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Dumortier [25] are found numerically.
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1. Introduction

In appendix II of his book on nonlinear vibrations [46], Stoker considered a nonlinear
oscillator with damping and quasi-periodic driving, of the form

•y + c_y + y � �y 2 = f (! 1t; ! 2t); (1)

with f a 2� -periodic function in both arguments. If for givenf the damping strengthc
is su�ciently large, or if for given c the function f is su�ciently small in some function
norm, he showed, using a contraction argument, that this system has a so-calledresponse
solution y(t) = ' (! 1t; ! 2t), where ' is 2� -periodic in both arguments.

Stoker remarked that \the usual methods of approximation applied to
equation (1) for c = 0 (i.e. without damping) and ! 1=! 2 irrational would almost
certainly lead to divergent series because of the occurrence of certain small divisors
in the representation of the terms in the series expansions". This question, of whether
response solutions exist in equations like (1) forc close to 0, is nowadays called `Stoker's
problem'.
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1.1. Stoker's problem at strong resonances

After Moser [43, 26] solved Stoker's problem for reversible systems, Braaksma and
Broer [3] considered Stoker's problem for families of general nonlinear oscillators; in that
context, Stoker's problem asks for the persistence of the `central' invariant torus near
Hopf bifurcation parameter values. They showed the existence ofa Hopf bifurcation set
H c which is a positive measure subset of a codimension 1 submanifoldH in parameter
space. Also, by applying centre manifold theory, they showed that there are two open
parameter setsA and R, one at either side ofH , having in�nite order of contact at H c.
The system has an normally hyperbolic invariantm-dimensional torus, attracting for
parameter values inA , repelling for values inR. Moreover, depending on whether the
Hopf bifurcation is subcritical or supercritical, there are similar smaller open subset
R + � R (subcritical case) orA + � A (supercritical case), also having in�nite order of
contact with H at H c, such that for parameters in these sets, the system has a normally
hyperbolic repelling (for parameter values inR + ) or attracting (values in A + ) torus
of dimensionm + 1. All these invariant tori are �nitely di�erentiable; the siz e of the
setsA , A + , R and R + decreases as the degree of di�erentiability of the tori increases.
See for more details [3, 10, 11].

We are interested in the complement of these sets, that is, we are interested
in the set of parameters for which standard KAM theory and centremanifold theory
do not yield the existence of invariant tori. In the case of a twoparameter family, this
complement consists of countably many so-called resonance holes (or bubbles), that
are similar to the `resonance bubbles' found in the case of the quasi-periodic saddle-
node bifurcation by Chenciner [19, 20, 21]. We extend work byGambaudo [27] and
Wagener [53] on strongk : ` resonances withk 2 Zm and ` = 1; 2. These articles
study semi-global bifurcations for periodically (m = 1) and quasi-periodically (m � 2)
perturbed driven damped oscillators near Hopf bifurcation for both ` = 1 and ` = 2;
after appropriate averaging and truncation of the system, aTm -symmetry is divided
out. A bifurcation analysis is performed of the remaining principal part at the (relative)
equilibria for small pertubation strengths.

In the present article the bifurcation diagrams in the cases̀ = 1 and ` = 2
are completed. For the �rst case, the bifurcation diagram is understood completely by
taking the codimension 3 singularity of nilpotent-elliptic type [25], found in [53], as an
organising centre. Consequently, we �nd a codimension 2 degenerate Hopf bifurcation,
absent from [27, 53], whose existence is implied by the codimension 3 bifurcation (this
was kindly pointed out to us by Freddy Dumortier). For both cases, we add curves of
homoclinic and heteroclinic global bifurcations to the bifurcation diagrams, that have
been determined numerically by AUTO [22] and Matlab [31]. For̀ � 3 techniques from
`standard' KAM theory (cf. [3, 7, 11, 34, 35]) can be applied to show the existence of
invariant tori.

The �rst step of the analysis of the quasi-periodic case is the analysis of the
periodic case. Though these two cases are strongly related the quasi-periodic case is
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more involved than the periodic case, since the set of resonatingnormal frequencies is
dense in the set of all normal frequencies. This implies that theoverall picture has a lot
more �ne-structure; we shall be more precise below.

1.2. Relation to previous work

Response solutions of periodically driven damped non-harmonic oscillators at resonance
have already been studied by van der Pol [51], Cartwright and Littlewood (e.g.[17, 18])
and in Stoker's monograph on nonlinear vibrations ([46, p. 107�, p. 114� and Figure
3.1 on p. 92]). See also [9, 16].

For a systematic bifurcation analysis of these resonances see [47], where,
using normal form theory, the generic strong (1 :̀ for ` = 1; � � � ; 4) and weak
(` � 5) resonances of periodic response solutions at non-degenerateHopf bifurcation
are classi�ed and described. For the 1 : 4 resonances, see [1, 36, 37,38, 39]. We refer
the reader to the overview given in [1,x35, p. 302�].

The 1 : 1 resonance, also investigated in [4, 5], gives in this wayrise to the
Bogdanov-Takens bifurcation. However, from a practical point of view, the Bogdanov-
Takens bifurcation does not describe fully what happens generically to the response
solutions of a driven damped oscillator at resonance: for some parameter values, there
are two response solutions, for others there are none. Under natural hypotheses, for
instance if the friction coe�cient grows su�ciently quickly w ith amplitude, a topological
argument based on index theory [42] can be employed to show the existence of at least
one response solution in the oscillator.

Besides the response solutions involved in the Bogdanov-Takensbifurcation
there is yet another response solution, which for parameter values close to the Bogdanov-
Takens bifurcation value is `far away' from the bifurcatingresponse solutions, and this
third solution is therefore not captured by a local analysis. Holmes and Rand [33, 29]
made a semi-global analysis of the 1 : 1 resonance in a special case (our case# = 0) that
captured all response solutions. We use the term `semi-global' to indicate that after
averaging and scaling, we consider phenomena in a given `big' region of the phase space,
rather than in the in�nitesimally small regions su�cient for pu rely local bifurcation
analysis.

The analysis of Holmes and Rand was extended by Gambaudo [27] toa semi-
global bifurcation analysis of the generic codimension 2 casesof strong resonances at
non-degenerate Hopf bifurcations. We note as an aside that recently a beginning has
been made at analysing resonances of periodic response solutionsat degenerate Hopf
bifurcations [8]. In that case 1 :̀ resonances are strong if̀ � 6 and weak otherwise.
As we �nd families of degenerate Hopf bifurcations in our analysis, we expect that the
phenomena reported in [8] will occur generically in our systemas well.

In [53] the semi-global analysis of driven damped anharmonic oscillators at Hopf
bifurcation has been taken up in the case that the driving is quasi-periodic instead of
periodic. As mentioned before, in the �rst step of such an investigation `averaging' or
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`normal-form' techniques are applied [1, 48, 15, 16, 39] that permit to write the system
as a periodically forced system with a small quasi-periodic perturbation term. Working
in a di�erent parametrisation from the one used in [33, 29, 27],and considering a third
natural parameter, the analysis of the periodic part yieldedthat in the 1 : 1 resonance,
the two generic cases reported by Gambaudo can be seen as subfamilies of a generic
three-dimensional bifurcation diagram that is organised by asingularity of nilpotent-
elliptic type [25].

The present article completes the analysis started in [53], taking the nilpotent-
elliptic point as `organising centre' of the bifurcation diagram and exploring its
implications, one of which is the occurrence of degenerate Hopf bifurcations in the k : 1
resonance case. Also we compute all global bifurcation curves that are known from
the analysis of the nilpotent-elliptic point, excepting those relating to `boundary
bifurcations'; these latter bifurcations concern tangencies of the vector �eld to the
boundary of any small neighbourhood of the singularity [25].

Moreover, the consequences of the quasi-periodicity are spelled out more fully.
For instance, in the periodic case the Hopf bifurcation set is a smooth manifold. In
the quasi-periodic case, it is shown in [53] that every resonancebetween the perturbing
quasi-periodic frequency and the Floquet exponent of the free oscillator generically
gives rise to a resonance hole. Hence, in the quasi-periodic case it is to be expected
that the Hopf bifurcation set is `frayed'. We shall invoke quasi-periodic bifurcation
theory [19, 11, 52] to investigate which portions of the localbifurcation diagram persist
under small perturbations. In the bifurcation diagram there are quasi-periodic Hopf
bifurcation sets for which the analysis of the article can be applied repeatedly: in this
way resonance within resonances are found, as in, e.g., [2].

There are strong analogies between the present case of general (dissipative)
nonlinear oscillators and the non-damped Hamiltonian case; inthe history of the
subject of nonlinear oscillations, the Hamiltonian case of a certain problem has usually
been investigated before the dissipative case. Since equilibria with purely imaginary
eigenvalues occur generically in Hamiltonian systems, strongk : ` resonances are already
encountered in one-parameter families, and the bifurcationdiagrams are consequently
simpler. For a detailed analysis, we refer the reader to [9].

The present article is based on chapter 3 of [44]. An overview of the results
obtained has been given in [13].

1.3. Overview

From the outset, attention is restricted to quasi-periodically damped driven systems.
Examples are the system given in equation (1) and the forced Du�ng{van der Pol
oscillator

•y +
�
a + cy2

�
_y + by+ dy3 = "f (! 1t; � � � ; ! m t; y; _y; �; " );

where f is 2� -periodic in its �rst m arguments. This non-autonomous second order
di�erential equation can be written as follows as a quasi-periodic perturbation of a
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planar vector �eld:
8
><

>:

_x j = ! j ; j = 1; � � � ; m;
_y1 = y2;
_y2 = � (a + cy2

1) y2 � by1 � dy3
1 + "f (x1; � � � ; xm ; y1; y2; �; " ):

(2)

Here x 2 Tm = Rm=2� Zm is usually called the internal variable, and y1 = y
andy2 = _y are callednormal variables; note that for system (2) the internal dynamics are
independent of the normal variables. This allows us to focus attention on the interaction
of normal and internal dynamics, without having to take care of internal resonances.

