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Abstract. The present paper investigates a family of nonlinear oscillators at Hopf
bifurcation, driven by a small quasi{periodic forcing. In particular we are interested

in the situation that at bifurcation and for vanishing forcing strength, the dri ving

frequency and the normal frequency are ink : 1 or k : 2 resonance. For small but
nonvanishing forcing strength, a semi{global normal form system is found by geraging

and applying a van der Pol transformation. The bifurcation diagram is organised by
a codimension 3 singularity of nilpotent-elliptic type. A fairly complete analysis of

local bifurcations is given; moreover, all the nonlocal bifurcation curves predicted g

Dumortier [25] are found numerically.
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1. Introduction

In appendix Il of his book on nonlinear vibrations [46], Stok&r considered a nonlinear
oscillator with damping and quasi-periodic driving, of the fam

y+oy+y yi=f(lat!ot); 1)
with f a 2 -periodic function in both arguments. If for givenf the damping strengthc
is su ciently large, or if for given c the function f is su ciently small in some function
norm, he showed, using a contraction argument, that this systenal a so-calledesponse
solutiony(t) = " (! 1t;! ,t), where' is 2 -periodic in both arguments.

Stoker remarked that \the usual methods of approximation apied to
equation (1) for c = 0 (i.e. without damping) and ! ;=!, irrational would almost
certainly lead to divergent series because of the occurrencecertain small divisors
in the representation of the terms in the series expansions”. Thguestion, of whether
response solutions exist in equations like (1) farclose to 0, is nowadays called "Stoker's
problem'.
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1.1. Stoker's problem at strong resonances

After Moser [43, 26] solved Stoker's problem for reversible systgmBraaksma and
Broer [3] considered Stoker's problem for families of genérenlinear oscillators; in that
context, Stoker's problem asks for the persistence of the “cait invariant torus near
Hopf bifurcation parameter values. They showed the existence @Hopf bifurcation set
H. which is a positive measure subset of a codimension 1 submanifeldn parameter
space. Also, by applying centre manifold theory, they showed th#here are two open
parameter setsA and R, one at either side oH, having in nite order of contact at H..
The system has an normally hyperbolic invarianim-dimensional torus, attracting for
parameter values inA, repelling for values inR. Moreover, depending on whether the
Hopf bifurcation is subcritical or supercritical, there are sirtar smaller open subset
R* R (subcritical case) orA* A (supercritical case), also having in nite order of
contact with H at H, such that for parameters in these sets, the system has a normally
hyperbolic repelling (for parameter values irR™) or attracting (values in A™) torus
of dimensionm + 1. All these invariant tori are nitely di erentiable; the siz e of the
setsA, A", R and R* decreases as the degree of di erentiability of the tori incesses.
See for more details [3, 10, 11].

We are interested in the complement of these sets, that is, we arddrested
in the set of parameters for which standard KAM theory and centrenanifold theory
do not yield the existence of invariant tori. In the case of a tw@arameter family, this
complement consists of countably many so-called resonance Bo{er bubbles), that
are similar to the ‘resonance bubbles' found in the case of the gisperiodic saddle-
node bifurcation by Chenciner [19, 20, 21]. We extend work b$ambaudo [27] and

Wagener [53] on strongk : ~ resonances withk 2 Z™ and ° = 1;2. These articles
study semi-global bifurcations for periodically th = 1) and quasi-periodically (m  2)
perturbed driven damped oscillators near Hopf bifurcation foboth ~ =1 and ™ = 2;

after appropriate averaging and truncation of the system, & ™-symmetry is divided
out. A bifurcation analysis is performed of the remaining pricipal part at the (relative)
equilibria for small pertubation strengths.

In the present article the bifurcation diagrams in the cases =1 and = = 2
are completed. For the rst case, the bifurcation diagram is utkerstood completely by
taking the codimension 3 singularity of nilpotent-elliptic ¥pe [25], found in [53], as an
organising centre. Consequently, we nd a codimension 2 degeaite Hopf bifurcation,
absent from [27, 53], whose existence is implied by the codimemsB bifurcation (this
was kindly pointed out to us by Freddy Dumortier). For both caes, we add curves of
homoclinic and heteroclinic global bifurcations to the bircation diagrams, that have
been determined numerically by AUTO [22] and Matlab [31]. For 3 techniques from
‘standard' KAM theory (cf. [3, 7, 11, 34, 35]) can be applied to shv the existence of
invariant tori.

The rst step of the analysis of the quasi-periodic case is the anais of the
periodic case. Though these two cases are strongly related theaguperiodic case is
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more involved than the periodic case, since the set of resonatingrmal frequencies is
dense in the set of all normal frequencies. This implies that thmverall picture has a lot
more ne-structure; we shall be more precise below.

1.2. Relation to previous work

Response solutions of periodically driven damped non-harmoruascillators at resonance
have already been studied by van der Pol [51], Cartwright andittlewood (e.g.[17, 18])
and in Stoker's monograph on nonlinear vibrations ([46, p.QF , p. 114 and Figure
3.1 on p. 92]). See also [9, 16].

For a systematic bifurcation analysis of these resonances see ,[A¥here,
using normal form theory, the generic strong (1 :* for = = 1; ;4) and weak
(" 5) resonances of periodic response solutions at non-degenetdtpf bifurcation
are classi ed and described. For the 1 : 4 resonances, see [1, 36,387,39]. We refer
the reader to the overview given in [1x35, p. 302 ].

The 1 : 1 resonance, also investigated in [4, 5], gives in this wege to the
Bogdanov-Takens bifurcation. However, from a practical pot of view, the Bogdanov-
Takens bifurcation does not describe fully what happens geimmlly to the response
solutions of a driven damped oscillator at resonance: for someraaeter values, there
are two response solutions, for others there are none. Under nalhypotheses, for
instance if the friction coe cient grows su ciently quickly w ith amplitude, a topological
argument based on index theory [42] can be employed to show theséence of at least
one response solution in the oscillator.

Besides the response solutions involved in the Bogdanov-Takebi$urcation
there is yet another response solution, which for parameter vads close to the Bogdanov-
Takens bifurcation value is “far away' from the bifurcatingresponse solutions, and this
third solution is therefore not captured by a local analysis. Hates and Rand [33, 29]
made a semi-global analysis of the 1 : 1 resonance in a special case ¢ase# = 0) that
captured all response solutions. We use the term “semi-global' tadicate that after
averaging and scaling, we consider phenomena in a given “b&gion of the phase space,
rather than in the in nitesimally small regions su cient for pu rely local bifurcation
analysis.

The analysis of Holmes and Rand was extended by Gambaudo [27]asemi-
global bifurcation analysis of the generic codimension 2 casefsstrong resonances at
non-degenerate Hopf bifurcations. We note as an aside that raetdg a beginning has
been made at analysing resonances of periodic response solut@mindegenerate Hopf
bifurcations [8]. In that case 1 ;" resonances are strong if 6 and weak otherwise.
As we nd families of degenerate Hopf bifurcations in our anasys, we expect that the
phenomena reported in [8] will occur generically in our systeas well.

In [53] the semi-global analysis of driven damped anharmonisallators at Hopf
bifurcation has been taken up in the case that the driving is aqsi-periodic instead of
periodic. As mentioned before, in the rst step of such an investagion "averaging' or



Normal-internal k : 1 and k : 2 resonances 4

‘normal-form' techniques are applied [1, 48, 15, 16, 39] thaermit to write the system
as a periodically forced system with a small quasi-periodic perbation term. Working
in a di erent parametrisation from the one used in [33, 29, 27and considering a third
natural parameter, the analysis of the periodic part yieldedhat in the 1 : 1 resonance,
the two generic cases reported by Gambaudo can be seen as sublfasnbdf a generic
three-dimensional bifurcation diagram that is organised by aingularity of nilpotent-
elliptic type [25].

The present article completes the analysis started in [53], talg the nilpotent-
elliptic point as “organising centre' of the bifurcation digram and exploring its
implications, one of which is the occurrence of degenerate Hdgifurcations in the k : 1
resonance case. Also we compute all global bifurcation curvesathare known from
the analysis of the nilpotent-elliptic point, excepting th®e relating to "boundary
bifurcations'; these latter bifurcations concern tangencg of the vector eld to the
boundary of any small neighbourhood of the singularity [25].

