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Abstract

This article presents a bifurcation theory of smooth stochastic dynamical
systems that are governed by everywhere positive transition densities. The
local dependence structure of the unique strictly stationary evolution of such
a system can be expressed by the ratio of joint and marginal probability den-
sities; this ‘dependence ratio’ is a geometric invariant of the system. By in-
troducing a weak equivalence notion of these dependence ratios, we arrive
at a bifurcation theory for which in the compact case, the set of stable (non-
bifurcating) systems is open and dense. The theory is illustrated with some
simple examples.

1 Introduction

Bifurcation theory has been an extremely successful tool to investigate the qualita-
tive properties of deterministic dynamical systems. Motivated by its success, there
have been several attempts to develop bifurcation theory for stochastic dynamical
systems, usually based on a classification of the shape of invariant densities of such
systems. However, these attempts have run into the problem, already pointed out
by Zeeman [15], that the shape of a probability density is not invariant under coor-
dinate transformations.

For one-dimensional continuous time diffusions, a classification that is
invariant under transformations has been proposed by Hartelmanet al. [11, 14].
Inspired by their approach, we propose in this paper a classification for (strictly)
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stationary stochastic processes that are governed by smooth everywhere positive
transition density functions. Let{Xt}t∈Z be such a process, with probability den-
sity pt, joint probability density ofXt1, · · · ,Xtn denoted bypt1,··· ,tn, and transition
probability densityτ(xt+1|xt). Thenpt1+h,··· ,tn+h = pt1,··· ,tn, because of strict sta-
tionarity, and

pt+1(xt+1) =

∫
τ(xt+1|xt)p

t(xt) dxt.

In particular, aspt+1 = pt = p, the invariant probability densityp is seen to be
the solution of the integral equationp(x) =

∫
τ(x|y)p(y) dy under the condition

that
∫
p(y) dy = 1; consequently,p is as least as smooth asτ .

The joint densitypt,t+1 does not depend ont and it is therefore equal top1,2.
Moreover, the joint measurep1,2(x1, x2) dx1 dx2 is absolutely continuous with re-
spect to the product measurep(x1)p(x2) dx1 dx2; therefore, by the Radon-Nikodym
theorem, the following function is well-defined:

f(x1, x2)
def
=
p1,2(x1, x2) dx1 dx2

p(x1)p(x2) dx1 dx2

=
p1,2(x1, x2)

p(x1)p(x2)
=
τ(x2|x1)

p(x2)
.

We call the functionf the dependence ratioof the system. Note thatf is identi-
cally 1 if Xt andXt+1 are independent; the difference|f(x1, x2)− 1| can therefore
be seen as a measure of the local dependence structure of the stochastic dynamical
system.

By construction, a dependence ratio is a geometric invariant of the un-
derlying system, and it is therefore a suitable quantity to be at the foundation of
a stochastic bifurcation theory. Several other local dependence measures have re-
cently been described in the statistical literature (see e.g. [7], [8], and [9]). These
measures are localised versions of the Pearson correlation coefficient, and as such
are motivated entirely differently than our dependence ratio. In particular they do
not share the geometrical invariance property.

Our concept of ‘stochastic bifurcation’ will not be an analogue of the con-
cept of ‘topological bifurcation’ of deterministic systems. Recall that two deter-
ministic systems are said to be topologically equivalent if one is induced by a
homeomorphism from the other. It is easy to see, and it will be shown below, that
we cannot build a theory of stochastic bifurcation on the parallel notion of ‘strong
equivalence’, which defines two stochastic systems to be equivalent if the depen-
dence ratio of the first is induced from the dependence ratio of the second by a
coordinate transformation. The equivalence notion that we shall adopt is more like
the weaker ‘local topological equivalence’ of deterministic systems, where two sys-
tems are equivalent if for all equilibria neighbourhoods exist such that the systems
are topologically equivalent on corresponding neighbourhoods. Our analogous no-
tion, which we call ‘ratio equivalence’, calls two dependence ratios equivalent if
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Figure 1: Level sets for the mapXt = Xt−1+a sin(Xt−1)+0.25 sin2(Xt−1)+0.25+
εt+1 for decreasing values ofa (top panels). The dashed-dotted lines, corresponding
with the critical levels of the saddle points, are added for clarity. The lower panels
show the invariant probability density ofXt.

there is a coordinate transformation that maps critical points of one ratio to the cor-
responding critical points of the other ratios. As in the case of local topological
equivalence, we shall show that for ratio equivalence the union of the open equiva-
lence classes is an open and dense set in the space of all dependence ratios.

We give figure 1 as an illustration. It shows the invariant probability den-
sities and the dependence ratios of the stochastic dynamical system on the circle

Xt = Xt−1 + a sin(Xt−1) + 0.25 sin2(Xt−1) + 0.25 + εt mod 2π

for several values of the parametera; theεt are identically and independently dis-
tributed (IID) stochastic variables. We see that the number of critical points of the
dependence ratio changes asa changes, and hence that the associated strictly sta-
tionary processes are qualitatively different. This change in the dynamics is not at
all appearant from the invariant probabilities. Moreover, by a suitable change of co-
ordinates in the system, the invariant probabilities could be made constant, whereas
the transformed dependence ratio would still show the same bifurcation behaviour.

Plan of the article In section 2, we quickly review the previously proposed no-
tions of phenomenological and dynamical bifurcation of stochastic dynamical sys-
tems. We define a new equivalence relation, based on the dependence structure of
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the process in section 3. We show in particular that our equivalence relation has
‘many’ structurally stable elements and that it avoids some limitations of older no-
tions. Finally, in section 4 we illustrate its usefulness by giving several applications.
An appendix contains proofs.

2 Related literature

In this article, the term ‘stochastic dynamical system’ will always refer to a class of
stochastic processes which are governed by a single transition probability density.
An ‘evolution’ of such a stochastic dynamical system is a stochastic process of
this class that is generated by an this transition probability density and an initial
probability distribution.

2.1 Phenomenological bifurcations

The natural first attempt to attain at a classification of stochastic dynamical systems
is to apply the Morse classification of real valued functions to invariant probability
densitiesp of the system, see [3, 15]. The corresponding equivalence relation is
that of smooth coordinate transformations of domain and range ofp, the stable el-
ements being Morse functions with all critical values distinct from each other. For
the purposes of this article, we shall call the equivalence relationP-equivalence, in
analogy with the associated bifurcation notion, which has been calledphenomeno-
logical bifurcationor P-bifurcation(see Arnold [2], p. 471-473).

A serious limitation of the P–bifurcation, acknowledged in [15], is that
the equivalence classes are not invariant under diffeomorphisms of the underlying
space. For instance, let{Xt} be a process onRm with invariant densitypX , and letϕ
be an invertible transformation ofRm. The densitypY of {Yt}, whereYt = ϕ(Xt),
then is related topX through

pX(x) = pY (ϕ(x)) |detDϕ(x)|.

We see that, in the language of physicists, the function value of the invariant den-
sity ‘depends on the coordinates chosen’. Only ifϕ is volume-preserving, that
is, if | detDϕ(x)| = 1 for all x, the form of the invariant density is guaranteed
not to change. It is easy to construct examples on the real line where after a
well-chosen transformationϕ the densitiespX andpY are in different equivalence
classes. Note that the volume-preserving diffeomorphisms comprise the class of
Riemannian isometries that were proposed in [15] to be the admissible class of
coordinate transformations.

Underlying this lack of invariance is the fact that a probability densityp(x),
unlike the measurep(x) dx, is not a geometrical invariant under general coordinate
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transformations. By consequence, P-equivalence is an inconvenient notion for prac-
tical applications: for instance, it might make a difference to the results whether
data is recorded on a linear or a logarithmic scale.