Vector �elds. Generalising this example, we consider parametrised familiesof vector
�elds X (�; " ), with integral curves in the phase spaceTm � R2, of the form

X (�; " ) = !
@

@x
+ Z = !

@
@x

+
�

A(� )y + B(y; � ) + "F (x; y; �; " )
� @

@y
: (3)

As in the examplex 2 Tm is called the internal (or torus) coordinate, andy 2 R2 the
normal coordinate. The vector! 2 Rm (assumed constant) is called the (internal)
frequency vector, which will be assumed to be quasi-periodic; the notation ! @

@x is
shorthand for

P m
i =1 ! i

@
@xi

. Moreover, � 2 P � Rq is a multi-dimensional (system)
parameter, ranging over an open and bounded subsetP of Rq, and " 2 (� "0; "0) is
traditionally known as the perturbation strength. Note that by assumption, the natural
projection of the system ow to Tm is always quasi-periodic. All functions are assumed
to depend in�nitely di�erentiably (or smoothly) on their arg uments. Finally, with jyj
denoting the Euclidean norm ofy, the term B is assumed to be of orderO(jyj2) in y,
uniformly in � .

For instance, the forced Du�ng{van der Pol oscillator (2) �ts i n this framework
if we set � = ( a; b; c; d) and

A(� ) =

 
0 1

� b � a

!

; B(y; � ) =

 
0

� cy2
1y2 � dy3

1

!

;

F (x; y; �; " ) =

 
0

f (x; y; �; " )

!

:

Integrable systems. Consider the action� of the group Tm on M that is given by

� � (x; y) = ( x + �; y );

for � 2 Tm , cf. [11]. A vector �eld Y is called symmetric (or equivariant) with respect
to � , that is, invariant under the induced action of� , if ( � � )� Y = Y for all � 2 Tm . In
analogy to the situation for Hamiltonian systems, a symmetric vector �eld is said to be
integrable.

Note that for " = 0, the family X 0 = X 0(� ) = X (�; 0) is symmetric. Moreover,
the vector �eld X 0 is tangent to the torus T = Tm � f 0g; this implies that the torus T
is invariant under the ow of X 0. The normal linear stability of the invariant torus T is
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controlled by the linear part A(� )y@
@y of the normal part Z0 of X 0 at y = 0. Note that

the integrable vector �eld X 0(� ) is always in (quasi-periodic) Floquet form: the normal
linear part ! @

@x+ A(� )y@
@y of X 0(� ) at T is independent ofx 2 Tm .

Dividing out the torus symmetry reducesX 0 to a planar vector �eld, which
is identi�ed with the normal part Z0(� ) = Z (�; 0) of the integrable vector �eld X 0.
Studying X (�; " ) for " 6= 0 amounts to investigating a non-integrable perturbation of
the integrable family of vector �elds X 0(� ).

Resonances in Hopf bifurcations. It is assumed that for some value� 0 of the
parameter � the normal part Z0 of X 0 versally unfolds a Hopf bifurcation singularity
at y = 0. Denote the eigenvalues ofA(� ) by � (� ) � i� (� ).

A normal-internal k : ` resonance of the invariant torusT is a relation of the
form

hk; ! i + `� (� 0) = 0 (4)

between! and � (� 0), wherek 2 Zm and ` 2 Z are not both equal to 0; hereh�; �i denotes
the standard inner product. The smallest value ofj`j, where` ranges over all integers,
for which there is ak 2 Zm such that (4) holds is called the order of the resonance.
Resonances of order up to 4 are called strong resonances in the present context (cf. [47]);
higher order resonances are called weak. If for� = � 0 the torus T is respectively non-
resonant, weakly resonant or strongly resonant, the value� 0 is called a non-degenerate,
weakly resonant or strongly resonant quasi-periodic Hopf bifurcation value.

We have already mentioned that the non-degenerate as well asthe weakly
resonant quasi-periodic Hopf bifurcation have been investigated by Braaksma and
Broer [3] for strongly non-resonant orDiophantine internal frequency vectors! . For
small positive values of the perturbation strength", they have found a codimension 1
submanifold H in the space of parameters, carrying a quasi-periodic Hopf bifurcation
set H c that has positive measure inH , such that at every point � of the bifurcation
set, two open regionsA � and R � in the complement ofH and separated byH meet
with in�nite order of contact. For parameter values in A � , the vector �eld has an
attracting normally hyperbolic m-dimensional invariant torus close toT , for values
in R � , a repelling one.

In the union of all setsA � and R � , normal hyperbolicm-dimensional tori have
thus been shown to exist. The complement of this union is usuallyreferred to as the
set of `resonance holes' or `Chenciner bubbles', in analogy to the bulles that Chenciner
encountered in his analysis of the quasi-periodic saddle-nodebifurcations [19, 20, 21].
It should be noted that these bubbles are proof-generated. In the case of the quasi-
periodic saddle-node bifurcation, the relation between bubbles and internal resonances
of invariant tori has been studied by Chenciner in [21]; the present article investigates
for the quasi-periodic Hopf bifurcation the structure of the bifurcation diagram in these
bubbles.



Normal-internal k : 1 and k : 2 resonances 7

Normal forms. We are interested in the case that� 0 is a stronglyk : 1 or k : 2 resonant
bifurcation value. For small values of" , the form of the vector �elds is �rst simpli�ed
by normal form (or averaging) transformations [6, 11, 45]. Insection 3, the vector �eld
is reduced to the special case that its normal frequencies are close to zero, by applying
a van der Pol transformation[1, 9, 16, 51] and an appropriate scaling; the details of the
transformation are relegated to Appendix B. After these transformations, the vector
�eld takes the form

X = � � 2!
@

@x
+ Z0(� ) + �Z 1(�; � ) + � N Z2(�; � ):

Here � = "
1

4� ` is another perturbation parameter; the vector �eldsX 0 = � � 2! @
@x+ Z0

and � � 2! @
@x + Z0 + �Z 1 are integrable, and the powerN can be chosen in advance;

however, the transformations and their domain of de�nition will in general depend onN .
By these transformations, quasi-periodicity has been pushed to terms of order� N . In
fact, sinceX 0 is integrable, itsnormal or principal part dynamicsZ0 are decoupled from
the torus dynamics. In complex coordinatesz = y1 + i y2, the vector �eld Z0 reads
modulo some scalings as

Z0 = Re
�
�z + e i# jzj2z + �z` � 1

� @
@z

:

The article proceeds as follows: in section 4, a complete localbifurcation
analysis and a fairly comprehensive numerical global bifurcation analysis of the familyZ0

are given for the casè = 1, extending the work of [27, 53]. A codimension 3 singularity
of nilpotent-elliptic type is found to be the organising centre of the bifurcation diagram.
A brief description of this bifurcation, following [25], is given in Appendix A. The much
shorter section 5 completes the local bifurcation diagram in the case` = 2, already
given in [27, 53], by adding global bifurcation curves and giving the corresponding
phase portraits.

Standard perturbation arguments imply that for small � , the local bifurcation
diagram for Z0 is qualitatively the same as that forZ0 + �Z 1; if the numerical evidence
for the nondegeneracy of the global bifurcations is accepted, the same conclusion can be
drawn for the global bifurcation manifolds. If furthermore the term� � 2! @

@x is added, the
bifurcation diagrams remain the same, but the interpretation changes: equilibria and
limit cycles of the planar systemZ0 + �Z 1 correspond to respectivelym-dimensional
and (m + 1)-dimensional quasi-periodic tori of

X 0 = � � 2!
@
@x

+ Z0 + �Z 1:

Adding the term � N Z2 breaks theTm -symmetry, and quasi-periodic bifurcation theory
has to be invoked to investigate which portions of the local bifurcation diagram persist
under this perturbation (section 6).

Now, in the quasi-periodic bifurcation diagram there are quasi-periodic Hopf
bifurcation sets for which the analysis of the article can be applied again: in this way
resonances within resonances are found. Section 6.3 investigates this iteration, which
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can be performed at least �nitely many times. Appendix B gives full details on the
averaging and van der Pol transformations used in section 2.

2. Preliminary remarks

In this section notation is introduced, and some preliminary transformations are applied
to the family of vector �elds under consideration.

2.1. Assumptions

As above, we consider vector �eldsX (�; " ) on Tm � R2 which are of the form (3).
Unless explicitly stated otherwise, in the following all functions are assumed to depend
smoothly, that is in�nitely di�erentiably, on their argumen ts. The following assumptions
are made aboutX (�; " ).

Diophantine condition. The frequency vector ! 2 Rm is assumed to satisfy a
Diophantine condition of typeD(; � ): there are constants > 0, � > m � 1, �xed
for the remainder of the article, such that for allk 2 Zmnf 0g:

jhk; ! ij �  jkj � � :

Normal linear dynamics. For the unperturbed system (" = 0), the torus T = f (x; y) 2
M : y = 0g is invariant, and the normal linear dynamics ofX at T are given by

NT (X ) = !
@

@x
+ A(� )y

@
@y

:

The aim of the present article is to analyse non-degenerate Hopfbifurcations at normal
resonances. At a Hopf bifurcation parameter value� 0, the eigenvalues� j (� ), j = 1; 2
of A(� ) are purely imaginary; by convention� 1 denotes the eigenvalue with positive
imaginary part. The map � 7! (Re � 1(� ); Im � 1(� )) is assumed to have surjective
derivative at � 0. Without loss of generality it can be assumed thatA(� ) is of the
form

A(� ) =

 
� � �
� �

!

