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Abstract 

 In this paper we study the dependence structure of extreme realization of returns between 

seven Southeast Asian stock markets and the U.S. Methodologically we apply the 

Multivariate Extreme Value theory that best suits to the problem under investigation. The 

main advantage of this approach is that it generates dependence measures even if the 

multivariate Gaussian distribution does not apply, as the case is for the tails of the high 

frequency stock index returns distributions. The empirical evidence suggests that Constant 

and Dynamic Conditional Correlation GARCH(1,1) models produce estimates of the 

correlation coefficient with a similar ranking to the ones produced from the Multivariate 

Extreme Value theory. This evidence is substantiated from a formal clustering analysis. The 

policy implication of our study is that the benefits from portfolio diversification with assets 

from the Southeast Asian stock markets are not eroded during crisis periods. 

 

JEL Classification: G15; C10; F30. 

Keywords: Extreme Value Dependence; Multivariate GARCH; Emerging markets. 
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1.  Introduction 

Recent research on domestic and international stock markets indicates the presence of 

correlation asymmetry, i.e. computed correlations differ substantially and they are 

considerably greater in downside markets. Correlation asymmetry has severe implications for 

the use of portfolio diversification as a method of reducing the risk on a portfolio for a given 

level of expected return. Portfolio managers who fail to take this into consideration face the 

possibility to be over-exposed to risky assets when the benefits of diversification are most 

needed.   

A large literature now exists that has tested the existence of correlation asymmetry in 

international equity markets. Longin and Solnik (1995) study the correlation of monthly 

excess returns for seven major economies over the period 1960-1990. They estimate a 

multivariate GARCH(1,1) model and conclude that there is a positive time trend in 

conditional correlation for all countries even after the variance terms have been modeled with 

a GARCH parameterization. They also use a Threshold GARCH model where they condition 

the correlation on both the sign and the magnitude of past shocks. They find that the 

correlation increases in periods of high turbulence but is no more sensitive to negative than to 

positive shocks.  Karolyi and Stulz (1996) use daily returns between Japanese and US stocks 

and find that large absolute returns to broad-based market indices positively impact both the 

magnitude and the persistence of return correlations. They also demonstrate that 

macroeconomic announcements, foreign exchange and interest rate shocks do not 

significantly affect comovements which are found to be time varying. Bracker and Koch 

(1999) analyze the economic determinants of the correlation structure between ten markets. 

They use daily data and conclude, among others, that correlations are positively related to the 

world market volatility, negatively related to world market returns and that the presence of a 

positive trend can not be rejected.  Bekaert, Harvey and Ng (2005) follow a more structural 

approach that disassociates the notion of contagion from the increased correlation. In this 

framework contagion is defined as the excess correlation that is not explained by higher factor 

volatility. They apply a two factor model with time varying loadings to stock market returns 
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in three regions, Europe, Southeast Asia and Latin America. Their results indicate the 

presence of contagion around the Southeast Asian crisis only which is also extended to Latin 

America as well.
1
  

Although the close connection between correlation and high volatility has been 

documented for different time periods and between a great number counties it is not safe to 

conclude that the “true” correlation is changing over time.  Boyer et.al. (1999) show that from 

a completely statistical perspective one would expect higher correlations during volatile 

periods and therefore the policy of conditioning the correlation on a specific rule (e.g. bear or 

bull market conditions) is not the appropriate one for studying the “correlation breakdown” 

problem. The valid approach would be to specify the distribution of the conditional 

correlation under the null hypothesis and test whether it changes in volatile periods.
2
 

Alternatively, Forbes and Rigobon (2002) correct the correlation index for conditional biases 

and argue that there is no evidence of contagion surrounding the three most recent crises.  

