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Abstract

This article presents a bifurcation theory of smooth stochastic dynamical
systems that are governed by everywhere positive transition densities. The
local dependence structure of the unique strictly stationary evolution of such
a system can be expressed by the ratio of joint and marginal probability den-
sities; this ‘dependence ratio’ is a geometric invariant of the system. By in-
troducing a weak equivalence notion of these dependence ratios, we arrive
at a bifurcation theory for which in the compact case, the set of stable (non-
bifurcating) systems is open and dense. The theory is illustrated with some
simple examples.

1 Introduction

Bifurcation theory has been an extremely successful tool to investigate the qualita-
tive properties of deterministic dynamical systems. Motivated by its success, there
have been several attempts to develop bifurcation theory for stochastic dynamical
systems, usually based on a classification of the shape of invariant densities of such
systems. However, these attempts have run into the problem, already pointed out
by Zeeman [15], that the shape of a probability density is not invariant under coor-
dinate transformations.

For one-dimensional continuous time diffusions, a classification that is
invariant under transformations has been proposed by Hartedéhah [11, 14].
Inspired by their approach, we propose in this paper a classification for (strictly)
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stationary stochastic processes that are governed by smooth everywhere positive
transition density functions. LdtX,};cz be such a process, with probability den-
sity p', joint probability density ofX; , - - -, X;, denoted by~ and transition
probability densityr (z;,1|z;). Thenptith-tnth = phitn ‘hecause of strict sta-
tionarity, and

pt+1($t+1) = /T($t+1|xt)pt($t) dy.

In particular, agp'*! = p! = p, the invariant probability density is seen to be
the solution of the integral equatigriz) = [ 7(z|y)p(y) dy under the condition
that [ p(y) dy = 1; consequentlyp is as least as smooth as

The joint density’'*! does not depend arand it is therefore equal 12
Moreover, the joint measung?(xy, r) dz; dz, is absolutely continuous with re-
spect to the product measurer; )p(z2) dz; dzs; therefore, by the Radon-Nikodym
theorem, the following function is well-defined:

Fl21, ) def p1’2(56’17372)d561 dxo _ p1’2($1,$2) _ 7(22|71)
b p(l’l)p(%’z) dz; dz, P(xl)p(lb) p(xg)

We call the functionf the dependence ratiof the system. Note that is identi-

cally 1 if X; andX,,; are independent; the differeng&z,, z5) — 1| can therefore

be seen as a measure of the local dependence structure of the stochastic dynamical
system.

By construction, a dependence ratio is a geometric invariant of the un-
derlying system, and it is therefore a suitable quantity to be at the foundation of
a stochastic bifurcation theory. Several other local dependence measures have re-
cently been described in the statistical literature (see e.g. [7], [8], and [9]). These
measures are localised versions of the Pearson correlation coefficient, and as such
are motivated entirely differently than our dependence ratio. In particular they do
not share the geometrical invariance property.

Our concept of ‘stochastic bifurcation’ will not be an analogue of the con-
cept of ‘topological bifurcation’ of deterministic systems. Recall that two deter-
ministic systems are said to be topologically equivalent if one is induced by a
homeomorphism from the other. It is easy to see, and it will be shown below, that
we cannot build a theory of stochastic bifurcation on the parallel notion of ‘strong
equivalence’, which defines two stochastic systems to be equivalent if the depen-
dence ratio of the first is induced from the dependence ratio of the second by a
coordinate transformation. The equivalence notion that we shall adopt is more like
the weaker ‘local topological equivalence’ of deterministic systems, where two sys-
tems are equivalent if for all equilibria neighbourhoods exist such that the systems
are topologically equivalent on corresponding neighbourhoods. Our analogous no-
tion, which we call ‘ratio equivalence’, calls two dependence ratios equivalent if
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Figure 1: Level sets for the map, = X;_;+asin(X,_;)+0.25sin?(X;_1)+0.25+

441 for decreasing values of(top panels). The dashed-dotted lines, corresponding
with the critical levels of the saddle points, are added for clarity. The lower panels
show the invariant probability density of;.

there is a coordinate transformation that maps critical points of one ratio to the cor-
responding critical points of the other ratios. As in the case of local topological
equivalence, we shall show that for ratio equivalence the union of the open equiva-
lence classes is an open and dense set in the space of all dependence ratios.

We give figure 1 as an illustration. It shows the invariant probability den-
sities and the dependence ratios of the stochastic dynamical system on the circle

X, = X1 +asin(X;_1) +0.25sin*(X;_1) + 0.25 + &, mod 27

for several values of the parameterthe ¢, are identically and independently dis-
tributed (11D) stochastic variables. We see that the number of critical points of the
dependence ratio changesashanges, and hence that the associated strictly sta-
tionary processes are qualitatively different. This change in the dynamics is not at
all appearant from the invariant probabilities. Moreover, by a suitable change of co-
ordinates in the system, the invariant probabilities could be made constant, whereas
the transformed dependence ratio would still show the same bifurcation behaviour.

Plan of the article In section 2, we quickly review the previously proposed no-
tions of phenomenological and dynamical bifurcation of stochastic dynamical sys-
tems. We define a new equivalence relation, based on the dependence structure of
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the process in section 3. We show in particular that our equivalence relation has
‘many’ structurally stable elements and that it avoids some limitations of older no-
tions. Finally, in section 4 we illustrate its usefulness by giving several applications.
An appendix contains proofs.

2 Related literature

In this article, the term ‘stochastic dynamical system’ will always refer to a class of
stochastic processes which are governed by a single transition probability density.
An ‘evolution’ of such a stochastic dynamical system is a stochastic process of
this class that is generated by an this transition probability density and an initial
probability distribution.

2.1 Phenomenological bifurcations

The natural first attempt to attain at a classification of stochastic dynamical systems
is to apply the Morse classification of real valued functions to invariant probability
densitiesp of the system, see [3, 15]. The corresponding equivalence relation is
that of smooth coordinate transformations of domain and rangetbe stable el-
ements being Morse functions with all critical values distinct from each other. For
the purposes of this article, we shall call the equivalence rel&tequivalencgin
analogy with the associated bifurcation notion, which has been gailedomeno-
logical bifurcationor P-bifurcation(see Arnold [2], p. 471-473).

A serious limitation of the P—bifurcation, acknowledged in [15], is that
the equivalence classes are not invariant under diffeomorphisms of the underlying
space. Forinstance, I€X, } be a process oR™ with invariant density x, and lety
be an invertible transformation &™. The densitypy of {Y;}, whereY; = ¢(X,),
then is related tp x through

px(x) = py (p(x)) [det Do(x)].

We see that, in the language of physicists, the function value of the invariant den-
sity ‘depends on the coordinates chosen’. Onlyifs volume-preserving, that
is, if |det Dp(z)| = 1 for all z, the form of the invariant density is guaranteed
not to change. It is easy to construct examples on the real line where after a
well-chosen transformatiop the densitie®x andp, are in different equivalence
classes. Note that the volume-preserving diffeomorphisms comprise the class of
Riemannian isometries that were proposed in [15] to be the admissible class of
coordinate transformations.

