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Abstract

The time evolution of aggregate economic variables, such as stock prices, is affected
by market expectations of individual investors. Neo-classical economic theory assumes
that individuals form expectations rationally, thus enforcing prices to track economic
fundamentals and leading to an efficient allocation of resources. However, laboratory ex-
periments with human subjects have shown that individuals do not behave fully rational
but instead follow simple heuristics. In laboratory markets prices may show persistent
deviations from fundamentals similar to the large swings observed in real stock prices.

Here we show that evolutionary selection among simple forecasting heuristics can
explain coordination of individual behavior leading to three different aggregate outcomes
observed in recent laboratory market forecasting experiments: slow monotonic price
convergence, oscillatory dampened price fluctuations and persistent price oscillations. In
our model forecasting strategies are selected every period from a small population of
plausible heuristics, such as adaptive expectations and trend following rules. Individuals
adapt their strategies over time, based on the relative forecasting performance of the
heuristics. As a result, the evolutionary switching mechanism exhibits path dependence
and matches individual forecasting behavior as well as aggregate market outcomes in
the experiments. Our results are in line with recent work on agent-based models of
interaction and contribute to a behavioral explanation of universal features of financial
markets.
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1 Introduction

The time evolution of aggregate economic variables, such as stock prices, is affected by market
expectations of individual investors. Neo-classical economic theory assumes that individuals
form expectations rationally, thus enforcing prices to track economic fundamentals and leading
to an efficient allocation of resources. This tradition, which goes back to seminal work by Muth
(Muth, 1961), has a strong theoretical appealing. Unfortunately, this approach also shifts
the economists’ attention from many interesting short- or medium-run phenomena, such as
imperfect learning or herding behavior, which lie outside the domain of full rationality.

Even before the rational expectations became a leading paradigm in economics, Herbert
Simon (Simon, 1957) argued that rationality imposes unrealistically strong informational and
computational requirements upon individual behavior. Furthermore, the rational expectations
approach leaves open the question of how people acquire these expectations and, if they do
through experience, how does the economy behave during the learning process. Laboratory
experiments with human subjects, which allow researchers to analyze this process directly,
have shown that individuals do not behave fully rational but instead follow simple heuristics
(see, e.g., Tversky and Kahneman (1974) and the Nobel prize lecture by Kahneman (2003)).
These heuristics can account for persistent biases in the decision making. This explains why
in laboratory markets prices may show persistent deviations from fundamentals similar to the
large swings observed in real stock prices.

On the theoretical side, a number of models of bounded rationality have been developed
in different fields, see Conlisk (1996) for a comprehensive review. In macroeconomics Sargent
(1993) and Evans and Honkapohja (2001) advocate the use of different forms of adaptive
learning, under which agents do not know the true economic “law of motion” but apply
econometric techniques for learning it. In game theory Arthur (1991) and Erev and Roth
(1998) explain a number of experiments by simple reinforcement learning models, in which
agents choose strategies on the basis of their past success.

All these approaches can be expressed in terms of behavior of a single, representative agent,
and leave, therefore, no space for heterogeneity of participants, which is also often found in
experiments. But heterogeneity might be crucial for explaining a number of striking findings
of the recent “learning to forecast” experiments, described at length in Hommes, Sonnemans,
Tuinstra, and Velden (2005). In a stationary environment during 50 periods participants
had to predict the price of a risky asset (say a stock) having knowledge of the fundamental
parameters (mean dividend and interest rate) and previous price realizations, but without
knowing the forecasts of others. If all agents would behave rationally or learn to behave
rationally, the market price would quickly converge to a constant fundamental value p/ = 60.
While in some groups convergence did happen, in other groups prices persistently fluctuated
(see Fig. 1, Left). What was even more striking, is that in all groups individuals were able to
coordinate their forecasts (see Fig. 2, Left).

In this paper we present evidence that evolutionary selection among simple heterogeneous
forecasting heuristics can explain coordination of individual behavior leading to three differ-
ent aggregate outcomes: slow monotonic price convergence, persistent price oscillations and
oscillatory dampened price fluctuations. In our model forecasting strategies are selected every
period from a small population of plausible heuristics, such as adaptive expectations and trend
following rules. Individuals adapt their strategies over time, based on the relative forecasting
performance of the heuristics. As a result, the evolutionary switching mechanism exhibits path
dependence and matches individual forecasting behavior as well as aggregate market outcomes
in the experiments. The only differences between the model simulations in Figs. 1 and 2 are



the initial prices and the initial distribution over the heuristics.

The paper is organized as follows. Section 2 describes the experiment from Hommes,
Sonnemans, Tuinstra, and Velden (2005). In Section 3 the evolutionary model is introduced,
and its various assumptions are discussed. Model simulations are performed in Section 4.
Section 5 is devoted to the stability analysis of the deterministic skeleton of the model, while
Section 6 investigates how well the model fits the experimental data. Final remarks are given
in Section 7.

2 Laboratory experiment

A number of sessions of a computerized “learning to forecast” experiment have been performed
in the CREED laboratory at the University of Amsterdam; see Hommes, Sonnemans, Tuinstra,
and Velden (2005) for a detailed description. In each session of the experiment six participants
had to predict the price of an asset for 51 periods and have been rewarded according to the
accuracy of their predictions. The participants were told that they are advisers to a pension
fund and that this pension fund can invest money either in a risk free asset with real interest
rate r per period or in shares of an infinitely lived risky asset. In each period the risky asset
pays uncertain dividend which is a random variable, independent identically distributed (IID),
with mean . The price of the risky asset, p;, is determined by a market clearing equation
on the basis of the investment strategies of the pension fund. The exact functional form of
the strategies and the equilibrium equation were unknown to the participants, but they were
informed that the higher their forecast is, the larger will be the demand for the risky asset of
the pension fund. Participants also knew the values of the parameters » = 0.05 and y = 3,
and therefore had enough information to compute the rational fundamental price (i.e. the
discounted sum of the expected future dividend stream) of the risky asset p/ = /r = 60.