 Notwithstanding the difficulties in the estimation of the correlation coefficient over 

crisis periods, a more critical issue appears to be the suitability of correlation as a dependence 

measure. This reservation stems from the fact that the Pearson correlation coefficient will 

represent the dependence measure between two variables only if the dependence structure is 

Gaussian over the whole distribution. This is however rather unlikely considering the 

distribution properties of high frequency stock market returns. Recently, a number of studies 

have implemented asymptotic results from the multivariate extreme value theory (MEVT) in 

order to estimate the dependence of international equity returns under extreme market 

conditions. The attractive feature of the MEVT is that its results hold for a wide range of 

parametric distributions of returns and not only for the multivariate normal. Longin and 

Solnik (2001) model the multivariate distribution of positive and negative monthly return 

exceedances, which are linked to high values of corresponding thresholds, of the five largest 

stock markets. They conclude that the assumption of multivariate normality cannot be 

accepted (rejected) for large negative (positive) returns. The estimated correlation coefficients 

are always higher in the case of return exceedances for negative thresholds and they tend to 
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increase with the absolute size of the threshold.
3
 Poon et. al. (2004) argue that traditional tests 

for asymptotic extremal dependence bias the results in favor of this hypothesis and they 

suggest an additional measure of extremal dependence for variables that are asymptotically 

independent. They apply the pair of dependence measures on daily data of stock index returns 

of the five largest stock markets and they conclude that the asymptotic dependence between 

the European countries (United Kingdom. Germany and France) has increased over time but 

that the asymptotic independence between Europe, United States and Japan best characterizes 

their stock markets behavior. Deminer and Charnes (2003) apply the MEVT in order to model 

the dependence structure between spot and futures returns and then to calculate optimal hedge 

ratios that minimize a given measure of risk.  

 In this paper we apply the MEVT in order to estimate the dependence structure of 

extreme realizations of equity returns between mature (USA, Japan) and emerging Southeast 

Asian stock markets (Hong Kong, Taiwan, Malaysia, Indonesia, Singapore and Thailand). 

The results are compared to those obtained from two classes of MVGARCH(1,1) models: the 

constant conditional correlation (CCC) model proposed by Bollerslev (1990) and the dynamic 

conditional correlation (DCC) model by Engle (2002). The above testing methodology for the 

dependence structure stands in stark contrast to the classical multivariate analysis which is 

performed jointly for the marginal distributions and the dependence structure by considering 

the complete covariance matrix (e.g. MVGARCH models). So in the so-called Copula 

approach we analyze separately the main diagonal elements (scatter parameters) of the 

covariance matrix from the dependence structure contained in the off-diagonal elements that 

are not “contaminated” by the scatter parameters.  

In the next section we offer a brief presentation of the copula methodology that 

allows the extraction of the dependence structure of a set of variables independently of the 

marginal distributions, which might refer to a wide class of models. Then the MEVT and the 

MGARCH(1,1) approaches are applied on a rather popular in the relevant literature data set 

that comprises of daily stock market returns of most of the Southeast Asian emerging capital 

markets. Moreover, we have also included the S&P 500 as well as the Nikkei 225 indices.  
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Dependence measures are estimated for all possible pairs of series and the results are 

discussed in the third part of the paper. The main evidence is that the case for the existence of 

correlation asymmetry does not appear to be supported empirically. The left tail dependence 

estimates from the MEVT are only marginally greater than those obtained from the right tail 

and at the same time they are not dramatically different from the MVGARCH(1,1) correlation 

estimates. The average correlation estimate from the DCC model is almost equal to the one 

estimated from the CCC model while both of them are found to be very close to the 

unconditional correlation measures. Also, we find that the inclusion or not of the October 

1987 crash period does not affect our estimates in any systematic way. Overall, our results are 

rather relaxing towards the risk of having suboptimal portfolios that fail to diversify the risk 

in stressful periods. Finally, we attempt to investigate whether there are different clusters of 

markets on the basis of the information obtained from the correlation estimates. The 

classification of the markets in different clusters does not depend on the method of estimation 

while at the same time the Southeast Asian emerging equity markets do not seem to belong in 

a distinct cluster.  