Moreover, the consequences of the quasi-periodicity are spdliout more fully.
For instance, in the periodic case the Hopf bifurcation set is a smth manifold. In
the quasi-periodic case, it is shown in [53] that every resonangetween the perturbing
guasi-periodic frequency and the Floquet exponent of the f&eoscillator generically
gives rise to a resonance hole. Hence, in the quasi-periodic cdse to be expected
that the Hopf bifurcation set is “frayed'. We shall invoke quasperiodic bifurcation
theory [19, 11, 52] to investigate which portions of the locdlifurcation diagram persist
under small perturbations. In the bifurcation diagram there & quasi-periodic Hopf
bifurcation sets for which the analysis of the article can be g@tied repeatedly: in this
way resonance within resonances are found, as in, e.g., [2].

There are strong analogies between the present case of genedidsfpative)
nonlinear oscillators and the non-damped Hamiltonian case; ithe history of the
subject of nonlinear oscillations, the Hamiltonian case of a caih problem has usually
been investigated before the dissipative case. Since equikbvith purely imaginary
eigenvalues occur generically in Hamiltonian systems, strokg °~ resonances are already
encountered in one-parameter families, and the bifurcatiodiagrams are consequently
simpler. For a detailed analysis, we refer the reader to [9].

The present article is based on chapter 3 of [44]. An overview dig results
obtained has been given in [13].

1.3. Overview

From the outset, attention is restricted to quasi-periodicall damped driven systems.
Examples are the system given in equation (1) and the forced Dug{van der Pol
oscillator

y+ atcy yrby+tdy’="f (it latyiyiit);
wheref is 2 -periodic in its rst m arguments. This non-autonomous second order
di erential equation can be written as follows as a quasi-p@dic perturbation of a
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planar vector eld:

8
2 x = Iy j=1; ;m;
s 1= Y (2)
CYe = (atoy)y: by dyi+ T (X iXmiyayer " ):
Here x 2 T™ = RM™=2 Z™ is usually called the internal variable, andy, = vy

andy, = y are callednormal variables; note that for system (2) the internal dynamics are
independent of the normal variables. This allows us to focustantion on the interaction
of normal and internal dynamics, without having to take care binternal resonances.

Vector elds. Generalising this example, we consider parametrised families vector
elds X (;"), with integral curves in the phase spac@™ R?, of the form

X(M)= L g 2= g AQYFBOE )+ Flayii) o @)
As in the examplex 2 T™ is called the internal (or torus) coordinate, andy 2 R? the
normal coordinate. The vector! 2 R™ (assumed constant) is called the (internal)
frequency vecl:g)r, which will be assumed to be quasi-periodiche& notation ! @@X is
shorthand for 7, ! i@—%. Moreover, 2 P RY% is a multi-dimensional (system)
parameter, ranging over an open and bounded subsBt of RY, and " 2 ( "o;"o) IS
traditionally known as the perturbation strength. Note that by assumption, the natural
projection of the system ow toT™ is always quasi-periodic. All functions are assumed
to depend in nitely di erentiably (or smoothly) on their arg uments. Finally, with jyj
denoting the Euclidean norm ofy, the term B is assumed to be of orde©(jyj?) in vy,
uniformly in
For instance, the forced Du ng{van der Pol oscillator (2) ts i n this framework

if we set =(a;b;c;d and | |

_ 0 1 | Sy 0 .
A()= b 4 B(y,I )= oy, dyF
F(xy; ;" )= f(x.;). Y

Integrable systems. Consider the action of the groupT™ on M that is given by

(xy)=(x+ y);

for 2 T™M, cf. [11]. A vector eld Y is called symmetric (or equivariant) with respect
to , thatis, invariant under the induced action of ,if ( ) Y =Y forall 2 T™. In
analogy to the situation for Hamiltonian systems, a symmetric veot eld is said to be
integrable

Note that for " = 0, the family X, = Xo( ) = X (; 0) is symmetric. Moreover,
the vector eld Xg is tangent to the torusT = T™ f 0g; this implies that the torus T
is invariant under the ow of Xo. The normal linear stability of the invariant torus T is
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controlled by the linear part A( )y%y of the normal part Zy of Xy at y = 0. Note that
the integrable vector eld Xo( ) is always in (quasi-periodic) Floquet form: the normal
linear part ! & + A( )y%y of Xo( ) at T is independent ofx 2 T™.

Dividing out the torus symmetry reducesX, to a planar vector eld, which
is identi ed with the normal part Zo( ) = Z(; 0) of the integrable vector eld X.
Studying X (;" ) for " 6 0 amounts to investigating a non-integrable perturbation &
the integrable family of vector elds Xo( ).

Resonances in Hopf bifurcations. It is assumed that for some value o of the
parameter the normal part Z, of X, versally unfolds a Hopf bifurcation singularity
at y = 0. Denote the eigenvalues oA( )by () i ().

A normal-internal k : * resonance of the invariant torusT is a relation of the
form

h;li+  (o)=0 (4)

between! and ( o), wherek 2 Z™ and" 2 Z are not both equal to O; heréh; i denotes
the standard inner product. The smallest value of j, where" ranges over all integers,
for which there is ak 2 Z™ such that (4) holds is called the order of the resonance.
Resonances of order up to 4 are called strong resonances in thespnt context (cf. [47]);
higher order resonances are called weak. If for= ¢ the torus T is respectively non-
resonant, weakly resonant or strongly resonant, the value, is called a non-degenerate,
weakly resonant or strongly resonant quasi-periodic Hopf bifustion value.

We have already mentioned that the non-degenerate as well #s weakly
resonant quasi-periodic Hopf bifurcation have been investiged by Braaksma and
Broer [3] for strongly non-resonant omDiophantine internal frequency vectors! . For
small positive values of the perturbation strength’, they have found a codimension 1
submanifold H in the space of parameters, carrying a quasi-periodic Hopf biftation
set H. that has positive measure inH, such that at every point of the bifurcation
set, two open regionsA and R in the complement ofH and separated byH meet
with in nite order of contact. For parameter values in A , the vector eld has an
attracting normally hyperbolic m-dimensional invariant torus close toT, for values
in R , a repelling one.

In the union of all setsA and R , normal hyperbolicm-dimensional tori have
thus been shown to exist. The complement of this union is usualhgferred to as the
set of ‘resonance holes' or "Chenciner bubbles', in analogy te thullesthat Chenciner
encountered in his analysis of the quasi-periodic saddle-nobiéurcations [19, 20, 21].
It should be noted that these bubbles are proof-generated. Ihe case of the quasi-
periodic saddle-node bifurcation, the relation between bites and internal resonances
of invariant tori has been studied by Chenciner in [21]; the mgsent article investigates
for the quasi-periodic Hopf bifurcation the structure of the Hurcation diagram in these
bubbles.



Normal-internal k : 1 and k : 2 resonances 7

Normal forms. We are interested in the case that is a stronglyk : 1 ork : 2 resonant
bifurcation value. For small values of', the form of the vector elds is rst simpli ed

by normal form (or averaging) transformations [6, 11, 45]. Iisection 3, the vector eld
is reduced to the special case that its normal frequencies alese to zero, by applying
a van der Pol transformation[1, 9, 16, 51] and an appropriate scaling; the details of the
transformation are relegated to Appendix B. After these transfonations, the vector
eld takes the form

X= A 2ezy( )+ Zu( )+ M2 )

Here = "7~ is another perturbation parameter; the vector eldsX, = 2! @@X+ Zo
and 2 @@X+ Zo+ Z. are integrable, and the powemMN can be chosen in advance;
however, the transformations and their domain of de nition vill in general depend orN .
By these transformations, quasi-periodicity has been pushed tertms of order N. In
fact, sinceXy is integrable, itsnormal or principal part dynamicsZ, are decoupled from
the torus dynamics. In complex coordinatez = y; +1Y,, the vector eld Z, reads
modulo some scalings as

Zo=Re z +e%jzj?z+z 1 @@z:

The article proceeds as follows: in section 4, a complete lodafurcation
analysis and a fairly comprehensive numerical global bifurtan analysis of the familyZ,
are given for the case = 1, extending the work of [27, 53]. A codimension 3 singularity
of nilpotent-elliptic type is found to be the organising cemnte of the bifurcation diagram.
A brief description of this bifurcation, following [25], is gven in Appendix A. The much
shorter section 5 completes the local bifurcation diagram inhe case = 2, already
given in [27, 53], by adding global bifurcation curves and gng the corresponding
phase portraits.