;

where � = ( �; �; � � �), and that the parameter spaceP is such that � is positive and
bounded away from 0. Under these assumptions the eigenvalues ofA(� ) are � 1 = � + i �
and � 2 = � � i� .

2.2. Preliminary transformations

As usual in this kind of problems, it is more convenient to replace real valued normal
coordinatesy 2 R2 with complex valued coordinatesz 2 C.
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Complex notations. There will be a distinction betweenf (z) and f (z; �z). The former
will refer to an analytic function of its argument, while the latter will usually denote
only a smooth function. Introduce the Wirtinger derivatives

@
@z

=
@

@x
� i

@
@y

; and
@
@�z

=
@

@x
+ i

@
@y

;

then smoothness off (z; �z) means that all derivatives

@� 1+ � 2 f
@z� 1 @�z� 2

exist and are continuous. By settingz = y1 + i y2 and

f (z; �z) = f 1(Re z; Im z) + i f 2(Re z; Im z);

the planar system of real di�erential equations

_y1 = f 1(y1; y2); _y2 = f 2(y1; y2);

is seen to be equivalent to the complex di�erential equation

_z = f (z; �z):

With the same notations, the corresponding vector �eld is seen tosatisfy

f 1(y1; y2)
@

@y1
+ f 2(y1; y2)

@
@y2

= Re f (z; �z)
@
@z

:

In this sense, we say that the vector �eld Ref @
@z corresponds to the di�erential

equation _z = f .

Vertical vector �elds. Using this notation, and settingz = y1 + i y2 and � = � + i � , the
vector �eld X takes the form

X = !
@

@x
+ Re

�
�z + ~B(z; �z; � ) + " ~F (x; z; �z; �; " )

� @
@z

;

where the dependence of~B and ~F on B and F is straightforward. The tildes are dropped
immediately.

The parametrised family of vector �eldsX (�; " ) can be viewed as a singlevertical
vector �eld X on the extended phase space

M = Tm � R2 � P � I;

where I = ( � "0; "0). The vector �eld X has vanishing components in the� and "
directions; that is, if � : M ! P � I is the canonical projection, the vector �eldX on M
is vertical if � � X = 0. In the following, references to `the' vector �eldX are usually held
to be interchangeable with references to the familyX (�; " ); from the context it should
always be clear what is meant.
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Normal form. By a standard normal form transformation =  (z; �z; � ), the vector
�eld

Z = Re
�

�z + B(z; �z; � )
� @

@z
= Re

�
i� 0z + ( � � i� 0)z + B(z; �z; � )

� @
@z

can be brought into normal form:

ZNF = Re
�
i� 0z + g(jzj2; � )z + r (z; �z; � )

� @
@z

;

where g(jzj2; � ) = � � i� 0 + c(� )jzj2 + O(jzj4) and r = O(jzjM ), with M arbitrarily
large. By a linear scaling of the variablez, it can moreover be achieved that the
third order coe�cient c(� ) has absolute value 1; it will be replaced by ei#(� ) in the
following. Assuming non-degenerateness of the dependence of# on its argument, after
a transformation the parameter� can be assumed to be of the form� = ( �; �; #; � � �).

Consequently, the transformation 	( x; z; �z; �; " ) = ( x;  (z; �z; � ); ") puts X in
the form

X = !
@

@x
+ Re

�
i� 0z + g(jzj2; � ) + r (z; �z; � ) + "f (x; z; �z; �; " )

� @
@z

; (5)

wherer and f are smooth functions and wherer = O(jzjM ).

3. Resonant normal forms

If hk; ! i + `� 0 = 0 for k 2 Zm and ` 2 Z, we say that the vector �eld X given
by (5) is at a normal-internal k : ` resonance at the torusT = Tm � f 0g; note that it is
simultaneously at a (� k) : ( � `) resonance, so we might as well assume that` is positive.
In this section, we derive a normal form ofX in this case, by applying averaging and van
der Pol transformations. Most details of these transformations are given in Appendix
B.

For normal-internal k : 1 and k : 2 resonances ordinary KAM theory does not
cover the question of persistence of the torusT for small values of the perturbation
strength " > 0, basically because linearisation around (z; ") = (0 ; 0) does not capture
the approximate locus of the perturbed torus well enough. By�rst bringing the system
into normal form, we shall see that the loci of the perturbed tori can approximately be
described as the Cartesian product of a standardm-torus with the equilibria of a simple
nonlinear planar vector �eld.

We briey remark that a system in k : ` resonance cannot be in~k : ` resonance
if ~k 6= k. This follows from relation (4), since

0 =
�
�
�
D

~k; !
E

+ `� 0

�
�
� =

�
�
�
D

~k; !
E

+ `� 0 � h k; ! i � `� 0

�
�
� =

�
�
�
D

~k � k; !
E�

�
�

�  jk � ~kj � � > 0

is impossible.
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Averaging. Let hk; ! i + `� 0 = 0 for either ` = 1 or ` = 2. For � close to i� 0, performing
successive `normal form' or `averaging' transformations (see e.g. [11, 6, 45]) yields a
coordinate system relative to which the vector �eldX is of the form

X = !
@

@x
+ Re

�
i� 0z + g(jzj2; � )z + "A eihk;x i �z` � 1 + r + "R

� @
@z

;

wherer = O(jzjM ), R = O(jzj2; " ) and, as before,g(jzj2; � ) = ( � � i� 0)+ e i# jzj2+ O(jzj4).
Details of this transformation are given in Appendix B; there amore general form of the
normal form system is derived. In the following, for several scalings the non-degeneracy
condition A 6= 0 will be assumed to hold. Note that this is an open and dense condition
on the set of vector �eldsX under study. After a trivial rescaling of the perturbation
strength ", we can assume thatA = 1.

Van der Pol transformation. The dependence on the torus coordinatex of terms of
lowest order inz is removed by a van der Pol transformation, commonly called `putting
the system into co-rotating coordinates' (see e.g. [9, 16, 36, 39, 51]). Again, full details
of this are given in Appendix B, but the idea is illustrated herefor ` = 1 with the
averaged form ofX obtained in the previous paragraph. We perform the coordinate
change (x; z; �z; �; " ) 7! (x; e� ihk;x i z; eihk;x i ; �; " ). Recalling that we haveA = 1, this
yields

X = !
@

@~x
+ Re

�
g(jzj2; � )z + " + ~r + " ~R

� @
@z

;

whereg(jzj2; � ) = ( � � i� 0) + e i# jzj2 + O(jzj4), ~r = O(jzjM ) and ~R = O(jzj2; " ).
The added di�culties in the general case come from the fact that we have to

lift the vector �eld to an `-fold covering space of the phase space. We show in Appendix
B that the lifted vector �eld is of the form

X = ~!
@

@x
+ Re

�
g(jzj2; � )z + " �z` � 1

+ R1(z; �z; �; " ) + "R 2(x; z; �z; �; " ))
@
@z

;

with g as above, ~! again satisfying a Diophantine condition,R1 = O(" jzj`+1 ; jzjM )
and R2 = O(jzjN ). We shall drop the tilde on ~! in the following.

Rescaling. Next, we perform a rescaling of phase space atT and parameter space
at � = i � 0 respectively. Fix an open neighbourhoodTm � U of Tm � f 0g by setting, e.g.,
U = f z 2 C : jzj < 4g, and a compact neighbourhoodK of 0 in parameter space by,
e.g.,K = f (�; # ) 2 C � S1 : j� j � 10g. These choices are made such that for all� 2 K ,
all equilibria of the scaled vector �eld to be introduced are in U.

For ` = 1; 2 (or ` = 3) we perform the scaling

(x; z; �z; �; #; " ) 7! (x; " � 1
4� ` z; " � 1

4� ` �z; " � 2
4� ` (i � 0 � � ); #; " );

and set" = � 4� ` afterwards. The vector �eld X takes the form

X = !
@

@x
+ � 2 Re

�
�z + e i# jzj2z + �z` � 1

� @
@z

+ � 3 ~Z :
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We put Z0 = Re(�z + e i# jzj2z + �z` � 1)@=@z. From the more precise results derived
in Appendix B it follows that X can actually be put in the form

X = !
@

@x
+ � 2

�
Z0 + �Z 1 + � N Z2

�
; (6)

whereZ1 is an integrable vector �eld, and whereN can be choosen arbitrarily large.
Recall that the normal form vector �eld

Re
�
�z + cjzj2z + �z` � 1

� @
@z

(7)

appears in the local analysis of̀ : 1 resonances for̀ � 3 (see [1]). The present semi-
global context motivates the study of this equation even for̀ = 1 and ` = 2.

4. Bifurcation analysis of the k : 1 resonance

In this section we perform a bifurcation analysis of the vector�eld Z0 (given again
in (7)) for ` = 1. The analysis is complete with respect to local bifurcations, which
are obtained analytically, and fairly comprehensive with respect to global bifurcations,
which are obtained by numerical packages (AUTO, Matlab).

We consider

Z0 = Re
�
�z + e i# jzj2z + 1

� @
@z

; (8)

here � = � + i � . This is a three-parameter family of planar vector �elds, parametrised
by (�; �; # ); we shall see that the bifurcation diagram of this family has codimension 3
singularities of nilpotent-elliptic type as organising centres. Observe that Z0 is
symmetric with respect to the group generated by the involutions

(t; z; �; # ) 7! (t; �z; ��; � #) and (t; z; �; # ) 7! (� t; � z; � �; # + � ):

Because of this symmetry, we can restrict our attention to the part of parameter space
for which 0 � # � �= 2; in this restricted parameter space, there is exactly one singularity
of nilpotent-elliptic type.

