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Abstract 

Recently, issues of international taxation have also been analysed from a New Economic 

Geography perspective. These discussions show that adding agglomerative forces can 

change the results considerably. In the paper, we introduce explicitly taxation and public 

expenditures into a Footloose Capital Model and investigate the local and global dynamic 

implications of such a public policy for industry agglomeration. It turns out that 

agglomeration can be highly sensitive wrt initial conditions and/or parameters and that 

these dynamic patterns are surprisingly robust wrt to the taxation principle.  
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Taxation and Agglomeration 

 

Pasquale Commendatore and Ingrid Kubin1 

1. Introduction 

One of the central concerns in international tax policy is the fear that tax competition leads 

to a loss of industrial capital to competing countries. Recently these issues have also been 

analysed from a New Economic Geography perspective, which stresses agglomerative 

processes and circular causation. Small differences between otherwise identical regions 

may trigger a self-reinforcing process leading to agglomeration of industrial activity in one 

region. In our paper, we pursue the question whether and how differences in taxation and 

public expenditure policy can lead to such a development. 

In the models of the New Economic Geography, regions are separated by transport costs 

and agglomeration is brought about by factor mobility due to differences in regional 

economic incentives. Because of decreasing average costs in production, factor rewards are 

the higher, the higher the local demand is. A high share in total expenditure thus leads to an 

even higher share in industrial capital. This indicates obvious points at which public policy, 

i.e. taxation and public expend itures can affect this mechanism. Transport costs can be 

reduced by public expenditures for infrastructure (see Martin and Rogers, 1995). Factor 

                                                 

1 The paper benefits from previous joint work with Martin Currie and from valuable discussions with him. 

While working on this paper, Ingrid Kubin enjoyed the kind hospitality of the CENDEF at the University of 

Amsterdam. Contributions from Florian Wagener; Pietro Dindo and other participants in a CENDEF 

workshop are gratefully acknowledged. The usual caveat applies. 
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mobility motivated by differences in net factor income is directly affected by tax policy. 

Most studies of public policy within the New Economic Geography take this aspect on 

board (e.g. the literature on tax competition: Baldwin and Krugman, 2004, and Borck and 

Pflüger, 2006 among the others). The provision of public goods can also impact upon the  

migration decision (see for this aspect Baldwin et al., 2003). However, public policy is also 

a central factor determining both the level and the composition of local demand. In a 

framework with decreasing average cost this directly influences gross factor rewards.2 

Income taxes change the disposable income and thus private expenditures; public 

expenditures are typically different from the private ones as far as their regional and  

sectoral structure is concerned. Brülhart and Trionfetti (2004) study the former aspect, 

while the latter is at the core of our analysis. Thus, we ask whether sectoral differences in 

public policy may lead to industry agglomeration. 

In studying this question, we focus on taxation of capital income – since capital is the factor 

that is by far more mobile than labour 3 – and differentiate between two forms of taxation: 

Under the residence principle, public policy has no direct effect upon mobility incentives, 

which allows us to study the effects via differences in the sectoral structure of demand in 

insulation. Under the source principle, taxation affects mobility incentives as well. For our 

purpose, we therefore need a model in which the capital owners’ country of residence may 

be different from the country in which the capital income originates. This leads us to 

adopting a special variant of the Footloose Capital Model. That is, we extend this model by 

explicitly incorporating private and public demand and we allow for the possibility that 

public expenditure has a different sectoral structure from the private one. 

                                                 

2 The provision of public goods can also affect factor rewards in a region via its effect upon productivity. This 

aspect is important but to our knowledge not yet studied in the New Economic Geography models. 
3 For simplification, we assume that labour income is not taxed at all. 
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The focus of the following study is on the analysis of the dynamic processes involved.4 

Typically, New Economic Geography models are formulated in continuous time; in past 

works, we have shown that reformulating them in discrete time may change the results 

considerably. In Currie and Kubin (2006) we analysed Krugman's the quintessential Core 

Periphery model and in Commendatore et al. (2006) we explored the dynamics of a 

symmetric Footloose Capital model. Our present paper extends this study to an asymmetric 

case, naturally brought about by differences in public policy. With taxation according to the 

residence principle, differences in regional public policy translate into different regional 

shares in total expenditures, which are independent of capital allocation; with taxation 

according to the source principle, the regional shares depend – in addition to the public 

policy parameters – also upon the capital allocation. This fact considerably complicates the 

analytic structure. Nevertheless, it turns out that the basic implication of our analysis carries 

over: Differences in regional tax policy make agglomeration more likely; however, it may 

depend quite sensitively upon initial conditions and parameters which of the regions under 

consideration ends up with the core of industrial production. 

 

2. Assumptions  

The Footloose Capital (FC) model involves two countries or regions, each with a 

monopolistically competitive manufacturing sector and a perfectly competitive agricultural 

sector. There are two factors of production. Labour is used in both sectors. Capital is used 

only in manufacturing. Workers are immobile between regions but instantaneously mobile 

between sectors within a region. A key feature of the FC model is that physical capital is 

                                                 

4 Policy issues and welfare implications are elaborated in a twin paper, Kubin (2006). 
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mobile between regions but capital owners are completely immobile and they spend all 

their earnings in the region in which they live. 

Consumers in both regions have the following utility function, which is linearly separable 

in private and public consumption: 

(1) ( ) ( ) ( )GMA CUCCU
~1 += − µµ . 

AC  is the quantity consumed of a homogeneous agricultural good; MC  denotes a quantity 

index that is a CES function of the varieties of manufactured goods. The constant elasticity 

of substitution between the manufactured varieties is denoted by 1σ > ; the lower σ, the 

greater the consumers’ taste for variety. The exponents of the agricultural good and of the 

manufacturing composite in the common utility function – ( )1 µ−  and µ, respectively – 

indicate the invariant shares of disposable income devoted to the agricultural good and to 

manufactures; therefore 0 1µ≤ ≤ . ( )GCU
~

 denotes the utility derived from the supply of a 

public commodity GC . 