Standard perturbation arguments imply that for small , the local bifurcation
diagram for Z, is qualitatively the same as that forZo + Z 4; if the numerical evidence
for the nondegeneracy of the global bifurcations is accepighe same conclusion can be
drawn for the global bifurcation manifolds. If furthermore te term 2! @@Xis added, the
bifurcation diagrams remain the same, but the interpretatio changes: equilibria and
limit cycles of the planar systemZy + Z, correspond to respectivelyn-dimensional
and (m + 1)-dimensional quasi-periodic tori of

Xo= 2 @@; Zo+ Zi:
Adding the term NZ, breaks theT™-symmetry, and quasi-periodic bifurcation theory
has to be invoked to investigate which portions of the local fuircation diagram persist
under this perturbation (section 6).
Now, in the quasi-periodic bifurcation diagram there are quagieriodic Hopf
bifurcation sets for which the analysis of the article can be gfied again: in this way
resonances within resonances are found. Section 6.3 invedggahis iteration, which
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can be performed at least nitely many times. Appendix B gives fil details on the
averaging and van der Pol transformations used in section 2.

2. Preliminary remarks

In this section notation is introduced, and some preliminaryransformations are applied
to the family of vector elds under consideration.

2.1. Assumptions

As above, we consider vector eldsX (;") on T™ R2? which are of the form (3).
Unless explicitly stated otherwise, in the following all functhns are assumed to depend
smoothly, that is in nitely di erentiably, on their argumen ts. The following assumptions
are made aboutX (;" ).

Diophantine condition. The frequency vector! 2 R™ is assumed to satisfy a
Diophantine condition of typeD(; ): there are constants > 0, > m 1, xed
for the remainder of the article, such that for allk 2 Z™nfOg:

jikc ik

Normal linear dynamics. For the unperturbed system { = 0), the torus T = f(x;y) 2
M :y=0gis invariant, and the normal linear dynamics ofX at T are given by

=1 _@ _@
Nt (X) = @X+ A( )y@y
The aim of the present article is to analyse non-degenerate Hdgfurcations at normal
resonances. At a Hopf bifurcation parameter valueq, the eigenvalues ;( ), ] = 1;2
of A( ) are purely imaginary; by convention ; denotes the eigenvalue with positive
imaginary part. The map 7! (Re 1( );Im 4( )) is assumed to have surjective
derivative at o. Without loss of generality it can be assumed thatA( ) is of the

form |
A()= ;
where =(;; ), and that the parameter spaceP is such that is positive and

bounded away from 0. Under these assumptions the eigenvalueg\¢f) are ;= +i
and , = i

2.2. Preliminary transformations

As usual in this kind of problems, it is more convenient to replacreal valued normal
coordinatesy 2 R? with complex valued coordinates 2 C.
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Complex notations. There will be a distinction betweenf (z) and f (z;z). The former
will refer to an analytic function of its argument, while the latter will usually denote
only a smooth function. Introduce the Wirtinger derivatives

@_@ .e @@, @

—=— i—; and == —+i—;
@z @x @y @ @x @y
then smoothness of (z;z) means that all derivatives

@1+ 2 f
@z@ >

exist and are continuous. By settingg = y; +iy, and
f(z;z) = f1(Rez;Imz)+if,(Rez;Im 2);

the planar system of real di erential equations
yi=falynya); Y2 = falyaiya);

is seen to be equivalent to the complex di erential equation
z=1(z;2):

With the same notations, the corresponding vector eld is seen tsatisfy
@ @ @
f Y2) — + f Y2)— =Ref(z;2)=:
1(Y1:Y2) @y 2(Y1,Y2) @y ( )@Z

In this sense, we say that the vector eld Ré @@Z corresponds to the dierential
equationz = f .

Vertical vector elds. Using this notation, and settingz = y; +iy,and = +i ,the
vector eld X takes the form
@ oy @

= | @x+ Re z +B(z;z;, )+ "F(x;z;z; ;") @Z;
where the dependence & and F on B andF is straightforward. The tildes are dropped
immediately.

The parametrised family of vector eldsX (;" ) can be viewed as a singheertical
vector eld X on the extended phase space

M=T" R> P I
wherel = ( "o;"0). The vector eld X has vanishing components in the and "
directions; thatis, if :M! P | isthe canonical projection, the vector eldX onM
is vertical if X = 0. In the following, references to "the' vector eldX are usually held

to be interchangeable with references to the famil) (;" ); from the context it should
always be clear what is meant.
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Normal form. By a standard normal form transformation = (z;z; ), the vector
eld
@ : : @
Z=Re 1z +B(z;z; ) @z: Re i oz+( I 0)z+ B(z;z; ) @z
can be brought into normal form:
: . @
- 2. - &
ZNE =Re i ozt 9(jzj%; )z+r(z;z; ) @2
where g(jzj%; ) = i o+ ¢ )jzj?+ O(jzj*) and r = O(jzj™), with M arbitrarily

large. By a linear scaling of the variablez, it can moreover be achieved that the
third order coe cient ¢( ) has absolute value 1; it will be replaced by & ) in the
following. Assuming non-degenerateness of the dependencé @ its argument, after
a transformation the parameter can be assumed to be of the form = ( ; ;#; ).
Consequently, the transformation (x;z;z; ;") = (x; (z;z; );") puts X in
the form
X =1 @@; Re i oz+9(izj% )+ r(ziz; )+ "f (x2;2; ;") @@é )

wherer and f are smooth functions and where = O(jzjM).

3. Resonant normal forms

If h;!'i+° o =0for k2 Z™ and ™ 2 Z, we say that the vector eld X given
by (5) is at a normal-internal k : * resonance at the torusl = T™ f 0g; note that it is
simultaneously ata ( k) : () resonance, so we might as well assume thais positive.
In this section, we derive a normal form oK in this case, by applying averaging and van
der Pol transformations. Most details of these transformationsra given in Appendix
B.

For normal-internal k : 1 andk : 2 resonances ordinary KAM theory does not
cover the question of persistence of the toruf for small values of the perturbation
strength " > 0, basically because linearisation aroundz(") = (0;0) does not capture
the approximate locus of the perturbed torus well enough. Byst bringing the system
into normal form, we shall see that the loci of the perturbed tarcan approximately be
described as the Cartesian product of a standam-torus with the equilibria of a simple
nonlinear planar vector eld.

We brie y remark that a system in k : * resonance cannot be ik : ~ resonance
if K& k. This follows from relation %1), since

D E E D E
0= K! + o= K! + o hki'i -~ o= K k!
jk K >0

is impossible.
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Averaging. Lethk;!i+  o=0foreither  =1or =2. For closetoi o, performing
successive ‘normal form' or "averaging' transformations (see.e[11, 6, 45]) yields a
coordinate system relative to which the vector eldX is of the form

X = @@er Re i oz+g(jzi% )z+"Ae*™z 1+ r+"R @@z
wherer = O(jzjM), R = O(jzj%;") and, as beforeg(jzj%; )=( i o)+ e™jzj2+ O(jzj*).
Details of this transformation are given in Appendix B; there anore general form of the
normal form system is derived. In the following, for several s¢ags the non-degeneracy
condition A 6 0 will be assumed to hold. Note that this is an open and dense coridn
on the set of vector eldsX under study. After a trivial rescaling of the perturbation

strength ", we can assume thaf = 1.

Van der Pol transformation. The dependence on the torus coordinate of terms of
lowest order inz is removed by a van der Pol transformation, commonly called ugting
the system into co-rotating coordinates' (see e.g. [9, 16, 36,, 3]). Again, full details
of this are given in Appendix B, but the idea is illustrated herefor = = 1 with the
averaged form ofX obtained in the previous paragraph. We perform the coordite

change k;z;z; ;") 7! (x; e kxiz; gikxi. -} Recalling that we haveA = 1, this
yields
@ o @
X=!—+Re z]5, )z+ "+ ¥+ "R —;
& 9izj%; ) @2
whereg(jzj?; ) =( i o)+ e'#jzj?+ O(jzj*), £= O(jzjM) and R = O(jzj>;").

The added di culties in the general case come from the fact thawe have to
lift the vector eld to an "-fold covering space of the phase space. We show in Appendix
B that the lifted vector eld is of the form

X = 4r@@er Re 9(z% )z+"z *

+R1(z;z; ;") + "Ra(X2,25 1)) @@é
with g as above,! ~again satisfying a Diophantine condition,R; = O("jzj **;jzj™)
and R, = O(jzjN). We shall drop the tilde on!~in the following.