 

2. The dependence structure of multivariate extremes and 

multivariate GARCH models 

Copulas, or dependence functions, represent a way of trying to extract the dependence 

structure from the joint distribution. This is being accomplished by separating the joint 

distribution into a part that describes the dependence structure and a part that describes the 

marginal behaviour only. Let us consider a q-dimensional vector of random returns denoted 

by 
t

q

t
YYYY ),...,( 21=  with marginal distributions qFF ,...,1 . The joint distribution function 

C  of 
t

qq YFYF ))(),...(( 11 is then called the copula of the random vector
t

q

t
YYYY ),...,( 21= .  

It follows then that: 

))(),...,((],...,[Pr),...( *
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1

*
1

*

1
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where iii yuy +=*
and iy  refers to the exceedance of iY over the threshold  iu .  

Once the problem is to study the dependence structure of extreme returns, the 

multivariate return exceedances distribution must be defined. The possible limit non-

degenerate distribution however must satisfy two properties; first, the fat-tails feature of 

univariate returns and second the empirical regularity that correlations rise at crisis periods. 

The first property is satisfied by the Generalized Pareto Distribution (GPD) function that is 

given by 

{ }
0,1)(

0,/11)(
)(

/1

=ξ−=

≠ξσξ+−=
−

ξ−

y
eyG

yyG ,                                      (2) 

where ξ is the tail index, 0>σ  the scale parameter and the support is 0≥y when 0>ξ  and 

)/(0 ξσ−<< y  when 0<ξ . Essentially all the common continuous distributions of 

statistics belong in this class of distributions. For example the case 0>ξ  corresponds to 

heavy tailed distributions such as the Pareto and Student-t. The case 0=ξ  corresponds to 

distributions like the normal or the lognormal whose tails decay exponentially. The short-

tailed distributions with a finite endpoint such as the uniform or beta correspond to the 

case 0<ξ , (Pickands, 1975). 

The second property is satisfied by the logistic model in the bivariate extreme value 

family that is given by: 

10 , ),Pr(),(

)1()1(

≤<=≤≤= 
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(Poon et. al.  (2004), Longin and Solnik (2001)). In order to disassociate the correlation 

structure from the marginal distributions the bivariate return exceedances have been 

transformed to unit Fréchet margins  

)(log/1),(log/1 211
yFTyFS

uuu −=−=  

where )( iu yF
i

is the GPD of exceedance iy . The asymptotic dependence of (S,T)  is defined 

by: 
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                                  )/Pr(lim sSsT
s

ff
∞→

=χ ,                           (4) 

where 10 ≤≤ χ , and the two variables are termed asymptotically dependent if 0>χ , 

perfectly dependent if 1=χ  and asymptotically independent if .0=χ 4
 The relationship 

between the coefficient α , of eq. (3), and χ  is given by 
αχ 22 −=  so when the variables 

are exactly independent 1=α  while when 1<α the variables are asymptotically dependent to 

a degree depending on α .  

Once we have chosen the thresholds, the bivariate distribution of return exceedances 

is described by seven parameters: the two tail probabilities, the dispersion parameters, the tail 

indexes of each variable, and the dependence parameter of the logistic function. The 

parameters of the model are estimated by the maximum likelihood method. In the bivariate 

case, the correlation coefficient of extremes is related to the coefficient of dependence by 

(Tiago de Oliveira, 1973; Longin and Solnik,  2001): 

21 αρ −= ,                   (5) 