Figure 1 gives a graphical overview of our results on the position of the
bifurcation manifolds that correspond to local bifurcations of codimension 1 and 2.
The codimension 2 bifurcation curves corresponding to cusp andBogdanov-Takens
bifurcations are indicated in �gure 1-(a). Figure 1-(b) shows the relative positions of the
codimension 1 bifurcation manifolds in the vicinity of a singularity of nilpotent-elliptic
type.

Codimension 1 bifurcations. The codimension 1 bifurcation manifolds ofZ0 have been
determined in [53]. We summarise the result in the following proposition.

Proposition 1. Let the family of complex di�erential equations

_z = ( � + i � )z + e i# jzj2z + 1

be given. The local bifurcations of codimension 1 of this family determine the following
bifurcation manifolds.
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3

SNa
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2
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2

#

�

A

�

(a)
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1

S1
S2
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1
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SNa
2

SNb
2

Ha
1

Hb
1

BT a
2

BT b
2

H2

#
�

�

(b)

Figure 1. (a): Sketch of the global bifurcation diagram of _z = ( � + i� )z+ e i# jzj2z+1
in the (#; �; � )-parameter space. All singularity of nilpotent-elliptic points (NE 3) are
connected by cusp (SN2) and Bogdanov-Takens (BT2) lines. The curves BTa

2 and BTb
2

tend to �1 , respectively, when# goes to �= 2. (b): Detail of the bifurcation set in
box A of �gure ( a). At the singularity of nilpotent-elliptic type (NE 3) point, curves
of Bogdanov-Takens (BTa

2), cusp (SNa
2), and degenerate Hopf (H2) bifurcations meet

tangently. The curves BTb
2 and SNb

2 do not intersect. For terminology see table A1

(i) A saddle-node bifurcation surfaceSN1, given by

s(� ) = � 4
1� 2

2 + 2� 2
1� 4

2 + � 6
2 + � 3

1 + 9� 1� 2
2 +

27
4

= 0; grads(� ) 6= 0;(9)

where� 1 = � cos# + � sin# and � 2 = � cos# � � sin#.

(ii) A Hopf bifurcation surface H1, given by

� 3 � 4� 2� cos# sin# + 4�� 2 cos2 # + 8 cos3 # = 0; (10)

(� � � tan #)2 �
� �

2 cos#

� 2
> 0: (11)

Not all points on H1 correspond to non-degenerate Hopf bifurcation points.

See [53] for the proof of this proposition. We will show below that there is a curve H2

of degenerate Hopf bifurcation points on the manifold H1, such that all points in H1nH2

are nondegenerate Hopf bifurcation points. The results of the proposition are illustrated
by the bifurcation diagrams in �gure 2.
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Figure 2. Bifurcation diagram of _z = ( � + i� )z + e i# jzj2z + 1 for �xed values of
# in the ( �; � )-plane. Solid curves indicate Hopf bifurcations, dashed curves indicate
saddle-node bifurcations. For# = �= 6, the BT2, SN2 and H2 points coalesce in a
NE3 bifurcation point. Note that all the bifurcation curves are intersections of the
bifurcation manifolds of Figure 1-(b) with planes # = const. In Figure 1-(b) two of
these planes are indicated byS1 and S2. For terminology see table A1
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Codimension 2 bifurcations. Next, we consider the manifolds of local codimension 2
bifurcations of the vector �eld Z0 for ` = 1: we �nd cusp (SN2), Bogdanov-
Takens (BT2) and degenerate Hopf (H2) bifurcation points. The cusp and Bogdanov-
Takens bifurcations have already been given in [53]. We show here that the vector
�eld Z0 has also a curve of degenerate Hopf bifurcation points for�= 6 � # < �= 2.
These are the only local codimension 2 bifurcations of the system.

Proposition 2. The local bifurcations of codimension 2 of the equilibria ofthe
di�erential equation

_z = ( � + i � )z + e i# jzj2z + 1 (12)

are the following.

(i) There are two curves of cusp bifurcation points SNa2 and SNb
2. Two components of

the manifold SN1 of saddle node points meet tangently at these curves. The curves
are given by

SNa
2 : � = �

3
2

cos# +

p
3

2
sin#; � = �

3
2

sin# �

p
3

2
cos#; (13)

and by

SNb
2 : � = �

3
2

cos# �

p
3

2
sin#; � = �

3
2

sin# +

p
3

2
cos#: (14)

(ii) The system has two Bogdanov-Takens curves BTa
2 and BTb

2, where the saddle-node
and Hopf surfaces meet tangently. The curves are given by

BT a
1 : � =

� 2 cos#
(2 sin# + 2) 1=3

; � =
� 2 sin# � 1

(2 sin# + 2) 1=3
; (15)

and

BT b
2 : � =

� 2 cos#
(2 � 2 sin#)1=3

; � =
� 2 sin# + 1

(2 � 2 sin#)1=3
: (16)

(iii) The system has a degenerate Hopf bifurcation curve H2 given by

H2 : � = � 2 cos#; � = 0;
�
6

< # <
�
2

:

Proof.
The cusp and Bogdanov-Takens curves have been obtained in [53]. It remains to �nd
the degenerate Hopf bifurcation points.

In real coordinatesy1 = Re z and y2 = Im z, equation (12) reads

_y1 = �y 1 � �y 2 + ( y2
1 + y2

2)(y1 cos# � y2 sin#) + 1 ;

_y2 = �y 1 + �y 2 + ( y2
1 + y2

2)(y1 sin# + y2 cos#): (17)
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Let y0 = ( y10; y20) be an equilibrium of this system. Translating it to the origin by
putting ( y1; y2) = ( y10; y20) + ( u; v) yields a system of the form

 
_u
_v

!

=

 
a1 a2

b1 b2

!  
u
v

!

+

 
a3u2 + a4uv + a5v2

b3u2 + b4uv + b5v2

!

+

 
a6u3 + a7u2v + a6uv2 + a7v3

� a7u3 + a6u2v � a7uv2 + a6v3

!

; (18)

where all coe�cients are functions of� , � and #; their precise form is given in Appendix
C. At a Hopf bifurcation point, the eigenvalues�; �� of the linear part of (18) are purely
imaginary. Let

w =
(� � a1)u � a2v

Im �
:

Then we have

_w = �w + B1w2 + B2w �w + B3 �w2 (19)

+ B4w3 + B5w2 �w + B6w �w2 + B7 �w3;

where eachB i is a function of � , � and #; these functions are also given in Appendix C.
Using standard normal form transformations, we can simplify equation (19) to obtain
(see for instance [55, 6, 40])

_w = �w + C1(�; �; # )w2 �w + C2(�; �; # )w3 �w2 + O(jwj7); (20)

where

C1 =
B5

2
+

B1B2(2� + �� )
2j� j2

+
jB2j2

�
+

jB3j2

2(2� � �� )
:

Solving equation Re(C1) = 0, together with equation (10), yields the location of the
degenerate Hopf points in the (�; � )-plane

� = � 2 cos#; � = 0: (21)

For # 2 [0; �= 6), inequality (11) is not satis�ed; therefore degenerate Hopfbifurcations
only occur for # 2 [�= 6; �= 2), compare �gure 2.

The expression of ReC2 is quite complicated. It is given in Appendix C; there
it is shown that ReC2 does not vanish at degenerate Hopf points, implying that the
degenerate Hopf points are not doubly degenerate.

Below we also show that the cusp and Bogdanov-Takens bifurcations are
nondegenerate everywhere except at the nilpotent-elliptic point NE3.

Singularity of nilpotent-elliptic type as organising centre. The bifurcation diagram of
the family Z0 possesses a singularity of nilpotent-elliptic type (see [25]), which acts as
an organising centre of the three-dimensional bifurcation diagram.

Proposition 3. The bifurcation set ofZ0 has a single singularity of nilpotent-elliptic
type. This is the only local bifurcation point of codimension3 of the family Z0.
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Proof.
We use the same transformation to local coordinates around an equilibrium as in the
beginning of the proof of proposition 2. On the Bogdanov-Takens curves, the system
can be written as

 
_y1

_y2

!

=

 
0 1
0 0

!  
y1

y2

!

(22)

+

 
b5b1y2

1 + b4y1y2 + ( b3=b1)y2
2

a5b2
1y2

1 + a4b1y1y2 + a3y2
2

!

+

 
a6b2

1y3
1 � a7b1y2

1y2 + a6y1y2
2 � (a7=b1)y3

2

a7b3
1y3

1 + a6b2
1y2

1y2 + a7b1y1y2
2 + a6y3

2

!

:

Using a standard normal form procedure [48, 6], we �nd
 

_y1

_y2

!

=

 
0 1
0 0

!  
y1

y2

!

+

 
0

K 1y2
1 + K 2y1y2

!

(23)

+

 
0

K 3y3
1 + K 4y2

1y2

!

+

 
0

K 5y4
1 + K 6y3

1y2

!

where for i = 1; 2; � � � ; 6, the coe�cient K i is a function of � , � and #. All coe�cients
are speci�ed in Appendix C.
Solving equationK 1 = 0 on the Bogdanov-Takens lines, gives the location of singularities
of nilpotent-elliptic type (NE 3) bifurcation point in ( �; �; # )-space [25]. The NE3 point
occurs at

(�; �; # ) = ( �
p

3; 0; �= 6):

At this point, the 4-jet of vector �eld (23) is C1 -conjugate to

_y1 = y2

_y2 = � y3
1 + 2

p
3y1y2 +

p
3y2

1y2 + 4y4
1 � 65

12

p
3y3

1y2;
(24)

see [25, 48]. The coe�cient of the termy1y2 is larger than 2
p

2, and the coe�cient of
the term y3

1 is � 1. This implies that the singularity is of `nilpotent-elliptic' type (see [25]
for the nomenclature).