Rescaling. Next, we perform a rescaling of phase space &t and parameter space
at =i orespectively. Fix an open neighbourhood™ U of T™ f 0Og by setting, e.qg.,
U=1fz2 C : jzj < 4g, and a compact neighbourhoo& of O in parameter space by,
eg.,.K=f(;#)2C S':jj 10g. These choices are made such that for all2 K,
all equilibria of the scaled vector eld to be introduced aren U.

For " =1;2 (or = 3) we perform the scaling

(G Z;z; #") TG Tz T T )i,

and set" = 4 afterwards. The vector eld X takes the form
x=124 2Re 2 +e*jzj%z+z ! @, sz,
X @z
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We put Zg = Re(z + e'#jzj’z+ z Y)@=@zFrom the more precise results derived
in Appendix B it follows that X can actually be put in the form

@ N
X=1—+ Zo+ Z1+ “Z, ; 6
@X 0 1 2 ( )
whereZ; is an integrable vector eld, and whereN can be choosen arbitrarily large.
Recall that the normal form vector eld

. -, @
Re z + qzj’z+z ' = 7
e z +qgzjcz+z @z (7)
appears in the local analysis of : 1 resonances for 3 (see [1]). The present semi-

global context motivates the study of this equation even for =1 and ~ = 2.

4. Bifurcation analysis of the  k : 1 resonance

In this section we perform a bifurcation analysis of the vectoreld Z, (given again
in (7)) for © = 1. The analysis is complete with respect to local bifurcatiosy which
are obtained analytically, and fairly comprehensive with rgpect to global bifurcations,
which are obtained by numerical packages (AUTO, Matlab).

We consider
e @
Zo=Re 1z +e%jzPz+1 =; 8
0 izj @7 (8
here = +i . Thisis a three-parameter family of planar vector elds, paametrised

by (; ;# ); we shall see that the bifurcation diagram of this family hasadimension 3
singularities of nilpotent-elliptic type as organising cemes. Observe thatZ, is
symmetric with respect to the group generated by the involutios

(tz;;#) 7 (tz;; #) and Gz ;#)V (L, z, ;#+ )
Because of this symmetry, we can restrict our attention to the paof parameter space
forwhichO #  =2;inthisrestricted parameter space, there is exactly one sugrity
of nilpotent-elliptic type.

Figure 1 gives a graphical overview of our results on the positi of the
bifurcation manifolds that correspond to local bifurcatios of codimension 1 and 2.
The codimension 2 bifurcation curves corresponding to cusp arBbgdanov-Takens
bifurcations are indicated in gure 1-@). Figure 1-(b) shows the relative positions of the
codimension 1 bifurcation manifolds in the vicinity of a singlarity of nilpotent-elliptic
type.

Codimension 1 bifurcations. The codimension 1 bifurcation manifolds of o have been
determined in [53]. We summarise the result in the following ppmsition.

Proposition 1. Let the family of complex di erential equations
z=( +i )z+e"jzj?z+1

be given. The local bifurcations of codimension 1 of this falgndetermine the following
bifurcation manifolds.
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(a) (b)

Figure 1. (a): Sketch of the global bifurcation diagram ofz=( +i )z+ e jzj’z+1
in the (#; ; )-parameter space. All singularity of nilpotent-elliptic points (NE 3) are
connected by cusp (SN) and Bogdanov-Takens (BT) lines. The curves BT; and BTS
tend to 1 , respectively, when# goes to =2. (b): Detail of the bifurcation set in
box A of gure (a). At the singularity of nilpotent-elliptic type (NE 3) point, curves
of Bogdanov-Takens (BT3), cusp (SNg), and degenerate Hopf (k) bifurcations meet
tangently. The curves BT and SNS do not intersect. For terminology see table Al

(i) A saddle-node bifurcation surfaceSN,, given by

27

4
where 1= cos#t+ sin#and ,= Ccos# Sin#.

(i) A Hopf bifurcation surface H;, given by

3 472 costtsin#t+4 2cof#+8cosS#H=0; (10)

2
> 0 11
2CoH# (11)

Not all points on H, correspond to non-degenerate Hopf bifurcation points.

s()= 135+2 %23+ 5+ 349 1 5+ = =0; grads( ) 6 0;(9)

( tan #)?

See [53] for the proof of this proposition. We will show below &t there is a curve H
of degenerate Hopf bifurcation points on the manifold H such that all points in H;nH,
are nondegenerate Hopf bifurcation points. The results of thegposition are illustrated
by the bifurcation diagrams in gure 2.
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Figure 2. Bifurcation diagram of z = ( + i )z + e¥jzj?z + 1 for xed values of
# in the (; )-plane. Solid curves indicate Hopf bifurcations, dashed curves indicate
saddle-node bifurcations. For# = =6, the BTy, SN, and H, points coalesce in a
NE3 bifurcation point. Note that all the bifurcation curves are intersections of the
bifurcation manifolds of Figure 1-(b) with planes # = const. In Figure 1-(b) two of
these planes are indicated byS; and S,. For terminology see table Al
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Codimension 2 bifurcations. Next, we consider the manifolds of local codimension 2
bifurcations of the vector eld Zy for ~ = 1: we nd cusp (SN,), Bogdanov-
Takens (BT,) and degenerate Hopf (H) bifurcation points. The cusp and Bogdanov-
Takens bifurcations have already been given in [53]. We shoverk that the vector
eld Zo has also a curve of degenerate Hopf bifurcation points for6 # < = 2.
These are the only local codimension 2 bifurcations of the system

Proposition 2. The local bifurcations of codimension 2 of the equilibria othe
di erential equation
z=( +i )z+e"jzj’z+1 (12)

are the following.

(i) There are two curves of cusp bifurcation points SNand SN;. Two components of
the manifold SN of saddle node points meet tangently at these curves. Thevas

are given by
3 P3 3 P3
SN : = écos#+ TSIH#; = ésm# TCOS#; (13)
and by
P~ p_
3 3., _ 3. 3 _
SN : = SCos#  —-sin# = Ssin#+ - cos: (14)

(i) The system has two Bogdanov-Takens curves BEnd BT5, where the saddle-node
and Hopf surfaces meet tangently. The curves are given by
2cost 2sin# 1

BT? : = _ ;= . , 15
! (2sin# +2) 1=3 (2sin# +2)1=3 (19)
and
2 cost 2sin#+1
BT : = .= ; 1
2 (2 2sin#)1=’ (2 2sin#)1= (16)
(i) The system has a degenerate Hopf bifurcation curve,Hjiven by
Hy : = 2cos# =0; —<#< =:
2 o ' 6 2

Proof.
The cusp and Bogdanov-Takens curves have been obtained in][58 remains to nd

the degenerate Hopf bifurcation points.
In real coordinatesy; = Re z and y, = Im z, equation (12) reads

Yi= Y1 Ya+r(Yi+yo)(yicost y,sin#)+1;
Yo= Y1+ Yo+ (yi+ yi)(yisin# + y,cosh): 17)
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Let yo = (Yi0;Y20) be an equilibrium of this system. Translating it to the origin Ly

putting (yi1;Y2) = (Ylo; Yao) + ( u;v)I yields 'a system of the form |

u _  a a uo, azu’ + ayuv + asVv?
v b b v bsu® + byuv + byv?
!
ud + a;u?v + aguv?® + a;v3
+3637236273; (18)
a;u’ + agu’v  azuv? + agv
where all coe cients are functions of , and#; their precise form is given in Appendix
C. At a Hopf bifurcation point, the eigenvalues; of the linear part of (18) are purely
imaginary. Let
( au v,

W =
Im
Then we have
w= w + B;w?+ Boww + Bsw? (19)

+ B,w® + Bsw?w + Bgww? + BowS;

where eachB; is a function of , and#; these functions are also given in Appendix C.
Using standard normal form transformations, we can simplify equiin (19) to obtain
(see for instance [55, 6, 40])

W= W + Ci(;;# )WwW+ Co(; ;# )Ww? + O(jwj"); (20)

where
C, = Bs | Ble(.Z_ ), szj2+ jB3j” :
2 2 j? 22 )
Solving equation ReC;) = 0, together with equation (10), yields the location of the
degenerate Hopf points in the ( )-plane

= 2cos#; =0: (21)

For # 2 [0; =6), inequality (11) is not satis ed; therefore degenerate Hogdfifurcations
only occur for# 2 [ =6; =2), compare gure 2.

