel density estimation.



Anticipating the expressions that will arise when the nonparametric density estimators
from (1) are plugged into the definition of R,,, we define the correlation integral associated
to the kernel K, as

Cn(h) = //Kh(v—w)gm(v)gm(w)dvdw
= E[K,(V-W)], Vand W ~ Y7} independent.

In chaos theory the behavior of these correlation integrals with m and h is used to character-
ize the distribution of the delay vectors Y;". Estimators of correlation integrals appear nat-
urally when we consider the nonparametric estimation of [g,. ¢2,(y™)dy™ = E[gn(Y}")].
A straightforward nonparametric estimator of this expectation would just be the sample
average of the local density estimates (1) over all possible observed points Y;™. This leads
to a V-statistic estimator of the correlation integral of Y7}", based on the kernel function
K, he

. 1 o
Cn(h) = p— gn(Y")
1 - n n . .
S S e
i=m j=m

The theory developed for U- and V-statistics for weakly dependent processes (see
Denker and Keller, 1983) applies, and, among other results, implies consistency of the
above estimator for bounded kernels under strong mixing: C,,(h) £, Cin(h). For the pur-
pose of inference we may replace the V-statistic estimator by the asymptotically equivalent
corresponding U-statistic:

Cn(h) = (”_?H)_li i K(YT Y™,

i=m j=m—1

We thus find the following estimator for the marginal redundancy of order m,

~

Rm = ﬁ]m — Am_l — ﬁ[l = ln 6m<h) - ln 6m,—l(h> - ln al(h)7

where am(h) is the estimated correlation integral for embedding dimension m.

3 Monte Carlo tests

We employ a Monte Carlo approach to obtaining a p-value for the observed marginal
redundancy. Before describing this method in detail, we briefly discuss the possibility of
an alternative implementation of the test, using asymptotic theory.

The theory of U-statistics for weakly dependent processes, developed by Denker and
Keller (1983, 1986), shows that under suitable mixing conditions the fixed bandwidth vec-
tor of sample correlation integrals 6,, := (6m(h), ém,l(h), al(h))’ is asymptotically mul-
tivariate normally distributed with asymptotic mean 8 = (C,,(h),Cp_1(h),C1(h))’, and
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a certain asymptotic covariance 3,,(h), i.e. v/n (0, — 0) 4, N(0,%,,(h)). The functional
delta method can then be employed to show that R, is asymptotically normal with asymp-
totic mean In C,,(h) —In C,,_1(h) — In C;(h) and some asymptotic variance o2, which can
be consistently estimated from the data. Although these asymptotic results are elegant
and potentially useful in many contexts, they are limited by the fact that they assume a
fixed bandwidth value. For testing purposes, one would ideally like to be able to rely on
asymptotic theory which allows for asymptotically optimal bandwidth rates. This would
require determining the optimal asymptotic bandwidth rate, as well as a derivation of the
limiting distributions of the test statistic for this rate. The fact that the test statistic R,,
can be interpreted as a marginal redundancy calculated by replacing the true density by a
‘plug-in’ kernel density estimate is convenient for showing consistency of R,, under band-
width rates for which the underlying density estimators are consistent. However, because
of the aggregate nature of correlation integrals, the optimal rate need not be the same
as that for nonparametric density estimation. Because of the variance-reducing effect of
aggregating local density estimates, we expect that undersmoothing relative to optimal
density estimation rates is appropriate. Besides the optimal bandwidth rate, applications
also require a (possibly data-driven) prescription for choosing the proportionality constant
involved. Although the development of the relevant asymptotics can provide important
insights as well as an implementation of the test procedure that is computationally less
demanding, we here develop an alternative approach based on the concept of Monte Carlo
testing, which has the advantage of providing a test which has a type I error rate which is
exactly equal to the nominal size, for any finite sample size.