Every session of the experiment lasted 51 periods. In every period each of the 6 participants
provided a two period ahead forecast for the price of the risky asset, given the available
information. This information consisted of past prices (up to two lags) of the risky asset and
own past predictions (up to one lag) made by the participant. Participants did not know
the predictions of other participants, neither did they know exactly how their own forecast
affected the equilibrium price. When all 6 predictions for the price in period ¢ 4+ 1 have been
submitted, the current market clearing price was computed according to a standard model of
asset pricing, see e.g. Brock and Hommes (1998):

1

= 1—4—7“((1 — N4)Piyy + nep’ + 9+ 5t) ) (1)

Pt
where pf,; denotes an (equally weighted) average of the 6 individual forecasts, r(= 0.05) is the
risk free interest rate, y(= 3) is the mean dividend, &, is a stochastic term representing small
demand and supply shocks, and n; stands for a small fraction of “robot” traders who always
submit a fundamental forecast p/. These robot traders were introduced as a “stabilizing force”
in the experiment to prevent the occurrence of large bubbles. The fraction of robot traders
increased as the price moved away from its fundamental equilibrium level:

1
ny =1—exp <—% |pt71 —pf’) . (2)

This mechanism reflects the feature that in real markets there is more agreement about over-
or undervaluation when the deviation from the fundamental is large. At the end of each period
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Figure 1: Laboratory experiments and heuristics switching model simulations.
Prices (Left) for laboratory experiments (red points) and evolutionary model (blue lines).
Fractions (Right) of four forecasting heuristics: adaptive expectations (ADA, purple circles),
weak trend followers (WTR, black squares), strong trend followers (STR, blue triangles) and
learning anchoring and adjustment heuristic (LAA, red bars). Coordination of individual
forecasts explains three different aggregate market outcomes: monotonic convergence to equi-
librium (7Top), permanent oscillations (Middle) and oscillatory convergence (Bottom). Oscil-
lations may be triggered by initial prices, are reinforced when the initial fraction of weak and
strong trend heuristics is relatively large and may be sustained by the learning anchoring and
adjustment heuristic.



every participant h was informed about the realized price and her earnings were defined by a
quadratic scoring rule

1300
€¢,p = Max (1300 — E(pt — pf,h)27 0) . (3)
There were 7 sessions of the experiment. The stochastic shocks e, were the same in all sessions
(normally distributed, with mean 0 and standard deviation 0.5).

Findings of the experiment

The main findings of the experiment are as follows. First, realized asset prices differed sig-
nificantly from the rational fundamental price in all sessions. Comparison of the experiment
with prediction of the rational expectations model shows that on average the asset was un-
dervalued. Furthermore, prices exhibited excess volatility, with much larger swings than the
rational expectations model.

Second, three different price patterns were observed, see Fig. 1, Left. In group 2 (Top)
and group 5 (not shown) the price of the asset slowly converged, almost monotonically, to the
fundamental price. In group 1 (Middle) and group 6 (not shown) the price oscillates around
the fundamental price with an (almost) constant amplitude. In group 4 (not shown) and group
7 (Bottom) large initial fluctuations were observed, dampening slowly towards the end of the
experiment.’

Third, the analysis of the individual price predictions reveals that during each session the
participants were able to coordinate on a common prediction strategy, as illustrated in Fig. 2
Left. Finally, estimation of the individual predictions based on the last 40 observations to
allow for a short learning phase, showed that participants had a tendency to use simple, linear
forecasting rules, such as naive expectations (i.e. the forecast is simply the last observed price)
and adaptive expectations (a weighted average of the last observed price and the last forecast).
Many participants only used the two most recently observed prices, for example in a simple
linear trend extrapolation forecasting rule.

3 Evolutionary Model

In our simulation model agents will select rules from a population of simple forecasting rules or
heuristics. The choice of heuristics will be governed by an evolutionary selection mechanism,
based on the principle that more successful strategies will attract more followers. Strategy
performance is measured by accumulated (negative) squared prediction errors, in line with the
payment incentives in the laboratory experiments.

3.1 Forecasting Heuristics

To keep our model as simple as possible, but rich enough to explain the different observed
price patterns, we have chosen only 4 heuristics which are intuitively simple and were among
the rules estimated on the individual forecasts in the experiment. A behavioral interpretation
underlies each heuristic. The first heuristic is an adaptive expectations (ADA) rule, using
a weighted average between the last observed market price and the last individual forecast.

!Price dynamics in group 3 (not shown) was more difficult to classify, due to a possible typing error of one
of the participants.



Note that at the moment when forecasts of price p;,; are submitted, price p; is still unknown
(see Eq. 1) and the last observed price is p; 1. At the same time, the last own forecast pf, is
known when forecasting p;,1. We have chosen the following ADA rule:

Piy1g = 0.65pi—1 +0.35p;; - (4)

The second and third heuristics are trend following rules extrapolating a weak or a strong
trend respectively. They simply predict the last observed price level plus a multiple of the
last observed price change, and only differ in the magnitude of the extrapolation factor. In
the case of weak trend rule (WTR) the factor is small and equal to 0.4, so that the rule is

pf+1,2 =pi1+04(pr1—pr2) - (5)

The strong trend rule (STR) has a larger extrapolation factor 1.3 and is given by

Pii1s = Pio1+ 1.3 (po1 — pr2) . (6)