The expression of R€, is quite complicated. It is given in Appendix C; there
it is shown that ReC, does not vanish at degenerate Hopf points, implying that the
degenerate Hopf points are not doubly degenerate. ||

Below we also show that the cusp and Bogdanov-Takens bifurcat® are
nondegenerate everywhere except at the nilpotent-elligtipoint NE;.

Singularity of nilpotent-elliptic type as organising cent&. The bifurcation diagram of
the family Z, possesses a singularity of nilpotent-elliptic type (see [25]), wh acts as
an organising centre of the three-dimensional bifurcation a@gram.

Proposition 3. The bifurcation set ofZ, has a single singularity of nilpotent-elliptic
type. This is the only local bifurcation point of codimensio3 of the family Z,.
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Proof.
We use the same transformation to local coordinates around anuwtprium as in the
beginning of the proof of proposition 2. On the Bogdanov-Take curves, the system

can be written as | | |

01
i - 00 zl | #2
bbiy? + buyry, + (bs=h)y3 -
astiy? + asbiyrys + asy?
aslry; asbiyiys + asyry;  (ar=h)y3 | _
arlRys + aglyly, + arbuyry? + ayd
Using a standard nlormal form plrocedurle [48, 6], we nd |
01 0
v T 00 v K Ky, (23)
0 N 0
Kay: + Kayiys Ksyf + Keyiys
where fori =1;2; ;6, the coecient K; is a function of , and#. All coe cients

are speci ed in Appendix C.

Solving equationK ; = 0 on the Bogdanov-Takens lines, gives the location of singuiges
of nilpotent-elliptic type (NE 3) bifurcation pointin ( ; ;# )-space [25]. The NE point
occurs at

(#)=( "30 =)

At this point, the 4-jet of vector eld (23) is C! -conjugate to

BIEY2 o p_ o p, P
Y2= Yi+2 3Byiya+ 3yiya+4yt B 3yiya
see [25, 48]. The coe cient of the termy,y, is larger than f 2, and the coe cient of
the termy$ is 1. This implies that the singularity is of “nilpotent-elliptic' type (see [25]
for the nomenclature).
A simple computation shows that neither degenerate cusp nor dole degenerate
Hopf bifurcations occur in the present model. i

(24)

Phase portraits. In this section, we extend the description of the bifurcation idkgram of
equation (8) given in [53]. In gure 3, we plot the two-dimensinal bifurcation diagram
of system (8) for the two planes# = 2 =5 and# = =10 respectively. Figure 4 gives
the phase portraits of the system for parameters in di erent ragns of the bifurcation
diagrams. Phase portraits are plotted using Matlab [31].

We nd all local bifurcations of (8): saddle-node (SN), Hopf (H1), cusp (SN,
Bogdanov-Takens (BTh) and degenerate Hopf (K) bifurcations, which are expected
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from the bifurcation diagram of a singularity of nilpotent-dliptic type [25]. We also
retrieve homoclinic and saddle-node of limit cycles bifurtians; these are found using
the numerical packages Auto [22] and Matlab [31, 28] respeatly. These bifurcations
are drawn in gure A2.

We do not recover the following bifurcations whose existence also predicted
by [25]: cycle tangency (CT), double tangency (DT;), separatrix tangency (ST),
double cycle tangency (DCF), double centre separatrix tangency (DCSJ) and
hyperbolic separatrix tangency bifurcations.

Remark. System (8) also contains a global feature, namely, a large hoatiaic loop of
a hyperbolic saddle point, which is not explained by the nilpent-elliptic singularity.
This large homoclinic loop is detected by Auto [22]. See guré.

5. Bifurcation analysis of the  k: 2 resonance

We continue by performing a bifurcation analysis of the vectoeld Z, for the case = 2.
As remarked before, in this case it is su cient to consider two bifrcation parameters.
The local bifurcations in the™ = 2 case have already been given in [27, 53]; in this section,
after brie y recalling those results, global bifurcations areletermined numerically whose
existence follow from our knowledge of the local bifurcatiogiagram. The results of this
section are echoed in [41]; see also [50].

We consider the principal part vector eld

Zo=Re z +e¥jzj’z+ z (25)

@z
This is a two-parameter family of planar vector elds as we shbtreat in this section #
as a generic constant. Observe that, is symmetric with respect to the group generated

by the two involutions
(z;;#)7 (z,, #) and (z, ;#) TV ( zZ; #):

Because of this symmetry, we can restrict our attention to thosealues of# satisfying
0 #

Local bifurcations. For the determination of the local bifurcations of codimensn 1
and 2, see [53]. We summarise the result.

Proposition 4. Let the family of complex di erential equation
z=( +i )z+e%jzj’z+ z
be given. Set, = cos#t+ sin#, ,= cos# sinffand = 1+i ».

Then the local bifurcations of codimension 1 of this family elermine the
following bifurcation manifolds.

(i) A curve of pitchfork bifurcations PF;
ji=1 (26)
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Figure 3. Two-dimensional bifurcation diagrams of system (8). @): For # =2 =5.
(b): For # = =10. Phase portraits for every region are given in Figure 4. For
terminology see table Al
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Figure 4. Generic phase portraits of the family (8) for parameters in the di erent
regions of the bifurcation diagrams in Figure 3. For regions 1, 2, 3 and 9,isgle orbits,
leaving an unstable equilibrium or unstable periodic orbits are shown. For all ¢ther
regions, stable and unstable manifolds of saddle points are drawn.

(i) Two curves of saddle-node bifurcations SN given by

% = 1, 1 < 0: (27)
(i) Three Hopf bifurcation H; curves; two are given by
Re(é* )=0; jj>1 (28)

and the third by
%1( 1+ otan#)?+ 3=1;

tan#
2

(29)
1 2% §< 1 2tan# 1> 0:

i
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The local codimension 2 bifurcations correspond to the folling bifurcation points.
() Two degenerate pitchfork bifurcation PF points at

=i and = i (30)
(i) Two symmetric double-zero bifurcations SDZ at

=i and = i (31)

(i) A Bogdanov-Takens bifurcation point BT, at

= jtan# 1+

32
tan# (32)

The local bifurcations described by this proposition are showim gure 5. Moreover,
from the occurrence of a Bogdanov-Takens bifurcation, we fer the existence of a
homoclinic bifurcation curve L;. One of the symmetric double zero SDZbifurcation
points gives rise to curves of saddle-nodes of limit cycles SNL.Gopf bifurcations H;
and homoclinic loops .. This last curve ends on the curve of pitchfork bifurcation PE;

at that point, a curve of heteroclinic bifurcation points Hg departs that ends on a line
of saddle-nodes of equilibria SN At the other SDZ, point, we have a second curve of
heteroclinic bifurcations He, also ending on a saddle-node line. These lines are given
in the bifurcation diagram in gure 5.

6. Persistence of the bifurcation diagram

In section 2, a normal form of the vector eldX at a resonancdk;! i+ =0 has been
obtained (equation (6)). Rescaling time byt 7! 2t changesX to

X = 2 @@X+Z°+ Z.+ Nz (33)

In sections 4 and 5, local bifurcation diagrams have been givéor the integrable family

Zo=Re 1z +e%jzj’z+z ? @@z
for ' =1 and ° = 2 respectively. This section investigates the bifurcation digrams of
the full family X for small values of , by successively adding the perturbation term< ;
and NZ, to the integrable vector eld 2! gx+ Zo.
The bifurcation analysis is performed forZ%; ) in the compact closure of some
bounded open neighbourhoodd  of (0 ;0)in C RY Sincez and are not required
to be small, while is taken close to O, this is calledgemi-global bifurcation analysis

6.1. Persistence under integrable perturbations

Recall the denitionsof K = f 2 C :jj 10gandU =fz2 C : jzj < 4g from
section 3. We have seen there that for;@# ) 2 K all equilibria of the vector eld Z,
are in the interior of U. There is a ¢ > 0 such that forj j < o, the local parts of the
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Figure 5. (a): Bifurcation diagram of system (25), for# =2 =3. (b) (0): Generic
phase portraits for di erent regions in the parameter space. For the terminology see
table Al
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bifurcation diagrams ofZy and Zo + Z; restricted to U are equal, modulo at most a
change of coordinates, since all local bifurcations singuléess obtained have been shown
to be nondegenerate.