The problem of testing for serial independence is highly suitable for the Monte Carlo
approach, allowing one to perform simulation-based tests with a type I error rate exactly
equal to the nominal size. Consider the time series {Ut}t 1- The elements U, take each value
fl, k=1,...,n once. That is, the vector consists of a permutation of rlw ..., ==1. Under
the null hypothesis of serial independence, each permutation of these values is equally likely.
Therefore the null distribution of the test statistic R can be simulated exactly by calculating
the test statistic for many different random permutations. Since in this particular case the
sample marginal of {U;}?, is fixed, critical values could be determined once and for all by
a single large simulation, which need not be repeated for each new realization of the time
series. However, in practice the null distribution would depend on details such as the time
series length n, the bandwidth h, and the particular estimator used (either a V-statistic
or a U-statistic). For this reason it is actually more practical to calculate exact p-values
‘on the fly’ for each specific case. Given today’s computational power of PC’s this poses
no problem even for time series consisting of thousands of observations.

3.1 Single bandwidth permutation test

Although we have implemented the multiple bandwidth permutation test detailed below,
it is instructive to consider how exact p-values would be obtained in a Monte Carlo test
for a single bandwidth. We denote the test statistic R,, calculated using the original data



by }?21 The p-value is calculated as

B+1 ’

D=

where () denotes the indicator function taking the value 1 if the condition in brackets
is true and 0 otherwise. This p-value is exact in the sense that under the null, it is
uniformly distributed on BLH, BLH, ..., 1, provided that ties (cases where the test statistic
for permuted data and the original data coincide) are dealt with appropriately.

Let Z = Zf:o I(ﬁfn = }A‘??n) > 1 denote the number of ties plus one. In case Z = 1,
L =1, while for Z > 1, for L we take a random variable, uniformly distributed on 1,..., Z.
That is, each rank of RC, among the R’ that happen to be equal to R, is taken to be
equally probable. This is equivalent to adding a very small amount of noise to each of
the R’ ’s before determining their ranks, thus making the rank of RY among the R’
unique. If 0 < a = k/(B + 1) < 1 for some integer k, rejecting whenever p < « yields
an exact level-a test. Generally, the power of a permutation test decreases if the number
of permutations B decreases. Marriott (1979) has shown that that the loss of efficiency is
small for B4+ 1 = 5/a. For instance, for a test with size 5%, it suffices to take B+1 = 100.

Notice that the last term al(h) is in fact a function of the empirical marginal distribu-
tion, which is invariant under permutations. This implies that this term is not important
for inference concerning the dependence structure, which in turn is reflecting the fact that
empirical marginals carry no information on dependence. One might therefore just as well
decide to leave out this term of the test statistic when performing the permutation test,
as that would have no effect whatsoever on the obtained p-value. It should be noted that
the resulting difference In C,,(h) — In C,,—1(h) is closely related to the correlation entropy
K,,,(h) introduced in chaos theory for characterizing predictability of X; on the basis of
X771 since in fact Ky (h) := InCp_1(h) — InCy(h). Larger values of the correlation
entropy are associated with smaller predictability. Our procedure can thus be thought
of as checking whether the correlation entropy reaches the maximum value possible given
the marginal distribution. For uniform marginals this is exactly achieved under the null
hypothesis of serial independence.

3.2 Multiple bandwidth permutation test

The nonparametric test implemented as described above requires a choice for the band-
width parameter h. Since the null distribution of the test statistic can be obtained easily
by simulation, the size of the test for any bandwidth can be kept at the nominal size.
Therefore, the most important criterion for the bandwidth choice would be the power. In
general the bandwidth giving the largest power may depend on the process at hand (the
particular alternative under consideration), and on the sample size. In fact one may be able
to derive how the optimal bandwidth should scale with the sample size, as done in Diks
and Panchenko (2006b) for a nonparametric test for Granger non-causality. However, this
would still involve the estimation of the optimal factor of proportionality for the particular



process at hand. As an alternative approach, we therefore choose to follow the multiple
bandwidth approach developed by Diks and Panchenko (2006a) based on Horowitz and
Spokoiny (2001).