In order to investigate the empirical implications of those two different estimation 

philosophies we have also chosen to estimate the correlation indices from multivariate 

volatility models. The first model we estimate is the one suggested by Bollerslev (1990) that 

handles the high dimensionality of the parameter space of the variance – covariance matrix by 

adopting the assumption of constant contemporaneous correlations (CCC).  In the                      

CCC-GARCH(1,1) specification the conditional variance matrix is specified as 

ttt
RDDH = , where H t takes the form: 
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In this model the correlation matrix R is time invariant. For the bivariate GARCH(1,1) case 

the CCC model contains only 7 parameters compared to 21 encountered in the full VECH 

model and the positive definiteness of the variance – covariance matrix is easily satisfied 
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( 1<ρ ). In this framework the asymmetric behavior of the conditional covariances in bull 

and bear markets is guaranteed by the proper parameterization of the conditional variances. In 

our case we apply the Glosten-Jagannathan-Runkle (1993) GJR-GARCH(1,1) model: 

 

1

2

1

2

1,

2

1

2

, −−−− +++= tttiittii IYhYh δγβω ,           (7) 

where 0,0,0,0 ≥≥≥≥ δγβω ,It-1=1 when Yt-1<0 and zero otherwise.  

The assumption that the conditional correlations are constant may seem unrealistic in 

many empirical applications like the dependence of international equity returns. Engle (2002) 

extends the CCC estimator by allowing the conditional correlations to be time varying, that is 

the conditional variance is
tttt

DRDH = . The dynamic conditional estimator (DCC) is 

obtained in two stages. In the first stage univariate GJR-GARCH(1,1) models are estimated 

for each return series. The standardized residuals from the first stage, )/( ,,, tiititi hn ε= , are used 

in the second stage in the estimation of the correlation parameters. The correlation structure R 

is also the correlation of the original data and is given by 
1*1* −−= tttt QQQR , where Q

*
 is a 

diagonal matrix whose elements are the square root of the diagonal elements of the 

covariance matrix Q that is specified by a GARCH process as below: 

1

'

11 )()1( −−− ++−−= tttt QnnSQ µλµλ .      (8) 

where the sum of λ and µ measures the long -run persistence. Q is calculated as a weighted 

average of S, the unconditional covariance of the standardized residuals, a lagged function of 

the standardized residuals and the past realization of the conditional variance (Engle, 2002). 

 

3. Empirical evidence 

 We have applied the competing models on a data set consisting of daily returns of the 

following equity indices: S&P 500 Composite (USA), Nikkei 255 Stock Average (Japan), 

Hang Seng Price Index (Hong Kong), the Stock Exchange Weighted Price Index of Taiwan,  

KLCI Composite Price Index (Malaysia), the Jakarta Stock Exchange Composite Price Index 
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(Indonesia), the Straits Times (New) Price Index (Singapore) and the  SET 100 Basic 

Industries Index (Thailand). The data cover the period 5/1/87 – 31/12/04. Daily index returns 

are generated by taking first differences of the logarithmic indices that have been obtained 

from Datastream. The U.S. market is the latest to close on any particular day among the eight 

stock markets in our sample. This means that any shock in the U.S. stock market will impact 

on the other stock markets on the following day. Hence, we use the previous day’s U.S. return 

whenever the returns pair involves the S&P 500 index (Poon et. al., 2000).  Estimates of the 

dependence coefficients have been obtained over two sub-periods, 5/1/87-5/3/01 and 2/11/90 

– 31/12/04, since we intend to check the sensitivity of our estimates on the inclusion or not of 

the turbulent period surrounding the October 1987 stock exchange crisis.  

 The summary statistics for the log differenced return series of the eight stock markets 

are given in Table 1. All series have a negative skewness and a kurtosis that is significantly 

greater than three. Exceptions are the series for Indonesia and Thailand which are positively 

skewed and the series for Taiwan with a near Normal kurtosis. The Jacque-Bera test for 

normality rejects normality for all series. Q(16)  is the Ljung -Box  Q-statistic to test for the 

hypothesis of no autocorrelation up to order (16). This hypothesis is rejected for all the series.  