Indeed, all singularities can be continued as a function of over some
interval (4); since (;# ) take values in the compact seK, there is a constant ¢ > 0
such that [ o; o] (#) forall (;#) 2 K. The parametrisation furnishes us an
invertible correspondence between the bifurcation diagrasn

6.2. Persistence under non{integrable perturbations

A more intricate issue is persistence of bifurcations in the faigiZo + Z, under non-
autonomous (quasi-periodic) perturbations™ Z,; or, put di erently, which bifurcations
of m-dimensional tori in the integrable family X, = Zo + Z, persist quasi-periodic
bifurcations in X = Zog+ Z,+ NZ,?

We have to invoke quasi-periodic bifurcation theory, as intrduced in [11]. This
area is under active development (see for instance [9, 52, 3@])5in the sequel some
results will therefore be formulated as conjectures. Note hower that the present set-up
is simpler that the usual one, since the dynamics on the torus ar®t perturbed. This
is analogous to the situation considered in [9].

Quasi{periodic saddle node and cusp bifurcations.Take a point , on a saddle-node
manifold of X, = Zg+ Z ;. A suitable change of the normal coordinate brings the
system locally into saddle-node normal form

@ @ @
Xy= 5! =+ + ap( ;W)W — + bi(y)y—=;
1 @x ()+a(;w) aw b ( y)y@y
herex 2 T™, w;y 2 Randay( ;0)60 6 by( o;0). Since ¢ is a non-degenerate saddle-
node point, we have that ( () =0, and g—( o) 6 0. Applying the transformation to

the vector eld X instead of X, yields

X = 41

+

@
@x
O+ aGwws " 2o bly)ys M 2
where the functionsr; and r, depend smoothly on X;w;y; ; ).
Since! is Diophantine, 2! is Diophantine as well, and if > 0 is su ciently
small, it follows from the theory in [11] or [52] that by a smootmear-identity transform,
the vector eld X can be transformed to

X = 4! @@; ~+ (5w )W @@W+ bl(ﬁy)y@@):/
such that ~= (; ), &(0;0) 6 0 and ©,(0;0) 6 0. This can be accomplished by a
smooth transformation, C'- N close to the identity for everyr. Hence quasi-periodic
saddle-node bifurcations persist locally.
From the results in [52] it follows that in the same manner, quagieriodic cups

bifurcations persist in the family X, if > 0 is su ciently small.
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Quasi-periodic Hopf bifurcations In the case of Hopf bifurcations, the situation is
di erent because of possible resonances of?! with the normal frequency.

Similarly as in the case of the saddle-node and cusp bifurcatenfor a
parameter o= ( o; ) on a Hopf bifurcation manifold of X ; the vector eld X can be
brought in the form

X =3 2 7+ b )iz o Vi) o
with ¢=i o, o> 0,
De ne the sets
Dn(; )= 2C:j +ibkglij  (kji+jj) ;
o

8(k;)22zZ™ Z; 0<jj n:

If V. X is a set in the spaceX, let {V denote the complementX nV of V in X.
For >m l1andU C an open set, we have thaC = { (U\ D,(; )) satises

measC = O( );

where “meas' denotes Lebesgue measure (see e.g. [11]). Thetidifs from the results
of in [3, 11] that for small enough , the vector eld X can be transformed into

X= b2k 2 B0z rzizi) ) o

wherer, together with all its derivatives, vanishes if ; 7) 2 D4( N*; ).
Those parameters that satisfy R€ = 0 are quasi-periodic Hopf bifurcation
parameters for the invariantm-dimensional torusz = 0 of X. There is aC! curve H,
C'- N close to the curveH of Hopf bifurcations in the bifurcation diagram ofZo+ Z 4,

and a nowhere dense subseét. on H, such that
(HnH) ¢ N*

and all points of H; are non-degenerate quasi-periodic Hopf bifurcation pointd the
family X.

Other quasi-periodic bifurcations. The previous two cases are typical. Let us go over
the cases of higher codimension a little more quickly. The gemaktype of result is
however always the same: if at a certain singularity the normdiequencies are xed to
a particular value, as it is for instance the case in the Bogdamnerakens bifurcation, then
the corresponding bifurcation curve persists in its entiretywhereas if they only have to
satisfy a non-resonance condition, then only a large measure subsiethe bifurcation
curve persists under perturbation.

In particular the methods developed in [54] imply that the Bgdanov-Takens
points and the singularities of nilpotent-elliptic type pesist in their entirety. It is a
corollary of the results in [52], generalising [19], that a lge measure subset of the
degenerate Hopf bifurcation curve persists (see also [14]). Fdolsal bifurcations like
homoclinic loops, we again refer to [14] where a methodolagliframework is developed
to study these bifurcations.
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Semi-global quasi-periodic bifurcation diagram. Patching up the local results as in the
previous subsection, the local bifurcation diagram &y+ Z ; persists as a quasi-periodic
local bifurcation diagram under a small perturbation, excepfor a set of measure less
than ¢ N*! on the quasi-periodic Hopf and degenerate Hopf bifurcation otes.

6.3. Resonances within resonances

At the end of the previous subsection, a subsdt. of large measure of the Hopf
bifurcation curve H of the integrable family

1, @

Xp= 2 @X+ZO+ Zy;

was shown to persist a8l if a non-integrable term N Z, was added. In the complement
of H. in H arek : * resonance points with' 2 f 1;2; 3; 4g. Leaving asidek : 3 andk : 4
resonances, we note that the analysis of the present paper can kapplied to the case
of k : 1 andk : 2 resonances.

Let o be a point on a Hopf bifurcation curve ofX,, such that the normal
frequency ( of the bifurcating torus z = z; is in k : 1 resonance at (. In suitable local
coordinates ¢; ) around (zo; o), the vector eld X takes the form:

@ . @
— 2! =+ + 2 + =
X @x z +gzjz+ R @7 (34)
whereR = O(jzj°®; N).
It is not a priori obvious whether the appropriate non-degeneracy conditiaa

satis ed (see section 3). However, if a term

N eirk;xi_@.

@z
is added to the original vector eld (3) (or to (34), which amants to the same),
inspection of the transformations in Appendix B shows that the ral vector eld will

be changed by an amount

N ejH(;xi @+ O( N+1).

@z

at its worst. Hence, after choosing appropriately, the non-degeneracy condition may
be assumed to hold.

Hence, for an open and dense set of perturbations, the analysisfpemed in this
paper can be iterated nitely many times, yielding a constant’ such that forj j 0
the Hopf bifurcation set of X shows resonances within resonances within resonances.
Note that , depends on the number of times this analysis is repeated, artdwill in
general tend to zero as this number increases without bounds.
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Table Al. List of bifurcations that occur in the article. The subscript indicates
the codimension of the bifurcation. The column ‘Incidence' lists the subordinate
bifurcations of highest codimension. See [1, 24, 25, 29, 40] for details concerning the
terminology and ne structure.

Notation Name Incidence
SN; Saddle-node

Hy Hopf

PF, Pitchfork

L1 Homoclinic

He, Heteroclinic

SNLC, Saddle-node of limit cycles

SN, Cusp SN, + SN,

H, Degenerate Hopf SN + SNLC ;

BT» Bogdanov-Takens SN+H{+L;

PF, Degenerate Pitchfork PF + SN

SDZ, Symmetric Double Zero PR +H

Lo Homoclinic at saddle-node l; + SN,

DL, Degenerate homoclinic L + SNLC,

NEj3 Singularity of nilpotent-elliptic type SN ,+BT ;+L,+H;
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Appendix A. Bifurcations

Appendix A.1. Nomenclature

In the paper, bifurcation points are indicated by abbreviabns of the form ch%té?rrn,

where XX indicates the type of bifurcation,codim is a positive integer indicating the
codimension, andetter is an optional lower case letter indexing a particular bifuration
set. The abbreviations we use are summarised in table Al.

Appendix A.2. Singularities of nilpotent-elliptic type

In this section, which is based entirely on the results of [25], evdescribe briey

the singularity of elliptic-nilpotent type (NE 3) that occurs in our analysis. For an

explanation of the more complicated global bifurcation, weefer the reader to [25].
Consider a 3-parameter family of vector elds of the form

x = y+ O(jx;yj);
Y= 1+ X+ gy+ axP+ ooxy x4+ axPy + O(x;yif);
where ;; , and 3 are parameters, and where;; , and 3 are functions depending

only on these parameters. The central singularityy; 1; 2; 3) =(0;0;0;0;0) of (Ap 1)
is called a NE bifurcation point of elliptic type if 1(0;0;0) =0 and ,(0;0;0) >

(A.1)
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1

Figure Al. Local bifurcation manifolds of the family (A.1) around a singularity of
elliptic-nilpotent type (NE 3).