The idea behind the multiple bandwidth method is that instead of choosing a single
bandwidth for testing, one might do better by combining information provided by the test
statistics at different bandwidths. The multiple bandwidth method allows one to determine
a single overall p-value on the basis of the test statistics at a (possibly large) number of
bandwidths specified in advance. The multiple bandwidth method involves estimating a
joint vector of p-values, (pi,..., pa), for d different bandwidths hy, ..., hy. We typically
choose the bandwidth values h; equidistant on a logarithmic scale between A, and Apay:

d—i

hi = hmax(hmin/hmax) -1, = 1, .. ,d. (3)

The first step is to choose a test statistic T, consisting of a single number summarizing

-----

Again, the empirical distribution could be obtained beforehand by simulation. However,
this would then still heavily depend on the bandwidths of choice, so we typically use an
on-the-fly simulation method to determine the overall p-value for the observed value of T
Exact p-values can be obtained as follows:

1. Calculate the vector IA%SI = (ﬁ%(hl), e ﬁ?n(hd)) of test statistics for a range of band-
widths: H = {hq,...,hg}. We typically take bandwidth values that are equidistant
on a logarithmic scale, as specified in Eq. (3).

2. Randomly permute the data and calculate a bootstrap version of the vector of statis-
~1 ~ ~
tics, R, = (R}, (h1),..., R}, (hg). Repeat this B times, to obtain a total of B — 1
bootstrap vectors IA?,; fori=1,...,B.
3. Transform ﬁfn(h]) into a (single bandwidth) p-value: 7'(h;) = >0, [(Efn(hj) >
R!.(h;))+ L;]/(B 4+ 1), with L; defined analogously to L in Eq. (2).

4. For each series, select the smallest p-value among all bandwidths and call it YA}
T; = infpeq p'(h).

5. Calculate an overall p-value on the basis of the rank of 7/“\0 among the ﬁ (1=0,...,B),
ie. p=[22,(T; < Ty) + L]/(B + 1) using the ties randomization procedure as in
Eq. (2).

In step 3 we pretend each of the permuted series to be the originally observed series and
determine the corresponding p-values py, ; that would have been obtained for series i for each
of the different bandwidths. In step 4, for each series the smallest p-value over the different
bandwidths is selected (denoted by T;, i =0, ..., B). We finally use the exchangeability of
the B +1 series (the original plus B permuted series) under the null to calculate an overall
p-value by establishing the significance of T\o for the actually observed data (step 5). As
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Figure 1: Observed power as a function of bandwidth h. The left panel shows results for
various series lengths n, for a local ARCH(1) alternatives converging to the null at rate
n~Y2; the right panel for various DGPs for n = 100. In all cases: dimension m = 3,
nominal size o = 0.05, number of permutations B + 1 = 100 and number of simulations
1, 000.

in the single bandwidth case, if &« = k/(B + 1) for some k, rejecting the null hypothesis
whenever p < « yields an exact level-a test.

The power of this multiple-bandwidth procedure depends on the region [Amin, Amax],
the number d of elements in the bandwidth set H and the number of permutations B. In
particular, the region should be wide enough to contain the bandwidths that are most in-
formative concerning the alternative, for a wide range of data generating processes (DGPs).

In order to determine the optimal region [Amin, Amax], We investigate the dependence of
the single bandwidth on the sample size n and the data generating process (DGP). All

simulations are based on the Gaussian kernel function ry,(s) = (2%)_%h_1 exp (—s?/(2h?)).
We consider d = 30 different bandwidth values h; ranging from 0.1 to 2.5, equidistant
on a logarithmic scale (see Eq. 3). A detailed description of the DGPs used, along with
broader simulation results, are presented in section 5. To investigate the dependence of
the optimal single bandwidth on n we considered a local ARCH(1) alternative of the form
Y; ~ N(0,1+ a,Y?,) with a, = n~2. For brevity, here we present simulations only for
test based on the uniform transformation of the marginals. Simulations with the normal
transformation showed qualitatively similar results.