A simple computation shows that neither degenerate cusp nor double degenerate
Hopf bifurcations occur in the present model.

Phase portraits. In this section, we extend the description of the bifurcation diagram of
equation (8) given in [53]. In �gure 3, we plot the two-dimensional bifurcation diagram
of system (8) for the two planes# = 2�= 5 and # = �= 10 respectively. Figure 4 gives
the phase portraits of the system for parameters in di�erent regions of the bifurcation
diagrams. Phase portraits are plotted using Matlab [31].

We �nd all local bifurcations of (8): saddle-node (SN1), Hopf (H1), cusp (SN2),
Bogdanov-Takens (BT2) and degenerate Hopf (H2) bifurcations, which are expected
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from the bifurcation diagram of a singularity of nilpotent-elliptic type [25]. We also
retrieve homoclinic and saddle-node of limit cycles bifurcations; these are found using
the numerical packages Auto [22] and Matlab [31, 28] respectively. These bifurcations
are drawn in �gure A2.

We do not recover the following bifurcations whose existence is also predicted
by [25]: cycle tangency (CT1), double tangency (DT1), separatrix tangency (ST1),
double cycle tangency (DCT2), double centre separatrix tangency (DCST2) and
hyperbolic separatrix tangency bifurcations.

Remark. System (8) also contains a global feature, namely, a large homoclinic loop of
a hyperbolic saddle point, which is not explained by the nilpotent-elliptic singularity.
This large homoclinic loop is detected by Auto [22]. See �gure4.

5. Bifurcation analysis of the k : 2 resonance

We continue by performing a bifurcation analysis of the vector �eld Z0 for the casè = 2.
As remarked before, in this case it is su�cient to consider two bifurcation parameters.
The local bifurcations in the` = 2 case have already been given in [27, 53]; in this section,
after briey recalling those results, global bifurcations aredetermined numerically whose
existence follow from our knowledge of the local bifurcationdiagram. The results of this
section are echoed in [41]; see also [50].

We consider the principal part vector �eld

Z0 = Re
�
�z + e i# jzj2z + �z

� @
@z

: (25)

This is a two-parameter family of planar vector �elds as we shall treat in this section #
as a generic constant. Observe thatZ0 is symmetric with respect to the group generated
by the two involutions

(z; �; # ) 7! (�z; ��; � #) and (z; �; # ) 7! (� z; �; # ):

Because of this symmetry, we can restrict our attention to those values of# satisfying
0 � # � � .

Local bifurcations. For the determination of the local bifurcations of codimension 1
and 2, see [53]. We summarise the result.

Proposition 4. Let the family of complex di�erential equation

_z = ( � + i � )z + e i# jzj2z + �z

be given. Set� 1 = � cos# + � sin#, � 2 = � cos# � � sin# and � = � 1 + i � 2.
Then the local bifurcations of codimension 1 of this family determine the

following bifurcation manifolds.

(i) A curve of pitchfork bifurcations PF1

j� j = 1: (26)
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Figure 3. Two-dimensional bifurcation diagrams of system (8). (a): For # = 2 �= 5.
(b): For # = �= 10. Phase portraits for every region are given in Figure 4. For
terminology see table A1
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Figure 4. Generic phase portraits of the family (8) for parameters in the di�erent
regions of the bifurcation diagrams in Figure 3. For regions 1, 2, 3 and 9, single orbits,
leaving an unstable equilibrium or unstable periodic orbits are shown. For all other
regions, stable and unstable manifolds of saddle points are drawn.

(ii) Two curves of saddle-node bifurcations SN1, given by

� 2
2 = 1; � 1 < 0: (27)

(iii) Three Hopf bifurcation H 1 curves; two are given by

Re ( ei# � ) = 0 ; j� j > 1; (28)

and the third by
1
4

(� 1 + � 2 tan #)2 + � 2
2 = 1;

1
2

� 2
1 +

tan #
2

� 1� 2 + � 2
2 < 1; � 2 tan # � � 1 > 0:

(29)
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The local codimension 2 bifurcations correspond to the following bifurcation points.

(i) Two degenerate pitchfork bifurcation PF2 points at

� = i and � = � i: (30)

(ii) Two symmetric double-zero bifurcations SDZ2 at

� = i and � = � i: (31)

(iii) A Bogdanov-Takens bifurcation point BT2 at

� = j tan #j
�

1 +
i

tan #

�
: (32)

The local bifurcations described by this proposition are shownin �gure 5. Moreover,
from the occurrence of a Bogdanov-Takens bifurcation, we infer the existence of a
homoclinic bifurcation curve L1. One of the symmetric double zero SDZ2 bifurcation
points gives rise to curves of saddle-nodes of limit cycles SNLC1, Hopf bifurcations H1

and homoclinic loops L1. This last curve ends on the curve of pitchfork bifurcation PF1;
at that point, a curve of heteroclinic bifurcation points He1 departs that ends on a line
of saddle-nodes of equilibria SN1. At the other SDZ2 point, we have a second curve of
heteroclinic bifurcations He1, also ending on a saddle-node line. These lines are given
in the bifurcation diagram in �gure 5.

6. Persistence of the bifurcation diagram

In section 2, a normal form of the vector �eldX at a resonancehk; ! i + � 0 = 0 has been
obtained (equation (6)). Rescaling time byt 7! � � 2t changesX to

X = � � 2!
@

@x
+ Z0 + �Z 1 + � N Z2: (33)

In sections 4 and 5, local bifurcation diagrams have been given for the integrable family

Z0 = Re
�
�z + e i# jzj2z + �z` � 1

� @
@z

for ` = 1 and ` = 2 respectively. This section investigates the bifurcation diagrams of
the full family X for small values of� , by successively adding the perturbation terms�Z 1

and � N Z2 to the integrable vector �eld � � 2! @
@x+ Z0.

The bifurcation analysis is performed for (z; � ) in the compact closure of some
bounded open neighbourhoodU � � of (0 ; 0) in C � Rq. Sincez and � are not required
to be small, while� is taken close to 0, this is calledsemi-global bifurcation analysis.

6.1. Persistence under integrable perturbations

Recall the de�nitions of K = f � 2 C : j� j � 10g and U = f z 2 C : jzj < 4g from
section 3. We have seen there that for (�; # ) 2 K all equilibria of the vector �eld Z0

are in the interior of U. There is a� 0 > 0 such that for j� j < � 0, the local parts of the
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Figure 5. (a): Bifurcation diagram of system (25), for # = 2 �= 3. (b) � (o): Generic
phase portraits for di�erent regions in the parameter space. For the terminology see
table A1
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bifurcation diagrams ofZ0 and Z0 + �Z 1 restricted to U are equal, modulo at most a
change of coordinates, since all local bifurcations singularities obtained have been shown
to be nondegenerate.

Indeed, all singularities can be continued as a function of� over some
interval � (�;# ) ; since (�; # ) take values in the compact setK , there is a constant� 0 > 0
such that [� � 0; � 0] � � (�;# ) for all ( �; # ) 2 K . The parametrisation furnishes us an
invertible correspondence between the bifurcation diagrams.

6.2. Persistence under non{integrable perturbations

A more intricate issue is persistence of bifurcations in the family Z0 + �Z 1 under non-
autonomous (quasi-periodic) perturbations� N Z2; or, put di�erently, which bifurcations
of m-dimensional tori in the integrable family X 1 = Z0 + �Z 1 persist quasi-periodic
bifurcations in X = Z0 + �Z 1 + � N Z2?

We have to invoke quasi-periodic bifurcation theory, as introduced in [11]. This
area is under active development (see for instance [9, 52, 30, 54]); in the sequel some
results will therefore be formulated as conjectures. Note however that the present set-up
is simpler that the usual one, since the dynamics on the torus arenot perturbed. This
is analogous to the situation considered in [9].

Quasi{periodic saddle node and cusp bifurcations.Take a point � 0 on a saddle-node
manifold of X 1 = Z0 + �Z 1. A suitable change of the normal coordinate � brings the
system locally into saddle-node normal form

� � X 1 = 1
� 2 !

@
@x

+
�
� (� ) + a2(�; w )w2

� @
@w

+ b1(�; y )y
@
@y

;

herex 2 Tm , w; y 2 R and a2(� 0; 0) 6= 0 6= b1(� 0; 0). Since� 0 is a non-degenerate saddle-
node point, we have that� (� 0) = 0, and d�

d� (� 0) 6= 0. Applying the transformation � to
the vector �eld X instead ofX 1 yields

� � X = 1
� 2 !

@
@x

+
�
� (� ) + a2(�; w )w2 + � N r1

� @
@w

+
�
b1(�; y )y + � N r2

� @
@y

;

where the functionsr1 and r2 depend smoothly on (x; w; y; �; � ).
Since! is Diophantine, � � 2! is Diophantine as well, and if� > 0 is su�ciently

small, it follows from the theory in [11] or [52] that by a smoothnear-identity transform,
the vector �eld � � X can be transformed to

~X = 1
� 2 !

@
@x

+
�
~� + ~a2(~�; w )w2

� @
@w

+ ~b1(~�; y )y
@
@y

;

such that ~� = ( �; � � �), ~a2(0; 0) 6= 0 and ~b1(0; 0) 6= 0. This can be accomplished by a
smooth transformation, Cr -� N close to the identity for everyr . Hence quasi-periodic
saddle-node bifurcations persist locally.