Underlying this lack of invariance is the fact that a probability density),
unlike the measurg(z) dz, is not a geometrical invariant under general coordinate



transformations. By consequence, P-equivalence is an inconvenient notion for prac-
tical applications: for instance, it might make a difference to the results whether
data is recorded on a linear or a logarithmic scale.

As pointed out by Hartelman and co-workers [11, 14], it is possible to con-
struct a ‘coordinate-free’ classification for one-dimensional continuous-time diffu-
sions . By defining stochastic analogues of concepts used in catastrophe theory, they
arrived at a classification that is, unlike P-equivalence, invariant under monotoni-
cally increasing transformations of the real line, or more precisely, a classification
that is invariant up to transformations homotopic to the identity mapping. This clas-
sification, together with invariant estimation considerations, leads to the empirical
use of statistical quantities called level crossing statistics, which are invariant under
monotonic transformations, that is, diffeomorphisms, of the real line.

Unfortunately level crossing statistics are not very natural in the discrete
time setting, which is for instance the natural setting for many problems in eco-
nomic dynamics. Although these statistics can be used for discrete time systems in
principle, the corresponding classification would be rather restrictive, since discrete
time dynamical systems are ‘essentially richer’ than discretely sampled continuous
time diffusions, mainly because finite time transition densities induced by diffu-
sions only represent a subclass of transition densities for discrete time dynamical
systems.

2.2 Dynamical bifurcations

A second bifurcation notion for stochastic dynamical systems has been introduced
by Ludwig Arnold and his co-workers (see [2] for an extensive exposition). We
shall try to sketch this approach using a procgss} onR of the form

Xip1 = Q(Xt, 5t)7 (1)

with deterministic initial conditionX, = x, € R, and where{¢,} is a sequence

of independent and identically distributed random variables. The main idea is to
consider this process as a deterministic dynamical system on an infinite dimensional
phase space x R. The elements df are the possible realisations= (g9, 1, - )

of the procesge;}. Introducing the projectiom(w) = ¢, and the shiftr(w) =
(e1,€9,- -+ ), we have for instance that = 7 o o'(w). Define now the ma@

on{2 x R by

0w, z) = (p1(w), p2(w, 7)) = (0(w), g (2, 7(w))) -

This is a deterministic system; the stochastics are ‘hidden’ in the fact that the initial
conditionw € Q is unknown. The realisationX; of the process (1) are the values
of the second component ®f (w, 2-). The mapd is then called a random dynamical
system on the phase spdRe



Note that® is a skew system: the shift dynamigs in the space? are
driving the dynamicsp; in R. For ®, arandom fixed points defined as a map:
2 — R that satisfies the invariance condition

pa(w, §(w)) = E(pr(w))

for all (or almost all)w. Stability is now defined in the usual way: a random fixed
point ¢ is stable if all nearby orbits converge §o Note that a stochastic dynam-

ical system that is at a stable random fixed point has an invariant measure, which
describes exactly the distribution of the random fixed point. So-called ‘random’ bi-
furcations are now defined as ‘ordinary’ bifurcations of the deterministic dynamical
system®. For instance, a random, or, following the terminology in [Bjnamical
bifurcation or D-bifurcation of a process occurs if a random fixed point loses sta-
bility.

At this point, a drawback of the notion of dynamical bifurcation becomes
apparent: to determine stability of a random fixed point, two orbit® wfith iden-
tical noise realisations have to be compared. This seems to make it rather difficult
to apply the notion of D-bifurcation to practical problems (but see [4] and related
literature).

The theory leading to the D-bifurcation remains close to traditional bifur-
cation theory for deterministic dynamical systems, in that it aims at characterising
the full dynamical system rather than just invariant measures. However, as men-
tioned above, without further knowledge of the dynamics it is empirically impossi-
ble to distinguish between different dynamical systems producing time series with
identical invariant measures. To avoid such differences at the level of the underly-
ing dynamics that are undetectable empirically, we choose to leave aside this theory,
and try rather to improve on the notion of P—equivalence.

3 Equivalence notions

In this section we introduce and motivate our bifurcation theory of of stochastic
dynamical systems and we give some of its fundamental properties.

3.1 Definitions and assumptions

We want our theory to be applicable to stochastic dynamical systems of the form

Xip1 = Q(Xt, €t)> (2)

whereg : R™ x R¥ — R™ is such thay(X;,-) : R* — R™ is a submersion, that
isran D.g > m, and where, are 11D random variables taking valuesi. If g is
smooth, and if the, are distributed according to a smooth probability density func-
tion, then to this stochastic dynamical system there is associated a smooth transition
probability density.



Taking a slightly more general setup, we consider a state shadteat
is either an open simply connected subsefRf with smooth boundary, or the
(compact) closure of a bounded open simply connected sub&ét afith smooth
boundary, or a compact closeddimensional manifold. Motivated by the system
given in equation (2), we define a ‘smooth’ stochastic dynamical system as a smooth
transition probability density : M x M — R: if the stateX; of the system at
time ¢ is distributed according tp’(x,) dz;, then X, is distributed according to
p(xi1) day 1, Where

P () = / T(wps1]xe)p’ () dy. 3)
M
Note that{ X, } is a Markov process.

Assumption 1 We shall assume throughout the paper that 0 on M x M.

This assumption implies that the integral equation

p(z) = /N rlal)p(o)dy

has a unique solutiop : M/ — R satisfying [,, p(z)dz = 1 andp(x) > 0 for

all x € M. The functiorp is then the unique invariant probability density of the sys-
tem; consequently, iK, is distributed according tp(x) dx, then{ X,} is a strictly
stationary Markov process, and thg are identically distributed random variables.
We denote the joint probability density of the random varialfl&sg ,--- , X; )

by pf-+t». For instance, for a strictly stationary process we hglve!(z,y) =
ph?(x,y). To a strictly stationary first order Markov process with smooth invariant
densities, we associate tHependence ratio

ph3 (1, 1) _ 7(22|Ty)
p(x)p(z2)  p(2)

f(z1,22) = (4)
We make two remarks. First, if the dependence rétand the invariant density
are specified, the transition probability densitys determined by equation (4).
Second, as is smooth and > 0 on M x M, the associated dependence rdtis
smooth and takes values [, co).

Assumption 2 We shall assume that i/ is compact, the dependence rafiof a
stochastic dynamical systems has no critical points on the boundaik wf)M .