As pointed out by Hartelman and co-workers [11,14], it is possible to con-
struct a ‘coordinate-free’ classification for one-dimensional continuous-time diffu-
sions . By defining stochastic analogues of concepts used in catastrophe theory, they
arrived at a classification that is, unlike P-equivalence, invariant under monotoni-
cally increasing transformations of the real line, or more precisely, a classification
that is invariant up to transformations homotopic to the identity mapping. This clas-
sification, together with invariant estimation considerations, leads to the empirical
use of statistical quantities called level crossing statistics, which are invariant under
monotonic transformations, that is, diffeomorphisms, of the real line.

Unfortunately level crossing statistics are not very natural in the discrete
time setting, which is for instance the natural setting for many problems in eco-
nomic dynamics. Although these statistics can be used for discrete time systems in
principle, the corresponding classification would be rather restrictive, since discrete
time dynamical systems are ‘essentially richer’ than discretely sampled continuous
time diffusions, mainly because finite time transition densities induced by diffu-
sions only represent a subclass of transition densities for discrete time dynamical
systems.

2.2 Dynamical bifurcations

A second bifurcation notion for stochastic dynamical systems has been introduced
by Ludwig Arnold and his co-workers (see [2] for an extensive exposition). We
shall try to sketch this approach using a process{Xt} onR of the form

Xt+1 = g(Xt, εt), (1)

with deterministic initial conditionX0 = x0 ∈ R, and where{εt} is a sequence
of independent and identically distributed random variables. The main idea is to
consider this process as a deterministic dynamical system on an infinite dimensional
phase spaceΩ×R. The elements ofΩ are the possible realisationsω = (ε0, ε1, · · · )
of the process{εt}. Introducing the projectionπ(ω) = ε0 and the shiftσ(ω) =
(ε1, ε2, · · · ), we have for instance thatεt = π ◦ σt(ω). Define now the mapΦ
onΩ× R by

Φ(ω, x) = (ϕ1(ω), ϕ2(ω, x)) =
(
σ(ω), g

(
x, π(ω)

))
.

This is a deterministic system; the stochastics are ‘hidden’ in the fact that the initial
conditionω ∈ Ω is unknown. The realisationsXt of the process (1) are the values
of the second component ofΦt(ω, x). The mapΦ is then called a random dynamical
system on the phase spaceR.
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Note thatΦ is a skew system: the shift dynamicsϕ1 in the spaceΩ are
driving the dynamicsϕ2 in R. ForΦ, a random fixed pointis defined as a mapξ :
Ω → R that satisfies the invariance condition

ϕ2(ω, ξ(ω)) = ξ(ϕ1(ω))

for all (or almost all)ω. Stability is now defined in the usual way: a random fixed
point ξ is stable if all nearby orbits converge toξ. Note that a stochastic dynam-
ical system that is at a stable random fixed point has an invariant measure, which
describes exactly the distribution of the random fixed point. So-called ‘random’ bi-
furcations are now defined as ‘ordinary’ bifurcations of the deterministic dynamical
systemΦ. For instance, a random, or, following the terminology in [2],dynamical
bifurcationor D-bifurcationof a process occurs if a random fixed point loses sta-
bility.

At this point, a drawback of the notion of dynamical bifurcation becomes
apparent: to determine stability of a random fixed point, two orbits ofΦ with iden-
tical noise realisations have to be compared. This seems to make it rather difficult
to apply the notion of D-bifurcation to practical problems (but see [4] and related
literature).

The theory leading to the D-bifurcation remains close to traditional bifur-
cation theory for deterministic dynamical systems, in that it aims at characterising
the full dynamical system rather than just invariant measures. However, as men-
tioned above, without further knowledge of the dynamics it is empirically impossi-
ble to distinguish between different dynamical systems producing time series with
identical invariant measures. To avoid such differences at the level of the underly-
ing dynamics that are undetectable empirically, we choose to leave aside this theory,
and try rather to improve on the notion of P–equivalence.

3 Equivalence notions

In this section we introduce and motivate our bifurcation theory of of stochastic
dynamical systems and we give some of its fundamental properties.

3.1 Definitions and assumptions

We want our theory to be applicable to stochastic dynamical systems of the form

Xt+1 = g(Xt, εt), (2)

whereg : Rm × Rk → Rm is such thatg(Xt, ·) : Rk → Rm is a submersion, that
is ranDεg ≥ m, and whereεt are IID random variables taking values inRk. If g is
smooth, and if theεt are distributed according to a smooth probability density func-
tion, then to this stochastic dynamical system there is associated a smooth transition
probability density.
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Taking a slightly more general setup, we consider a state spaceM that
is either an open simply connected subset ofRm with smooth boundary, or the
(compact) closure of a bounded open simply connected subset ofRm with smooth
boundary, or a compact closedm-dimensional manifold. Motivated by the system
given in equation (2), we define a ‘smooth’ stochastic dynamical system as a smooth
transition probability densityτ : M ×M → R: if the stateXt of the system at
time t is distributed according topt(xt) dxt, thenXt+1 is distributed according to
pt+1(xt+1) dxt+1, where

pt+1(xt+1) =

∫
M

τ(xt+1|xt)p
t(xt) dxt. (3)

Note that{Xt} is a Markov process.

Assumption 1 We shall assume throughout the paper thatτ > 0 onM ×M .

This assumption implies that the integral equation

p(x) =

∫
M

τ(x|y)p(y) dy

has a unique solutionp : M → R satisfying
∫

M
p(x) dx = 1 andp(x) > 0 for

all x ∈M . The functionp is then the unique invariant probability density of the sys-
tem; consequently, ifX0 is distributed according top(x) dx, then{Xt} is a strictly
stationary Markov process, and theXt are identically distributed random variables.
We denote the joint probability density of the random variables(Xt1 , · · · , Xtn)
by pt1,··· ,tn. For instance, for a strictly stationary process we havept,t+1(x, y) =
p1,2(x, y). To a strictly stationary first order Markov process with smooth invariant
densities, we associate thedependence ratio

f(x1, x2) =
p1,2(x1, x2)

p(x1)p(x2)
=
τ(x2|x1)

p(x2)
. (4)

We make two remarks. First, if the dependence ratiof and the invariant densityp
are specified, the transition probability densityτ is determined by equation (4).
Second, asτ is smooth andτ > 0 onM ×M , the associated dependence ratiof is
smooth and takes values in(0,∞).

Assumption 2 We shall assume that ifM is compact, the dependence ratiof of a
stochastic dynamical systems has no critical points on the boundary ofM ×M .

We note that dependence ratios are connected to copulas: in the simplest,
two-dimensional case, a copulaC : [0, 1]2 → [0, 1] is a bivariate distribution
function whose margins are uniformly distributed on[0, 1]. They arise as follows:
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let {Xt} be a strictly stationary real-valued process with invariant probability den-
sity p, and let

F (x) =

∫ x

−∞
p(y) dy and F 1,2(x1, x2) =

∫ x1

−∞

∫ x2

−∞
p1,2(y1, y2) dy1 dy2

be its marginal and joint distribution functions. Then the copulaC(u1, u2) of this
process is determined by the equation

F 1,2(x1, x2) = C(F (x1), F (x2)).

Now, differentiation of this relation with respect tox1 andx2 yields that

p1,2(x1, x2) =
∂2C

∂u1∂u2

(
F (x1), F (x2)

)
p(x1)p(x2),

and we see that the dependence ratiof of the process satisfies

f(x1, x2) =
∂2C

∂u1∂u2

(
F (x1), F (x2)

)
.