The fourth heuristic is slightly more complicated. It combines an average prediction of the last
observed price and an estimate of the long run equilibrium price level with an extrapolation
of the last price change. More precisely, the rule is given by

Pir1a = 05 (i) + pee1) + (pr-1 — pi—2) (7)
where p§’, is the sample average of all past prices, that is, pf’, = %Z;;}) pj. This rule is a
learning anchoring and adjustment heuristic (LAA), since it uses a (time varying, learnable)
anchor or reference point, 0.5 (pf¥; 4+ pi—1), defined as an (equally weighted) average between
the last observed price and the sample mean of all past prices, and extrapolates the last price
change (p;_1 — p;—2) from there. Tversky and Kahneman (1974) have shown that people often
rely on such anchoring and adjustment heuristics. The LAA rule has been obtained from a
related linear anchoring and adjustment heuristic (AA)

Pi1 =30+ 1.5p 1 —pro=05(p" +pi1)+ (pro1 — pra). (8)

For some individuals in the experiment the estimated individual forecasting rule was an AR(2)
rule very close to the specification in (8). In the experiment, however, subjects did not know
the fundamental price p/ explicitly, but apparently were able to learn the anchor 0.5(p/ +p;_;)
and extrapolate price changes from there. Therefore, we replaced p’ in the AA rule (8) by its
proxy, p?’,, given by the observed sample average of prices to obtain the LAA rule (7).2

All these heuristics are first order heuristics in the sense that they only use the last observed
price level, the last forecast and/or the last observed price change.

3.2 Evolutionary Switching

Which forecasting heuristics from the population should agents choose? Our simulation model
is based upon evolutionary switching between the four forecasting heuristics, driven by the
past relative performance of the heuristics. Heuristics that have been more successful in the
past, will attract more followers. The performance measure is (minus) squared forecasting

2However, we will use the AA heuristic (8) in the stability analysis in Section 5.



errors, similar to the financial rewards in the experiment. The performance of heuristic h,
1 < h <4, up to (and including) time period ¢ is given by

U= — (e = 050) " + 1 U1 (9)

The parameter 0 < 1 < 1 measures the relative weight agents give to past errors and thus
represents their memory strength. When n = 0, only the performance of the last period plays
a role in the updating of the shares assigned to the different rules. For 0 < n < 1, all past
prediction errors affect the heuristic’s performance.

Given the performance measure, the weight assigned to rule h is updated according to a
discrete choice model with asynchronous updating (Hommes, Huang, and Wang, 2005; Diks

and Weide, 2005)

eXP(ﬁ Ut—l,h)

nep = 0n—1 + (1 —0) 7 ’
t—1

(10)
where Z; | = Zi:l exp(B Ui—1,) is a normalization factor. There are two important parame-
ters in (10). The parameter 0 < ¢ < 1 gives some persistence or inertia in the weight assigned
to rule h, reflecting the fact that not all the participants are willing to update their rule in
every period. Hence, § may be interpreted as the fraction of individuals who stick to their
previous strategy. In the extreme case 6 = 1, the initial weights assigned to the rules never
change, no matter what their past performance is. If 0 < § < 1, in each period a fraction
1 — 0 of participants updates their rule according to the well known discrete choice model used
for example in Brock and Hommes (1997). The parameter 3 > 0 represents the intensity of
choice measuring how sensitive individuals are to differences in strategy performance. The
higher the intensity of choice (3, the faster individuals will switch to more successful rules. In
the extreme case # = 0, the fractions in (10) move to an equal distribution independent of
their past performance. At the other extreme § = oo, all agents who update their heuristic
(i.e. a fraction 1 — ¢) switch to the most successful predictor.
In the evolutionary heuristics switching model the price p; in period ¢ is computed as

1 € (& (& (& —
Pe=7 s ((1 — ) (nt,l Diy11 TNe2Piy10 TN 3Pryr g+ Nea pt+1,4) +np’ + 7+ 5t> , (11)
where pf,;,...,pi114 are the predictions for period ¢ + 1 according to the 4 heuristics in
Eqs. 4-7, ny1, ..., n.4 are the fractions using these heuristics described by Eqgs. 9-10, n; stands

for a small fraction of “robot” traders described by (2), r = 0.05 is the risk free interest rate,
7 = 3 is the mean dividend, p/ = 60 is the fundamental price and ¢, is the stochastic term
representing small demand and supply shocks (taken to be the same as in the experiment).

3.3 Model Initialization

The model is initialized by two initial prices, py and p;, and initial weights n;;, 1 < h < 4
(summing to 1; the initial share of robot traders n; = 0). Given py and p;, the heuristics
forecasts can be computed and, using the initial weights of the heuristics, the price p, can
be computed. In the next period, the forecasts of the heuristics are updated, the fraction of
robot traders is computed, while the same initial weights n; ; for individual rules are used
(past performance is not well defined yet in period 3). The price ps is computed and the
initialization stage is finished. Starting from period 4 the evolution according to Eq. 11 is
well defined: first the performance measure in (9) is updated, then, the new weights of the
heuristics are computed according to (10) and finally a new price is determined by (11).

7



4 Model Simulations
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Figure 2: Coordination in laboratory experiments and model simulations. Individual
predictions of 6 participants in the laboratory experiments (Left) and predictions of 4 fore-
casting heuristics in evolutionary heuristics switching model (Right). Heuristics are: adaptive
expectations (ADA, purple circles), weak trend followers (WTR, black squares), strong trend
followers (STR, blue triangles) and learning anchoring and adjustment heuristic (LAA, red
bars). Coordination of individual forecasts arises both in the experiment and in the simula-
tion model in all observed aggregate outcomes: monotonic convergence to equilibrium (Top),
permanent oscillations (Middle) and oscillatory convergence (Bottom).