Figure 1 shows the power as a function of the bandwidth for series of various lengths
n, (left panel, DGP 1, m = 3), and for various DGPs, (right panel, n = 100, m = 3).
The left panel shows no clear dependence of the bandwidth for which maximum power is
obtained on the sample size n, although with increasing n one can observe near-optimal
power for a wider range of bandwidth values. Based on the results of these simulations we
decided to set [0.4, 2] for the simulations presented below. Also the number of bandwidths
d chosen in the region [Ayin, Amax] 18 important for the power. Taking d too small we risk



losing informative bandwidths through the grid. Additional simulation results (not shown
here) suggest that the empirical power of the multiple bandwidth procedure reduces as the
bandwidth range becomes wider. In practice we suggest taking d = 5 different bandwidths,
which is the value used in the simulations described below.

4 ARCH-copula test

To evaluate the power of the nonparametric test described above, it is desirable to have a
benchmark test which is close to optimal (in the sense of Neyman and Pearson) against the
alternatives considered. Since this would require the development of a different benchmark
test for each alternative considered, we only consider the ARCH alternative here. As
argued in the introduction, one cannot use a standard likelihood ratio test against ARCH
dependence. If one wishes to ignore information from the marginals, only tests based on
ranks are to be considered. We therefore derive an approximate likelihood ratio test of the
uniform copula against the copula of an ARCH(1) process. Since the this copula depends
on the ARCH coefficient, we only consider the likelihood ratio of the null likelihood and
local alternatives in the direction of ARCH. Apart from being local, the likelihood ratio is
approximate as it depends on substitutes U; = Fx(U;) for Uy = Fx(X;). Nevertheless, this
approach leads to a simple test with large simulated power against ARCH, which appears
to serve as a decent parametric benchmark to compare our test with when applied to ARCH
processes. In fact this local test against ARCH also turned out to have considerable power
against several other types of dependence that we considered, such as the GARCH model,
which is why the tables below also contain results of the ARCH copula test applied on
these other processes.
In short, the resulting ARCH copula test consists of calculating

n

T=2) (& (u))(® " (i), (4)

=2

where ® denotes the standard normal CDF, and to reject if it is too large. Critical values
can be obtained by a single extensive Monte Carlo run, simulating the values of 7' under
the i.i.d. null. The remaining part of this section is devoted to a derivation of this test.
We focus on testing the null of a uniform copula against local alternatives in the di-
rection of the ARCH copula alternative. A standard ARCH(1) process {X;} is considered
with normal innovations, i.e.
X, =017,

where {Z,} is a sequence of independent standard normal random variables, and
of =y +0X7 .

Without loss of generality we will assume 7 =1, as it only determines the scale of the
process, but not the distribution of the vector of ranks S,, := ((n + 1)Uy, ..., (n + 1)U,).



Let ¢(6; x) denote the log-likelihood of the ARCH(1) model with ARCH parameter 6, for a
given sequence of observations @ = (x1,...,,). The locally most powerful rank test (see
e.g. Van der Vaart, 1998) for Hy: 6§ = 0 against H,: 6 > 0, rejects Hy for large values of

Ey (0(0; )18, = 5) .

where the dot denotes derivation w.r.t. 6, Ey(-) is the expectation operator under the null,
and the condition S5, = s indicates that the expectation is conditional on the observed
sequence of ranks, s.

The log-likelihood is given by

((0;2) = log fx(x1) + Y _log fr,x,_, (wil i),

=2

The density appearing in the sum is the conditional normal density from the ARCH(1)
model. Although the first term can be calculated by determining the marginal density
fx(z) up to order 6. The stationary density fx(z;6) must satisfy

lwi0) = [ (00 xpwos(olo)ds = [ fe(ai0)(2n(1+ 022)) her /20100 g,
A Taylor expansion of the transition probability density gives
1o 1
fx(l'; 9) = (27‘(’)756736 /2 / fx(Z; 9) l:l + 59 ($2 - 22):| dz + O((gz)