This association of dependence ratios with copulas neatly illustrates that the de-
pendence ratio describes the whole stochastic dynamical system, and not merely its
strictly stationary evolution. In the case of a smooth stochastic dynamical system on
the real line with invariant probabilityp(x) and dependence ratiof(x1, x2), this is
seen most readily by performing the coordinate changeΞt = F (Xt), whereF (x) =∫ x

−∞ p(y) dy; the strictly stationary evolution of the transformed system is then uni-
formly distributed on the interval[0, 1], and its transition probability density is then
exactly equal to the transformed dependence ratio:

τ(ξ2|ξ1) = f
(
F−1(ξ1), F

−1(ξ2)
)
.

We conclude that smooth stochastic dynamical systems on the real line that have
strictly stationary evolutions are fully characterised, up to diffeomorphism, by their
dependence ratios.

3.2 Structural stability and bifurcations

We recall briefly the fundamentals of bifurcation theory. The two main ingredients
of any such theory are a topological spaceX and an equivalence relation between
elements ofX. An elementf of X is structurally stableif there is a neighbour-
hoodN(f) such that all elementsg in that neighbourhood are equivalent tof ; that
is g ∼ f for all g ∈ N(f). Intuitively speaking, a structurally stable elementf
can be ‘perturbed’ slightly without being pushed out of its equivalence class. Such
an element is sometimes called ‘persistent’. Clearly, the equivalence class of any
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structurally stable element is an open set. A structurally stable equivalence class can
be thought of as defining a set of elements of the same ‘shape’ or ‘form’ (see [13]):
form remains ‘stable’ if perturbed slightly.

All elements ofX that are not structurally stable are calledbifurcating.
This notion is usually familiar from the context of parametrised families: ifλ is
someq-dimensional parameter, andλ 7→ fλ a family of elements ofX, thenλ = λ0

is a bifurcating parameter value of the family iffλ0 is not structurally stable; it might
be said that at bifurcating parameter values the ‘form’ offλ changes. Since the set
of structurally stable elements is open, the set of bifurcating elements, and therefore
also the set of bifurcating parameter values in a parametrised family, is closed.

An equivalence relation will give rise to a meaningful bifurcation theory
onX only if there exist structurally stable elements at all. The most useful situation
is attained if the set of structurally stable elements, while not consisting of a single
equivalence class, is ‘topologically big’, since then we will be able to associate
to ‘most’ elements a form. In a topological space, a set is ‘big’ if it is open and
dense, or if it is at least a countable intersection of open and dense sets (a so-called
‘generic’ or ‘second category’ set, see [10]).

3.3 Strong equivalence

In the following, smooth stochastic dynamical systems are analysed and classified
in terms of their unique strictly stationary evolutions.

A natural requirement to impose on an equivalence relation of smooth
stochastic dynamical systems onM is that systems which only differ by a dif-
feomorphism ofM , that is, which are the ‘same’ up to a coordinate change, fall
in the same equivalence class. Let for instance{Xt}, {Yt} denote two stationary
evolutions for which

Yt = ϕ(Xt), for all t,

for some diffeomorphismϕ : M → M . We call the associated systemsstrongly
equivalent. Denote the probability densities ofX andY respectively by an indexX
or Y . Since

pt1,··· ,tn
X (xt1 , · · · , xtn)

= pt1,··· ,tn
Y (ϕ(xt1), · · · , ϕ(xtn))| detDϕ(xt1)| · . . . · | detDϕ(xtn)|,

it follows that

fX(x1, x2) =
p1,2

X (x1, x2)

pX(x1) · pX(x2)

=
p1,2

Y (ϕ(x1), ϕ(x2))| detDϕ(x1) detDϕ(x2)|
pY (ϕ(x1))| detDϕ(x1)| · pY (ϕ(x2)| detDϕ(x2)|)

= fY (ϕ(x1), ϕ(x2)). (5)
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We conclude that strongly equivalent systems have dependence ratios that are equal
up to diffeomorphism.

If we took strong equivalence as the equivalence relation defining our bi-
furcation theory, in general we would obtain an uncountable infinity of equivalence
classes, and no class would be a neighbourhood to any of its points, that is, no sys-
tem would be structurally stable and every system would be bifurcating. To see this
in a simple example, assume thatfX andfY are two dependence ratios defined on
the square(−1, 1)× (−1, 1) ⊂ R2, and that they are given as

fX(x1, x2) =
2− µ

3
+ x2

1 + µx2
2, fY (x1, x2) =

2− ν

3
+ x2

1 + νx2
2.

Taking the invariant density in both cases to bep(x) = 1
2
I[−1,1](x), whereIA(x)

denotes the indicator function, we have specified two stochastic dynamical sys-
tems. The point(0, 0) is the only non-degenerate critical point for bothfX andfY ;
therefore, iffX andfY are strongly equivalent, we should have thatΦ(x1, x2) =
(ϕ(x1), ϕ(x2)) satisfiesΦ(0, 0) = (0, 0). But there is not even a homeomorphism,
much less a real-valued smooth diffeomorphismϕ such that (5) holds simultane-
ously withϕ(0) = 0, for the values offX andfY at (0, 0) are different ifµ 6= ν.
We see that every value ofµ defines a different equivalence class.

3.4 Ratio equivalence

As we have seen, there are ‘too many’ equivalence classes if we take strong equiv-
alence as our equivalence relation; put differently, equality of stationary evolutions
up to diffeomorphism yields an equivalence relation that is too fine-grained to be
useful. A coarser classification is obtained by retaining only certain topological
information of the dependence ratio of the process. As this ratio is a geometric
invariant, the classification will still be invariant under diffeomorphisms.

Recall the Morse classification of functions: two functions are of different
shape if they have a different number of nondegenerate critical points. The number
of such points is a numerical characteristic of the ‘shape’ of a function, and in fact
we can build a classification where two functions are defined to be equivalent if
they have the same number of nondegenerate critical points. Now, if we choose a
suitable topology on the set of functions, we find that the equivalence classes are
open sets, and that its members are structurally stable. Of course, usually we want
also to include information about the type of critical point (Morse index).

The equivalence relation that we shall introduce on the space of smooth
stochastic dynamical systems is based on the Morse (left-right) equivalence of func-
tions, applied to the dependence ratio of the system. Notice however that, since
dependence ratios are subject to certain restrictions, not every positive function
onM ×M is a dependence ratio, we have less freedom to perturb a given ratio, and
therefore the properties of the Morse classification do not carry over automatically.
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3.4.1 Topology

We need a function topology on the space of smooth stochastic dynamical systems
and the space of their dependence ratios; we choose theC2-topology, which is the
‘coarsest’ topology for which the number of nondegenerate critical points defines
open equivalence classes. Recall that for functionsf : M → R defined on a
compact manifold, anε-neighbourhoodNε(f) of f in theC2-topology consists of
all functionsg such that, with respect to a fixed Riemannian metric and the induced
norms on the appropriate vector bundles (T ∗

xM , · · · ), all of them denoted by‖ · ‖,
we have

|f(x)− g(x)|, ‖Df(x)−Dg(x)‖, ‖D2f(x)−D2g(x)‖ < ε,

for all x ∈ M . If M is a compact manifold-with-boundary, the inequalities are
required to hold for allx ∈ int(M), in order that the derivatives remain well-
defined. IfM is a non-compact manifold, the constantsε > 0 are replaced by
positive functionsε(x) > 0 onM in the above definition; the topology obtained is
called the ‘strong’C2-topology (see e.g. [6]).