Three different patterns emerged in the same experiment. An explanation for this finding
which we propose in this paper is that heterogeneous learning, formalized in the previous
section, has the path-dependence property. To stress the path-dependence, we simulate the



model for a fixed set of parameters: § = 0.4, n = 0.7, § = 0.9. The simulations differ only
in initial conditions, that is, in the two initial prices and in the initial distribution of agents
over the population of heuristics. For the three simulations shown in Figs. 1 and 2 the initial
conditions are as follows:

e for group 2 with monotonic convergence: initial prices: pg = 49, p; = 50.5; initial shares
nNip=n14 = 025, Nig = 0.35 and nisz = 015,

e for group 1 with persistent oscillations: initial prices: py = 51,p; = 54; initial shares
nNip=n14= 015, Ni2 = N3 = 0.35.

e for group 7 with dampened oscillations: initial prices: py = 44, p; = 48; initial shares
ni1 =0, nio =n14 =0.17 and n; 3 = 0.66;

We stress that, at this stage, no fitting exercise has been performed. All plots have been
easily obtained through some trial-and-error experimentation with different initial conditions
and parameters. In particular, we experimented with initial prices {pg, p1} close to the prices
observed in the first two rounds of the corresponding experimental group. The initial shares of
heuristics were chosen in such a way to match the trend patterns observed in the corresponding
group during first few periods. For all simulations, we use the same realizations {&,}?2, of the
noise as in the experiment.

Fig. 1 shows realized prices (Left panel) for both the experiments and the heuristics switch-
ing model, as well as the shares (Right panel) of the 4 heuristics. The switching heuristics
model indeed exhibits path-dependence, since the simulations only differ in initial states. In
particular, the initial distribution over the population of heuristics is important in determining
which pattern is more likely to emerge. The model is capable of reproducing all three qualita-
tively different price patterns observed in the experiments, that is, monotonically converging
prices, permanent oscillations and dampened oscillations.® This path-dependent feature of
the model remains valid for a large range of parameters. Qualitatively the simulation results
are robust with respect to the parameters, but some quantitative features, such as the speed
of convergence or the amplitude and frequency of oscillations may change when parameters
are varied. Fig. 2 shows the individual forecasts in the experiments (Left panel) as well as
the forecasts of the 4 heuristics (Right panel). Similar to the experiments, in the simulation
model coordination of forecasts arises.

In the case of monotonic convergence (see the upper panels of Fig. 1), the weights of all
four heuristics remain relatively close during the simulations, causing slow, almost monotonic
convergence of the price to its fundamental equilibrium p/ = 60. The increase of the price
together with a series of subsequent positive shocks ¢, leads to a temporary slight domination
of the STR heuristic between periods 13 and 23. However, this rule overestimates the price
trend so that, ultimately, the adaptive heuristic takes the lead, and price converges to its
fundamental level. In the simulations for the groups with constant oscillations (see the middle
panel), the weak and strong trend followers represent the largest proportions in the initial
distribution of heuristics, and aggregate prices rise. However already after 5 periods the
impact of the LAA heuristic starts to increase, because it predicts better than the static

3Notice that we do not use the actual experimental data during simulations: the simulations should thus
be viewed as 50-period ahead forecasts of the patterns of aggregate price behavior and underlying individual
forecasting behavior. In fact, the model performs much better (in particular, it does not go out-of-phase in
the oscillating groups), if the actual price realizations from the experiment are used at each step. See Anufriev
and Hommes (2009) for the model performance in one- or two-periods ahead forecasting.



strong and weak trend followers, who either overestimate or underestimate the price trend.
The impact of the anchoring and adjustment heuristic gradually increases, it dominates the
market within 10 periods, rising to more than 70% after 40 periods. Our switching heuristics
model thus explains coordination of individual forecasts as well as persistent price oscillations
around the long run equilibrium level. Finally, in the last simulation (see the lower panel) a
large initial impact of (strong) trend followers leads to a strong rise of market prices in the
first 7 periods, followed by large price oscillations. Already relatively quickly, after period
10, however, the impact of the STR rule decreases, while the impact of the LAA heuristic
rises to more than 80% after 30 periods. Once again, the flexible anchoring and adjustment
heuristic forecasts better than the static strong trend following rule, which overestimates the
price trend. After 40 periods the impact of the anchoring adjustment heuristic starts decrease
slowly, and consequently the price oscillations slowly stabilize. The decline of the impact of
the LAA heuristic implies also weaker coordination between individual predictions during the
last 10 periods, which is also consistent with experimental data.

5 Analysis of the Model

The simulations pose a number of interesting theoretical questions concerning the dynamics
of the model. How general is the path-dependent property? Are fluctuations only short-
run phenomena or are fluctuations persistent in the long run as well? Are the fluctuations
endogenously generated or are exogenous shocks crucial for sustained fluctuations? To address
these questions, we shall consider the deterministic skeleton of dynamics, letting ¢, = 0 in
pricing equation (11), and analyze its properties. To keep the stability analysis tractable and
avoid a non-autonomous system, we replace the LAA rule by an analogous AA heuristic (8)
with fixed anchor p/ instead of the time varying anchor p®,.

5.1 Local stability of four heuristic evolutionary switching model

For the sake of generality let us introduce the following four heuristics,* one of which is
adaptive and three other are extrapolative rules (correctly predicting p/ if the past history
was pg_g = pPi—1 = pf)3

Plest = wpe—r + (L —w)pi,,

e (12)
Phi+1 = (1— 0Bt — ﬂh,Q)pf + BraDi—1 + B 2Pi—2 for h =2,3,4.

The resulting dynamics can be described by a multi-dimensional system consisting of the
model of evolutionary learning (9)-(11) with forecasting heuristics (12). The following result,
which holds also for the non-autonomous system with the LAA heuristic, shows that if price
converges, it must converge to the fundamental level.