— (2n) he {1 + %9 (a” — 1)] +O(0),

|H

where we have used Ey[Z?] = 5.
Upon taking the derivatives one finds that the locally most powerful rank test rejects

for large values of

[@RS

Lgy X7 =3 (X2, + X2,00) 15, = ]

;=2

= %E [(CI>_1(U1))2 = (@7 (Uim)* + (@7 (Uim1)* (@71 (U))) IS0 = S] )

=2

where the latter expectation is over an i.i.d. sequence of UNIF(0, 1) variables U;, condi-
tioned on having the same ranks as the originally observed time series. The calculation of
the conditional expectation is cumbersome, but since E[U.,|S, = s] = k/(n+ 1) = Uy,
the expectation is very close to the much more simple statistic



Note that because the sample values of {U,}7, are fixed, (®~1(T))2 = 327 ,(®(T;))?
is constant under permutations of the data, apart from a small edge effect. Because
also > (®71(U;))? is constant, there is an intuitively more clear formulation of the
critical region in terms of the covariance: reject the null if the sample covariance T' =
Cov((®H(U;_1))%, (®~1(U;))?) is too large. In practice it is more convenient to calculate T
as given in Eq. (4) and to reject the null hypothesis if T is too large. Since the test depends
on the data only through the sample distribution of (ﬁi_l, (71), the empirical copula, we
refer to the test as the ARCH-copula test. Critical values for the test statistic and/or

p-values for observed data can be obtained straightforwardly by simulation.

5 Simulation results

This section investigates the power of the proposed nonparametric tests (further referred
to as the R tests) based on the uniform and normal marginal transformations and compare
them with that of the parametric ARCH copula test, and the BDS test. To allow for a better
comparison, the BDS test was modified to allow for transformations to uniform or normal
marginals prior to testing, and the multiple bandwidth procedure was also implemented
for the BDS test.

5.1 Fixed alternatives

We compare the rejection rates of the tests against fixed alternatives for the following
stationary DGPs, where {g;} is an i.i.d. sequence of N(0,1) random variables:

DGP 0. K = &t

05  w.p. 0.9,
40  wop. 0.1

DGP 1 }/t = Ot&y, O = {
DGP 2. Y, =0.3Y, 1 +¢&
DGP 3. K = 0.6&}71}/;72 + &
DGP 4. Y, = Ve, hy =14 0.4Y72,

DGP 5. Y, = Ve, hy = 0.01 + 0.80h;_1 + 0.15Y;2,

DGP 6. Y, = { —0.5Y; 1 +&,  Yii<l1

0.4Y,_1 + &4, else

The above DGPs or slight modifications of these were previously considered by Diks
and Panchenko (2006a), Granger et al. (2004), Granger and Lin (1994), Hong and White
(2005), Brock et al. (1996) and others. DGP 0 satisfies the null hypothesis and is included
to assess the empirical size of the tests. DGP 1 is the Gaussian mixture model that
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DGP R, multiple h | R at h* h* BDS ARCH | Ljung

unif normal | unif normal unif normal | copula | -Box
I[IDN 0.05  0.05 |0.06 0.05 - 10.04 0.05 0.05 0.09
MIXN 0.06 0.05 |0.06 0.05 - 10.05 0.05 0.05 0.04

AR(1) 034 0.17 1039 020 |1.2042 0.24 0.16 0.39
Bilin 0.67 0.67 070 069 |0.8053 0.56 0.47 0.11
ARCH 029 046 |036 053 [1.0]0.34 0.55 0.74 0.09
GARCH | 0.27 040 |0.31 043 |1.1]0.25 0.37 0.38 0.12
TAR 057 013 066 019 |0.5|069 0.17 0.10 0.09