In providing the public good, the government uses the agricultural commodity and/or 

manufactured commodities according to the following production function: 

(2) ( ) ( )1 ν ν−
=G A MC C C . 

This specification implies that the share of governmental revenue devoted to the 

agricultural commodity and to the manufacturing composite – ( )1 ν−  and ν , respectively, 

with 0 1ν≤ ≤  – may differ from the private shares; the elasticity of substitution between 

the manufactured varieties, however, is assumed to be the same for the private and the 
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public sector. Public expenditures are financed by capital income taxes, the budget is 

always balanced. 

There are L workers, who are immobile between regions and equally distributed between 

the regions.5 Each worker provides one unit of labour per period. With labour being the 

sole agricultural input, one unit of labour yields one unit of the agricultural product. 

Transportation of the agricultural product between regions is costless. In addition, the 

economies are endowed with K  units of physical capital. Since we are not focusing on 

distributional issues or on changes in factor endowments, we assume that each worker owns 

one unit of capital, i.e. we assume K L= . Capital is mobile between the regions at the 

transitions between time periods in response to economic incentives. 

Manufacturing involves increasing returns: each manufacturer requires a fixed input of 1 

unit of capital to operate and has a constant marginal labour requirement β . Transport 

costs for manufactures take an iceberg form: if 1 unit is shipped between the regions, 1 T  

arrives where 1≥T . ‘Trade freeness’ is defined as 1 σφ −≡ T  where 0 1φ< ≤ , with 1φ =  

representing no trade cost and with trade cost becoming prohibitive as 0φ → . The 

manufacturing sectors involve Dixit-Stiglitz monopolistic competition. Given the 

consumers’ preference for variety, a firm would always produce a variety different from the 

varieties produced by other firms. Thus the number of varieties is always the same as the 

number of firms. Furthermore, since 1 unit of capital is required for each manufacturing 

firm, the total number of firms / varieties, n, is always equal to the total supply of capital: 

                                                 

5 We assume that neither region has enough labour to satisfy the total demand of both regions for the 

agricultural good. Thus, both regions always produce the agricultural commodity – the so-called non-full-

specialization condition. 
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(3) n K=  

The number of varieties produced in period t in region r, where 1,2=r , is:  

(4) ( ) ( )1, 2, 1 1t t t t t tn n K n n Kλ λ λ λ= = = − = −  

where 0 1λ≤ ≤t  denotes the share of physical capital used in region 1 in period t.  

As with most economic geography models, the primary focus of the FC model is the spatial 

location of manufacturing industry, governed here by the endogenous regional allocation of 

capital, λt . 

In what follows, we complete the model by characterizing the short-run general equilibrium 

in period t contingent on λt , by specifying explicitly the capital migration process, and by 

analysing the long-run equilibrium given as fixed point of the capital mobility dynamics. 

We consider two different cases depending on the principle of capital taxation: In Section 3 

we assume that taxes are collected according to the residence principle. In Section 4, we 

analyse the case of taxation according to the source principle, which turns out to be 

analytically more complex. 

3. Full Model with Taxation according to the Residence Principle 

3.1. Short-run General Equilibrium 

With the instantaneous establishment of equilibrium in the agricultural market and no 

transport costs, the agricultural price is the same in both regions. Since competition results 

in zero agricultural profits, the equilibrium nominal wage of workers in period t is equal to 

the agricultural product price and is therefore always the same in both regions. We take this 

wage / agricultural price as the numeraire. Since manufacturers in both regions face that 
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same wage in every period, all set the same mill price p, using the Dixit-Stiglitz pricing 

rule. Given that the wage is 1, the local price of every variety is: 

(5) 
1

βσ
σ

=
−

p  

The effective price paid by consumers for one unit of a variety produced in the other region 

is pT . 

Short-run general equilibrium in period t requires that each manufacturer meets the demand 

for its variety. 6 For a variety produced in region r: 

(6) , ,=r t r tq d  

where ,r tq  is the output of each manufacturer in region r and ,r td  is the demand for that 

manufacturer’s variety. From (5), the short-run equilibrium profit per variety in region r is: 

(7) ,
, , , ,1

β
π β

σ σ
 = − = =  − 

r t
r t r t r t r t

pq
pq q q  

This profit per variety constitutes the regional rental per unit of capital.  

Consumers and governments (as input demanders) face regional manufacturing price 

indices given by:  

(8) 
( )

( )

11 1
1 1 1 11 1

1, 1, 2,

11 1
1 1 1 11 1

2, 1, 2,

1

1

σ σ σ σσ σ

σ σ σ σσ σ

λ λ φ

λφ λ

− − − −− −

− − − −− −

 = + = + −   

 = + = + −   

t t t t t

t t t t t

G n p n p T K p

G n p T n p K p

 

                                                 

6 As a result of Walras’ Law, equilibrium in all product markets implies equilibrium in the regional labour 

markets. 
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Consumption and public input demand per variety in each region is: 

(9) 
1 1

1, 1, 1, 2, 2,

1 1
2, 1, 1, 2, 2,

− − −

− − −

 = + 
 = + 

t t t t t

t t t t t

d M G M G p

d M G M G p

σ σ σ

σ σ σ

φ

φ
 

,r tM  denotes private and public expenditures for manufactured goods in region r; tM  

defines the world expenditures for manufactures 1, 2,= +t t tM M M  and 1,
, = t

E t
t

M
s

M
 its 

regional split. From (6), (8) and (9) 

(10) 
( )

( )
( )

( ) ( )

,,
1, 1,

, ,
2, 2,

1 1 1
1 1

1 1 1
1 1

φ σ
λ λ φ λ φ λ σ β

φ σ
λ λ φ λ φ λ σ β

 − −
= = + 

+ − + −  
 − −

= = + 
+ − + − 

E tE t t
t t

t t t t

E t E t t
t t

t t t t

ss M
q d

K

s s M
q d

K

 