Proposition 5.1. Assume that the price dynamics of the deterministic skeleton in the asset
pricing model with evolutionary switching, (9)-(12), converges to a constant price p*. Then
the price converges to its fundamental level, i.e., p* = pf. Furthermore, the share of robots is
fized and equal to 0, and all heuristics with non-zero weights predict the fundamental price.

4The four heuristics of Section 3 are obtained with w = 0.65 in the first rule, and with ag = 0,821 =
14,822 =—04for h =2; a3 =0,031 =2.3,032 =—13 for h = 3; and oy = 30,841 = 1.5, 842 = —1 for
h = 4.

10



Proof. See Appendix A. n

It follows that there exists at most one equilibrium steady-state of the system. This
steady-state is the fundamental, with p = p/. We turn then to the local stability analysis of
the fundamental steady-state. Standard analysis of the Jacobian of the system (9)-(12) leads
to the following

Proposition 5.2. The fundamental steady-state of the asset pricing model with evolutionary
switching, (9)-(12) is locally stable if (i) n <1 and 6 < 1, and (ii) all roots of the polynomial

Baq + B30 + Ban B Ba2 + B39 + ﬁ4,2)

4(1+r) 4(1+r) (13)

P() = ji*—— )+(1—w—u)<u2—u

41 +r
lie inside the unit circle. The fundamental steady-state is unstable, if at least one of the roots
of polynomial (13) is outside the unit circle.

Proof. See appendix B, where a straight-forward computation shows that the Jacobian of the
system has eigenvalues 0,  and ¢ (of multiplicity 4), as well as three other eigenvalues which
are the roots of polynomial (13). O

When the heuristic coefficients are specified, the roots of the third-order polynomial P(u)
can be computed. Notice that in general the local stability does not depend on the intensity
of choice 3. Furthermore, its dependence on the other two parameters of the learning process,
1 and 9, is also limited. As soon as § # 1, i.e., the impacts of heuristics are not “frozen” over
time, and 1 < 1, i.e., agents discount their past performances, the local stability conditions
are completely determined by polynomial (13) and only depend on the coefficients of the
forecasting heuristics. The parameters 1 and §, being eigenvalues of the Jacobian matrix,
affect, however, the speed of convergence.

A simple analytical expression of the roots of polynomial (13) is not available. Numerical
computations of the roots for the four heuristics ADA, WTR, ATR and AA defined in (4)-(6)
and (8) yield

1~ 047, 19~ 0.63 —0.2747, 3~ 0.63+0.277.

The modulus of the complex eigenvalues is approximately equal to 0.69. Thus, the fundamental
steady-state is locally stable. In other words, all simulations of the deterministic version of the
four heuristics model presented in the previous section will exhibit oscillatory convergence to
the fundamental steady-state. At this point we can conjecture that a small amount of noise &,
representing demand/supply shocks in the experiment, was crucial in generating persistently
oscillating time series in groups 1 and 6. We stress, however, two caveats of this conclusion.
First, the fundamental steady state can be locally unstable under a different pool of heuristics.
Second, even if the fundamental steady-state is locally stable, other attractors, such as a stable
cycle, may co-exist.

Local stability of the four heuristics model with constant weights

Which combination of rules might generate non-converging dynamics? To answer this ques-
tion, let us consider an auxiliary version of the model, where the weights of different heuristics
are not changing over time. Formally, such a constant weights model corresponds to a special

11



case within our evolutionary model with § = 1. Assuming that the forecasts are as in (12),
the price evolution in the constant weights model is described by

4
1 1
_nf = _ _ e _pf
Pt —Pp 14_reXp( 200|pt—1 D O hE:lnh(p,m+1 '),

where the weights of heuristics n;, are arbitrary constants summing up to 1. The dynamics of
the constant weights model is locally stable when all roots of the polynomial

4 4
7 1

1—w— (2__ - ) 14

+(1—w—p)(p 1+7’h:2nhﬂh’1 1—|—7‘h:2nhﬁh’2 (14)

niw
Pi(p) =M21+r

lie inside the unit circle. Comparing P;(u) with the polynomial in (13), we observe that
the local stability of the evolutionary switching model is governed by the local stability of
the constant weights model with equal weights, i.e., with n, = 0.25, for h = 1,...,4. This
result is not surprising. Indeed, the evolutionary model tends to choose the best performing
heuristic at any time step, and assigns the weights to the forecasting rules according to their
performances. In the fundamental steady-state all four heuristics perform equally well, so if
dynamics converge to this steady-state, all heuristics will have equal weights.

However, the dynamics of the constant weights model with four heuristics can be locally
unstable if the distribution of heuristics is not uniform. In the left panel of Fig. 3 we show the
simplex

4
Ay = {(nl,ng,ng,n4) : Zh:1 np=1, ny >0 Vh}

of all possible heuristics” weights. The dark region in this simplex contains all points where the
constant weights model with four heuristics is unstable. This instability region was obtained
numerically by evaluating the roots of the polynomial Pj(u) in (14) for different values of
weights, n,. The instability region has a conic shape connected to the upper left vertex of
the simplex, where the STR rule has the highest weight. One can easily check that among
the four heuristic this is the only rule which generates unstable dynamics under homogeneous
expectations. Consequently, if the weight given to the STR is relatively high and the weights
of the remaining three heuristics are relatively low, the dynamics of the fixed weights model are
unstable. The simplex shown in Fig. 3 also illustrates that the point of uniform distribution
of weights (i.e., point A with ny = ny = ng = ny = 0.25) does not belong to the region of
instability. As noted above, this implies that the fundamental steady-state of the evolutionary
switching model with our four heuristics is locally stable.