We use these topologies for the spaces of smooth stochastic dynamical
systems, or rather the space of their transition probability densitiesτ : M ×M →
R, and the space of their dependence ratios. As explained in subsection 3.2, by
specifying an equivalence notion on the topologised space of dependence ratios,
we shall obtain a notion of structural stability and bifurcation of the associated
stochastic dynamical systems that is invariant under coordinate changes.

3.4.2 Regular dependence ratios

A first rough formulation of our equivalence would be the following: we propose to
call two stochastic dynamical systems equivalent, if every non-degenerate critical
point of a certain type of the dependence ratio of the first system can be mapped to a
critical point of the same type of the second system by a transformation ofM ×M
that is induced by a diffeomorphism ofM . We shall make this more precise, after
having introduced some definitions.

Let M2 = M × M be the Cartesian product ofM with itself; denote
by π` : M2 →M , for ` = 1, 2, the projection on thè’th component

π`(x1, x2) = x`.

Recall the following definitions (see e.g. [5], subsections 10.2 and 10.4, p. 79 and
p. 86 respectively). Iff : U → R is a twice continuously differentiable function
defined on an open setU ⊂ Rn, a pointx ∈ U is a critical point of f if the
derivative off vanishes atx: Df(x) = 0. The valuef(x) of f at a critical pointx
is called thecritical value of f at x. A critical point x is non-degenerateif the
Hessian matrixHf(x) corresponding to the second derivativeD2f(x) of f at x is
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invertible. The number of negative eigenvalues of this matrix is called the(Morse)
indexof the critical point. Clearly, the notions of critical point, critical value, index
and non-degeneracy carry over to functions defined on manifolds.

Definition. A twice differentiable dependence ratiof : M2 → (0,∞) is called
regular if all its critical points are non-degenerate, if no two critical values are
equal and if no two critical points have the same image under any projectionπ`,
for ` = 1, 2.

3.4.3 Ratio equivalence on compact manifolds

In order to stay clear of topological complications, we only consider compact state
spaces that have very simple boundaries.

Definition. The setM is said to be asimple compact state space, if eitherM
is a closed compact manifold, or ifM is the closure of an open bounded simply
connected subset ofRm such that the boundary∂M is a smooth manifold (in fact,
a topological sphere).

In this subsection, we shall always assume thatM is a simple compact state space,
unless mentioned otherwise. Note that the restrictions onM are imposed in order
not to have to deal with topological side issues.
If M is a simple compact state space, a regular dependence ratio has only finitely
many critical pointsξ1, · · · , ξk; assumption 2 implies that none of these lie on the
boundary ofM2. We assume that the pointsξi are ordered such that the corre-
sponding critical valuesvi = f(ξi) are in ascending order, that is,vi < vj if i < j.
We associate to the critical pointξi its index ti (see subsection 3.3). Note that
0 ≤ ti ≤ 2m. In this way we obtain theindex sequencet(f) = (t1, · · · , tk) of a
regular dependence ratiof .

Definition. Assume thatM is a simple compact state space; let two smooth
stochastic dynamical systems onM be given with everywhere positive transition
probability and with dependence ratiosf, g : M2 → (0,∞). These systems, and
their associated dependence ratios, are said to becompact ratio equivalent, if
either bothf andg are non-regular, or iff andg are both regular and

1. their index sequences are equal;

2. there is a diffeomorphismϕ : M → M , homotopic to the identity mapping
onM , such that theinduced diffeomorphismΦ : M2 →M2 defined as

Φ(x1, x2) =
(
ϕ(x1), ϕ(x2)

)
(6)

maps thei’th critical point of f to thei’th critical point of g.
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It follows from the first point that the number of critical points off andg is equal
as well. We have the following proposition.

Proposition 1. If M is a simple compact state space, then

1. a smooth stochastic dynamical system onM with everywhere positive transi-
tion density is structurally stable under compact ratio equivalence if and only
if its dependence ratio is regular;

2. the set of stochastic dynamical systems onM that are structurally stable un-
der compact ratio equivalence is open and everywhere dense in theC2 topol-
ogy.

The proof of this proposition can be found in appendix A.
The proposition tell us that ratio equivalence has desirable properties, as

we can characterise all structurally stable systems, and as these form an open and
dense set in the space of all systems. In particular, it implies that we can build a
bifurcation theory of stochastic dynamical systems on simple compact state spaces,
based on the notion of compact ratio equivalence.

3.4.4 Ratio equivalence for non-compact manifolds

Though the results for the case of simple compact state spacesM are already useful
in themselves, in practice most stochastic dynamical systems are defined on the
non-compact manifoldRm. In this section, we investigate the case thatM is an
open simply connected subset ofRm, possiblyRm itself. The direct generalisation
of the notion of compact ratio equivalence is given in the following definition.

Definition. Let M be an open simply connected subset ofRm such that its
boundary∂M is a smooth manifold. Two smooth stochastic dynamical systems, as
well as their dependence ratios onM ⊂ Rm, areweakly ratio equivalent, if there
is a simple compact state spaceK0 ⊂ M , such that for every simple compact state
spaceK ⊃ K0, the dependence ratios of the systems restricted toK are compact
ratio equivalent onK2.

As the following example shows, this notion is unfortunately too weak for our pur-
poses.

Example. Consider two stationary evolutions{Xt} and{Yt} on the intervalM =
(−1, 1) with invariant densitiesp(x) = 1

2
I(−1,1)(x) and dependence ratios

fX(x1, x2) = 1− 1

2
x1x2 +

1

4
x3

1, and fY (x1, x2) = 1 +
1

2
x1x2 −

1

4
x3

1.

13



Both ratios have a unique critical point of index1 at the origin, and hence they are
ratio equivalent on compact sets. But if we consider the values offX andfY along
the curveγ(t) = (t, t) ast ↑ 1, we note thatfX ◦ γ(t) → infM2 fX , while fY ◦
γ(t) → supM2 fY . Weak ratio equivalence is not sufficiently fine to distinguish
between these systems.

Definition. Let M be an open simply connected subset ofRm such that its
boundary∂M is a smooth manifold. If there exists a family{Mt} of bounded open
simply connected subsets ofM , such that

1. the boundary∂Mt is a smooth submanifold ofM ;

2. Mt ⊂Mt′ if t < t′;

3.
⋃

tMt = M ;

then we call{Mt} anexhaustionofM .

Note that the closureMt of Mt is a simple compact state space.
A convenient way to define an exhaustion ofM is to take a differentiable

functionJ : M → R with the following properties. We fix a pointx0 ∈ M and we
require thatJ(x0) = 0, J(x) > 0 for all x 6= x0, J(x) → ∞ as‖x − x0‖ → ∞
or x → ∂M , and finally thatJ has no other critical points exceptx0. ThenMt =
{x ∈M : J(x) < t} is an exhaustion ofM .

Consider the set
∂M2

t ⊂M2.

This set can be decomposed into three component manifoldsC1
t = Mt × ∂Mt,

C2
t = ∂Mt ×Mt andC3

t = ∂Mt × ∂Mt. In the important special case thatM is
one-dimensional, the componentC3

t = ∂Mt× ∂Mt consists of four points. By def-
inition, we consider these as non-degenerate critical points, associating the index0
to them by default. We also defineC0

t = Mt ×Mt.
In the following three definitions,M is a manifold with exhaustion{Mt}

and with decomposition{Cj
t }3

j=0 of the closure of∂M2
t . Moreover, the restriction

of f toCj
t is denoted byf j

t , for j = 0, · · · , 3.