 The MEVT is applied on the exceedances of the return series from high enough, 

positive or negative, thresholds (Peak over Threshold, POT, method).
5
  In order to estimate 

the threshold, u , we follow Neftci (2000) according to whom 
n

u σ176.1= . n
σ  is the 

standard deviation of ( )n

ttY
1=
 and 2)/ν(ν1.44(0.10)1.176 1

t −== −F  when a Student-t (ν=6) 

distribution, F , is being assumed. This implies that the excesses over the threshold belong to 

the 10% tails. The thresholds we use are shown in table 2 and they are symmetric for the right 

and left tail.    

 The maximum likelihood estimates of the tail index, with their corresponding 

standard errors, and the scale parameters are presented in table 2. The estimated tail index 

values range between -0.172 (Taiwan, left tail, first sub-period) and 0.427 (Indonesia, right 

tail, first sub-period). For U.S., Japan and Taiwan we are unable to reject, except for two 
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cases in the first sub-period, which the tail indices are different from zero and this implies that 

the GPD corresponds to the exponential distribution. The left tail index is greater than the 

right tail index, during the first sub-period, in five out of the eight cases. Therefore, high 

losses are more likely than similar gains in those markets.  The evidence from the second sub-

period is different. There are a greater number of cases where the right tail index is higher 

than the left tail one. Notwithstanding the above evidence and irrespectively of the period we 

look at, if we take into account the standard errors of the estimates then the left tail index 

estimates are not statistically different from the right tail ones.
6,7

  

In table 3 we present the correlation coefficients from the MEVT and the two 

MVGARCH(1,1) models. In the case of the DCC(1,1) model we report both the average 

correlation estimate over the entire estimation period (in parenthesis) and the last estimate. 

The highest correlation from the MEVT models is between the negative returns of Malaysia 

and Singapore while the lowest one between Taiwan and Indonesia. Both of them are 

estimated over the first sub-period. Differences between the two sub-periods are not observed 

in the sense that no trend is being observed that would allow one to claim that the markets are 

getting more integrated or not. The correlation estimates from average DCC(1,1) and 

CCC(1,1) model are very similar while the lowest and the highest estimates are observed for 

the same pairs of markets that we found in the MEVT models. This last result is representative 

of all the other estimates and therefore the ranking of the strength of the correlations is similar 

between the two different estimation methods. This further seems to imply that volatility is 

the major contributing factor to the between-series extremal dependence 
8
.  In our study the 

close proximity of the correlation estimates from the MEVT and MVGARCH(1,1) weakens 

the argument that there has been a contagion effect among the Southeast Asian markets 

during the most recent crises. Since from a completely statistical perspective, one would 

expect higher correlation during periods of high volatility, contagion is not simply increased 

correlation during a crisis period (Bekaert and Harvey, 2003).  

 In order to classify the various pairs of capital markets into different groups on the 

basis of the estimated dependence measures, we apply a clustering analysis that assigns each 
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estimate to the cluster having the nearest mean. K-means is one of the simplest unsupervised 

learning algorithms that solve the well known clustering problem. The procedure follows a 

simple and easy way to classify a given data set through a certain number of clusters (assume 

k clusters) fixed a priori. The main idea is to define k centroids, one for each cluster. Group 

membership is determined by calculating the centroid for each group (the multidimensional 

version of the mean) and assigning each observation to the group with the closest centroid, 

(MacQueen, 1967). The evidence appears in table 4. The main result is that the classification 

of the estimated correlations into low, medium and high dependence groups is very similar 

between the MEVT, the CCC(1,1), and the average DCC(1,1) estimates. The last (i.e., 5/3/01 

or 31/12/04) DCC(1,1) correlation estimates are more sensitive, as expected, to the last 

observation included in the sample and this accounts for the different classification of the 

pairs of countries that is produced. Moreover, the classification of the correlation coefficients 

of extreme positive and of extreme negative returns is very similar.  Finally, we examine 

whether there is any validity to the argument that the Southeast Asian capital markets belong 

to a distinct cluster of markets where the other two are the U.S. and the European markets. If 