We note that dependence ratios are connected to copulas: in the simplest,
two-dimensional case, a copuld : [0,1]> — [0,1] is a bivariate distribution
function whose margins are uniformly distributed [on1]|. They arise as follows:



let { X;} be a strictly stationary real-valued process with invariant probability den-
sity p, and let

F@):/ p(y)dy and F12 (21, x2) / / yh?/z ) dy1 dyso

be its marginal and joint distribution functions. Then the copli{a, u,) of this
process is determined by the equation

Fl’z(l'l, 1’2) = C(F(Z'l), F(l’g))
Now, differentiation of this relation with respect i andzx, yields that

0°C
8u1 8u2

prA(xy, ) = (F(x1), F(x2))p(x1)p(e),

and we see that the dependence rétad the process satisfies

0*C

f(l'h 5172) - 0u13u2

(F(xl),F(a:Q)).

This association of dependence ratios with copulas neatly illustrates that the de-
pendence ratio describes the whole stochastic dynamical system, and not merely its
strictly stationary evolution. In the case of a smooth stochastic dynamical system on
the real line with invariant probability(x) and dependence ratjf{x1, z2), this is

seen most readily by performing the coordinate chahge F(X;), whereF'(z) =

ffoo p(y) dy; the strictly stationary evolution of the transformed system is then uni-
formly distributed on the intervdl, 1], and its transition probability density is then
exactly equal to the transformed dependence ratio:

T(&|&) = f (F (&), F (&) .

We conclude that smooth stochastic dynamical systems on the real line that have
strictly stationary evolutions are fully characterised, up to diffeomorphism, by their
dependence ratios.

3.2 Structural stability and bifurcations

We recall briefly the fundamentals of bifurcation theory. The two main ingredients
of any such theory are a topological spa¢eand an equivalence relation between
elements ofX. An elementf of X is structurally stableif there is a neighbour-
hood N (f) such that all elementgin that neighbourhood are equivalentftpthat

isg ~ fforallg € N(f). Intuitively speaking, a structurally stable element

can be ‘perturbed’ slightly without being pushed out of its equivalence class. Such
an element is sometimes called ‘persistent’. Clearly, the equivalence class of any
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structurally stable element is an open set. A structurally stable equivalence class can
be thought of as defining a set of elements of the same ‘shape’ or ‘form’ (see [13]):
form remains ‘stable’ if perturbed slightly.

All elements of X that are not structurally stable are calleifurcating
This notion is usually familiar from the context of parametrised families) i$
someg-dimensional parameter, and— f, a family of elements ok, then\ = )\,
is a bifurcating parameter value of the familyfjf is not structurally stable; it might
be said that at bifurcating parameter values the ‘formf,p€hanges. Since the set
of structurally stable elements is open, the set of bifurcating elements, and therefore
also the set of bifurcating parameter values in a parametrised family, is closed.

An equivalence relation will give rise to a meaningful bifurcation theory
on X only if there exist structurally stable elements at all. The most useful situation
is attained if the set of structurally stable elements, while not consisting of a single
equivalence class, is ‘topologically big’, since then we will be able to associate
to ‘most’ elements a form. In a topological space, a set is ‘big’ if it is open and
dense, orifitis at least a countable intersection of open and dense sets (a so-called
‘generic’ or ‘second category’ set, see [10]).

3.3 Strong equivalence

In the following, smooth stochastic dynamical systems are analysed and classified
in terms of their unique strictly stationary evolutions.

A natural requirement to impose on an equivalence relation of smooth
stochastic dynamical systems ai is that systems which only differ by a dif-
feomorphism of)M, that is, which are the ‘same’ up to a coordinate change, fall
in the same equivalence class. Let for instafidg}, {Y;} denote two stationary
evolutions for which

Y = o(Xy), for all ¢,

for some diffeomorphisnp : M — M. We call the associated systestsongly
equivalent Denote the probability densities &f andY respectively by an indeX
orY. Since

pt)?--,tn ('Ttu T 7xtn)
=y (plan), - p(a,))| det Do(ay,)| - - | det Dz, )],
it follows that
Py’ (w1, )
fx(@,za) = PX(x) px(22)
(@), o(x2))| det Dop(y) det Dep(p)|

 py(p(z1))| det Dp(z1)| - py (p(22)] det Di(x5)])
= fy(p(1), p(x2)). (5)



We conclude that strongly equivalent systems have dependence ratios that are equal
up to diffeomorphism.

If we took strong equivalence as the equivalence relation defining our bi-
furcation theory, in general we would obtain an uncountable infinity of equivalence
classes, and no class would be a neighbourhood to any of its points, that is, no sys-
tem would be structurally stable and every system would be bifurcating. To see this
in a simple example, assume thfat and fy are two dependence ratios defined on
the squaré—1,1) x (—1,1) C R?, and that they are given as

2—v
3

2_
fx(x1,20) = = A + z] + pas, fr(z1,22) =

3

+ x% + l/xg.

Taking the invariant density in both cases toffe) = 11;_11)(x), wherel,(z)
denotes the indicator function, we have specified two stochastic dynamical sys-
tems. The poinf0, 0) is the only non-degenerate critical point for bgth and fy;
therefore, iffx and fy are strongly equivalent, we should have thdt:, z,) =
(p(z1), p(z2)) satisfiesP(0,0) = (0,0). But there is not even a homeomorphism,
much less a real-valued smooth diffeomorphigmsuch that (5) holds simultane-
ously with¢(0) = 0, for the values offy and fy- at (0,0) are different ify # v.

We see that every value pfdefines a different equivalence class.

3.4 Ratio equivalence

As we have seen, there are ‘too many’ equivalence classes if we take strong equiv-
alence as our equivalence relation; put differently, equality of stationary evolutions
up to diffeomorphism yields an equivalence relation that is too fine-grained to be
useful. A coarser classification is obtained by retaining only certain topological
information of the dependence ratio of the process. As this ratio is a geometric
invariant, the classification will still be invariant under diffeomorphisms.

Recall the Morse classification of functions: two functions are of different
shape if they have a different number of nondegenerate critical points. The number
of such points is a numerical characteristic of the ‘shape’ of a function, and in fact
we can build a classification where two functions are defined to be equivalent if
they have the same number of nondegenerate critical points. Now, if we choose a
suitable topology on the set of functions, we find that the equivalence classes are
open sets, and that its members are structurally stable. Of course, usually we want
also to include information about the type of critical point (Morse index).

The equivalence relation that we shall introduce on the space of smooth
stochastic dynamical systems is based on the Morse (left-right) equivalence of func-
tions, applied to the dependence ratio of the system. Notice however that, since
dependence ratios are subject to certain restrictions, not every positive function
on M x M is a dependence ratio, we have less freedom to perturb a given ratio, and
therefore the properties of the Morse classification do not carry over automatically.

10



3.4.1 Topology

We need a function topology on the space of smooth stochastic dynamical systems
and the space of their dependence ratios; we choosé*tiepology, which is the
‘coarsest’ topology for which the number of nondegenerate critical points defines
open equivalence classes. Recall that for functipns M — R defined on a
compact manifold, an-neighbourhoodV. ( f) of f in the C*-topology consists of

all functionsg such that, with respect to a fixed Riemannian metric and the induced
norms on the appropriate vector bundl@$ {/, - - -), all of them denoted by - ||,

we have

|[f(x) = g(@)], IDf(z) — Dg(a)|, ||D*f(z) — D*g(x)]| <e,

forall z € M. If M is a compact manifold-with-boundary, the inequalities are
required to hold for all: € int(M), in order that the derivatives remain well-
defined. If M is a non-compact manifold, the constaats> 0 are replaced by
positive functions(z) > 0 on M in the above definition; the topology obtained is
called the ‘strongC2-topology (see e.g. [6]).