Figure A2. Intersection of local and global bifurcation manifolds of the family (A.1)

with a small sphere around a NE point, projected onto the plane. Bifurcations that
are not listed in table Al are explained in the text.

The local bifurcation manifolds of this family at a singulariy of elliptic-nilpotent
type are given in gure Al. The NE; point is an isolated point on the smooth curve of
Bogdanov-Takens (BT) points; all other points on the curve are non-degenerate. Ahe
NE3 point the following bifurcation surfaces and curves meet tayently: surfaces of Hopf
(H1) and saddle-node (SRl and SN)) bifurcation points, curves of Bogdanov-Takens
(BT ,), cusp (SN) and degenerate Hopf (K) points. Moreover, the Hopf surface meets
the saddle-node surfaces tangently at the Bogdanov-Takensrees. Global bifurcation
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manifolds are not indicated.

The bifurcation set of (A.1) is a topological cone with vertex 810 2 R®. That
is, the codimension one surfaces and codimension two curves @& Hifurcation set are
transversal to the spheres?+ 2+ 2= "2 for " > 0 small enough. IfS is such a
sphere for some xed value of, let the intersection of the bifurcation set with S.
The codimension-one bifurcation surfaces interse€tin a nite number of curves onS;
the codimension-two curves intersecd in a nite number of points. These points will
be either end point or intersection points of bifurcation cures onS.

To obtain gure A2, we delete a pointfg from the sphereS and map the
punctured sphereSnf g to the plane. The pointfg is chosen in the complement of the
bifurcation set on the hemisphere , < 0. We obtain two saddle-node curves SN\and
SN that meet tangently at two cusp points SN and SN). The Hopf curve H meets
SN and a (global) curve 1§ of homoclinic bifurcations tangently at BT;; likewise, it
meets SN and L? tangently at BT5.

A curve of saddle-node bifurcations of limit cycles (SNLJ emanates from
a degenerate Hopf point on the Hopf curve; the curve SNLQGerminates at a double
cycle tangency (DCT,) point. From a double centre separatrix tangency (DCSJ) point
emanates a cycle tangency (C) and a double tangency (DT) curves. These curves
terminate at hyperbolic separatrix tangency points HS¥ and HSTS, respectively. The
DCST, point and HSTS are connected by a separatrix tangency (SJ curve. Dashed
curves indicate bifurcations which are shown (in [25]) to oac in the family (8), but
which are not recovered in the present article.

Appendix B. Averaging over the torus

In this appendix normal forms of the vector elds are compute by averaging at a normal
resonance parameter,. Without loss of generality, we may assume that, = 0. After

applying a van der Pol transformation [9, 16, 36, 39, 51], theegtor eld can be split
in an integrable part and a part that is of high order in the varablesjzj, | | and j"j.
Throughout the following, parametrised vector eldsX (;" )onM with 2 P and" 2 |

are considered as vertical vector eldX onM =M P |I.

Appendix B.1. Averaging

We considerX as given by equation (5):

X =1 uRe i ov iz’ )24t 67z ") o
whereg(jzj?; )=( i o)+ Ghjzj®+ O(jzj*). From the averaging result below it follows

that if ko! + ° ¢ =0, then there is an "averaging' coordinate transformation gtting X
into the form

=1 @@er Re i oz+ g(jzj%, )z+ "Ad¥oXiz 14+ "R @

@z
whereR = O(";jzj;j i o).
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To express the result more formally, recall that and " take values in some
bounded open neighbourhoodP and | of 0 in RY and R respectively. It is assumed
that there is an integer vectork, 2 Z™nf0Og such that the greatest common divisor of the
components ofk, and " is 1; in particular, if = = 1, the components ofky are mutually
prime. Moreover we assume that we have

H(o;!i+\ 0:0; (Bl)
whereas for allk 6 koa/ve havejhk;!'i + ° g L (jkj +1) : Finally, we introduce
X S
O,= 0@ iZi%j A
2+] jrr=n
Proposition 5. If ko! +° ¢ =0, for ! Diophantine andgcd(ko; ) = 1, then there

exists a smooth transformation y = (X;z;z; ;" ), mappingX to Yy = y X, such

that 0

Yy = ! @@x+ @ oz+ G(jzj? ;" )z

=21 [N+ 2)=]

+ A]r ( ;" )e irH(o;XijZJ'Zj Zr‘ 1
j=0 r=1 1
N=21IN @ D=1 S
+" Bjr (i) €M™ jzj2' ™ + O(")OnA = (B.2)
- _ @z
j=0 r=1
with G(jzj% ; 0)=( i o)+ Gjzj?+ O(jzj*) and A;; and B;, multinomials in and"
of order at mostN.
Appendix B.2. Proof of the averaging result
The techniques used in the proof are standard.
Notation. De ne the normj j of a multi{index =( 1; ; n)2 N" by
= 1+ *t on:
For the multi-index =( 1; 25 3 4)=( 1 2, 315 ; 3q 4) 2 N3, we write
p(z;z;;")=2z2z2% "%
Also, for a multi{index ~=( o; )2 N N2 andf = f(x;z;z; ;" ), we write

. er
T @x@2@:@ ‘@™

Q@f
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Induction hypotheses. The transformation will be constructed as a composition

= N o of transformations . We proceed by induction. Assume that
there exists a smooth transformation , = 0, C! {close to the identity,
mapping X to
Yo= o X
Here
@ . -
Yon=!—=—+Re | gz+ 9g(jzj5;
"= ! ax 0z + 9(jzj% ) .
+" ell’ hko;xi +IIR+ XZZ,;" A @
p n 1( ) @Z

Ine
with r =( ; » 1)=" and with R,+; = O, a smooth function. The index set is
given by

lpo=  2Z2%: 1% , n, 1 2 1 Omod
Note that the induction hypothesis is true forn = 1 ifwe set o= o=1id, Yo = X

and R; = f . If the induction hypothesis is shown to be true fon = N, we see that the
proposition is proved.

Determining the transformation. We turn to the induction step. Taylor's theorem is
used to write:

X
n=fn+ Ry = f (X)p + Rns1;
ji=n 1
with R,:1 = O,. We look for a coordinate transfor(Sn n of the form: 1
X
e oxzHtu(ziz i)yt = @z up;;"A:

jj=n 1
Note that lower order terms are not changed by this transformain, while the general
component @@Zof ordernin , Y, 1 reads as

Qu, . _@u . _@u .
= +i 0Zz— 1 9z—= +i ou+t fy: B.3
5 @X 0 @Z 0 @ 0 n ( )
Writing = p , we determineu such that as many coe cients  vanish as

possible.

Homological equations. Writing equation (B.3) in components implies the followingset
of homological equationgor the u :
@Qu,,
@x
lemg and dropping the subscripts for a moment, we expandu, f and into Fourier
serles ux €™ etc. and we obtain the following equations for the coe ciers uy:

PG+ ( 1 2 1) o w="Ff (B.4)

+i( 1 2 1) ou =f



Normal-internal k : 1 and k : 2 resonances 31

If 'k=( 1 2 1)ko, the fractionr = ( ; > 1)="is an integer such thatk = rkg
and ( 1 > 1) o =1 o. The left hand side of equation (B.4) then vanishes; the
equation can Ei3n this case be satis ed only if, = fy. We set

_ _ fy .
% «r=0 and uk_rk;!i+( X D o
if 'k6( 1 2 ko

(B.5)
g k= fx and ux=0;

if k = ( 1 2 1)ko:

P o
To provide a solution for equation (B.4), we show that the series | ux €™*! converges.
If k & rko for any r, we nd using equation (B.1)

hGli+r o =jhkli+r o r(tko!i+" o) (B.6)
= bk rkolii  jk ko)

The right hand side of (B.6) is nite if k 6 rko. Note also thatjr="j=j( 1 > 1)=]
is bounded from above by & + 1, and that the following estimate holds true:

jk ko j K+ jrifkel  C”(ikj+1);
whereC* = (2n + 1) jkoj. It follows that
hctis(a 2 1o s Oki+D)

if ' ké( 1 2 1ko.
We now re-incorporate the index . Sincef is a smooth function, for everys > 0
there is a constantCs, depending on and f, such that

ifej Cs(kj+1) ° forall k2 2z™

Using equation (B.5), we have for everg O

jUc CCS(jkj+1) S forall k22zZM:

Consequently, on a compact neighbourhood, of T" f 0Og f Og f OginM P 1,
the function u and its derivatives @u can be estimated by

X o
maxj@uj = max @ uc €™*p
Ko n ijn k

CCs X

jkilI(kj +1) > maxjp J:

jin ok "
For s large enough, the right hand side converges. SinCewas arbitrary, it follows
that u, and hence , is a smooth function. Choosin ,, smaller if necessary, it can be
achieved that ! is invertible on K ,. |



Normal-internal k : 1 and k : 2 resonances 32

Appendix B.3. Van der Pol transformation

In this section, it is shown how the normal form (B.2) obtained bove decouples from
the dynamics on the torus if a well{chosen van der Pol transforation is applied to

the system; this procedure is also known as “introducing co-abing coordinates'. Our

treatment is very close to [9], but see also [16].