From the results in [52] it follows that in the same manner, quasi-periodic cups
bifurcations persist in the family X , if � > 0 is su�ciently small.
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Quasi-periodic Hopf bifurcations In the case of Hopf bifurcations, the situation is
di�erent because of possible resonances of� � 2! with the normal frequency.

Similarly as in the case of the saddle-node and cusp bifurcations, for a
parameter� 0 = ( � 0; � � �) on a Hopf bifurcation manifold ofX 1 the vector �eld X can be
brought in the form

� � X = 1
� 2 !

@
@x

+
�
�z + b3(� )jzj2z + O(� N ; jzj5)

� @
@z

;

with � 0 = i � 0, � 0 > 0.
De�ne the sets

Dn (; � ) =
n

� 2 C : j`� + i hk; ! ij �  (jkj + j`j)� � ;

8(k; `) 2 Zm � Z; 0 < j`j � n
o

:

If V � X is a set in the spaceX , let { V denote the complementX nV of V in X .
For � > m � 1 and U � C an open set, we have thatC = { (U \ Dn (; � )) satis�es

measC = O( );

where ` meas ' denotes Lebesgue measure (see e.g. [11]). Then it follows from the results
of in [3, 11] that for small enough� , the vector �eld X can be transformed into

~X = 1
� 2 !

@
@x

+
�

~�z + ~b3(~� )jzj2z + r (x; z; �z; ~� ) + O(jzj5)
� @

@z
;

wherer , together with all its derivatives, vanishes if (!; ~� ) 2 D4(� N +1 ; � ).
Those parameters that satisfy Re~� = 0 are quasi-periodic Hopf bifurcation

parameters for the invariantm-dimensional torusz = 0 of ~X . There is aC1 curve H,
Cr -� N close to the curveH of Hopf bifurcations in the bifurcation diagram ofZ0 + �Z 1,
and a nowhere dense subsetH c on H, such that

� (HnH c) � c� N +1

and all points of H c are non-degenerate quasi-periodic Hopf bifurcation points of the
family ~X .

Other quasi-periodic bifurcations. The previous two cases are typical. Let us go over
the cases of higher codimension a little more quickly. The general type of result is
however always the same: if at a certain singularity the normalfrequencies are �xed to
a particular value, as it is for instance the case in the Bogdanov-Takens bifurcation, then
the corresponding bifurcation curve persists in its entirety,whereas if they only have to
satisfy a non-resonance condition, then only a large measure subset of the bifurcation
curve persists under perturbation.

In particular the methods developed in [54] imply that the Bogdanov-Takens
points and the singularities of nilpotent-elliptic type persist in their entirety. It is a
corollary of the results in [52], generalising [19], that a large measure subset of the
degenerate Hopf bifurcation curve persists (see also [14]). For global bifurcations like
homoclinic loops, we again refer to [14] where a methodological framework is developed
to study these bifurcations.
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Semi-global quasi-periodic bifurcation diagram.Patching up the local results as in the
previous subsection, the local bifurcation diagram ofZ0+ �Z 1 persists as a quasi-periodic
local bifurcation diagram under a small perturbation, except for a set of measure less
than c� N +1 on the quasi-periodic Hopf and degenerate Hopf bifurcation curves.

6.3. Resonances within resonances

At the end of the previous subsection, a subsetHc of large measure of the Hopf
bifurcation curve H of the integrable family

X 1 =
�
`� 2

� � 1
!

@
@x

+ Z0 + �Z 1;

was shown to persist asH c if a non-integrable term� N Z2 was added. In the complement
of Hc in H are k : ` resonance points with̀ 2 f 1; 2; 3; 4g. Leaving asidek : 3 and k : 4
resonances, we note that the analysis of the present paper can be reapplied to the case
of k : 1 and k : 2 resonances.

Let � 0 be a point on a Hopf bifurcation curve ofX 1, such that the normal
frequency� 0 of the bifurcating torus z = z0 is in k : 1 resonance at� 0. In suitable local
coordinates (z; � ) around (z0; � 0), the vector �eld X takes the form:

X = � � 2!
@

@x
+

�
�z + cjzj2z + R

� @
@z

; (34)

whereR = O(jzj5; � N ).
It is not a priori obvious whether the appropriate non-degeneracy conditionis

satis�ed (see section 3). However, if a term

� N � eihk;x i @
@z

;

is added to the original vector �eld (3) (or to (34), which amounts to the same),
inspection of the transformations in Appendix B shows that the �nal vector �eld will
be changed by an amount

� N � eihk;x i @
@z

+ O(� N +1 );

at its worst. Hence, after choosing� appropriately, the non-degeneracy condition may
be assumed to hold.

Hence, for an open and dense set of perturbations, the analysis performed in this
paper can be iterated �nitely many times, yielding a constant~� 0 such that for j� j � � 0,
the Hopf bifurcation set of X shows resonances within resonances within resonances.
Note that � 0 depends on the number of times this analysis is repeated, and it will in
general tend to zero as this number increases without bounds.
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Table A1. List of bifurcations that occur in the article. The subscript indicates
the codimension of the bifurcation. The column `Incidence' lists the subordinate
bifurcations of highest codimension. See [1, 24, 25, 29, 40] for details concerning the
terminology and �ne structure.

Notation Name Incidence

SN1 Saddle-node
H1 Hopf
PF1 Pitchfork
L1 Homoclinic
He1 Heteroclinic
SNLC1 Saddle-node of limit cycles

SN2 Cusp SN1 + SN1

H2 Degenerate Hopf SN1 + SNLC 1

BT 2 Bogdanov-Takens SN1 + H 1 + L 1

PF2 Degenerate Pitchfork PF1 + SN1

SDZ2 Symmetric Double Zero PF1 + H 1

L2 Homoclinic at saddle-node L1 + SN1

DL2 Degenerate homoclinic L1 + SNLC 1

NE3 Singularity of nilpotent-elliptic type SN 2 + BT 2 + L 2 + H 2

especially Henk Broer and Vincent Naudot for useful discussions and remarks during
the preparation of this article.

Appendix A. Bifurcations

Appendix A.1. Nomenclature

In the paper, bifurcation points are indicated by abbreviations of the form XXletter
codim,

where XX indicates the type of bifurcation,codim is a positive integer indicating the
codimension, andletter is an optional lower case letter indexing a particular bifurcation
set. The abbreviations we use are summarised in table A1.

Appendix A.2. Singularities of nilpotent-elliptic type

In this section, which is based entirely on the results of [25], we describe briey
the singularity of elliptic-nilpotent type (NE 3) that occurs in our analysis. For an
explanation of the more complicated global bifurcation, werefer the reader to [25].

Consider a 3-parameter family of vector �elds of the form

_x = y + O(jx; yj4);
_y = � 1 + � 2x + � 3y + � 1x2 + � 2xy � x3 + � 3x2y + O(jx; yj4);

(A.1)

where � 1; � 2 and � 3 are parameters, and where� 1; � 2 and � 3 are functions depending
only on these parameters. The central singularity (x; y; � 1; � 2; � 3) = (0 ; 0; 0; 0; 0) of (A.1)
is called a NE3 bifurcation point of elliptic type if � 1(0; 0; 0) = 0 and � 2(0; 0; 0) > 2

p
2.
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Figure A1. Local bifurcation manifolds of the family (A.1) around a singularity of
elliptic-nilpotent type (NE 3).
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Figure A2. Intersection of local and global bifurcation manifolds of the family (A.1)
with a small sphere around a NE3 point, projected onto the plane. Bifurcations that
are not listed in table A1 are explained in the text.

The local bifurcation manifolds of this family at a singularity of elliptic-nilpotent
type are given in �gure A1. The NE3 point is an isolated point on the smooth curve of
Bogdanov-Takens (BT2) points; all other points on the curve are non-degenerate. Atthe
NE3 point the following bifurcation surfaces and curves meet tangently: surfaces of Hopf
(H1) and saddle-node (SNa1 and SNb

1) bifurcation points, curves of Bogdanov-Takens
(BT 2), cusp (SN2) and degenerate Hopf (H2) points. Moreover, the Hopf surface meets
the saddle-node surfaces tangently at the Bogdanov-Takens curves. Global bifurcation
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manifolds are not indicated.
The bifurcation set of (A.1) is a topological cone with vertex at 0 2 R3. That

is, the codimension one surfaces and codimension two curves of the bifurcation set are
transversal to the spheres� 2

1 + � 2
2 + � 2

3 = "2, for " > 0 small enough. IfS is such a
sphere for some �xed value of" , let � the intersection of the bifurcation set with S.
The codimension-one bifurcation surfaces intersectS in a �nite number of curves onS;
the codimension-two curves intersectS in a �nite number of points. These points will
be either end point or intersection points of bifurcation curves onS.

To obtain �gure A2, we delete a point f�g from the sphereS and map the
punctured sphereSnf�g to the plane. The point f�g is chosen in the complement of the
bifurcation set on the hemisphere� 2 < 0. We obtain two saddle-node curves SNa1 and
SNb

1 that meet tangently at two cusp points SNa
2 and SNb

2. The Hopf curve H1 meets
SNa

1 and a (global) curve La
1 of homoclinic bifurcations tangently at BTa

2; likewise, it
meets SNb

1 and Lb
1 tangently at BT b

2.
A curve of saddle-node bifurcations of limit cycles (SNLC1) emanates from

a degenerate Hopf point on the Hopf curve; the curve SNLC1 terminates at a double
cycle tangency (DCT2) point. From a double centre separatrix tangency (DCST2) point
emanates a cycle tangency (CT1) and a double tangency (DT1) curves. These curves
terminate at hyperbolic separatrix tangency points HSTb2 and HSTc

2, respectively. The
DCST2 point and HSTa

2 are connected by a separatrix tangency (ST1) curve. Dashed
curves indicate bifurcations which are shown (in [25]) to occur in the family (8), but
which are not recovered in the present article.