We use these topologies for the spaces of smooth stochastic dynamical
systems, or rather the space of their transition probability densitie®/ x M —
R, and the space of their dependence ratios. As explained in subsection 3.2, by
specifying an equivalence notion on the topologised space of dependence ratios,
we shall obtain a notion of structural stability and bifurcation of the associated
stochastic dynamical systems that is invariant under coordinate changes.

3.4.2 Regular dependence ratios

A first rough formulation of our equivalence would be the following: we propose to
call two stochastic dynamical systems equivalent, if every non-degenerate critical
point of a certain type of the dependence ratio of the first system can be mapped to a
critical point of the same type of the second system by a transformatibh of\/
that is induced by a diffeomorphism 8f. We shall make this more precise, after
having introduced some definitions.

Let M? = M x M be the Cartesian product aff with itself; denote
by m, : M? — M, for ¢ = 1,2, the projection on théth component

mo(x1, T2) = 4.

Recall the following definitions (see e.qg. [5], subsections 10.2 and 10.4, p. 79 and
p. 86 respectively). Iff : U — R is a twice continuously differentiable function
defined on an open sé&f C R", a pointz € U is acritical point of f if the
derivative of f vanishes at: D f(x) = 0. The valuef(x) of f at a critical pointz

is called thecritical value of f atx. A critical point x is non-degeneraté the
Hessian matrix f(z) corresponding to the second derivativéf(x) of f atz is

11



invertible. The number of negative eigenvalues of this matrix is calledMloese)
indexof the critical point. Clearly, the notions of critical point, critical value, index
and non-degeneracy carry over to functions defined on manifolds.

Definition. A twice differentiable dependence ratfo: M? — (0, c0) is called
regular if all its critical points are non-degenerate, if no two critical values are
equal and if no two critical points have the same image under any projegtion
fore=1,2.

3.4.3 Ratio equivalence on compact manifolds

In order to stay clear of topological complications, we only consider compact state
spaces that have very simple boundaries.

Definition.  The setM is said to be asimple compact state spacaf either M

is a closed compact manifold, or i/ is the closure of an open bounded simply
connected subset &™ such that the bounda§M is a smooth manifold (in fact,
a topological sphere).

In this subsection, we shall always assume fifais a simple compact state space,
unless mentioned otherwise. Note that the restrictiond/oare imposed in order

not to have to deal with topological side issues.

If M is a simple compact state space, a regular dependence ratio has only finitely
many critical pointsy, - - -, &; assumption 2 implies that none of these lie on the
boundary ofM?2. We assume that the poin{s are ordered such that the corre-
sponding critical values; = f(¢;) are in ascending order, that is, < v; if i < j.

We associate to the critical poigt its indext; (see subsection 3.3). Note that

0 < t; < 2m. In this way we obtain théndex sequencg f) = (t1,--- ,t;) of a
regular dependence ratjo

Definition. Assume thafl/ is a simple compact state space; let two smooth
stochastic dynamical systems oh be given with everywhere positive transition
probability and with dependence ratigsg : M? — (0,00). These systems, and
their associated dependence ratios, are said tacbmpact ratio equivalent if
either bothf andg are non-regular, or iff and g are both regular and

1. their index sequences are equal;

2. there is a diffeomorphism : M — M, homotopic to the identity mapping
on M, such that thenduced diffeomorphism ® : M? — M? defined as

D7) = (p(an), olas) ) ©)

maps the'th critical point of f to the:'th critical point of g.
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It follows from the first point that the number of critical points paindg is equal
as well. We have the following proposition.

Proposition 1. If M is a simple compact state space, then

1. a smooth stochastic dynamical system\onvith everywhere positive transi-
tion density is structurally stable under compact ratio equivalence if and only
if its dependence ratio is regular;

2. the set of stochastic dynamical systemdbthat are structurally stable un-
der compact ratio equivalence is open and everywhere dense @ifttapol-

0ogy.

The proof of this proposition can be found in appendix A.

The proposition tell us that ratio equivalence has desirable properties, as
we can characterise all structurally stable systems, and as these form an open and
dense set in the space of all systems. In particular, it implies that we can build a
bifurcation theory of stochastic dynamical systems on simple compact state spaces,
based on the notion of compact ratio equivalence.

3.4.4 Ratio equivalence for non-compact manifolds

Though the results for the case of simple compact state spéa@es already useful

in themselves, in practice most stochastic dynamical systems are defined on the
non-compact manifol®™. In this section, we investigate the case thatis an

open simply connected subset®f, possiblyR™ itself. The direct generalisation

of the notion of compact ratio equivalence is given in the following definition.

Definition. Let M be an open simply connected subselRdf such that its
boundaryoM is a smooth manifold. Two smooth stochastic dynamical systems, as
well as their dependence ratios ah C R™, areweakly ratio equivalent, if there

is a simple compact state spa&g C M, such that for every simple compact state
spaceK D K, the dependence ratios of the systems restricteld tre compact

ratio equivalent oni?.

As the following example shows, this notion is unfortunately too weak for our pur-
poses.

Example. Consider two stationary evolutiogs;} and{Y;} on the intervall\/ =
(—1,1) with invariant densitiep(z) = 11_11)(») and dependence ratios

1 1 1 1
fx(.lfl,.iﬂg) =1- 5331552 + Zl’?, and fy(.ﬁlfl,lﬂg) =1+ 53311’2 — Z.CE?
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Both ratios have a unique critical point of indé&xat the origin, and hence they are
ratio equivalent on compact sets. But if we consider the valugg @ind f- along
the curvey(t) = (¢,t) ast T 1, we note thatfx o v(¢) — inf,2 fx, while fy o
~v(t) — sup,. fy. Weak ratio equivalence is not sufficiently fine to distinguish
between these systems. ||

Definition. Let M be an open simply connected subselRdf such that its
boundaryoM is a smooth manifold. If there exists a fam{ly/;} of bounded open
simply connected subsets/af, such that

1. the boundary M, is a smooth submanifold af;
2. M, C My ift <t
3. Ut Mt - M,

then we call M, } anexhaustionof M.

Note that the closuré/, of M, is a simple compact state space.

A convenient way to define an exhaustionMdfis to take a differentiable
functionJ : M — R with the following properties. We fix a poiny € M and we
require that/(z¢) = 0, J(z) > 0 for all x # z, J(z) — oo asl|jz — zg|| — o
or x — OM, and finally that/ has no other critical points exceps. ThenM, =
{r e M : J(x) < t}is an exhaustion of/.