Definition. A smooth stochastic dynamical system with dependence ratiof onM2

is well-behaved at infinity if there are constantsct, T > 0 such that for everyt > T
and everyj:

1. if dimCj
t > 0, there is a compact setKj

t ⊂ Cj
t such that‖Df j

t (x)‖ > ct
if x ∈ Cj

t \K
j
t , and

2. f j
t is weakly ratio equivalent tof j

t′ onCj for all t, t′ > T .

14
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Figure 2: Well-behavedness at infinity. For dependence ratiosf : R2 → R, the
curves indicate the sets{∂f

∂x
= 0} (dashed) and{∂f

∂y
= 0} (solid). The dependence

ratio on the left is well-behaved at infinity. For the dependence ratio on the right,
note thatf 2

n (that is,f restricted toC2 = {−n}× (−n, n)∪{n}× (−n, n)) cannot
be weakly ratio equivalent tof 2

n+ 1
2

for any integern, as the number of critical points

is different.

This definition is illustrated in figure 2.

Definition. A smooth stochastic dynamical system with dependence ratiof onM2

is well-behavedif f is well-behaved at infinity andf j
t is regular onCj

t for everyj
and everyt > T .

Definition. If M is a manifold with exhaustion{Mt}, two well-behaved smooth
stochastic dynamical systems with dependence ratiosf and g are called ratio
equivalent, if there is a value oft such thatf j

t and gj
t are weakly ratio equiva-

lent for everyj.

Note that iff andg are weakly ratio equivalent on each componentCj
t for a single

value t > T , they are in fact equivalent for all such values, sincef j
t ∼ f j

t′ for
all t, t′ > T .

Example. The two weakly equivalent ratiosfX andfY introduced at the end of
the previous subsection are not ratio equivalent. Setat = t/(t + 1), and consider
the exhaustionIt = (−at, at) of (−1, 1). Note that∂(It × It) can be decomposed
into

C1
t = (−at, at)× {−at, at},

C2
t = {−at, at} × (−at, at),

C3
t = {−at, at} × {−at, at}.

Restricted toC1
t andC2

t , neitherfX nor fY have any critical points. The setC3
t

consists of four isolated critical points, which are critical by definition. The max-
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imum of fX restricted toC3
t is assumed in the points(at,−at), whereasfY takes

its minimum there. Since the only diffeomorphism ofC3
t homotopic to the identity

is the identity itself, corresponding critical points offX andfY cannot be mapped
onto each other.

The following propositions describe the topological properties of ratio equivalence.
The results are weaker than in the compact case, as was to be expected; we obtain
that well-behaved processes are stable elements of ratio equivalence. However, re-
stricted to the space of processes that are well-behaved at infinity, the well-behaved
processes form again an open and dense set.

Proposition 2. On an open simply connected subset ofRm, a well-behaved smooth
stochastic dynamical system with everywhere positive transition probability density
is stable with respect to the strong topology under ratio equivalence.

The proof of this proposition is given in appendix A.

4 Examples

4.1 Stochastic dynamics on the circle

As an illustration of a stochastic dynamical system on a compact manifold, we
consider the system on the unit circleM = S1 defined by

Xt+1 = Xt + a sin(Xt) + 0.25 sin2(Xt) + 0.25 + εt+1 mod 2π, (7)

with {εt} IID andN(0, σ2) distributed. The state variable is taken modulo2π; we
represent states by points on the interval[−π, π). For the above system we fixσ
at the value0.7 and consider qualitative changes in the stochastic dynamics asa
varies. The term0.25(sin2(Xt−1) + 1) is added to break thex 7→ −x symmetry
of the dynamics. In the symmetric case some particular additional properties arise
which will be discussed in the next subsection.

Figure 3 shows a contour plot for the dependence ratiof(x1, x2) for values
of a decreasing from−0.85 to−0.95. Fora = −0.85, the contour plot shows two
extrema, a maximum and a minimum, together with two saddle points. These are
the minimal number of critical points of each type that can be attained for a non-
degenerate functionf on the torusM2 = S1 × S1. As the bifurcation parametera
decreases, the system shows a stochastic bifurcation. Betweena = −0.85 anda =
−0.9 the dependence ratio develops a new saddle point and a new local extremum
near(xt−1, xt) = (0,−1). Upon decreasinga further, another bifurcation takes
place, where a new saddle point and a local minimum (near(xt−1, xt) = (0,−3))
appear.
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Figure 3: Level sets for the mapXt = Xt−1+a sin(Xt−1)+0.25 sin2(Xt−1)+0.25+
εt+1 for decreasing values ofa (top panels). The dashed-dotted lines, corresponding
with the critical levels of the saddle points, are added for clarity. The lower panels
show the invariant probability density ofXt.
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for increasing values ofa (top panels). The dashed-dotted lines correspond to the
critical levels of the saddle points. The corresponding marginal density functions
are shown in the lower panels.

4.2 Stochastic dynamics on the real line

As an example of dynamics onR we consider

Xt+1 = tanh(aXt) + εt+1. (8)

Figure 4 shows the level sets of the dependence ratio and the corresponding in-
variant probability density function for this map withN(0, σ2) distributed noise,
takingσ = 0.7.

Note that this example is special in that the dynamics is symmetric with
respect to multiplication of reflecting theX-values in zero. Such symmetries are
encountered often in families of models for real-world phenomena, in particular
in cases where there are underlying physical reasons for assuming symmetry. In
contrast with the previous example (the map on the circle) it can be observed in
Fig. 3 that the invariant density become bimodal roughly when the dependence
ratio changes qualitatively. Although beyond the scope of this paper, it can be
shown analytically that the coincidence is perfect in this case. This is related to
the symmetry of the map, together with the fact that the noise is additive and has
a symmetric distribution, independent of the stateXt. In those cases the stochastic
bifurcation based on dependence ratios coincides with a phenomenological bifurca-
tion (P-bifurcation). It should be noted that this coincidence arises only in specific
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coordinates. As described above, a P-bifurcation can always be ‘transformed away’
by a change of coordinates.

It can be observed that the bifurcation parameter value differs from that
of the analogous deterministic system (σ = 0): for the tanh map the stochastic
analogue of the usual pitchfork bifurcation ata = 1 is shifted to a larger value of
a. Apparently the value of the bifurcation depends on the noise level. A natural
question, therefore, is whether for increasing noise levels the bifurcation parameter
merely shifts, or whether the bifurcation can disappear altogether.

Intuitively, if the map is bounded and has a small range relative to the noise
level, the dynamics is mainly governed by the noise and the deterministic part has
little influence on the dynamics. In fact a simple argument shows that if the noise
is fixed at a sufficiently large level, and if the family of odd maps{ga} is uniformly
bounded, then there is no phenomenological bifurcation atx = 0, and therefore
also no ratio bifurcation at(x1, x2) = (0, 0), for symmetric processes of the form

Xt+1 = ga(Xt) + εt+1. (9)

The argument runs as follows. By stationarity the invariant densityp satisfies

p(x) =

∫
1

σ
h

(
x− ga(y)

σ

)
p(y) dy,

whereh(·) is the probability density function of the noise. A necessary condition
for p(x) to have a local minimum atx = 0 is thatp′′(0) > 0, where

p′′(0) =

∫
1

σ
h′′
(
−ga(y)

σ

)
p(y) dy.

Sinceh is a unimodal probability density function, its second derivativeh′′(x) is
negative in a neighbourhood ofx = 0. It follows that, forga uniformly bounded, for
largeσ the integral on the right hand side of the last equation may remain negative
asa varies.