Co-rotating coordinates. Inthe case =1, itis su cient to apply the transformation
to the normal form (B.2) that is given by

Yxz;z; ;") = x; ekoxiz; g Mthoxiz, o

The transformed vector eld Vy = Yy reads as
V_|@+ G"Z..n llx A"Zjl’l
N @y (zj55 ")z + irlz)®z
jir |
X . '
+II BJrJZJZJ Zr+1 + "RN+1 (X,Z,Z, ;II ) @@2

jir
where andRy+1 = Oy, Ajy and Bj, are polynomials in and" of order at mostN and
G(jzj% ; 0)=( i o)+ @jzj*+ O(jzj*).

Covering space. The case = 2 (actually, the method is general and works for  2)
is more involved, since we have to lift the vector eld to a coveng space of the torus.

First however we simplify the normal form (B.2) further by transforming the
torus T™. We let o = gcd(kp) and write ko = (Kp; remark that gcd( o; ) = 1 by

hypothesis. Then gcdgp) = 1, and we can nd vectorsv,; vy 2 Z™ such that the
matrix U = (Ko V2 vm)! is unimodular. Note that if x = Uy, X, then in particular
D E 4
¥1= Ko;x = —hKo;Xi:
0

Applying the transformation (x; z) 7! (U, X;z) to the normal form (B.2) yields then
0

Y= Ut @x+ @ oz + G(jzj% ;" )z
BEA N+ 2)=1] | o
+" AJI‘ ( ;" )e ir 0X1j2j2] ZI’ 1
j=0 r=1 1
BEAUN % D=1 | o @
+ Bir (;")€" jzi?z ™ + O(ONA = (B.7)
j=0 r=1 @Z

Note that the normal form terms that are not of orderO(")Oy depend now only on one
of the torus angles; that is, the principal perturbation in ths normal form is now seen
to be periodic instead of quasi-periodic.
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By lifting the normal form (B.7) to a "-fold covering space, even the;-
dependence can be made to disappear. The covering transforrmat : T™ C!
T™ Creads as

( X;2) = (X1;X2, ;Xm; € %12):
As always, thex; -coordinates are taken modulo 2 Note that this map is "-to-one. The
vector eld Yy is a lift of Yy under this map if
YN = YN:
The expression Yy yields a well-de ned vector eld only if Yy is symmetric with
respect to the groupZ- of deck transformations that is generated by

i 02=\

2
(X2) 7" X1+ —; e Z

With this speci cation, there is a unique vector eld Yy such that Yy = Yyn. We

have 0
1 @ : 720 o
Y=< Ul gyt @ ozt 6% 5 )z

E2AUN+ 2)=1] o

o Air (iM)iZiAZ"
j=0 =1 1
B=21[(N @ 1= o @

o B (:")jzi%z" "t + O(")ONA = (B.8)
j=0 r=1 @Z

Note that since gcd(o; ) = 1, the terms of order lower than O(")Oy are symmetric
with respect to the groupZ- generated by

(x;2) 7! x; €7z :

Appendix C. Nondegeneracy checking

In this section all coe cients are given that appear in the nomal form calculations of
the proof of propostion 2. The coe cients appearing in equatin (18) are functions of
, , # and the equilibrium (y10; Y20). They are given by

a1 = +(Yio+ Yio)COSH# + 2Y10(Y10COSH Yo Sin#);
a = (V20 + Y30) SIN# + 2y0(y10COSH# Yoo SINH);
by = + (Y3, + Y3o) SiN# + 2y10(Y10 SiN# + Yoo COSH);
by =+ (Y5 + Yh) COSH + 2Ya0(Y10 Sin# + Yoo COSH);

a3 = 3Yy10COS#  YoSin#; Iz = yy0COSH + 3yipSin#;
a4 = 2Y,0COSH  2yipSin#; by = 2y10COSH + 2Y,0 SIiN#;
as = Y10COSH# 3y,oSin#; by =3yynCOSH+ YioSin#,
g = COS#,; a; = sin#:
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In the proof of proof of proposition 2, we referred to the appelx the
computation of the coe cient Re C,. The coe cients B; in equation (19) are functions
of the g and ly. They are given by

1+
Bi= 5o as(a D)’ + a(2mds  aas+2ash + ab)
2
p
+ ag(ar b)) A dabt+(a )2
1+
2
1+ 2
Bs = v as(a; )+ ax(2aaz aja; +2ashy + asly)
2
p
as(a bp) @A dah t(an  by)?
_ 1+ 2 2
Bs= T&aﬁ Bazag((an  p)° +2a; + ahy)

ar(a )(B(ar )2 +8a3+ 12a,by)
+i((an  b)?+4ab)(2a8s 3a(a b))
+8 aag(ar b)) ar(ar  b)?

p
aaz(ax+ by)  dahy +(ar  byp)?

Bz 2t 3 ) (4ahy 0)? 82
5= TS&% az(ay )(4a, (a1 ) 2)
+2aas(5(a; )2 +24a;  4dagh)
i((ar  bp)?+4ah)(2axas 3a7F()a1 b))
+8(aas(ay ) + apar(2by @) dagh +(a; by)?
B, = 112—;;% 3a,(a )+ al(58a + 24ay)
a3(aya; + 8aghy  9azhy)  aihy(20ayas + 9asky)
2ay(6a,a7b + b (3azhy,  Saghy))
+iBar(al ) aibp(daas +9asky)
+ a5(8aghy, aja; + 9ashy, + 2a,ab)
2ay(6aa7ty + (37 ashy))) )
8(aas(an ) + aas(2by + &) 4dah +(a;  Iy)?
B o 1+l 8ayas (a1 bp)?+2as+ ab
7 12&% 2 1 2 2

(g b)) 5@ b))+ 83% +12ab,
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+i((an b)?+4ah)(2aas 3ar(a; b))
+8 a/(ay b2)2 + azaz(ax + by)

p
apag(ar )  dah+(ar by)?

and
Re (Cz) = 12'm|§]B4BG)
+ % Re 12(86 §4) +8 Bg(gﬁ B4) + 12§387

+20B,B 3B, + 12B,B3Bg +4BaBg§7
24B2B,) +12Im B;B,Im Bs
h
2

+ m Im 4818283 6818283 Bng

[
+6Re (B1B,)Im (B,B3) 8iB3j’Im (B,B3) :

By using the Mathematica  package [56], we have established that at the
degenerate Hopf point the coe cient ReC, does not vanish. This implies that there are
no doubly degenerate Hopf points in the present model.

We end this section by giving the coe cients of the normal form(23) which are

also functions of , , # and the equilibrium (Xo; Yo):
Ki= asbi;
Kz = asby +2bybs;
Ks = asbity  aubibs + aby;

Za)
~
11

1
agbibs + gasmbl + by Sasbibs 42l bbb

5 35
Ks= 5agbitf 3agbibs + Zashiby + agash;  2anz-arbibs

§a5t€b3b5 ga3a5tgb5+ %8435[3%@‘* %a4a5t€b4+ gaﬂﬁm
+ gagaﬂﬁ gaskﬁbﬁ %asaﬂﬁ 2uaeh; + 2_;a3a5b§b4
%aﬁb& ga3a4tﬁb5;
Ko= ¢ dasaubib Sabhibs 560K +32a%bs+ 22 Geashyby

84azashi 24a;bib;  18a/bbs + 30bib;  26ata, 3l
+ 41K + 42abshs 13agauby + 52a5hubs  10833ashs
60ashshy,  28asbibs  12asachy  4ajbiby + Baghikd
2a,a7b; + 2a48kE
A simple computation shows that , never vanishes on the Bogdanov-Takens bifurcation

curves. We conclude that degenerate cusp bifurcation do notaw in the family Re (z +
e'jzj’z+1) &,
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