Appendix B. Averaging over the torus

In this appendix normal forms of the vector �elds are computed by averaging at a normal
resonance parameter� 0. Without loss of generality, we may assume that� 0 = 0. After
applying a van der Pol transformation [9, 16, 36, 39, 51], the vector �eld can be split
in an integrable part and a part that is of high order in the variables jzj, j� j and j" j.
Throughout the following, parametrised vector �eldsX (�; " ) on M with � 2 P and " 2 I
are considered as vertical vector �eldsX on M = M � P � I .

Appendix B.1. Averaging

We considerX as given by equation (5):

X = !
@

@x
+ Re

�
i� 0 + g(jzj2; � )z + "f (x; z; �z; �; " )

� @
@z

;

whereg(jzj2; � ) = ( � � i� 0)+ g1jzj2 + O(jzj4). From the averaging result below it follows
that if k0! + `� 0 = 0, then there is an `averaging' coordinate transformation putting X
into the form

X = !
@

@x
+ Re

�
i� 0z + g(jzj2; � )z + "A eihk0 ;x i �z` � 1 + "R

� @
@z

whereR = O("; jzj; j� � i� 0j).



Normal-internal k : 1 and k : 2 resonances 29

To express the result more formally, recall that� and " take values in some
bounded open neighbourhoodsP and I of 0 in Rq and R respectively. It is assumed
that there is an integer vectork0 2 Zmnf 0g such that the greatest common divisor of the
components ofk0 and ` is 1; in particular, if ` = 1, the components ofk0 are mutually
prime. Moreover we assume that we have

hk0; ! i + `� 0 = 0; (B.1)

whereas for allk 6= k0 we havejhk; ! i + `� 0j �  (jkj + 1) � � : Finally, we introduce

On = O

0

@
X

2j + j� j+ r = n

jzj2j j� j j � j j" jr

1

A :

Proposition 5. If k0! + `� 0 = 0, for ! Diophantine and gcd(k0; `) = 1 , then there
exists a smooth transformation	 N = 	 N (x; z; �z; �; " ), mappingX to YN = 	 N � X , such
that

YN = !
@

@x
+

0

@i� 0z + G(jzj2; �; " )z

+ "
[N=2]X

j =0

[(N +1 � 2j )=`]X

r =1

A jr (�; " ) e� ir hk0 ;x i jzj2j �zr` � 1

+ "
[N=2]X

j =0

[(N � 2j � 1)=`]X

r =1

B jr (�; " ) eir hk0 ;x i jzj2j zr` +1 + O(")ON

1

A @
@z

; (B.2)

with G(jzj2; �; 0) = ( � � i� 0) + g1jzj2 + O(jzj4) and A jr and B jr multinomials in � and "
of order at mostN .

Appendix B.2. Proof of the averaging result

The techniques used in the proof are standard.

Notation. De�ne the norm j j of a multi{index  = (  1; � � � ;  n ) 2 Nn by

j j =  1 + � � � +  n :

For the multi-index � = ( � 1; � 2; � 3; � 4) = ( � 1; � 2; � 31; � � � ; � 3q; � 4) 2 Nq+3 , we write

p� (z; �z; �; " ) = z� 1 �z� 2 � � 3 " � 4 :

Also, for a multi{index ~� = ( � 0; � ) 2 N � Nq+3 and f = f (x; z; �z; �; " ), we write

@~� f =
@j ~� j f

@x� 0 @z� 1 @�z� 2 @�� 3 @"� 4
:
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Induction hypotheses. The transformation 	 will be constructed as a composition
	 = � N � � � � � � 0 of transformations � n . We proceed by induction. Assume that
there exists a smooth transformation 	n = � n � � � � � � 0, C1 {close to the identity,
mapping X to

Yn = 	 n� X:

Here

Yn = !
@

@x
+ Re

�
i� 0z + g(jzj2; � )

+ "
X

I n;`

c� eir � hk0 ;x i p� + "R n+1 (x; z; �z; �; " )

1

A @
@z

;

with r � = ( � 1 � � 2 � 1)=` and with Rn+1 = On a smooth function. The index set is
given by

I n;` =
�

� 2 Z2 : � 1 + � 2 � n; � 1 � � 2 � 1 � 0 mod`
	

:

Note that the induction hypothesis is true forn = 1 if we set 	 0 = � 0 = id, Y0 = X
and R1 = f . If the induction hypothesis is shown to be true forn = N , we see that the
proposition is proved.

Determining the transformation. We turn to the induction step. Taylor's theorem is
used to write:

Rn = f n + ~Rn+1 =
X

j � j= n� 1

f � (x)p� + ~Rn+1 ;

with ~Rn+1 = On . We look for a coordinate transform �n of the form:

� � 1
n =

�
x; z + "u(x; z; �z; �; " ); �; "

�
=

0

@x; z + "
X

j � j= n� 1

u� (x)p� ; �; "

1

A :

Note that lower order terms are not changed by this transformation, while the general
component� @

@z of order n in � n� Yn� 1 reads as

� = �
��

@u
@x

; !
�

+ i � 0z
@u
@z

� i� 0 �z
@u
@�z

�
+ i � 0u + f n : (B.3)

Writing � =
P

� � � p� , we determineu� such that as many coe�cients � � vanish as
possible.

Homological equations. Writing equation (B.3) in components implies the followingset
of homological equationsfor the u� :

�
@u�
@x

; !
�

+ i( � 1 � � 2 � 1)� 0u� = f � � � � :

Fixing � and dropping the subscripts� for a moment, we expandu, f and � into Fourier
series

P
uk eihk;x i etc. and we obtain the following equations for the coe�cients uk :

i
�

hk; ! i + ( � 1 � � 2 � 1)� 0

�
uk = f k � � k : (B.4)
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If `k = ( � 1 � � 2 � 1)k0, the fraction r = ( � 1 � � 2 � 1)=` is an integer such thatk = rk 0

and (� 1 � � 2 � 1)� 0 = r`� 0. The left hand side of equation (B.4) then vanishes; the
equation can in this case be satis�ed only if� k = f k . We set

8
>>>>>>><

>>>>>>>:

� k = 0 and uk =
f k

hk; ! i + ( � 1 � � 2 � 1)� 0
;

if `k 6= ( � 1 � � 2 � 1)k0;

� k = f k and uk = 0;

if `k = ( � 1 � � 2 � 1)k0:

(B.5)

To provide a solution for equation (B.4), we show that the series
P

k uk eihk;x i converges.
If k 6= rk 0 for any r , we �nd using equation (B.1)

jhk; ! i + r`� 0j = jhk; ! i + r`� 0 � r (hk0; ! i + `� 0)j (B.6)

= jhk � rk 0; ! ij �  jk � rk 0j � � :

The right hand side of (B.6) is �nite if k 6= rk 0. Note also that jr=`j = j(� 1 � � 2 � 1)=`j
is bounded from above by 2n + 1, and that the following estimate holds true:

jk � rk 0j � j kj + jr jjk0j � C
1
� (jkj + 1) ;

whereC
1
� = (2 n + 1) jk0j. It follows that

jhk; ! i + ( � 1 � � 2 � 1)� 0j �

C

(jkj + 1) � �

if `k 6= ( � 1 � � 2 � 1)k0.
We now re-incorporate the index� . Sincef is a smooth function, for everys > 0

there is a constantCs, depending on� and f , such that

jf k� j � Cs (jkj + 1) � s for all k 2 Zm :

Using equation (B.5), we have for everys � 0

juk� j �
CCs


(jkj + 1) � s+ � for all k 2 Zm :

Consequently, on a compact neighbourhoodK n of Tm � f 0g � f 0g � f 0g in M � P � I ,
the function u and its derivatives@~� u can be estimated by

max
K n

j@~� uj = max
K n

�
�
�
�
�
�
@~�

X

j � j� n

X

k

uk� eihk;x i p�

�
�
�
�
�
�

�
CCs



X

j � j� n

X

k

jkj j
~� j(jkj + 1) � s+ � max

K n
jp� j:

For s large enough, the right hand side converges. Since~� was arbitrary, it follows
that u, and hence �n is a smooth function. ChoosingK n smaller if necessary, it can be
achieved that � � 1

n is invertible on K n .
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Appendix B.3. Van der Pol transformation

In this section, it is shown how the normal form (B.2) obtained above decouples from
the dynamics on the torus if a well{chosen van der Pol transformation is applied to
the system; this procedure is also known as `introducing co-rotating coordinates'. Our
treatment is very close to [9], but see also [16].

Co-rotating coordinates. In the casè = 1, it is su�cient to apply the transformation 	
to the normal form (B.2) that is given by

	 � 1(x; z; �z; �; " ) =
�
x; eihk0 ;x i z; e� ihk0 ;x i �z; �; "

�
:

The transformed vector �eld VN = 	 � YN reads as

VN = !
@

@x
+

�
G(jzj2; �; " )z + "

X

j;r

A jr jzj2j �zr � 1

+ "
X

j;r

B jr jzj2j zr +1 + "R N +1 (x; z; �z; �; " )

!
@
@z

;

where andRN +1 = ON , A jr and B jr are polynomials in� and " of order at mostN and
G(jzj2; �; 0) = ( � � i� 0) + g1jzj2 + O(jzj4).