Therefore – see (7) – short-run equilibrium profit per variety in region r is: 

(11) 
( )

( )
( )

( ) ( )

,,
1,

, ,
2,

1 1
1 1

1 1
1 1

φ
π

λ λ φ λ φ λ σ

φ
π

λ λ φ λ φ λ σ

 −
= + 

+ − + −  
 −

= + 
+ − + − 

E tE t t
t

t t t t

E t E t t
t

t t t t

ss M
K

s s M
K

 

For future reference, note that regional and world profit incomes, ,Π r t  and tΠ  respectively, 

are given by 

(12) ( )1, 1, 2, 2, 1, 2,1Π = Π = − Π = Π + Π = t
t t t t t t t t t

M
K Kλ π λ π

σ
 

(for the latter use equ. (11)) and world income tY  by 

(13) 
1
σ

= +t tY L M . 
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Crucial for the subsequent dynamic analysis is the relative profitability of capital ( )λtR  

given by: 

(14) ( )
( ) ( ) ( )

( ) ( ) ( )
, ,1,

2, , ,

1 1 1

1 1 1

λ φ λ φ λ λ φπ
λ

π φ λ φ λ λ λ φ

+ − + − + −      = =
+ − + − + −      

E t t t E t t tt
t

t E t t t E t t t

s s
R

s s
. 

We now turn to the specificities of taxation according to the residence principle, under 

which the tax rate prevailing in the region, in which the capital owner resides, is applied to 

any income she receives irrespective of the location in which the income originates. It 

follows that the tax burden on capital owners living in region r is identical to the tax 

revenues for government r, denoted by ,r tTR : 

(15) , 2
Π

= t
r t rTR τ  

0 1rτ≤ ≤  denotes the regional tax rate on profit incomes. If it is different between the 

regions, tax revenues and tax burdens differ as well. Regional expenditures for 

manufactured goods are therefore given as  

(16) , , ,2 2
Π = + − + 

 
t

r t r t r t
L

M TR TRµ ν  

Public policy affects expenditures for manufactured goods in as far private and public 

expenditure shares differ; i.e. µ ν≠ . Those effects differ between regions, if local tax rates 

are different; i.e. 1 2τ τ≠ . 

Observing (12) and (15), world expenditures for manufactures are  

(17) ( ) ( ) ( ) ( ) 1 2
1, 2, 2

+ = + Π + − + = + + − 
 

t t
t t t t

M M
M L TR TR L

τ τ
µ ν µ µ ν µ

σ σ
. 
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Therefore, 

(18) 
( )1 2

2

µ
σ

τ τ
σ µ µ ν

= =
+

− + −
tM M L . 

Its regional split is 

(19) 1 2
,

1
1

2 2
τ τν µ

σ
−− = = + 

 
E t Es s . 

With the residence principle, world income (see equation (13)), total expenditures for 

manufactures and its regional split are constant, i.e. independent of the regional allocation 

of capital. Es , the expenditure share for manufactured goods in Region 1, will be one of 

our central parameters. It summarizes the effects of public expenditure and tax policy. If 

both regions have the same tax rate, i.e. if 1 2τ τ= , or if public expenditure behaviour is not 

different from the private one, i.e. if µ ν= , then 
1
2

=Es  as in the symmetric Footloose 

Capital Model without a public sector. If regional tax policy differs, i.e. 1 2τ τ≠ , and if this 

difference matters for expenditure behaviour, i.e. if µ ν≠ , then 0.5Es ≠ . Equ. (19) shows 

that the high tax region ends up with the higher expenditure share for manufactured goods, 

if governments spend more for manufactured goods than private consumer do; i.e. if ν µ> . 

For future reference we define  

(20) 1 21 1
2 2 2

− −
∆ = − =E Es s

ν µ τ τ
σ
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where Es∆  can be interpreted as measuring the degree of asymmetry brought about by the 

combined effect of public tax and expenditure policy. Given the constraints on the 

parameters, 1 20 , , , 1µ ν τ τ σ≤ ≤ < , it follows that max1 1
:

4 4
∆ ≤ = ∆ <E Es s

σ
 holds.  

Finally, expressions (11), (18) and (19) determine short-run equilibrium regional profits per 

variety. The relative profitability of capital ( )λtR  is given by: 

(21) 

( )
( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( )

2 2

2 2

1 1 1

1 1 1

1 1 2 2 1 1

1 2 1 2 1

+ − + − + −      = =
+ − + − + −      

+ − + + ∆ − −
=

+ + − − ∆ −

E t t E t t
t

E t t E t t

t t E t

t t E t

s s
R

s s

s

s

λ φ λ φ λ λ φ
λ

φ λφ λ λ λ φ

φ λ φλ φ λ

φ λ φ λ φ λ

. 

For 0Es∆ =  the analysis is equivalent to that of the symmetric Footloose Capital Model 

without a public sector. 

3.2. Capital Movements and the Complete Dynamical Model 

In a Footloose Capital model, the representative capitalist does not move herself, but 

allocates the physical capital she owns between the regions. In doing so, she is interested in 

her utility or in her real net income.7 Since all income is taxed and spent in the home region 

of the capitalist, the relevant tax rate and price index for calculating real net income are the 

ones at home, irrespective of the regional capital allocation. Therefore, in this case 

orientation at real net income is equivalent to an orientation at nominal gross income. 

                                                 

7 Assuming that the representative capitalist takes the level of the public good provided at home as given, the 

indirect utility function, which follows from the specification in equation (1), is linear in real income.  
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In specifying the dynamic process we recur to ideas from the replicator dynamics widely 

used in evolutionary economics and evolutionary game theory (see e.g., Weibull, 1997). 