4.3 Estimated dependence ratios from time series

In order to see whether dependence ratios can be used for classification of pro-
cesses of which only a time series is available, a common situation in empirical
applications, we estimate dependence ratios from simulated time series. We gen-
erate relatively short series{Xt} from the stochastic models considered earlier in
this section; we estimate from these series bivariate invariant densities and use them
to reconstruct the dependence ratios. It is well known [1, 12] that fixed bandwidth
nonparametric kernel density estimates become rather poor in regions with only few
observations. One way to avoid this would be to use a data driven adaptive band-
width which depends on the density locally, becoming larger as fewer observations
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are present locally. Instead of using an adaptive bandwidth we suggest, for real val-
ued time series, to transform the data using the probability integral transform, that
is, we construct

Ut = F̂X(Xt) =
rank ofXt among{Xs}N

s=1

N
.

This amounts to transforming the invariant distribution to a uniform distribution on
the unit interval, which tends to stabilise the estimation of the dependence ratio as
the marginals no longer need to be estimated. The estimated empirical dependence
ratio is then equal to the empirical copula density

f̂(u1, u2) =
1

N − 1

N−1∑
t=1

Kb(u1 − Ui, u2 − Ui+1).

HereKb(u1, u2) is a bivariate probability kernel, which we take to be the commonly
used Gaussian kernel:

Kb(u1, u2) =
1√
2πb

e−(u2
1+u2

2)/(2b2).

To avoid ‘probability mass’ from disappearing out of the unit square by this smooth-
ing procedure, we impose periodic boundary conditions forM = S1 and reflecting
boundary conditions forM = R.

Figure 5 shows level sets of the empirical dependence ratio obtained from
time series of length4000 from the symmetric hyperbolic tangent map given in
equation (8) for different parameter values. The dependence ratio is estimated by
smoothing the empirical copula with a bivariate normal probability density func-
tion (bandwidthb = 0.07). The empirical dependence ratio clearly reflects the fine
structure of the theoretical dependence ratio. Figure 6 shows an attempt at perform-
ing a similar reconstruction for the asymmetric sine map given by equation (7). In
this case the topology of the reconstructed level sets does not correspond with that
obtained earlier; this is due to estimation error. Probably longer time series (along
with smaller bandwidths for the smoothers) are required for this case. We consider
the optimal estimation and the related issue of data requirements for estimating
dependence ratios as an important area for future research.

A Proofs of the topological properties

In this appendix, the topological properties given in section 3 are proved.

A.1 Proofs of the propositions

We repeat the statement of proposition 1 for the convenience of the reader.

Proposition 1. If M is a simple compact state space, then
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Figure 5: First1000 values (top panels) of4000 consecutiveXt-values generated
by the mapXt+1 = tanh(aXt) + εt+1 with εt+1 ∼ N(0, 0.52). for a = 0.9 (left)
anda = 1.7 (right). The lower panels show the corresponding empirical level sets
estimated with a Gaussian kernel (bandwidthb = 0.07).

1. a smooth stochastic dynamical system onM with everywhere positive transi-
tion density is structurally stable under compact ratio equivalence if and only
if its dependence ratio is regular;

2. the set of stochastic dynamical systems onM that are structurally stable un-
der compact ratio equivalence is open and everywhere dense in theC2 topol-
ogy.

Proof.
This proposition is a direct corollary from the following two lemmas.

Lemma 1. LetM be a simple compact state space. Iff : M2 → R is a regular
dependence ratio of a stochastic dynamical system, then there is a constantε > 0
such that every dependence ratiog ∈ Nε(f) is regular and equivalent tof .

Lemma 2. LetM be a simple compact state space, and let a stochastic dynamical
system be given with invariant probability densityp and dependence ratiof . Then
for everyε > 0 there is a second system with the same invariant probability density
and regular dependence ratiog such thatg ∈ Nε(f).

We take for the moment these lemmas for granted. Then we infer from lemma 1
that regular ratios are structurally stable. Conversely, iff is a structurally stable
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Figure 6: First1000 values (top panels) of4000 consecutiveXt-values generated by
the mapXt+1 = Xt+a sin(Xt)+0.25 sin2(Xt)+0.25+εt+1 with εt+1 ∼ N(0, 0.72)
for a = −0.85 (left) anda = −0.95 (right). The lower panels show the level sets of
the corresponding empirical dependence ratio.

ratio, there is a neighbourhoodNε(f) such that everyg ∈ Nε(f) is equivalent tof .
But as the regular ratios are dense, according to lemma 2, there is a system with
the same invariant probability and with a regular dependence ratiog ∈ Nε(f) such
that g is equivalent tof . By definition of equivalence, the ratiof itself has to be
regular. This finishes the proof of the first statement.

For the second statement, denote the transition probability density of the
first system byτf and of the second system byτg. Note that since

τf (x2|x1) = f(x1, x2)p(x2), τg(x2|x1) = g(x1, x2)p(x2),

the fact thatg ∈ Nε(f) implies thatτg ∈ Nε̃(τf ) and thatε̃ → 0 asε → 0. The
proposition now follows from lemma 2.

The following result is essentially a corollary of the results for simple compact state
spaces.

Proposition 2. LetM be an open simply connected subset ofRm such that the
boundary∂M is a smooth manifold. A well-behaved smooth stochastic dynami-
cal system is structurally stable under ratio equivalence with respect to the strong
topology.
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Proof.
Let f be the dependence ratio of the system, and let{Mt} be an exhaustion ofM .
Since the system is well-behaved, there areT > 0 andct > 0 such that for everyj =
0, · · · , 3:

1. for every component{Cj
t } of the closure ofM2

t the restrictionf j
t of f toCj

t

is weakly ratio equivalent tof j
t′, and

2. there is a compact setKj
t such that|Df j

t (x)|x > ct if x ∈ Cj
t \K

j
t .

Then there is for everyt > T and everyj a constantεj
t > 0 such that for everyg ∈

Nεj
t
(f) in the C2-topology onM2

t , the restrictiongj
t of g to Cj

t is weakly ratio

equivalent tof j
t . Let εt = minj ε

j
t , andε(x) = max{εt |x ∈ M2

t }. It follows
thatNε(x)(f) is an open neighbourhood off in the strongC2-topology, such that
everyg ∈ Nε(x)(f) is ratio equivalent tof .

A.2 Proofs of the lemmas

It remains to demonstrate the lemmas. Note that they are similar to the analogous
statements about regular functions in the Morse theory. The main technical diffi-
culty is that the set of smooth dependence ratios onM2 is a proper subset of the
space of smooth functions onM2, and therefore we have less freedom to construct
perturbations of a function. This implies that while the proof of lemma 1 is a sim-
ple extension of the analogous arguments of Morse theory, the proof of lemma 2 is
more involved.

We begin by recalling the following standard technical result, the proof of
which is left to the reader. Note that we denote a ball of radiusr around0 by Br,
that is,Br = {x ∈ Rk | ‖x‖ < r}; also we introduce

‖f − g‖C2(U) = max
0≤j≤2

max
x∈U

|Djf(x)−Djg(x)|.

Lemma 3. LetU ⊂ Rk be a bounded open set, and letf : U → R be aC2 function
withDf(0) = 0 andHf(0) non-degenerate. Then there exist constantsδ0, η0 > 0
such thatBδ0 ⊂ U and that for every0 < δ ≤ δ0 and0 < η ≤ η0 there is anε > 0,
such that every functiong satisfying‖f−g‖C2(U) < ε has a unique non-degenerate
critical point ȳ ∈ Bδ with |g(ȳ)−f(0)| < η, with g having the same index atȳ asf
at 0.