Covering space. The case` = 2 (actually, the method is general and works for̀ � 2)
is more involved, since we have to lift the vector �eld to a covering space of the torus.

First however we simplify the normal form (B.2) further by transforming the
torus Tm . We let � 0 = gcd(k0) and write k0 = � 0

~k0; remark that gcd(� 0; `) = 1 by
hypothesis. Then gcd(~k0) = 1, and we can �nd vectors v2; � � � ; vm 2 Zm such that the
matrix U~k0

= ( ~k0 v2 � � � vm )t is unimodular. Note that if ~x = U~k0
x, then in particular

~x1 =
D

~k0; x
E

=
1
� 0

hk0; xi :

Applying the transformation (x; z) 7! (U~k0
x; z) to the normal form (B.2) yields then

YN =
�
U~k0

!
� @

@x
+

0

@i� 0z + G(jzj2; �; " )z

+ "
[N=2]X

j =0

[(N +1 � 2j )=`]X

r =1

A jr (�; " ) e� ir� 0x1 jzj2j �zr` � 1

+ "
[N=2]X

j =0

[(N � 2j � 1)=`]X

r =1

B jr (�; " ) eir� 0x1 jzj2j zr` +1 + O(")ON

1

A @
@z

; (B.7)

Note that the normal form terms that are not of orderO(")ON depend now only on one
of the torus angles; that is, the principal perturbation in this normal form is now seen
to be periodic instead of quasi-periodic.
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By lifting the normal form (B.7) to a `-fold covering space, even thex1-
dependence can be made to disappear. The covering transformation 	 : Tm � C !
Tm � C reads as

	( x; z) = ( `x 1; x2; � � � ; xm ; ei � 0x1 z):

As always, thex j -coordinates are taken modulo 2� . Note that this map is `-to-one. The
vector �eld ~YN is a lift of YN under this map if

	 �
~YN = YN :

The expression 	� ~YN yields a well-de�ned vector �eld only if ~YN is symmetric with
respect to the groupZ` of deck transformations that is generated by

(x; z) 7!
�

x1 +
2�
`

; e� i� 02�=` z
�

:

With this speci�cation, there is a unique vector �eld ~YN such that 	 �
~YN = YN . We

have

~YN =
1
`

�
U~k0

!
� @

@x
+

0

@i� 0z + G(jzj2; �; " )z

+ "
[N=2]X

j =0

[(N +1 � 2j )=`]X

r =1

A jr (�; " )jzj2j �zr` � 1

+ "
[N=2]X

j =0

[(N � 2j � 1)=`]X

r =1

B jr (�; " )jzj2j zr` +1 + O(")ON

1

A @
@z

; (B.8)

Note that since gcd(� 0; `) = 1, the terms of order lower than O(")ON are symmetric
with respect to the groupZ` generated by

(x; z) 7!
�
x; e2� i=`z

�
:

Appendix C. Nondegeneracy checking

In this section all coe�cients are given that appear in the normal form calculations of
the proof of propostion 2. The coe�cients appearing in equation (18) are functions of
� , � , # and the equilibrium (y10; y20). They are given by

a1 = � + ( y2
10 + y2

20) cos# + 2y10(y10 cos# � y20 sin#);

a2 = � � � (y2
10 + y2

20) sin # + 2y20(y10 cos# � y20 sin#);

b1 = � + ( y2
10 + y2

20) sin# + 2y10(y10 sin# + y20 cos#);

b2 = � + ( y2
10 + y2

20) cos# + 2y20(y10 sin# + y20 cos#);

a3 = 3y10 cos# � y20 sin#; b3 = y20 cos# + 3y10 sin#;

a4 = 2y20 cos# � 2y10 sin#; b4 = 2y10 cos# + 2y20 sin#;

a5 = y10 cos# � 3y20 sin#; b5 = 3y20 cos# + y10 sin#;

a6 = cos#; a7 = � sin#:
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In the proof of proof of proposition 2, we referred to the appendix the
computation of the coe�cient Re C2. The coe�cients B i in equation (19) are functions
of the aj and bj . They are given by

B1 =
1 + i
8a2

2

�
a5(a1 � b2)2 + a2(2a2a3 � a1a4 + 2a5b1 + a4b2)

+
�

a5(a1 � b2) � a2a4

� p
4a2b1 + ( a1 � b2)2

�

B2 =
1 + i
4a2

(2a2a3 � a1a4 � 2a5b1 + a4b2)

B3 =
1 + i
8a2

2

�
a5(a1 � b2)2 + a2(2a2a3 � a4a1 + 2a5b1 + a4b2)

�
�

a5(a1 � b2) � a2a4

� p
4a2b1 + ( a1 � b2)2

�

B4 =
1 + i
128a3

2

 

8a2a6((a1 � b2)2 + 2a2
2 + a2b1)

� a7(a1 � b2)(5(a1 � b2)2 + 8a2
2 + 12a2b1)

+ i ((a1 � b2)2 + 4a2b1)(2a2a6 � 3a7(a1 � b2))

+8
�

a2a6(a1 � b2) � a7(a1 � b2)2

� a2a7(a2 + b1)
� p

4a2b1 + ( a1 � b2)2
�

B5 =
1 + i
128a3

2

 

3a7(a1 � b2)(4a2b1 � (a1 � b2)2 � 8a2
2)

+2a2a6(5(a1 � b2)2 + 24a2
2 � 4a2b1)

� i ((a1 � b2)2 + 4a2b1)(2a2a6 � 3a7(a1 � b2))

+8( a2a6(a1 � b2) + a2a7(2b1 � a2))
p

4a2b1 + ( a1 � b2)2
�

B6 =
1 + i
128a3

2

 

3a7(a3
1 � b3

2) + a3
2(58a6 + 24a7)

� a2
2(a1a7 + 8a6b1 � 9a7b2) � a1b2(20a2a6 + 9a7b2)

� 2a2(6a1a7b1 + b2(3a7b1 � 5a6b2))

+ i (3a7(a3
1 � b3

2) � a1b2(4a2a6 + 9a7b2)

+ a2
2(8a6b1 � a1a7 + 9a7b2 + 2a2a6)

� 2a2(6a1a7b1 + b2(3a7b1 � a6b2)))

� 8(a2a6(a1 � b2) + a2a7(2b1 + a2))
p

4a2b1 + ( a1 � b2)2
�

B7 =
1 + i
128a3

2

�
8a2a6

�
(a1 � b2)2 + 2a2

2 + a2b1

�

� a7(a1 � b2)
�

5(a1 � b2)2 + 8a2
2 + 12a2b1

�
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+ i ((a1 � b2)2 + 4a2b1)(2a2a6 � 3a7(a1 � b2))

+ 8
�

a7(a1 � b2)2 + a2a7(a2 + b1)

� a2a6(a1 � b2)
� p

4a2b1 + ( a1 � b2)2
�

and

Re (C2) = � 12Im (B4B6)

+
1

Im �

h
Re

�
12(B6 � B 4) + 8 B3(B 6 � B4) + 12B 3B7

+20B2B 3B 4 + 12B2B 3B6 + 4B2B3B 7

� 24B 2
2B4)

�
+ 12Im B1B2Im B5

i

+
2

(Im � )2

h
Im

�
4B

2
1B2B 3 � 6B 1B 2

2B 3 � B 3
2B 3

�

+ 6Re (B1B2)Im ( B2B 3) � 8jB3j2Im (B2B 3)
i
:

By using the Mathematica package [56], we have established that at the
degenerate Hopf point the coe�cient ReC2 does not vanish. This implies that there are
no doubly degenerate Hopf points in the present model.

We end this section by giving the coe�cients of the normal form(23) which are
also functions of� , � , # and the equilibrium (x0; y0):

K 1 = a5b2
1;

K 2 = a4b1 + 2b1b5;

K 3 = a5b2
1b4 � a4b2

1b5 + a7b3
1;

K 4 = � a5b1b3 +
5
2

a3a4b1 +
1
2

a4b1b4 � 5a3b1b5 + 4a6b2
1 � 4b1b4b5;

K 5 = � 5a3b2
1b2

5 � 3a6b3
1b5 +

5
4

a5b2
1b2

4 +
35
12

a2
3a5b2

1 � 2a1a2a7b1b5

�
2
3

a5b2
1b3b5 �

4
3

a3a5b3
1b5 +

1
3

a4a5b2
1b3 +

1
3

a4a5b3
1b4 +

3
2

a7b3
1b4

+
5
2

a3a7b3
1 �

2
3

a5b4
1b2

5 �
1
3

a5a7b3
1 � a4a6b3

1 +
23
6

a3a5b2
1b4

�
1
2

a4b2
1b4b5 �

5
2

a3a4b2
1b5;

K 6 = �
1
6

�
4a3a4b1b5 � 8a4b1b4b5 � 56b3b2

5 + 32a2
3b5 + 2a2

4b3 � 66a6b1b4

� 84a3a6b1 � 24a7b1b3 � 18a7b3
1b5 + 30b2

4b5 � 26a2
3a4 � 3a4b2

4

+ 4b2
1b3

5 + 42a4b3b5 � 13a3a4b4 + 52a3b4b5 � 108a3a5b3

� 60a5b3b4 � 28a7b1b5 � 12a5a6b1 � 4a2
4b1b4 + 8a3b1b2

5

� 2a4a7b1 + 2a4b2
1b2

5

�
:

A simple computation shows thatK 2 never vanishes on the Bogdanov-Takens bifurcation
curves. We conclude that degenerate cusp bifurcation do not occur in the family Re (�z +
ei# jzj2z + 1) @

@z.
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