Taking into account the constraint 10 1λ +≤ ≤t , the piecewise smooth one-dimensional map 

whereby 1λ +t  is determined by λt  is: 

(22) ( )
( )

( ) ( )
( )

1

0 0
0 1

1 1

λ
λ λ λ λ

λ
+

<


= = ≤ ≤
 >

t

t t t t

t

if F
Z F if F

if F
 

where λt  is in [0,1] implies that 1λ +t  is in [0,1] and where 

(23) ( ) ( ) ( )
( ) ( )

1
1

1
t

t t t t
t t t

R
F

R
λ

λ λ γλ λ
λ λ λ

−
= + −

+ −
 

with 0γ > . We refer to γ  as the ‘speed’ with which the representative capitalist alters his 

regional allocation of capital in response to the ratio in regional profitability, ( )λtR .8 The 

map ( )tF λ  can also be written as: 

                                                 

8 In the literature on the replicator dynamics, it is common to assume that the change in the share of agents 

adopting one strategy depends on the “fitness” of the strategy under consideration in comparison to the 

average “fitness” of all available strategies. In our context the strategies correspond to “using the capital in 

region 1 or using it in region 2”; and it is straightforward to interpret the resp. profit rates as indicating the 

“fitness” of those two strategies. Leaving for the moment boundary conditions out of the consideration, this 

leads to the following standard replicator specification:  

( )
1,

1

1, 2,1
t

t

t t t t

t

π
λ λ

λ π λ π+ =
+ −

, or 
( )

1,1

1, 2,

1
1

tt t

t t t t t

πλ λ

λ λ π λ π
+

−
= −

+ −
. In addition, we allow for an adjustment 

speed γ  and assume the following law of motion: 
( )

1,1

1, 2,

1
1

tt t

t t t t t

πλ λ
γ

λ λπ λ π
+ −

= −
+ −

 
 
 

, which can be 

transformed into equation (23). Note that this specification is a good approximation to the discrete-time  

counterpart of the process assumed by Puga (1998) in his core-periphery model, namely to 
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(24) ( ) ( ) 2 2

1 1 1
1 2 24 1

1 1
4

1 2

+    − − −   −    = + −
 +  − −  −   

E t

t t t t

t

s
F

φ
λ

φλ λ γλ λ
φ

λ
φ

, 

which nicely reveals the following symmetry property with respect to 0.5Es =  and 

0.5tλ = : If for Es , λt  is mapped onto 1λ +t , then for ( )1 Es− , ( )1 λ− t  is mapped onto 

( )11 λ +− t . Recalling the definition of Es  (see equ. (19)) this means that swapping private 

and public expenditure shares or swapping regional tax rates engenders swapping of 

regional shares in capital allocation. The same holds also for iterates of higher order. 

Fixed points for the dynamical system, which correspond to long-run equilibria, are defined 

by ( ) =Z λ λ . Core-periphery equilibria, i.e. 0 0=CPλ  or 1 1=CPλ , are boundary fixed points 

of the dynamic system. A central question of the New Economic Geography concerns 

critical values for trade freeness (or for any other parameter) at which agglomeration in 

either region is sustainable. The so-called sustain points give conditions under which “the 

advantages created by such a concentration, should it somehow come into existence, [are] 

sufficient to maintain it” (Fujita et al., 1999). Sustain points therefore specify conditions at 

which the boundary equilibria CP
iλ  (where i = 0, 1) become (at least locally) stable. These 

critical values are defined by ( )' 1CP
iF λ = , with the latter indicating the derivative of the 

first return map (23). It can be reduced to ( ) 1CP
iR λ =  and solved for  

                                                                                                                                                     

( ) ( ) ( )( )1 lnt t t t tF K Rλ λ λ λ ς λ= + −  with K ς γ= . In particular, the fixed points and the derivatives at 

the interior fixed point are the same for both specifications. 
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(25) (0)

1
S E

E

s
s

φ =
−

                    (1) 1S E

E

s
s

φ
−

= , 

where ( )S iφ  indicates the sustain point for CP
iλ . For 0.5Es∆ =  it holds that (0) (1) 1S Sφ φ= = ; 

for 0.5Es∆ >  this condition changes to (1) (0)1S Sφ φ< <  (and for 0.5Es∆ <  it holds that 

(0 ) (1)1< <S Sφ φ ). 

In addition to the boundary fixed points, an interior fixed point is given by 

(26) 1 1 1 1 1
*

2 1 2 2 1
+ + = + − = + ∆ − − 

E Es s
φ φ

λ
φ φ

. 

A second central question of the New Economic Geography concerns critical values for the 

trade freeness (or for any other parameter) at which an (interior) equilibrium without spatial 

concentration “breaks up”. This so-called break point gives conditions under which “small 

differences among locations [will] snowball into larger differences over time, so that the 

symmetry between identical locations will spontaneously break” (Fujita et al., 1999). I.e. it 

gives conditions under which an interior fixed point *λ  becomes (at least locally) unstable 

and the dynamics is attracted to one of the boundary equilibria. Analytically, the break 

point is defined by ( )* 1F λ′ = . In our model, the break point arises when the interior fixed 

point coincides with one of the boundary fixed points and it is equal to the corresponding 

sustain point. At that value of the trade freeness a transcritical bifurcation occurs (see 

Wiggins, 1990). Two curves of fixed points (concerning the interior fixed point and one of 

the boundary fixed points) cross each other (with the interior fixed point leaving the 

admissible interval) and they exchange stability.  

In our model, interior fixed points can also lose (local) stability because the derivative of 

the map in equ. (22) evaluated at the fixed point crosses the critical value of – 1. If by 
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varying one parameter (or more parameters simultaneously) the inequality ( )* 1′ < −F λ  

holds, an attracting period two-cycle emerges through a Flip bifurcation. The condition 

( )* 1F λ′ = −  allows to determine critical parameters values.  

Considering a change in trade freeness, which is the central parameter for the New 

Economic Geography, a Flip bifurcation occurs if 

(27) 
( )

( ) ( )2

2

2 2 1
1

41
E E Es s s

φ γ γ
γ γφ

   − −  = − = − ∆    
 +    

. 