The right panel of Fig. 3 illustrates how the evolving distribution of weights generated by
the switching model affects the (in)stability in the model with fixed weights, by showing the
evolution of the largest eigenvalue of the polynomial P;(u) for the simulations discussed in
Section 4. As expected, in the converging group 2 the distribution of weights is always such
that the constant weights model is stable. In the oscillatory group 1 in the early stage the
system is stable, while towards the end of the simulations the weights are evolving to a state
where the constant weights model is close to bifurcation. For the oscillatory group, the system
thus evolves from a stable process to a near unit root process, with the consequence that small
noise added to the system causes sustained oscillations. Finally, in group 7 the initial weights
correspond to instability, because of a relatively large weight of the STR, but over time the
system becomes stable.

12
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Figure 3: Local stability of fundamental steady-state in the constant weights model.
Left: The fundamental steady-state is unstable in a model with four heuristics, when fixed
weights (n1,n2,n3) belong to the dark conic region of the unit simplex. Right: Evolution of
the modulus of the largest eigenvalue of polynomial (14) corresponding to the simulations of
the evolutionary model in Figs. 1 and 2.

5.2 Persistent fluctuations in an evolutionary model

The simplex in Fig. 3 suggests that the evolutionary switching model with only two heuristics,
STR and AA, will generate dynamics with an unstable fundamental steady-state. Indeed, on
the vertical edge of the simplex we have n; = ny = 0, so this edge corresponds to a model
with constant fractions of only the STR and AA heuristic. The stability of the fundamental
steady-state in this evolutionary model with two types is determined by the midpoint of this
edge, which belongs to the instability region.

The bifurcation diagrams in Fig. 4 illustrate how the dynamics of the switching model
with only two heuristics depends on the extrapolation coefficient v in the STR heuristic (Left)
and the memory parameter n (Right). The switching model with competing STR and AA
heuristics undergoes a Neimark-Sacker bifurcation, when the coefficient of extrapolation of
the STR becomes sufficiently large, around v = 1.1. The fundamental steady-state loses
its stability and endogenous fluctuations arise; for v = 1.3 the fundamental equilibrium is
unstable. Small values of the memory parameter 7 imply that agents forget about previous
performances of both heuristics quite fast. Since the STR is typically self-reinforcing on a
short time scale, the STR heuristic will often dominate despite its occasional errors when
the trend reverses. Consequently, oscillations are especially large for small . When memory
increases, the model tends to produce small amplitude fluctuations. This is because the STR
heuristic has quite a low performance and is only used occasionally.

6 Model Performance

Now we turn to the question of how good our explanation of the experiment is, and, in
particular, whether the model with four heuristics fits the experiment better than the model
with only one heuristic without evolutionary switching, i.e., a homogeneous expectation model.
In Table 1, for different model specifications, we compute a mean squared error (MSE) for
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Figure 4: Bifurcation Diagrams in the switching model with two Heuristics. 200
points after 1000 transitory steps are shown for the evolutionary switching model with STR and
AA heuristics without noise. Initial weights of the heuristics are equal. Benchmark parameters
are # =0.4,n=0.7,0 = 0.9, and extrapolation coefficient of the STR heuristic v = 1.3. Left:
Bifurcation diagram with respect to the extrapolation parameter v. Dynamics converge to
the fundamental steady-state for low values of v and to the quasi-cycle for high values of ~.
Right: Bifurcation diagram with respect to the memory parameter n. The amplitude of the
quasi-cyclic oscillations becomes smaller as 7 increases.

three experimental groups (see columns 2, 3 and 4). Namely, for any period ¢ we compute a
sim

squared deviation of the price observed in the experiment, p;™ ", from the simulated price, pi™,
and average these squared deviations over time:

L o

MSE—E;(% — Dy ) . (15)
Notice that the two time periods corresponding to the initialization stage of simulations are
omitted. The second row of Table 1 demonstrates that the fundamental prediction for every
time period performs extremely poor in predicting actual experiment realizations. The next
ten rows show the MSE for a homogeneous expectations model with only one of the five
heuristics defined in (4)-(8). Each model must be initialized by the prices in the first two
periods, and we consider two possible initializations. First, we initialize the model with prices
observed in the corresponding experimental session; second, we vary the initial price in order
to get the best fit. Finally, the last two rows show the MSE for the heterogeneous expectations
four heuristics switching model both with initializations described in Section 4 and with fitted
initial prices and given initial weights.

As expected, in group 2 with monotonic convergence the ADA heuristic performs extremely
well giving small values of the MSE. All other heuristics, especially the STR, are much worse
in fitting the experiment. However, the model with switching can generate an even better fit
than any of four heuristics. It is remarkable that this happens despite the fact that over all 50
periods of simulation these four heuristics had quite similar impacts. In group 1 with constant
oscillations the LAA, ADA and WTR heuristics generate the smallest MSE. The switching
model with four heuristics does not improve the best fit of the homogeneous expectations
model, but its MSE is comparable with those of the best heuristics. Similarly, in group 7
with damping oscillations the LAA and WTR heuristics perform better than the others. The