Consider the set

oM} C M.
This set can be decomposed into three component manifgids- M, x OM;,
C? = OM; x M; andC} = OM, x OM,. In the important special case that is
one-dimensional, the componeiit = OM; x M, consists of four points. By def-
inition, we consider these as non-degenerate critical points, associating thé index
to them by default. We also defid® = A, x M.

In the following three definitions)/ is a manifold with exhaustiofiM/, }
and with decompositiofC/ 3_, of the closure ob M. Moreover, the restriction
of f to ¢V is denoted byf/, for j = 0,--- , 3.

Definition. A smooth stochastic dynamical system with dependencefratidl/>
iswell-behaved at infinity if there are constants,, 7 > 0 such that for every > T
and every;:

1. if dim ¢} > 0, there is a compact st} C C{ such that|Df/(z)|| > ¢
if z € C{\K}, and

2. f] is weakly ratio equivalent tg, on CV for all ¢,¢' > T
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Figure 2: Well-behavedness at infinity. For dependence rdtioR? — R, the
curves indicate the se{sg—i = 0} (dashed) an({‘g—i = 0} (solid). The dependence
ratio on the left is well-behaved at infinity. For the dependence ratio on the right,
note thatf? (thatis, f restricted taC? = {—n} x (—n,n) U {n} x (—n,n)) cannot

be weakly ratio equivalent tﬁs .1 forany integemn, as the number of critical points

is different. :

This definition is illustrated in figure 2.

Definition. A smooth stochastic dynamical system with dependencefratial/*
is well-behavedif f is well-behaved at infinity and’ is regular onC? for every;
and everyt > T.

Definition. If M is a manifold with exhaustiofiM, }, two well-behaved smooth
stochastic dynamical systems with dependence reﬁlmd g are calledratio
equivalent, if there is a value of such thatf; and g/ are weakly ratio equiva-
lent for every;.

Note that if f andg are weakly ratio equivalent on each compor(éjifor asingle
valuet > T, they are in fact equivalent for all such values, sirfge~ f7 for
allt,t/ >T.

Example. The two weakly equivalent ratiogy and fy introduced at the end of
the previous subsection are not ratio equivalent.dget t/(¢t + 1), and consider
the exhaustiod; = (—ay, a;) of (—1,1). Note thato(; x I;) can be decomposed
into

Ctl = (_atvat) X {_ataa/t}>

Ct2 = {—at,at} X (—CLt, CLt),

Ctg = {—at,at} X {—at,at}.
Restricted toC! andC?, neither fx nor fy have any critical points. The sét’
consists of four isolated critical points, which are critical by definition. The max-
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imum of fy restricted toC? is assumed in the points,, —a;), whereasfy takes
its minimum there. Since the only diffeomorphismd@t homotopic to the identity
is the identity itself, corresponding critical points fHf and fy- cannot be mapped
onto each other. ||

The following propositions describe the topological properties of ratio equivalence.
The results are weaker than in the compact case, as was to be expected; we obtain
that well-behaved processes are stable elements of ratio equivalence. However, re-
stricted to the space of processes that are well-behaved at infinity, the well-behaved
processes form again an open and dense set.

Proposition 2. On an open simply connected subseR6f a well-behaved smooth
stochastic dynamical system with everywhere positive transition probability density
is stable with respect to the strong topology under ratio equivalence.

The proof of this proposition is given in appendix A.

4 Examples

4.1 Stochastic dynamics on the circle

As an illustration of a stochastic dynamical system on a compact manifold, we
consider the system on the unit cirdlé = S* defined by

X1 = Xy +asin(X;) +0.25sin?(X;) + 0.25 + &,41  mod 27, @)

with {¢;} IID and N (0, ¢%) distributed. The state variable is taken modgio we
represent states by points on the interivak, 7). For the above system we fix
at the value).7 and consider qualitative changes in the stochastic dynamias as
varies. The ternd).25(sin*(X; ;) + 1) is added to break the — —x symmetry
of the dynamics. In the symmetric case some particular additional properties arise
which will be discussed in the next subsection.

Figure 3 shows a contour plot for the dependence 1tiq, ) for values
of a decreasing from-0.85 to —0.95. Fora = —0.85, the contour plot shows two
extrema, a maximum and a minimum, together with two saddle points. These are
the minimal number of critical points of each type that can be attained for a non-
degenerate functiofi on the torusM, = S* x S!. As the bifurcation parameter
decreases, the system shows a stochastic bifurcation. Between(.85 anda =
—0.9 the dependence ratio develops a new saddle point and a new local extremum
near(x;—1,2;) = (0,—1). Upon decreasing further, another bifurcation takes
place, where a new saddle point and a local minimum (¢eas, z;) = (0, —3))
appeatr.
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Figure 3: Level sets for the map, = X, ;+asin(X;_;)+0.25sin?(X;_1)+0.25+

441 for decreasing values of(top panels). The dashed-dotted lines, corresponding
with the critical levels of the saddle points, are added for clarity. The lower panels
show the invariant probability density of;.
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Figure 4: Level sets for the mag,,; = tanh(aX;) + ;41 With .11 ~ N(0,0.5?)

for increasing values af (top panels). The dashed-dotted lines correspond to the
critical levels of the saddle points. The corresponding marginal density functions
are shown in the lower panels.

4.2 Stochastic dynamics on the real line

As an example of dynamics dhwe consider
Xt+1 = tanh(aXt) + Ett1- (8)

Figure 4 shows the level sets of the dependence ratio and the corresponding in-
variant probability density function for this map witki(0, o) distributed noise,
takingo = 0.7.

Note that this example is special in that the dynamics is symmetric with
respect to multiplication of reflecting th€-values in zero. Such symmetries are
encountered often in families of models for real-world phenomena, in particular
in cases where there are underlying physical reasons for assuming symmetry. In
contrast with the previous example (the map on the circle) it can be observed in
Fig. 3 that the invariant density become bimodal roughly when the dependence
ratio changes qualitatively. Although beyond the scope of this paper, it can be
shown analytically that the coincidence is perfect in this case. This is related to
the symmetry of the map, together with the fact that the noise is additive and has
a symmetric distribution, independent of the state In those cases the stochastic
bifurcation based on dependence ratios coincides with a phenomenological bifurca-
tion (P-bifurcation). It should be noted that this coincidence arises only in specific
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coordinates. As described above, a P-bifurcation can always be ‘transformed away’
by a change of coordinates.

It can be observed that the bifurcation parameter value differs from that
of the analogous deterministic system £ 0): for the tanh map the stochastic
analogue of the usual pitchfork bifurcationat= 1 is shifted to a larger value of
a. Apparently the value of the bifurcation depends on the noise level. A natural
guestion, therefore, is whether for increasing noise levels the bifurcation parameter
merely shifts, or whether the bifurcation can disappear altogether.