For 2γ > , this equation implicitly defines a unique bifurcation value 0 1Flipφ< < .9 Note 

the term ( )1E Es s− : φ Flip  does not change if Es  is replaced by( )1 Es− , or – using equ. (19) 

– if ν  and µ  or 1τ  and 2τ are swapped. Note as well that φ Flip  is declining in ( )2
∆ Es . 

Figure 1 summarizes the (local) properties of the fixed points as depending upon the trade 

freeness φ . Figure 1a corresponds to the so-called tomahawk diagram representing the 

fixed points; Figure 1b is a bifurcation diagram and Figure 1c reports the corresponding 

Lyapunov coefficients. Since we have chosen 0Es∆ > , the boundary equilibrium 0 0CPλ =  

is (locally) unstable for all values of φ . In a highly open economy (i.e. low transport costs 

or high trade freeness), in particular for ( )11 S Bφ φ φ> > =  no interior fixed point exists 

                                                 

9 This can be easily verified considering that 
( )21

φ

φ+
 is strictly increasing in φ  for 0 1φ≤ ≤  with 

( )2
0 0.25

1

φ

φ
≤ ≤

+
 and that ( )2

0 1 0.25
−

≤ − <
 
 
 

E Es s
γ

γ
 holds for 2γ ≥  and 0 1Es≤ ≤  (which implies 

that ( )0 1 0.25
E E

s s≤ − ≤ ). 
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within the (0,1) interval, and the boundary equilibrium 1 1CPλ =  is (locally) stable. As φ  

crosses the sustain point ( )1Sφ , a transcritical bifurcation occurs: 1 1CPλ =  loses its stability; 

the interior fixed point enters the (0,1) interval and becomes locally stable. As φ  crosses 

φ Flip , the interior fixed point loses stability via a Flip bifurcation. Attracting periodic 

solutions appear, first a period two cycle, then – at lower values of φ  – the time path 

exhibits more complex and even chaotic patterns with an ever increasing volatility of the 

regional share in capital. Once φ A  is reached, the share of capital assumes the value of one 

(or zero), i.e. one of the boundaries is hit and agglomeration via volatility occurs. Given the 

mobility hypothesis as specified in (22) and (23), the share of capital does no longer change 

once a boundary value is assumed. The core-periphery fixed points, though locally 

unstable, act as a so-called "snap-back repeller". In that situation, it might become highly 

sensitive to initial conditions which region ultimately ends up with the core.  

The fact that locally unstable fixed points are globally attracting shows that it might be 

worthwhile to study the global properties of the dynamic process as well. However, before 

doing this, we explicitly address the question what are the impacts of public policy on the 

(local) dynamics. 

A Flip bifurcation occurs if the expenditure and public policy parameters ν , µ , 1τ  and 2τ , 

satisfy the following condition (using equ. (19) and (27)): 

(28) 
( ) ( )

( )
1 2

2

1
4 4 21

Es
ν µ τ τ φ γ

σ γφ

− −
∆ = = ± −

−+
. 

For Es∆ , or for each of the parameters ν , µ , 1τ  and 2τ , there exist two Flip bifurcation 

values that are symmetric with respect to 0Es∆ = , i.e. wrt ν µ=  and 1 2τ τ= , respectively. 
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This symmetry in connection with the symmetry of the map ( )λtZ  as defined above carries 

over to the bifurcation diagrams as shown in Figure 2 for 1.5σ = , which implies 

max 0.167Es∆ = , and three different values of the trade freeness: a) 0.35=φ , b) 0.315=φ  

and c) 0.29=φ . 

Let us now take a closer look at the comparative dynamics’ impact of public policy as 

depending upon the trade freeness. Without public policy 0Es∆ = ; public policy introduces 

an asymmetry with max0 E Es s< ∆ ≤ ∆  (see equ. (19)). Recalling that – as noted above – 

Flipφ  is declining in ∆ Es  it holds that: 

(29) ( ) ( ) ( )max0 0Flip Flip Flip
E E Es s sφ φ φ∆ = > ∆ > > ∆ . 

This has the following implications:  

First, for ( )0φ φ> ∆ =Flip
Es  the fixed point is stable without and with any public policy –

no public policy can destabilizes the fixed point.  

Second, ( ) ( )max0Flip Flip
E Es sφ φ φ∆ = > > ∆  the fixed point without public policy is unstable 

– in Figure 2 the dynamics exhibits a period two cycle – but it is stable for the extreme 

values of public policy: Strong public policy exerts a stabilizing influence. Intermediate 

values of public policy, however, can add to the complexity of the dynamics (see Figure 2a 

and 2b).  

Third, for ( ) ( )max0Flip Flip
E Es sφ φ φ∆ = > ∆ >  the fixed point is unstable for all values of the 

public policy parameters; public policy adds to the complexity of the dynamics; 
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intermediate values of public policy can even lead to full agglomeration in one region (see 

Figure 2c). 

Figure 3, which is drawn for an adjustment speed of 10=γ  and for 25.00 max =∆≤∆≤ EE ss , 

summarizes the properties of the global dynamics; Figure 3a delimitates parameter regions 

with different long run behaviour, Figures 3b to 3d illustrate these different types of 

behaviour as depending upon the initial condition 10 0 ≤≤ λ . A black (white) tile indicates 

that the long run behaviour settles on 1 1CPλ =  ( )0 0CPλ = ; a grey tile indicates that the long 

run dynamics stays within the boundaries, i.e. that it settles either on an interior fixed point 

or on an interior cyclical/complex attractor. 

Since Es∆≤0  the boundary equilibrium 0 0CPλ =  is locally unstable for all parameter 

values. In Region N the trade freeness is beyond the sustain point, i.e. ( )1Sφφ ≥ : No interior 

fixed point exists and the boundary fixed point 1 1CPλ =  is locally and globally stable. For 

the other parameter combinations, both boundary equilibria are locally unstable and an 

interior fixed point exists, which is locally stable as long as Flipφφ ≥  holds. It is especially 

interesting to analyse under what conditions the global dynamics is attracted to one of the 

(locally unstable) boundary fixed points. Decisive for that is whether or not the boundary 

conditions impinge upon the dynamics, i.e. whether or not ( )0 1tF λ≤ ≤ . Figure 3a shows 

three regions, the boundaries of which can be determined analytically, and Figure 4 depicts 

corresponding examples of ( )tF λ . 