14



Specification MSE AR(2)
Group 2 | Group 1 | Group 7 Group 2 | Group 1 | Group 7

Fundamental Prediction 18.037 15.226 22.047 0.946 2.673 2.002
ADA — exp prices 0.841 7.676 51.526 0.239 2.182 1.494
WTR — exp prices 4.419 8.868 30.298 0.066 0.383 0.165
STR — exp prices 585.789 638.344 698.361 1.494 0.112 0.342
AA — exp prices 39.308 17.933 87.878 1.095 0.010 0.094
LAA — exp prices 5.475 5.405 69.749 0.747 0.003 0.013
ADA — fitted prices 0.514 6.832 36.436 0.100 1.584 1.157
WTR - fitted prices 4.222 8.670 19.764 0.068 0.262 0.139
STR - fitted prices 413.435 182.284 579.141 1.358 0.078 0.242
AA — fitted prices 26.507 11.117 63.777 1.036 0.005 0.083
LAA — fitted prices 2.055 4.236 45.153 0.640 0.000 0.004
4 heuristics (plots) 0.449 8.627 29.520 0.383 0.011 0.239
4 heuristics (fitted) 0.313 7.227 18.662 0.144 0.009 0.048

Table 1: The relative fitness of different models. Fundamental forecast, homogeneous
expectations model and model with switching are compared for three different groups on the
basis of the MSE and Euclidean distance from the estimated AR(2) model.

switching model now improves the results for the best heuristics, even if the overall fit is not
as good as for the other groups.

Recalling the simulations in the oscillatory groups, the following problem with the MSE as a
measure of fit becomes clear. Even if our model can generate qualitatively similar oscillations,
they always have different frequencies from those which were observed in the experiment.®
Consequently, big errors will be generated at the periods when oscillations in the experiment
and the simulations are in different phases. To deal with this problem, we use an indirect
inference technique. In the first stage, we estimate an AR(2) econometric model both on the
experimental and on the simulational data. In the second stage we compute the FEuclidean
distance between estimators. Results of these statistics are reported in the columns 5, 6 and
7 of Table 1, and our main focus is on those groups where the MSE was not a good measure,
i.e., on the groups 1 and 7.

Notice that again the fundamental strategy performs extremely bad. Also the model with
ADA heuristics, which was leading in two converging groups, generates large deviation from
the underlying experimental estimates. In fact, in groups with constant oscillations the STR
and LAA heuristics perform better than others. The switching model does not improve the
performance, but generates similar results, which are at any rate better than the results of
the homogeneous model with other heuristics. In the groups with damping oscillations, the
LAA heuristic gives the best fit, but the model with four heuristics is better than the second
best. To summarize, even if different heuristics can be better in fitting the experimental data
of different sessions, the model with four heuristics always performs at least as good as the
second best heuristic and in some cases even improves the fit. Notice that these results are
obtained without fit of parameters and initial impacts. The main advantage of the model with
four heuristics is, of course, that this model can be applied to all experimental sessions.

Simulations of the model show that the generated frequencies are more affected by the choice of heuristics
than by the learning parameters. With other extrapolative coefficients in the heuristics or with additional
heuristics, the quantitative fit of the model can be improved. Recall, however, that our choice of heuristics
was driven by the estimation of the experimental data and simplicity of the model.
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7 Conclusion

In real markets small price movements triggered by random news about market fundamentals
may be reinforced by trend following strategies causing excessively volatile markets. The recent
“learning to forecast” experiment of Hommes, Sonnemans, Tuinstra, and Velden (2005) has
confirmed this intuition, but also revealed that excess volatility may disappear after a short
learning phase. Two important questions arise: first, is it possible to express the intuition
presented above by means of a simple, parsimonious model; and, second, can such a model
both generate persistent excess volatility and converge to the fundamental price?

Evolution of market heuristics along the lines sketched in this paper provides a simple and
universal answer to these two questions. The model starts with different forecasting rules,
each of which has a simple behavioral interpretation, but generates its own type of dynam-
ics. Then we impose evolutionary selection mechanism and end up with dynamics having
the path-dependence feature, i.e., the capability to produce both persistent oscillating and
converging patterns for the same parameter values. Path-dependence implies that the initial
conditions, such as prices in the first few periods and relative weights of different rules, are
responsible for differences in aggregate price pattern. Depending on the pattern during the
initial phase, interaction and evolutionary selection of individual forecasting heuristics may
lead to coordination of individual behavior upon different rules, which would imply different
long-run dynamics. This explanation of the experiment is also consistent with recent work
on agent-based models of interaction explaining emergent phenomena in financial markets, in-
cluding fat tails, clustered volatility, temporary bubbles and crashes and scaling laws (Lux and
Marchesi, 1999; Mantegna and Stanley, 1995; Farmer and Lo, 1999; Hommes, 2006; LeBaron,
2006).

A number of important questions should be addressed in future work. The first ques-
tion concerns the robustness of the path-dependence feature of the model. Our extensive
simulations® reveal that path-dependence holds for a large range of parameters, however the
precise shape of the corresponding parameter region is not known. Furthermore, our selection
mechanism contains three parameters, 3, n and §, measuring respectively (i) how sensitive
individuals are to the differences in strategy performance, (ii) how much the relative weight
assigned to the most recent errors is, and (iii) how strongly individuals stick to their previous
heuristic. One would like to know the precise role of these three parameters in simulations,
as well as to find the estimates of these parameters on the experimental data.” Finally, one
can apply the evolutionary switching model of heuristics to other experimental data to study
whether learning parameters are affected, e.g., by the precise experimental environment.

5The simulation program for the model described in this paper together with brief documentation and
configuration settings used for the reported simulations is freely available at http://www.cafed.eu/evexex.

"We find the best parameters in Anufriev and Hommes (2009) through the grid search for a model with
four heuristics reported here.
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APPENDIX

A Proof of Proposition 5.1

In the steady-state with fixed price p*, the past price sample average will also be equal to p*. The
dynamics (17) in the steady-state with fixed price p* then is given as

(1+7)(p*—p)=(1- nt)(m,t (w(p* —p’) + (1 —w)(pf, —p)))+

+ 24 (p* — ') +n3 (0" —p') +na(pt - pf)) : (16)

In the state with constant price p* = p/, the fraction of robots n; = 0, so that the above condition
simplifies to 0 = (1 —w) n1 (pf, — pf). Then the ADA rule (if it is in actual use) gives fundamental
forecast.