SR e

Table 1: Simulated rejection rates of the specified tests for various DGPs, nominal size
a = 0.05, series length n = 100, embedding dimension m = 3 for the R and BDS tests,
number of replications B + 1 = 100 and number of simulations 1,000. The multiple band-
width permutation method was used for both the R test and the BDS test with with d =5
bandwidths between 0.4 and 2.0. The columns denoted by ‘R at h*’ refer to the largest
observed single bandwidth rejection rates of the R test over an extended grid of 30 band-
widths ranging from 0.1 to 2.5; the corresponding bandwidth h* (if unique) is reported in the

column labeled h*. The Ljung-Box test was based on the first 30 sample autocorrelations.

served as a motivating example in the introduction. DGP 2 is a linear AR(1) process.
DGP 3 is a bilinear process introduced by Granger and Andersen (1978). DGPs 4 and
5 are instances of ARCH(1) and GARCH(1, 1) processes proposed by Engle (1982) and
Bollerslev (1986) respectively. The coefficients of the GARCH(1, 1) process are taken close
to the corresponding estimates of Bollerslev (1986). DGP 6 is a TAR process proposed by
Tong (1978). We used series of length n = 100, and the total number of permutations,
including the original series, was set to B+ 1 = 100. The bandwidth set H included d =5
different values in the range [0.4,2.0] after normalizing the series to unit variance. We
considered delay vector dimension m = 3. For comparison the BDS test was implemented
as a one sided permutation test, rejecting when the test statistic was too large. The number
of permutations was set also to B + 1 = 100. The bandwidth range for the BDS test was
taken as [0.5,2.0], which roughly coincides with the typical values for the BDS test found
in the literature. We set the number of bandwidths to d = 5 for the BDS test and the R
test. All tests were conducted at a nominal size of & = 0.05, and the number of simulations
was set to 1, 000.

Table 1 reports the obtained rejection rates at nominal size a = 0.05 for the consid-
ered processes for the introduced R test, the BDS test for uniform and normal marginal
transformations, the parametric ARCH-copula test and the Ljung-Box (1978) test based
on the first 30 sample autocorrelations. The actual size of all tests is close to the nominal
size of 5%, except for the Ljung-Box test applied to i.i.d. normal data, which is slightly
over-sized with an observed rejection rate of 9%. All Monte-Carlo methods perform well
in terms of size for both i.i.d. processes. This was to be expected, since all these tests
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are exact, and insensitive to transformations of marginals. It can be observed that the
Ljung-Box test only has substantial power for the AR(1) process, which has more linear
dependence structure than the others. For all nonlinear processes each of the nonpara-
metric tests considered outperforms the Ljung-Box test. The nonparametric R test yields
powers comparable to those obtained using the multiple bandwidth version of the BDS
test. The BDS test performs better for the AR(1), ARCH and TAR processes (DGPs 2, 4
and 6), while the R test performs better for the bilinear process (DGP 3) and GARCH
process (DGP 5). As expected the parametric ARCH copula test shows high power against
the ARCH(1)-alternative(DGP 4), but has relatively low power against the other alterna-
tives. The uniform marginal transformation leads to higher power for AR(1) and TAR
processes, DGPs 1 and 5 respectively, while the normal marginal transformation improves
power for ARCH(1) and GARCH(1,1) processes, DGPs 3 and 4 respectively. These results
hold for both the R test and the BDS test. The columns labeled ‘R at h*’ report the largest
observed single bandwidth rejection rates among 30 bandwidth values ranging from 0.1 to
2.5. The bandwidth value, h*, for which the maximum occurred (if unique), is reported
in the next column. It can be observed that the multiple bandwidth procedure loses lit-
tle in terms of power compared to the optimal single bandwidth. Although it cannot be
excluded that data driven bandwidth selection methods may also achieve these optimum
single bandwidth powers, or even improve on them, the results appear to suggest that the
multiple bandwidth method leaves little room for improvement.