Proof of lemma 1. We give the proof for the case thatM is the closure of a
bounded open simply connected subset ofRm. The generalisation to compact man-
ifolds is straightforward but notationally awkward, and it is therefore left to the
reader.
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Let x = (x1, x2) andy = (y1, y2) denote points inM2. Note thatπ`(x) =
x` etc. We shall first show that ifε > 0 is sufficiently small, then everyg ∈ Nε(f)
has the same index sequence asf ; this part of the proof is standard. Afterwards, we
shall construct a diffeomorphism onM , homotopic to the identity, which maps the
critical points ofg to the corresponding critical points off .

Let ξ1, · · · , ξk be the critical points off , ordered such thatvi = f(ξi) <
f(ξj) = vj if i < j. Putv0 = 0; thenv0 < v1. We set

ζ = min
0≤i<j≤k

|vi − vj|, σ = min
1≤i<j≤k

{
‖π1(ξi)− π1(ξj)‖, ‖π2(ξi)− π2(ξj)‖

}
;

thenζ is the smallest absolute difference of two critical values, andσ is the smallest
distance of two projections of critical points onM .

Choose0 < δ < σ such that the setsUi = ξi + Bδ andUj = ξj + Bδ

are contained inM2 and have empty intersection for anyi 6= j; this is possible by
assumption 2. Moreover, we setfi(x) = f(ξi + x) for x ∈ Bδ. By assumption
Dfi(0) vanishes andHfi(0) is nondegenerate. By lemma 3, we can findε > 0,
such that every functiongi defined onξi + Bδ with ‖fi − gi‖C2 < ε has a unique
nondegenerate critical pointyi inBδ, with |fi(0)−gi(yi)| < ζ/2 and withyi having
the same indexti for gi as0 has forfi.

Let C = M2\
⋃

i Ui; note thatC is compact, and thatDf 6= 0 on C.
Therefore, if necessary by choosingε > 0 smaller, we obtain that ifg ∈ Nε(f),
thenDg 6= 0 on C as well. This shows that the index sequences off andg are
equal.

We have to provide a diffeomorphismϕ : M → M , homotopic to the
identity, such that

Φ(x) =
(
ϕ ◦ π1(x), ϕ ◦ π2(x)

)
maps the critical pointsξi + yi of g to the critical pointsξi of f . Note that by the
choice ofδ, no two projections of the setsUi onM intersect:

π1(Ui) ∩ π2(Uj) = ∅, for all 1 ≤ i, j ≤ k.

For giveni and`, consider onπ`(Ui) a differentiable curveγ(t), defined for0 ≤
t ≤ 1, such thatγ(0) = π`(ξi) andγ(1) = π`(ξi + yi). Construct a vector fieldXi`

onM such thaṫγ(t) = Xi`(γ(t)) for 0 ≤ t ≤ 1 andXi` = 0 onM\π`(Ui).
LetX =

∑
i,`Xi`. The time-1 mapϕ = eX has the required properties.

Proof of lemma 2. To prove this lemma, for any given stochastic dynamical sys-
tem with invariant probabilityp and dependence ratiof , and for anyε > 0, we
have to construct a system with the same invariant probability and with dependence
ratio g ∈ Nε(f) such thatg is regular. The main technical difficulty, compared to
the proof of the analogous statements for functions, is that we have ‘fewer’ pertur-
bations to play with, since not every real-valued function onM2 is a dependence
ratio.

24



Changing transition probabilities. We begin by devising a way how we can
change the transition probability of a process without changing its invariant proba-
bilities. Recall equation (3):

pt+1(xt+1) =

∫
M

τ(xt+1|xt)p
t(xt) dxt.

Let q(x1, x2) be a function such that∫
M

q(x1, x2) dx1 =

∫
M

q(x1, x2) dx2 = 0,

and such that̃τ(x2|x1) > 0 for all x1, x2 ∈M , where

τ̃(x2|x1) = τ(x2|x1) +
q(x1, x2)

p(x1)
. (10)

Then τ̃ is also a transition probability density. Letp denote the unique invariant
density satisfyingp(x2) =

∫
τ(x2|x1)p(x1) dx1 and

∫
p(x) dx = 1. Note that

thenp satisfies also the integral equation∫
M

τ̃(x2|x1)p(x1) dx1 =

∫
M

τ(x2|x1)p(x1) dx1 +

∫
M

q(x1, x2)

p(x1)
p(x1) dx1

= p(x2).

This implies thatp is also an invariant density of the stationary stochastic process
with transition probability densitỹτ .

Construction of the perturbations. For givenε > 0, we shall construct a func-
tion q : M2 → R such that the perturbed dependence ratio

f̃(x1, x2) =
τ̃(x2|x1)

p(x2)
,

whereτ̃ is given by (10) is inNε(τ) and such that it is regular. This will be achieved
by a transversality argument, for which we need a finite family of functionsqk

ij/p
such that their differentials span the tangent spaceR2m at every pointx ∈ M2.
In the ‘ordinary’ case of the Morse classification of real valued functions onM ,
this is achieved by looking, for everyξ ∈ M , at functions of the form̀ ξ,i(x) =
(xi − ξi)ϕ

(
‖x− ξ‖/δ

)
, whereϕ : R → R is a smooth function such thatϕ(t) = 1

if |t| < 1 andϕ(t) = 0 if |t| > 2. It is easily seen that this infinite family has the
property that their differentials spanRm everywhere. By a compactness argument,
we can find pointsξ1, · · · , ξn, such this is still true for the functions̀ξk,i. Then one
can show that a suitable perturbationf +

∑
ak

i `ξk,i of a given functionf is regular.
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In our case, we have to modify this argument, as we need to preserve the property
that the perturbed dependence ratio is still a dependence ratio.

Therefore, letϕ, ψ : R → R be smooth functions such that

ϕ(t) =

{
1 if |t| < 1,

0 if |t| > 2,

and

ψ(t) = 0 if |t| < 1 or |t| > 2, ψ(t) > 0 otherwise.

Define functions̀ ξ
j : Rm → R, for j = 0, 1, · · · ,m by

`ξj(x) =

{
ϕ(‖x− ξ‖/δ) + β0ψ(‖x− ξ‖/δ) if j = 0,

(xj − ξj)ϕ(‖x− ξ‖/δ) + βjψ(‖x− ξ‖/δ) if j ∈ {1, · · · ,m};

hereδ = δ(ξ) > 0 is sufficiently small such that the intersection ofB2δ(ξ)\Bδ(ξ)
with M has positive measure. The constantsβj = βj(ξ) are determined by the
requirement that

∫
M
`ξj dx = 0 for all j.

Let a positive functionP : M2 → R be given, and forξ = (ξ1, ξ2) ∈ M2,
define the functions (note thatx1, x2 ∈M ):

Lξ
ij(x1, x2) =


`ξ1j (x1)`

ξ2
0 (x2)

P (x1, x2)
, i = 1,

`ξ2j (x2)`
ξ1
0 (x1)

P (x1, x2)
, i = 2.

Denote byxj
i thej’th coordinate ofxi ∈M . We find that

∂Lξ
ij

∂xj′

i′

(ξ1, ξ2) =


1

P (ξ1, ξ2)
if i′ = i, j′ = j,

0 otherwise.

It follows that the derivativesDLξ
ij(ξ1, ξ2) are linearly independent. By continuity,

there is a (relative) neighbourhoodUξ of every pointξ = (ξ1, ξ2) in M2, such that
the2m vectorsDLξ

ij(x1, x2), i = 1, 2, j = 1, · · · ,m, are linearly independent for
all (x1, x2) ∈ Uξ.