If p* # pf, take the limit of ¢ — oo in (16). Since adaptive expectations converge to p* in such
limit, we obtain that 1 + r < 1, which is impossible.

B Stability of Evolutionary Model

Notice, first of all, that the local stability of price dynamics at the fundamental steady-state is
not affected by the dynamics of robot traders. Indeed, the price dynamics (11) can be written in
deviations from the fundamental price as

4
1-— Ty
pe—pl = T, > nen(Piian —p'). (17)
h=1

The first term in the right hand-side is never greater than 1. Thus, dynamics of (17) is a superposition
of a contraction with the following process

4
(L4 7)ze =) nn(aiiip) (18)
h=1

with z; = py — pf and xf 1= D§ N pf . If the latter dynamics is locally stable, the steady-state
p! of original dynamics (17) will be also locally stable. Furthermore, since the exponential term in
the latter dynamics is equal to 1 in the steady-state, the linear parts of the dynamics of the last two
processes are the same. Thus, processes (17) and (18) lose stability simultaneously and through the
same bifurcation type. The robots can be, thus, safely eliminated from the local stability analysis.

After such elimination we obtain a differentiable system. In the body of the paper we have
obtained a model describing the dynamics of price and other variables under the evolutionary learning
over 4 heuristics. We will write the dynamical system using the general notation for four heuristics
introduced in (12). The dynamics below is written in deviations from fundamental price, both in
prices and in forecasts. The variables are introduced as follows

33315 =p; —pfa Yy = ﬁ,t—l y Tl =Pt — pf, T2t = T1t-1, L3t = T1t—-1, L4t =T1t-3-

The following 14-dimensional system of the first order equations describes the dynamics. It consists
of 4 equations describing the evolution of performance measures, 4 variables represent the fractions of
different forecasting rules, 1 equation describes the price dynamics, which we will write in deviations,
and other 3 equations are needed to take lags of price deviations into account, and finally two
equations describe the evolution of adaptive expectation rule.
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riy =wr—1 + (1 —w)af

yt8+1 =7
o2
Urt—1 = —(z1,6—1 — y)" +nU1,t—2
Upit—1=—(x1,6—1 — Bn,1 T3,6—1 — B2 -734,t71)2 +nUnt—2 2<h<4
1-96
nie =0n1—1+ 7 exp (ﬁ [— (z1,6—-1 — yf)z + 77U1,t72])
—1
1-96 2
Nhy =0np 1+ 7 exp ([3 [* (@1,6-1 — Br1a3,0—1 — Br2 Tap—1) + nUh,t72]) 2<h<4
f/_
T1,0 = exp ( - ilxtfll)i [6711 1+ 2 exp (ﬁ [ (w101 —45)* + 0l t72])i| (waie-1+ (1 —w)f)+
, 200 T+r ; 71 , , ,
1-90 2
[5n2,t—1 + Z exp <ﬂ [— (z1,6—1 — B2,1 3,01 — B2,z Ta—1)" + 77U2,t—2}>:| (B2,1x1,e—1 + B2,22,0—1)+
-1
1-6 2
[5n3,t_1 + o exp (ﬂ [— (#1,-1 — B3,1@3,0—1 — B3,2@at—1) + nUa,t_zD] (B3, @1,e—1 + B3,2m2,0—1)+
-1
1-9 2
[5714,#1 + 7 exp (ﬁ [— (1,01 — Ba1 @301 — Ba2map—1) + 77U4,t72}>] (Bapzie—1+Ba2w2,-1)
-1

T2t = T1,t—1
T3t = T2,t—1

T4t = T3,t—1

where

4
Zt—1 = exp (5 [— (z1,0-1 — yf)2 + 77U1,t72}> + Z exp (5 [— (1,01 — Bn,1 ®3,0-1 — Br,2 1'4,t71)2 + 77Uh,t72])
h=2

We are interested in stability of this system near the fixed point with price equal to p/ and zero
fraction of “robots”. First of all, recall that the term exp ( — |xe—1]/ 200) in the equation for price

deviations can be ignored, since its first-order approximation in this fixed point is 1. The Jacobian
matrix J of the remaining system is given by

1—w 0 0 0 0 0 0 0 0 0 w 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 n 0 0 0 0 0 0 0 0 0 0
0 0 0 n 0 0 0 0 0 0 0 0 0
0 0 0 0 n 0 0 0 0 0 0 0 0
0 0 0 0 0 n 0 0 0 0 0 0 0
0 0 9m(-8) _pn(-8) _pu(-8) _pn(-9) 5 0 0 0 0 0 0
0 o _sili-e  end%s et pdZs s 0 o 0 o 0
6 16 16 6
o 0 7,37,(1175) _ Bn(1-6) 98n(1=45) 7577(11—5) 0 0 Ky 0 0 0 0
6 6 16 16
0 o _8nle  _paCs  _pid-s  9snd%e) 0 0 0 s 0 o 0
16 16 16 16
1—w 0 0 0 0 o spf spf spf spf w+By 1+83,1+B84,1 B2,2+B3, 2+84,2 0
I(1+r) 1+r 1+r 1+r 1fr A(1+r) I(1+r)
0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 1

It is straight-forward to check that this Jacobian has multipliers equal to 0 (of multiplicity 3) and n and ¢
(both of multiplicity 4). The remaining three multipliers are the roots of characteristic polynomial for matrix

1—w w 0
J. = 1—w w+PB21+P3,1+B11 PB22+0832+842
r 4(1+4r) 4(1+4r) 4(1+4r) ’
0 1 0
This characteristics polynomial is given in (13). O
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