Intuitively, if the map is bounded and has a small range relative to the noise
level, the dynamics is mainly governed by the noise and the deterministic part has
little influence on the dynamics. In fact a simple argument shows that if the noise
is fixed at a sufficiently large level, and if the family of odd mdps} is uniformly
bounded, then there is no phenomenological bifurcatian at 0, and therefore
also no ratio bifurcation atry, z2) = (0,0), for symmetric processes of the form

Xip1 = ga(Xy) + €041 9)

The argument runs as follows. By stationarity the invariant depsstgtisfies

p(z) = /lh (x_Tg(y)> p(y) dy,

g

whereh(-) is the probability density function of the noise. A necessary condition
for p(x) to have a local minimum at = 0 is thatp”(0) > 0, where

p"(0) = /%h” (%@)) p(y) dy.

Sinceh is a unimodal probability density function, its second derivatiVéer) is
negative in a neighbourhood of= 0. It follows that, forg, uniformly bounded, for
largeo the integral on the right hand side of the last equation may remain negative
asa varies.

4.3 Estimated dependence ratios from time series

In order to see whether dependence ratios can be used for classification of pro-
cesses of which only a time series is available, a common situation in empirical
applications, we estimate dependence ratios from simulated time series. We gen-
erate relatively short serigsX,} from the stochastic models considered earlier in
this section; we estimate from these series bivariate invariant densities and use them
to reconstruct the dependence ratios. It is well known [1, 12] that fixed bandwidth
nonparametric kernel density estimates become rather poor in regions with only few
observations. One way to avoid this would be to use a data driven adaptive band-
width which depends on the density locally, becoming larger as fewer observations
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are present locally. Instead of using an adaptive bandwidth we suggest, for real val-
ued time series, to transform the data using the probability integral transform, that
IS, we construct

rank of X; among{ X},
~ :

This amounts to transforming the invariant distribution to a uniform distribution on
the unit interval, which tends to stabilise the estimation of the dependence ratio as
the marginals no longer need to be estimated. The estimated empirical dependence
ratio is then equal to the empirical copula density

U, = Fx(X,) =

~ 1
f(Uh Uz) i va— Z Kb(ul — Ui, us — Ui+1)'

HereK,(uy,us) is a bivariate probability kernel, which we take to be the commonly
used Gaussian kernel:

_ L /e
Kb(ul, UQ) \/ﬁbe .
To avoid ‘probability mass’ from disappearing out of the unit square by this smooth-
ing procedure, we impose periodic boundary conditions\foe= S* and reflecting
boundary conditions foi/ = R.

Figure 5 shows level sets of the empirical dependence ratio obtained from
time series of lengtl000 from the symmetric hyperbolic tangent map given in
equation (8) for different parameter values. The dependence ratio is estimated by
smoothing the empirical copula with a bivariate normal probability density func-
tion (bandwidthb = 0.07). The empirical dependence ratio clearly reflects the fine
structure of the theoretical dependence ratio. Figure 6 shows an attempt at perform-
ing a similar reconstruction for the asymmetric sine map given by equation (7). In
this case the topology of the reconstructed level sets does not correspond with that
obtained earlier; this is due to estimation error. Probably longer time series (along
with smaller bandwidths for the smoothers) are required for this case. We consider
the optimal estimation and the related issue of data requirements for estimating
dependence ratios as an important area for future research.

A Proofs of the topological properties

In this appendix, the topological properties given in section 3 are proved.

A.1 Proofs of the propositions

We repeat the statement of proposition 1 for the convenience of the reader.
Proposition 1. If M is a simple compact state space, then
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Figure 5: First1000 values (top panels) of000 consecutiveX,-values generated

by the mapX;,; = tanh(aX;) + €441 with £,,1 ~ N(0,0.5%). for a = 0.9 (left)
anda = 1.7 (right). The lower panels show the corresponding empirical level sets
estimated with a Gaussian kernel (bandwitlth 0.07).

1. a smooth stochastic dynamical system\énvith everywhere positive transi-
tion density is structurally stable under compact ratio equivalence if and only
if its dependence ratio is regular;

2. the set of stochastic dynamical systemdbthat are structurally stable un-
der compact ratio equivalence is open and everywhere dense {F¥ttagpol-

0ogy.

Proof.
This proposition is a direct corollary from the following two lemmas.

Lemma 1. Let M be a simple compact state spacefIf M? — R is a regular
dependence ratio of a stochastic dynamical system, then there is a constaht
such that every dependence ragi@ N.(f) is regular and equivalent tg.

Lemma 2. Let M be a simple compact state space, and let a stochastic dynamical
system be given with invariant probability dengitgnd dependence ratif. Then

for everye > 0 there is a second system with the same invariant probability density
and regular dependence ratipsuch thaty € N.(f).

We take for the moment these lemmas for granted. Then we infer from lemma 1
that regular ratios are structurally stable. Conversely, i a structurally stable
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Figure 6: Firstl000 values (top panels) @00 consecutiveX,-values generated by
the mapX,,; = X;+asin(X;)+0.25sin?(X;)+0.25+¢,41 With e, ~ N(0,0.7%)

for a = —0.85 (left) anda = —0.95 (right). The lower panels show the level sets of
the corresponding empirical dependence ratio.

ratio, there is a neighbourhodd.( f) such that every € N.(f) is equivalent tof.
But as the regular ratios are dense, according to lemma 2, there is a system with
the same invariant probability and with a regular dependencegatiav.(f) such
that g is equivalent tof. By definition of equivalence, the ratip itself has to be
regular. This finishes the proof of the first statement.

For the second statement, denote the transition probability density of the
first system byr; and of the second system by. Note that since

Tr(w2|z1) = f(21, 22)p(72), To(@a|r1) = g(21, 22)p(22),

the fact thaty € N.(f) implies thatr, € N:(7) and thatt — 0 ase — 0. The
proposition now follows from lemma 2. | |

The following result is essentially a corollary of the results for simple compact state
spaces.

Proposition 2.  Let M be an open simply connected subseR&f such that the
boundaryoM is a smooth manifold. A well-behaved smooth stochastic dynami-
cal system is structurally stable under ratio equivalence with respect to the strong

topology.
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Proof.

Let f be the dependence ratio of the system, and 1ét} be an exhaustion af/.
Since the system is well-behaved, therefare 0 andc, > 0 such that for every =
07 ce 73:

1. for every componenfC;} of the closure of\/? the restrictionf{ of f to C;
is weakly ratio equivalent t@;, and

2. there is a compact s&f/ such thatD f/ (z)|, > ¢ if x € C/\ K.

Then there is for every > T and everyj a constant{ > 0 such that for every €
N_(f) in the C*-topology onM?, the restrictiong; of g to C} is weakly ratio
t

equivalent tof/. Lete, = min; e}, ande(z) = max{e, |z € M?}. It follows
that N.(,)(f) is an open neighbourhood ¢fin the strongC?-topology, such that
everyg € N.(,)(f) is ratio equivalent tgf. [ |

A.2 Proofs of the lemmas

It remains to demonstrate the lemmas. Note that they are similar to the analogous
statements about regular functions in the Morse theory. The main technical diffi-
culty is that the set of smooth dependence ratios\fnis a proper subset of the
space of smooth functions a2, and therefore we have less freedom to construct
perturbations of a function. This implies that while the proof of lemma 1 is a sim-
ple extension of the analogous arguments of Morse theory, the proof of lemma 2 is
more involved.