Based on the somewhat mixed simulation results presented here, one might conclude
that there is no reason to prefer the R test over the BDS test. The sizes for both tests
are correct and their powers are comparable, although one test may have more power
against certain alternatives, and the other against other alternatives. Firstly, we would
like to emphasize that, to make the comparison more reasonable, the results presented
here under the label BDS test are for a modified version of the BDS test, which also
employs the multiple bandwidth procedure. Secondly, we are not aware of a consistency
result for the BDS test against any class of fixed alternatives. It follows from Pompe’s
inequality stated in the section 2, and the consistency of U-statistics, that the R test with
uniform marginals is consistent against all fixed deviations from independence. Thirdly,
the marginal redundancy is suited to picking up the conditional density of X, given the
m — 1 previous observations X;_,,11,..., X;_1. In doing so, it uses likelihood-based scores,
and in that sense closely mimics locally optimal rank tests, but in a nonparametric fashion.
This might be a possible explanation for the fact that the R test outperforms the BDS test
in particular for DGPs 3 and 5, which exhibit dependence of order higher than 1.

5.2 Local alternatives

We next consider the power against local alternatives. The components of the test statistic
for the R test are estimated using U-statistics, which in the non-degenerate case converge
at the parametric rate n~/2. Therefore, we expect the test to have nontrivial asymptotic
power at the rate n~/? and illustrate this via simulations. Following Hong and White
(2005) we consider a sequence of processes with lag j dependence with the following joint
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Figure 2: Observed power against local ARCH(1) alternatives converging to the null at
rate n=Y2, as a function of sample size n = 100,...,5,000 at nominal size a = 0.05 (left
panel); as a function of nominal size for the test based on normal transformation (right
panel). Embedding dimension m = 3, number of permutations B + 1 = 100, number of
stmulations 3, 000.

probability function:

TinWes Yers) = ) f W) [ = and; (Yes Yers) + 7in (Yt Yerj)]s (3)

where ¢;(y:, y1+;) is a function characterizing the deviation from the null hypothesis, a,
governs the rate of convergence to the null as n — oo, and 7, (yt, yi+;) is a higher order
term obtained from the Taylor series expansion of fj,(yt, y¢+;) around the point a,, = 0. See
Hong and White (2005) for assumptions on ¢;(-,-) and r;,(+,-) which ensure that f;,(-,-)
is a proper density function.

The simulations are based on an ARCH(1) process Y; ~ N (0, 1+a,Y2,) with a, = n"z.
The joint density of (Y3, Y;41) can be represented in the form (3) with ¢;(ve, vetj) = Yevss -
Figure 2 (left panel) shows the rejection rates (powers) of the considered test against a
sequence of local alternatives which converges to the null at the usual parametric rate
an = n~ Y2, where n = 100,...,5,000. A horizontal line in the graph would indicate the
parametric rate. After an initial transient period for small n, the curves level out, sug-
gesting that both tests asymptotically approach the parametric rate. The observed small
deviations from the horizontal line are due to estimation uncertainty, but are within the
5% error bounds. The nontrivial asymptotic power for the R test against this sequence of
local alternatives can also be observed for other values of the nominal size, as illustrated
by the power-size plots for the transformation to normal marginals for increasing sample
sizes n shown in the right panel of Figure 2.
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6 Summary

Model mis-specification may lead to increased rejection rates for parametric tests for serial
independence. This was shown in a simple example where the process was actually i.i.d.
but with wrongly specified marginals. On the basis of this observation we explored the
idea of full-heartedly deleting all information in marginals prior to testing by transforming
to a pre-specified marginal distribution. In the case of a uniform marginal distribution
the marginal redundancy was shown to be a promising measure of dependence, on which
consistent tests against any alternative can be based. The bandwidth selection problem
was addressed and it was argued why a multiple bandwidth procedure, using information
from a number of different bandwidths simultaneously, was implemented. The resulting
tests were compared to a modified version of the BDS test (implemented as a permutation
test with multiple bandwidth procedure) and a parametric ARCH copula test against
local ARCH alternatives. Our simulations, which were carried out for relatively small
sample sizes, showed that none of these rank-based tests was uniformly optimal against all
alternatives. Transforming to uniform marginals was found to be considerably better than
to normal marginals for nonparametric detection (either with the BDS test or with the R
test) of deviations from independence in the direction of the AR(1) and TAR copulas.
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