In region A (see Figure 4a), no boundary condition is involved – ( )( ) 1tMax F λ < +  and 

( )( ) 0tMin F λ > . Therefore, the two boundary fixed points, which are locally unstable, are 

also globally unstable – no initial condition will be attracted to them. The interior fixed 
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point, which is stable in region A1, or the periodic orbit in Region A2 born after the Flip 

bifurcation, are globally stable – almost all initial conditions will be attracted to them (in 

Region A2 periodic unstable fixed points might exist; those and their pre- images will not 

converge to the stable attractor). 

In Region B only the upper boundary is binding, i.e. ( )( ) 1tMax F λ > +  and 

( )( ) 0tMin F λ > . Figures 4b to 4d are some examples of the corresponding first return 

map. In this region the – locally unstable – boundary fixed point 1 1CPλ =  has a basin of 

attraction: Initial conditions 0λ , for which ( )0 1F λ >  – i.e. initial conditions on the bold 

segment in Figures 4b to 4d – and all pre- images of that range will be attracted to it. In 

Region B1 and B2 some initial conditions will be attracted to a trapping set, which is 

constructed by using ( )( )tMin F λ  and its iterates (see Figures 4b and 4c). Therefore, in 

Region B1 (B2) both the boundary fixed point 1 1CPλ =  and the interior fixed point (the 

cyclical fixed point born after the Flip Bifurcation) have a basin of attraction. In region B3, 

the trapping set vanishes and all initial conditions are attracted to the boundary fixed point 

1 1CPλ =  (see Figure 4d). Of particular interest is the boundary between Region B2 and B3: 

The first return map in the trapping set (see Figure 4c) is very similar to the one of the 

logistic equation (in the limiting case). In analogy, the Li-Yorke theorem can be applied 

and it can be shown that cycles of any length exist (see Aligood et al., 1996). Therefore, the 

dynamics is chaotic on that boundary.  

In region B4 (see Figure 4e) no trapping set exists: the basin of attraction for the boundary 

fixed point 1 1CPλ =  and for the interior cyclical fixed point can be complex (this is clearly 

shown in the enlargement in Figure 3d, which shows in grey the complex basin of attraction 
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for an interior solution). In that region, it is highly sensitive to initial conditions whether 

both regions coexist or whether agglomeration occurs in Region 1. 

In region C, both boundary conditions are binding, i.e. ( )( ) 1tMax F λ > +  and 

( )( ) 0tMin F λ <  (see Figure 4e). Now almost all initial conditions will converge to one of 

the boundary fixed points: Initial conditions 0λ , for which ( )0 1F λ >  and all pre- images of 

that range will be attracted to 1 1CPλ = ; initial conditions 0λ , for which ( )0 0F λ <  and all 

pre-images of that range will be attracted to 0 0CPλ = . The only exceptions are again initial 

conditions on unstable cycle fixed points and its pre- images. In this Region, the boundaries 

of the basins of attractions are complex.  

Figure 3 also allows to assess the impact of an asymmetry brought about by public tax and 

expenditure policy upon the global dynamics: In the symmetric case (i.e. for 0Es∆ = ) only 

Region A1, A2 and C are possible. Therefore, either the interior fixed point and the interior 

cyclical solutions are globally stable (Regions A1 and A2 resp.); or both boundary fixed 

points have a complex basin of attraction (Region C). In the asymmetric case we analysed 

(i.e. for 0Es∆ > ),10 the region N and different regions B occur; i.e. regions in which initial 

conditions exist that are attracted to the boundary fixed point 1 1CPλ = .  In that sense, 

asymmetry reduces the basin of attraction of the interior solutions (in which both regions 

coexist) and of the boundary fixed point 0 0CPλ =  but increases the basin of attraction of the 

boundary fixed point 1 1CPλ = .  

 

                                                 

10 For 0Es∆ < , the boundary equilibria would exchange their stability properties symmetrically.  
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4. Taxation according to the source principle 

4.1. Short-run General Equilibrium 

With taxation according to the source principle capital income is taxed according to the tax 

rate that prevails in the region, in which the income originates, irrespective of the location, 

in which the capital owner lives. Also in this case equations (1) to (14) apply. However, 

regional tax revenues are now given as 

(30) ( )1, 1 1, 2, 2 2,1τ λ π τ λ π= = −t t t t t tTR K TR K  

and regional expenditures for manufactures as  

(31) 

1, 2,
1, 1,

1, 2,
2, 2,

2 2 2

2 2 2

+Π = + − + 
 

+Π 
= + − + 

 

t tt
t t

t tt
t t

TR TRL
M TR

TR TRL
M TR

µ ν

µ ν

. 

Tax burdens are identical between regions; changes in the tax rates affect private spending 

in both regions in an identical way. However, regional tax burdens are no longer identical 

to regional tax revenues. Therefore, if regional tax revenues are different and at least some 

of these revenues is spent for manufactured goods, i.e. 0ν > ,11 regional expenditures are 

also different. Taxation according to the source principle relocates expenditures for 

manufacturers to the region with the higher tax revenue. Regional tax revenues do not only 

depend upon the tax rates, but also on the allocation of capital between the regions λt , 

which determines the tax base.  