this argument was correct then we would expect to find that the correlation indices between 

the Southeast Asian markets would be always classified to the high correlation cluster. A 

simple inspection of table 4 shows that this is not the case. If we concentrate our attention on 

the medium and high correlation clusters only then we can claim that there exists an 

integrated capital market in Southeast Asia consisting of Hong Kong, Singapore, Malaysia 

and Thailand. Taiwan appears to be an “outlier” since it exhibits systematically low 

correlation with all the other neighbouring markets and the same applies, to a smaller extent, 

for Indonesia. Japan and U.S. exhibit varying degrees of correlation with the other markets 

and therefore their investors can benefit from diversifying their portfolios with assets from the 

Southeast Asian stock markets.  
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4. Concluding remarks 

 

 In this paper we studied the dependence structure of the extreme realization of returns 

between seven Southeast Asian stock markets and the USA. Methodologically, we applied the 

Multivariate Extreme Value theory that best suits to the problem under investigation. The 

main advantage of this approach is that it generates dependence measures even if the 

multivariate Gaussian distribution does not apply, as the case is for the tails of high frequency 

stock index returns. The empirical evidence suggests that the more conventional Constant and 

Dynamic Conditional Correlation GARCH(1,1) models produce estimates of the correlation 

coefficient with a similar ranking to the ones produced from the MEVT.  This evidence is 

substantiated from a formal clustering analysis. Moreover, the point estimates of the 

correlations for extreme negative returns are not significantly higher, in most cases, than the 

ones obtained for the extreme positive returns. The policy implications of our study are that 

the benefits from portfolio diversification with assets from the Southeast Asian stock markets 

are not eroded during crisis periods and that the extreme correlations should be attributed to 

the increased volatility in turbulent periods.    
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Footnotes 
 
 
1
 The existence of correlation asymmetry has also been empirically verified between domestic 

equity portfolios and the aggregate market. Correlations are greater in “bear” markets than in 

“bull” markets, (Ang and Chen, 2002).  

 
2 

A valid alternative procedure would be to employ models representative of the data 

generating process, which build in the possibility of structural changes (e.g. the regime 

switching models of Ang and Bekaert, 2002).  

 
3
  Stariça (1999) found a high level of dependence between the extreme movements of most 

of the currencies in the European Union. Hartman et. al.  (2001) found co-crashes between 

stock and bond markets as well as some evidence of cross border dependence. 

 
4
 Poon et. al. (2004) argue that the application of this approach biases the results towards 

rejecting the independence of the variables. The degree of such bias will depend on the rate at 

which 0)/Pr( →sSsT ff as ∞→s .  

 
5 
 The choice of the threshold is of critical importance and the various methods that have been 

proposed usually rely on the visual inspection of QQ models, the sample mean excess 

functions or the Hill-plot, (Gençay, R., and F. Selçuk, 2003). Danielsson and de Vries (1997) 

suggest a bootstrap method for the threshold selection.  

 
6
 Both the negative and the positive stock return distributions are guaranteed to have finite 

second moments since the tail index was never found to be greater than 0.50. For 

[ ]κξ ΥΕ> ,0 is finite for )/1( ξκ < . 

 
7
 Gençay, R., and F. Selçuk, (2003) have estimated the GPD for both positive and negative 

extreme daily returns from Hong Kong, Indonesia, Singapore and Taiwan. The tail index 

estimates they obtain are always greater than the ones presented in this study while the left 

tail and the right tail returns distributions appear to be symmetric. The difference in our 

findings can be justified from the different time period that our data span as well as the 

different stock indices that have been employed.  

 
8
 Poon et. al. (2004) apply univariate and bivariate GARCH filters on five daily stock index 

returns and show that the volatility scaling does not remove completely the tail dependency. 

In our study the close proximity of the correlation estimates from the MEVT and MVGARCH 

weakens the argument that there has been a contagion effect among the southeast Asian 

markets during the most recent crises. 
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