We begin by recalling the following standard technical result, the proof of
which is left to the reader. Note that we denote a ball of radiasound0 by B,.,
thatis,B, = {z € R*|||z|]| < r}; also we introduce

_ _ j Y
1 = gllexw) = goas max | D () = Digla)|.

Lemma3. LetU C R* be abounded open set, and fet U — R be aC? function
with Df(0) = 0 and H f(0) non-degenerate. Then there exist constantg, > 0
such thatBs, C U and that for every) < ¢ < §, and0 < n < 1, thereis are > 0,
such that every functiopsatisfying|| f — g||c2() < € has a unique non-degenerate
critical pointy € Bs with |g(y) — f(0)| < n, with g having the same index atas f
at0.

Proof of lemma 1. We give the proof for the case thaf is the closure of a
bounded open simply connected subseék®f The generalisation to compact man-
ifolds is straightforward but notationally awkward, and it is therefore left to the
reader.
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Letx = (z1,22) andy = (yi, y2) denote points in\/?. Note thatr,(z) =
x, etc. We shall first show that i > 0 is sufficiently small, then every € N.(f)
has the same index sequence athis part of the proof is standard. Afterwards, we
shall construct a diffeomorphism avf, homotopic to the identity, which maps the
critical points ofg to the corresponding critical points ¢f

Let &, - -+, & be the critical points off, ordered such that; = f(¢;) <
f(&) = v;if i < j. Putyy = 0; thenvy < v;. We set

¢ =, Jnin vi —vl, o=  Jnin {Hﬂl(fi) = m(&)I llme (&) — 7T2(§j)|\};
then( is the smallest absolute difference of two critical values,arsgthe smallest
distance of two projections of critical points ar.

Choose) < § < o such that the set§; = ¢ + Bs andU; = & + B;
are contained id/? and have empty intersection for any j; this is possible by
assumption 2. Moreover, we sé{z) = f(& + x) for z € B;. By assumption
D f;(0) vanishes and{ f;(0) is nondegenerate. By lemma 3, we can find- 0,
such that every functiop; defined or¢; + B;s with || f; — gi||c2 < e has a unique
nondegenerate critical poiptin Bs, with | f;(0) — g:(y;)| < (/2 and withy; having
the same index; for g; asO has forf;.

Let C = M?\ |, U;; note thatC is compact, and thabf # 0 on C.
Therefore, if necessary by choosiag> 0 smaller, we obtain that if € N.(f),
thenDg # 0 on C as well. This shows that the index sequenceg ahd g are
equal.

We have to provide a diffeomorphismp : M — M, homotopic to the
identity, such that

®(x) = (%0 om(x),po 7T2(95))
maps the critical points; + y; of g to the critical points; of f. Note that by the
choice ofj, no two projections of the set§ on M intersect:

m(U;) Nma(U;) = 0, forall 1<i,j<k.

For giveni and/, consider onr,(U;) a differentiable curve(t), defined for0 <
t <1, such thaty(0) = m(&;) andy(1) = m(& + ;). Construct a vector field;,
on M such thaty(t) = X (y(t)) for0 < ¢ < 1 andX;, = 0 on M\, (U;).

Let X =}, , Xi. The timed mapy = e has the required properticlk.

Proof of lemma 2. To prove this lemma, for any given stochastic dynamical sys-
tem with invariant probabilityp and dependence ratify and for anys > 0, we

have to construct a system with the same invariant probability and with dependence
ratiog € N.(f) such thaty is regular. The main technical difficulty, compared to
the proof of the analogous statements for functions, is that we have ‘fewer’ pertur-
bations to play with, since not every real-valued function\dh is a dependence
ratio.
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Changing transition probabilities. We begin by devising a way how we can
change the transition probability of a process without changing its invariant proba-
bilities. Recall equation (3):

ptﬂ(%ﬂ) :/ T(ﬂft+1’$t)pt(xt)d$t-
M

Let ¢(z1, z5) be a function such that

/ Q(I17$2)d$1 :/ Q($17$2)d$2 =0,
M

M

and such that (zz|z,) > 0 for all x;, 2z, € M, where

4(x1,22) (10)

T(xo|w1) = T(22]21) + (@)

Then7 is also a transition probability density. Lgtdenote the unique invariant
density satisfyingp(zs) = [ 7(zs|21)p(z1)dz; and [ p(z)dz = 1. Note that
thenp satisfies also the integral equation

/]w%(mﬂxl)p(ﬂcl)dml:/MT(QEQ\xl)p(:cl)dxl+/ Mp(:cl)dxl

M P(xl)
= p(z2).

This implies thatp is also an invariant density of the stationary stochastic process
with transition probability density.

Construction of the perturbations. For givene > 0, we shall construct a func-
tion ¢ : M? — R such that the perturbed dependence ratio

o _ T(@a]ay)
f( b 2> p(l’z)

wheref is given by (10) is inV.(7) and such that it is regular. This will be achieved
by a transversality argument, for which we need a finite family of functi;cﬁ;‘/g)
such that their differentials span the tangent sga¢e at every pointr € M?2.

In the ‘ordinary’ case of the Morse classification of real valued functiong/gn
this is achieved by looking, for evely € M, at functions of the fornt, ;(z) =

(2" — &) p(||lz — €] /6), wherep : R — R is a smooth function such thatt) = 1

if |t| < Landp(t) = 0if |t| > 2. Itis easily seen that this infinite family has the
property that their differentials spdi™ everywhere. By a compactness argument,
we can find pointg;, - - -, &,, such this is still true for the functiorg, ;. Then one
can show that a suitable perturbatipr- > af¢, ; of a given functionf is regular.
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In our case, we have to modify this argument, as we need to preserve the property
that the perturbed dependence ratio is still a dependence ratio.
Therefore, letp, 1) : R — R be smooth functions such that

(t) = 1if |t < 1,
N0 i s 2,

and
P(t)=0 if |t| <lorlt| > 2, ¥(t) > 0 otherwise

Define functiond’ : R™ — R, for j = 0,1,--- ,m by

gg(x):{ el =&y + Bawlle —€ll/s) it =0,
: (@ — )pllle —€l/0) + Byo(lle = €N/6) i e {1, m);

heres = §(¢) > 0 is sufficiently small such that the intersection®fs(&)\ B;s(€)
with M has positive measure. The constafifs= 3;(£) are determined by the
requirement thay,, ¢ dz = 0 for all ;.