                                                 

11 Note that the crucial point is whether the share in public expenditure devoted to manufactured goods is 

positive and not whether it is greater than the private share. 
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World expenditures for manufactured goods are given as  

(32) 

( ) ( ) ( )

( )( ) ( ) ( )( )

1, 2,

1, 2, 1, 1 2, 21 1

= + Π + − + =

= + + − + − + −

t t t t

t t t t t t t t

M L TR TR

L K K K K

µ ν µ

µ λ π λ π ν µ λ π τ λ π τ

 

Note that they are no longer constant but depend upon the allocation of capital. The 

regional split of expenditures for manufacturers is: 

(33) ( )( )

( ) ( )( )

1, 2, 1, 2,
, ,

, 1, 1 2, 2

, 1, 1 2, 2

1 1 1 1
1

2 2 2 2

1 1
1

2 2

1 1
1 1

2 2

ν ν

ν λ π τ λ π τ

ν λ π τ λ π τ

− −   
= + − = −   

   

= + − −

− = − − −

t t t t
E t E t

t t

E t t t t t t t

E t t t t t t t

TR TR TR TR
s s

M M

s M M K

s M M K

 

Also here it is clearly visible that the region with the higher tax revenue gets the higher 

share in expenditures (if at least some of the tax revenue is spent for manufactured goods). 

Given the regional allocation of capital λt , equations (11), (32) and (33) allow to determine  

(34) 
( )

( )( )

( ) ( )
( )

( ) ( )

,

1 2

1 2
1

1 1
2 1

1 1 1 1

1
+ −

=

− − − −
+ − + − + − + −

+ − −

   
−   

   

t t
E t

t t

t t t t t t t t

t t

s

ν
σ

λ φ λ

φ φ
σ νλτ ν λ τ

λ λ φ λφ λ λ φ λ λ λ φ

λ τ φ λ τ
 

(35) 
( ) ( )

σ
µ

σ µ µ ν λ
=

− + −t
t

M L
C

 

( )λtC  is a complicated expression which collects all terms depending upon tax policy and 

upon the regional allocation of capital. Note that the region 1's share of expenditure is no 
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longer constant, but depends upon the capital allocation, i.e. ( ), =E t E ts s λ . Finally, 

expressions (11) and (34) determine short-run equilibrium regional profit rates and their 

ratio: 

(36) ( )
( ) ( ) ( ) ( )

( ) ( ) ( )

2 2
2

2 2
1

1 1 2 1 1

1 2 1 1

t t t

t

t t t

R

ν
φ λ φλ τ φ λ

σλ
ν

φ λ φ λ τ φ λ
σ

+ − + − − −
=

+ + − − −
. 

For 0ν =  or for 1 2 0τ τ= =  the analysis is equivalent to that of the symmetric Footloose 

Capital model without a public sector. Note as well the similarity in structure with the 

corresponding expression for the residence principle in equation (21). 

4.2. Capital Movement and the Complete Dynamical Model 

In contrast to the previous case, with taxation according to the source principle, it is the 

ratio of net nominal profits that is the relevant economic incentive for capital reallocation:  

(37) 
( )
( ) ( )1 1, 1

2 2, 2

1 1
1 1

τ π τ
λ

τ π τ
− −

=
− −

t
t

t

R . 

The central dynamic equation now is 

(38) ( )
( )

( ) ( )
( )

1

0 0
0 1

1 1

λ
λ λ λ λ

λ
+

<


= = ≤ ≤
 >

t

t t t t

t

if F
Z F if F

if F
 with 

(39) ( ) ( )
( )

( ) ( )

1

2

1

2

1
1

1
1

1
1

1

t

t t t t

t t t

R
F

R

τ
λ

τ
λ λ γλ λ

τ
λ λ λ

τ

−
−

−
= + −

−
+ −

−

. 
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This map is analytically more complex than the one presented above related to the 

residence principle case. Nevertheless, there are some common features: It also exhibits a 

symmetry property, which slightly different from the above one. Swapping the regional tax 

rates and observing that ( ) ( )2 1
1 2

1
1 , ,

, ,t
t

R
R

λ τ τ
λ τ τ

− =  (see equation ((36)), it holds that 

( ) ( )2 1 1 21 , , 1 , ,t tF Fλ τ τ λ τ τ− = − . It also has two critical points, which change 

systematically with a change in the parameters, in a similar way as for the map above (see 

the examples in Figure 6). The impact of the boundary conditions is similar as well. 

Therefore, although less analytic results are obtainable much of the previous analysis 

carries over to this case. 

Again, two boundary fixed point capital allocations – 0 0CPλ =  and 1 1CPλ =  – exist and 

change (local) stability at the sustain points.12 The latter are defined by ( )' 1CP
iF λ = , which 

indicates the derivative of the map given in equ. (39), or equivalently by ( ) 2

1

1
1

CP
iR

τ
λ

τ
−

=
−

. 

For 1 1CPλ =  this condition solves for  

(40) 
22

(1) 1 1
1

2 2
1

1 1 1
1

1 11

  − −  = − + −    − −   +  

S τ ν τ
φ τ

ν τ σ ττ
σ

. 

with (1)0 1< <Sφ .  

For 0 0CPλ =  the sustain points are given by 

                                                 

12 In the following, we assume 1 2τ τ< ; for 2 1<τ τ  , the boundary equilibria swap their stability properties. 
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(41) 
22

(0) 2 2
1,2 2

1 1
2

1 1 1
1

1 11

  − −  = + −    − −   +  
mS τ ν τ

φ τ
ν τ σ ττ
σ

 

where (0)
1,2
Sφ  are distinct and real for 

22
2

2
1

1
1

1
 −  + >   −   

ν τ
τ

σ τ
.  

In addition, an interior fixed point is defined by ( )1

2

1
1

1
τ

λ
τ

−
=

− tR , which solves for 

(observing equations (14) and (34)) 

(42) 
( )

( )

1 2

1 2 1 2 1 2

1 1
1 11 1

*
2 2 12 2

1

φ ν φ
τ τ

φ σ φ
λ

ν φτ τ τ τ τ τ
σ φ

    + +
− −    − −    = +

 +− − + − −  − 

. 