SinceM is compact, it is covered by a finite number of the setUξ, sayUξ1,
· · · , UξK

. Set

qk
ij(x1, x2) = P (x1, x2)L

ξk
ij (x1, x2).
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Then qk
ij/P is a finite collection of real-valued functions onM2 such that their

derivatives spanR2m at every point(x1, x2) ∈M2. Moreover∫
M

qk
ij(x1, x2) dx1 =

∫
M

qk
ij(x1, x2) dx2 = 0.

Let the stationary stochastic process defined by the transition probabilityτ(x2|x1)
have invariant probability densityp, invariant joint probability densityp1,2(x1, x2)
and dependence ratio

f(x1, x2) =
p1,2(x1, x2)

p(x1)p(x2)
=
τ(x2|x1)

p(x2)
.

LetA be a sufficiently small open neighbourhood of0 in R2mK such that for alla =
(ak

ij) ∈ A, the function

τ̃(x2|x1) = τ(x2|x1) +
∑
ijk

ak
ij

qk
ij(x1, x2)

p(x1)

is an everywhere positive transition probability density. Such a setA exists, since
the transition probability densityτ is assumed to be strictly positive everywhere on
the compact manifoldM2; hence, if‖a‖ is small, theñτ is strictly positive onM2

as well. The dependence ratio of the new process is given by

g(a, x) = f(x) +
∑
ijk

ak
ij

qk
ij(x1, x2)

p(x1)p(x2)
.

with a = (ak
ij) ∈ A. If we setP (x1, x2) = p(x1)p(x2), we have thatg(a, x) is

a dependence ratio and that the derivatives ofqk
ij(x1, x2)/p(x1)p(x2) spanR2m at

every point ofM2.

The transversality argument. Recall the definition of transversality (see e.g. [5],
definition 10.3.1, p. 83): ifX andY are smooth manifolds,W a smooth submani-
fold of Y , the mapf : X → Y smooth, andx ∈ X, thenf intersectsW transver-
sally atx, if eitherf(x) 6∈ W or f(x) ∈ W andTf(x)Y = Tf(x)W + df(x)

(
TxX

)
.

More generally, we say thatf intersectsW transversally atA ⊂ X, if f inter-
sectsW transversally atx for everyx ∈ A.

We have the theorem that ifA, X and Y are smooth manifolds,W a
smooth submanifold ofY andf : A ×X → Y a smooth map which intersectsW
transversally, then the set of pointsa ∈ A for which fa = f(a, .) : X → Y inter-
sectsW transversally is everywhere dense inA (see [5], theorem 10.3.3, p. 85).

The derivativedf of a functionf : M → R on anm-dimensional man-
ifold M defines a sections of the cotangent bundleT ∗M ; in a sufficiently small
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neighbourhoodU of a point inM , the restrictionT ∗
UM of the bundle toU is iso-

morphic toU × Rm, and the section takes the forms(x) = (x,Df(x)). The zero
sectionM0 of T ∗M , which is isomorphic toM , is locally of the formU × {0}.

The sections is transversal toM0 at a pointx ∈ M0, if eithers(x) 6∈ M0,
or if

T(x,0)T
∗M = ds(x)TxM + T(x,0)M0 = (I,Hf(x))Rm + Rm × {0}.

Note that this is equivalent to saying thats is transversal toM0 everywhere if and
only if the functionf has only nondegenerate critical points. Such a function is
called aregular functionor aMorse function.

Consider now the functiong : A × M → R constructed above and its
associated maps : A×M → T ∗M given bys(a, x) = (x, dxg(a, x)). Note thats
is transversal toM0, since in local coordinates

ds(a, x)T(a,x)A×M + T(x,0)M0

=

(
0 I

D
qk
ij

p(x1)p(x2)
Hxg(a, x)

)
R2mK × Rm + Rm × {0},

and since by construction the derivativesd(qk
ij(x1, x2)/p(x1)p(x2)) spanR2m ev-

erywhere onM2. By the theorem mentioned above, the set ofa ∈ A, for whichga =
g(a, .) is a Morse function, is an everywhere dense set inA.

Therefore, for everyε > 0, we can choosea so small that the dependence
ratio g = ga is a Morse function andg ∈ Nε/2(f). It remains to show that by a
second small perturbation, we can achieve that the perturbed dependence ratio is a
regular dependence ratio.

The second perturbation. Note that sinceg : M2 → R is a Morse function, its
critical points are isolated. Denote them byξ1, · · · , ξN ∈M2.

We proceed inductively; fork = 1, we setg1 = g. Fork > 1, we assume
thatgk : M2 → R is a dependence ratio that is a Morse function,gk ∈ N(1−2k)ε(f),
and thatgk has critical points̃ξ1, · · · , ξ̃k−1, ξk, · · · , ξN , such that the valuesgk(ξ̃1)
up togk(ξ̃k−1) are different, and such thatπ`(ξ̃i) 6= π`(ξ̃j) for ` = 1, 2, if 1 ≤ i <
j ≤ k − 1 (recall thatπ`(x1, x2) = x` is the projection on thè’th coordinate).

We choose a neighbourhoodU ⊂M2 of ξk such thatξk is the only critical
point ofgk inU . Letb ∈ R2m be such that〈b,Hg(ξk)−1b〉 6= 0, where〈x, y〉 denotes
the inner product of the vectorsx andy; the inverse ofHgk(ξk) exists sincegk is
nondegenerate inξk; note that the set of vectorsb that do not satisfy this condition
is the union of the origin ofR2m and a smooth codimension-1 manifold.

Consider the function

ht(x1, x2) = h(t, x1, x2) = gk(x1, x2)− t
∑
ij

bijL
ξk
ij (x1, x2).
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The critical points ofht are determined by the equation

0 = Dht(x1, x2) = Dgk(x1, x2)− t
∑
ij

bijDL
ξk
ij (x1, x2).

We solvex = (x1, x2) as a function oft in a neighbourhood oft = 0 and(x1, x2) =
ξk, using the fact thatHgk(ξk) is invertible. For the solutionx(t) = (x1(t), x2(t)),
we find that

dx

dt
(0) =

1

p(π1ξk)p(π2ξk)
Hgk(ξk)

−1b. (11)

Note that by the assumption onb, this derivative is nonzero. We restrict the possible
choice ofb further by requiring that

dx`

dt
(0) = Dπ`

dx

dt
(0) =

1

p(π1ξk)p(π2ξk)
Dπ`Hgk(ξk)

−1b 6= 0.

Moreover, settingv(t) = ht(x(t)), we have

dv

dt
(t) = −

∑
ij

bijL
ξk
ij +Dxht(x) = −

∑
ij

bijL
ξk
ij ,

and

d2v

dt2
(ξk) = − 1

p(π1ξk)p(π2ξk)

〈
b,Hgk(ξk)

−1b
〉
6= 0. (12)

There are only finitely many values oft for which v(t) is equal to the critical val-
uesgk(ξi), or for which the projectionπ`(x(t)) coincides withπ`(ξi) for some1 ≤
i < k and somè = 1, 2. From equations (11) and (12) it follows that the set of
values oft avoiding these special values is everywhere dense in a neighbourhood
of t = 0.

Choosetk in this set such that the function

gk+1 = gk − tk
∑
ij

bijL
ξk
ij

satisfiesgk+1 ∈ N(1−2k+1)ε(f), and putξ̃k = x(tk). Then the functiongk+1 sat-
isfies the induction hypothesis. We conclude that the functiongN+1 is a regular
dependence ratio, andgN+1 ∈ Nε(f). This finishes the proof of the lemma.
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