Let a positive function” : M? — R be given, and fo€ = (&1, &) € M?,
define the functions (note that, o, € M):

(51 (1) 5% (22) _y
P(xy,x ’

ij(xth) _ . ( 1 5 2)
gjz(@)gol (1) i—9

P(l’1,$2)

Denote byx{ the j'th coordinate ofr; € M. We find that

1
8L§» if = 3 g ;
?z<sl,52>{P<£1,52> nrEns=y

ox), 0 otherwise.

It follows that the derivativei)ij(&, &) are linearly independent. By continuity,
there is a (relative) neighbourhodg of every point{ = (£, &) in M?, such that
the 2m vectorsDLﬁj(xl,:m), i=1,2,7=1,---,m, are linearly independent for
all ((L’l,l‘g) € Ug.

Since)M is compact, it is covered by a finite number of thelégtsayU,,
oo, Ugy. Set

qu(xl, r3) = P(x1, $2)L§;(x1a 2).
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Theng}/P is a finite collection of real-valued functions di* such that their
derivatives spaik*™ at every poin{x, z,) € M2, Moreover

/ (ij(xl,iﬁz) dz, =/ qu(:)sl,xg) dxy = 0.
M M

Let the stationary stochastic process defined by the transition probatgitityz, )
have invariant probability density, invariant joint probability density'?(z;, z2)
and dependence ratio

pl’Q(fla 2y _ 7(w|T))
p(x1)p(z2) p(x2)

f(l“l,l’z) =

Let A be a sufficiently small open neighbourhood)ah R?™¥ such that for alk, =
(af;) € A, the function

T1,T
<x2|x1 _7_1‘2'3:‘1 Z quj 1, 2

ijk

is an everywhere positive transition probability density. Such aisetists, since
the transition probability density is assumed to be strictly positive everywhere on
the compact manifold/?; hence, if||a| is small, thenF is strictly positive on)/>

as well. The dependence ratio of the new process is given by

glae) = f(a) + 3 o Tl 2]

ik p(%)P(%)

with o = (af;) € A. If we setP(z1,2,) = p(x1)p(x2), we have thay(a, z) is
a dependence ratio and that the derivativeg/dfi1, z2)/p(21)p(z2) spanR*™ at

every point ofM?2.

The transversality argument. Recall the definition of transversality (see e.qg. [5],
definition 10.3.1, p. 83): ifX andY are smooth manifold$}” a smooth submani-
fold of Y, the mapf : X — Y smooth, and: € X, then f intersectdV transver-
sally atz, if either f(z) & W or f(z) € W andTy,)Y = TpyW + df (2)(T.X).
More generally, we say that intersectsiV transversally atA C X, if f inter-
sectslV transversally at: for everyx € A.

We have the theorem that #, X andY are smooth manifoldsi}’ a
smooth submanifold of andf : A x X — Y a smooth map which intersedts
transversally, then the set of pointss A for which f, = f(a,.) : X — Y inter-
sectslV transversally is everywhere denseAr(see [5], theorem 10.3.3, p. 85).

The derivatived f of a functionf : M — R on anm-dimensional man-
ifold M defines a section of the cotangent bundl€*A/; in a sufficiently small
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neighbourhood’ of a point in )/, the restrictionl;; M of the bundle tdU is iso-
morphic toU x R™, and the section takes the fotw) = (z, Df(z)). The zero
section)M, of T* M, which is isomorphic tdV/, is locally of the formU x {0}.

The sectiors is transversal td/, at a pointr € M,, if eithers(x) & M,,
or if

Note that this is equivalent to saying thais transversal ta//, everywhere if and
only if the function f has only nondegenerate critical points. Such a function is
called aregular functionor aMorse function

Consider now the functiop : A x M — R constructed above and its
associated map: A x M — T*M given bys(a,z) = (x, d.g(a, x)). Note thats
is transversal td/,, since in local coordinates

ds(a, ZL’)T(Q@)A X M + T(x70)MO

0 I
= &, R*™E x R™ 4+ R™ x {0},
Dy Hez9(a,7)

and since by construction the derivativég;); (1, z2)/p(z1)p(z2)) spanR*™ ev-
erywhere on\/2. By the theorem mentioned above, the set ef A, for whichg, =
g(a,.) is a Morse function, is an everywhere dense set.in

Therefore, for every > 0, we can choose so small that the dependence
ratiog = g, is a Morse function ang € N,/ (f). It remains to show that by a
second small perturbation, we can achieve that the perturbed dependence ratio is a
regular dependence ratio.

The second perturbation. Note that since : M? — R is a Morse function, its
critical points are isolated. Denote them&y- - -, éx € M2,

We proceed inductively; fok = 1, we setg; = g. Fork > 1, we assume
thatg, : M? — Risa dependence ratio that is a Morse functigne N(;_om.(f),

and thatg,, has critical pointsy, - - -, &1, &, - - -, En, such that the value@(gl)
up to g, (&) are different, and such that(¢;) 7£ m(&) for £ =1,2,if 1 < i <
Jj < k —1 (recall thatr,(z1, z2) = x, is the projection on théth coordinate).

We choose a neighbourhoddc M2 of &, such that,, is the only critical
pointofg, in U. Letb € R*™ be such thatb, Hg(&,)~'b) # 0, where(z, y) denotes
the inner product of the vectorsandy; the inverse off g, (&) exists sinceyy is
nondegenerate if).; note that the set of vectobshat do not satisfy this condition
is the union of the origin oR?™ and a smooth codimension-1 manifold.

Consider the function

hi(xy,x2) = h(t, x1,22) = gr(z1,22) — thULg’“ (21, x2).

(]
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The critical points ofh; are determined by the equation

0= Dht(.fl, .Z'Q) = ng<l'1, CCQ) — tz bUDLka (l’l, 513'2).
ij
We solver = (x1, z5) as a function of in a neighbourhood of = 0 and(z, x2) =
&k, using the fact thatd g, (&) is invertible. For the solution(t) = (x1(t), z2(t)),

we find that
wo ,
dt 0= p(”lfk)P(Wzﬁk)Hgk(gk) " )

Note that by the assumption énthis derivative is nonzero. We restrict the possible
choice ofb further by requiring that

% dx 1
B — p(mi&)p(mads)

Moreover, setting;(t) = h(z(t)), we have

waﬁ + Dyhy(z waLff,

DreH g (&) 710 # 0.

and

d?v 1

dt? ap ) = - p(m&)p(mate)
There are only finitely many values ofor which v(t) is equal to the critical val-
uesgy(&;), or for which the projectionr,(z(t)) coincides withr,(&;) for somel <
1 < k and som¢g = 1,2. From equations (11) and (12) it follows that the set of
values oft avoiding these special values is everywhere dense in a neighbourhood

oft =0.
Choosé;, in this set such that the function

k+1 = Gk — tk Z szLgk

]

(b, Hgi(&)~"b) # 0. (12)

satisfiesgi1 € Ny oryo(f), and puté, = z(t;). Then the functiory,,, sat-
isfies the induction hypothesis. We conclude that the fungjipn, is a regular
dependence ratio, ang, ., € N.(f). This finishes the proof of the lemma. &
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