Note that for 1 2τ τ=  the fixed point 
1

*
2

λ =  corresponds to that in the symmetric Footloose 

Capital model without a public sector. At break points, the interior fixed point changes 

stability. Analytically, the break point Bφ  is defined by ( )* 1′ =F λ  or, equivalently by 

( )* 0′ =R λ . In our model, the break point and the sustain point for 1 1CPλ =  coincide, 

(1)=B Sφ φ . As above, at Bφ  a so-called transcritical bifurcation occurs. Two curves of fixed 

points (concerning the interior fixed point and the boundary fixed point 1 1CPλ = ) cross each 

other (with the interior fixed point leaving the admissible interval) and they exchange 

stability. Note that – in contrast to the previous analysis – transcritical bifurcations also 

occur at (0)S
iφ φ= . However, in this case the interior fixed point is (locally) unstable for 

(0) (0)
1 2< <S Sφ φ φ . At (1)Flip B Sφ φ φ< =  the interior fixed point looses stability via a Flip 

bifurcation. However, in contrast to the simpler case analysed above, no simple analytic 

expression is available for the bifurcation value. 
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Figure 5a shows the fixed points as depending upon the trade freeness and the bifurcation 

diagram in Figure 5b illustrates their (local) dynamic properties; Figure 5c shows the 

corresponding Lyapunov coefficients. 

In our numeric example (1) (0) (0)
1 2

Flip B S S Sφ φ φ φ φ< = < < , which delimits various ranges for 

the trade freeness φ : 

For (0)
2
Sφ φ<  and for (1) (0)

1< <S Sφ φ φ , no interior fixed point exists within the interval (0,1). 

The boundary fixed point 0 0CPλ =  is (locally) unstable, and 1 1CPλ =  is (locally) stable. 

For (0) (0)
1 2< <S Sφ φ φ , both boundary fixed point are (locally) stable. In addition, a (locally) 

unstable interior fixed point exists, which delimits the basin of attraction for the two 

boundary fixed points. This property is illustrated in the bifurcation diagram for which an 

initial value 0 0.1λ =  has been chosen.  

For < <Flip Bφ φ φ , a (locally) stable interior fixed point exists. Both boundary fixed points 

are (locally) unstable. 

For < Flipφ φ , the interior fixed point has lost stability via a Flip bifurcation and an 

attracting cyclical solution exists. Both boundary fixed points continue to be (locally) 

unstable. Note the complex dynamics for low values of φ  and again the phenomenon, 

which we call agglomeration through volatility, that occurs for < Aφ φ .  

Also the impact of differences in regional public policies on the (local) dynamic behaviour 

is similar to the above analysis of the residence principle (see Figure 2). In numerical 

experiments it turns out that, also for the source principle case, it depends upon the degree 
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of trade freeness: For high values of trade freeness, strong differences in public policy can 

be stabilizing; for lower values public policy can act as an additional source of fluctuations. 

Finally, Figure 6, which is the equivalent of Figures 3 and 4, illustrates the properties of the 

global dynamics. Due to the higher degree of analytic complexity, the boundaries in region 

A, B and C can only be determined numerically. However, the basic pattern carries over: 

As Figure 6a shows, the behaviour in the various regions is the same irrespective of 

whether taxation follows the residence or the source principle. The only difference is that 

region N is now split into two sub-regions delimitated by the sustain points: In Region N0 

both boundary fixed points have a basin of attraction; in Region N1, all initial conditions 

are attracted to 1 1CPλ = . For further illustration, Figures 6b to 6d are examples of maps 

corresponding to specific parameter values: in particular, travelling in Figure 6a 

horizontally along 2 0.55=τ  from right to left, we have chosen four different values for the 

trade freeness: (i) 0.25=φ ; (ii) 0.228=φ ; (iii) 0.217=φ ; and (iv) 0.5=φ . 

 

5. Conclusions  

With the reduction of barriers to commodity trade and factor mobility questions of 

international tax policy have become increasingly debated: Countries fear to lose industria l 

capital to competing neighbours. We studied this question in a New Economic Geography 

framework, in particular in a Footloose Capital model, which we extended to allow for a 

public sector. Capital income is taxed according to the residence or according to the source 

principle and tax revenue are spend for providing a public commodity. In doing so, public 

policy changes the sectoral split of total (public plus private) expenditures, which is the key 

magnitude for determining regional factor reward and thus factor mobility. We explicitly 
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modeled this process – along the lines of a replicator dynamics – in discrete time and 

studied under what conditions agglomeration is possible. In addition to its local properties, 

we paid special attention to the global features. Three fixed points can be differentiated: 

two boundary fixed points (industrial capital is agglomerated in region 1 or in region 2) and 

one interior fixed point, which is asymmetric, since we allow for differences in regional tax 

rates (otherwise the parameters are identical between the regions). We focused our analysis 

on parameter combinations for which the interior fixed point – as long as it exists – exhibits 

a larger share of industrial capital in region 1 than in region 2, i.e. we focus on a public 

policy which favours region 1. The local analysis reveals that the interior fixed point loses 

stability via a Flip bifurcation after which periodic and chaotic attractors emerge, and that 

both boundary fixed points are (locally) unstable for some (or the entire) parameter range. 

However, the global analysis shows that – although being locally unstable – for each of the 

boundary fixed points a basin of attraction exists (the boundaries of which may be highly 

complex). Although public policy favours region 1 in the above mentioned sense, 

agglomeration in either region is a possible outcome. It may be highly sensitive to initial 

conditions and/or parameters, which region ends with the agglomeration of industrial 

capital. Comparing the results to the one obtained for the symmetric case without public 

policy, we noticed that: (i) the basin of attraction for agglomeration in Region 2 – the 

region which has at the interior fixed point the lower share of industrial capital – shrinks; 

(ii) the one of the interior fixed point with industry coexisting in both regions also 

contracts; and (iii) the one of agglomeration in Region 1 increases. Public policy, which 

favours Region 1 at the fixed point, favours it also from a dynamic perspective. 

Surprisingly enough, it turns out that those dynamic properties are quite robust and do not 

change when taxation according to the residence principle is replaced by one according to 

the source principle. 
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