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Abstract
In this paper I analyze a participation game i.e. a public good game where contributions to
the public good are binary (people either participate or not participate). Although variants
of this game have been studied extensively, most previous work takes the benefit of provision
of the public good to be independent of the number of players that contribute and show that
the probability of breakdown, i.e. the probability that no one participates, is increasing in
group size. Here this assumption is dropped. I show when the probability of breakdown is
decreasing in group size and also present sufficient conditions under which the probability of
breakdown is increasing in group size. Moreover I show that for large groups this probability is
non-negligible and exceeding e−1 in the limit and that the expected number of participants is
less than one. Also two economic examples, concerning R&D and debt overhang, are discussed.

Keywords: public good, volunteering, participation game
JEL classification codes: C72, H41.

1 Introduction

Kitty Genovese was murdered in New York City in 1964 while 38 neighbors looked on without
calling the police. This story is consistent with evidence from both social psychology and game
theory that suggests that people are less likely to help someone in need if they are surrounded
by more other people (Dixit and Skeath, 1999, pp. 388–392; other references are Rasmusen,
2001, pp.77–79 and Harrington, 2001). At least from the perspective of game theory, this seems
puzzling. Although we expect that freeriding decreases the probability that each individual
acts (under the assumption that seeking help is costly and people prefer rescue), it is by
no means certain that the probability, that the group as a whole fails to act (i.e. what I
call the probability of breakdown), also increases. Assuming constant cost and benefit of
rescuing, the probability of breakdown always increases: Nash equilibrium logic ensures that
the probability, that any of the other people fails to act, stays constant. A direct consequence
is that the probability of breakdown is increasing in group size. In general, however, this
probability will only decline, if the freeriding effect is strong enough. The question then is, if
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it is possible for large groups to have a lower probability of breakdown and when this might
occur.

To answer this question we model this as a general public good game with binary contri-
butions. This means that contributing to the public good can be interpreted as participating
in a program or joining a group to do a certain amount of volunteering. I refer to this as a
participation game (cf. Anderson and Engers, 2005). I identify which payoff structures1 can be
considered as characteristic for participation games and then proceed to analyze these games.
The contributions of this paper are the following. First, I characterize all Nash-equilibria.
While there are many Nash-equilibria, the paper focuses on the symmetric strategy Nash-
equilibrium. Second, I show that there are public good games which have the property that
the probability of breakdown decreases as the group becomes larger. Hence, large public good
games are not neccesarily more inefficient than smaller games. In particular, sufficiently strong
positive externalities seem to be required for this to occur. However, finally, I show that there
are mild sufficient conditions that guarantee the probability of breakdown to increase. This
implies that in most situations, the public good problem worsens as the group size increases.

Anderson and Engers (2005) present a different generalization: they examine the effect of
different thresholds and of positive and negative externalities of participating. A threshold is
the minimal number of contributions that are needed for the benefits of the public good (per
contributor) to exceed the cost of participation. By positive and negative externalities I mean
that if more of the other people participate, then the incentive to participate respectively
increases and decreases. This is basically a monotonicity requirements on the payoff function.
They examine the different kind of equilibria that can occur and some comparative statics such
as the effects of increasing the payoff of participating. I impose no monotonicity restrictions
on the payoff function, but only examine a threshold of one. It will be argued that in some
economic application the monotonicity requirement is unreasonable.

The defining characteristic of participation games is that it is optimal to participate if
and only if no one else participates. The following discussion is an incomplete list of articles
that employ participation-like games and it serves to show the breadth of possible applica-
tions and extensions. Palfrey and Rosenthal (1983) offer one of the first systematic analyses
of binary public good games. They consider the following variant: there are two groups of
individuals. The group with the most individual contributions wins. A real-life example would
be a presidential election. Given the behavior of the other group, there is an incentive to free
ride. Haan and Kooreman (2003) show that in this game even if one group has an arbitrarily
large potential majority (if everyone in their group will vote), it will not always win. This
is due to the fact there is a subgame where members of the majority group have to decide
whether they are going to contribute to the public good (i.e. voting to help their group win).
Mukhopadhyay (2003) extends the basic model with incomplete information. Mukhopadhyay
examines the Condorcet jury theorem which states that a larger jury makes a more accurate
verdict. Mukhopadhyay argues that if paying attention in court is costly (i.e. boring) and
every juror wants to make an accurate verdict (for which they have to pay attention), then
in a large jury there is an increasingly large probability that no one will pay attention. The
Condorcet jury theorem does not hold. This conclusion is not altered when the jurors receive
a signal, whether the defendant is likely to be guilty, prior to the court case.Although variants
of this game have been studied extensively, previous work takes the benefit of provision of

1By payoff structure I mean the utility a player receives depending on how many other players participate
and whether the player himself participates.
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the public good to be independent of the number of players that contribute. While the model
presented here cannot be seen as a direct generalization of most of the papers mentioned
in the previous paragraphs, at heart the paradoxical results they all report are due to the
presence of a participation (sub)game.

The paper is organized as follows: in Section 2 I introduce the participation game, derive
all its equilibria and show that the probability of participating for each player is decreasing
in group size. Section 3 discusses the probability of breakdown. In this Section I show when
this probability is increasing and give sufficient conditions. Section 4 gives two economic
examples concerning R&D and debt overhang (based on Kaneko and Prokop, 1993). Section
5 concludes.

2 The participation game

There are n + 1 players.2 Denote the group of players with N = {1, . . . , n + 1}. Each player
i ∈ N can choose to participate (ai = 1) or not participate (ai = 0). For player i, define
Ai =

∑
j 6=i aj ∈ {0, . . . , n} as the total number of other players who participate. The payoff of

player i depends only on ai and Ai; players do not have preferences about who participates.
The game is anonymous. Denote the payoff function by π : {0, 1} × {0, . . . , n} → R.

Assumption 1. Participation is costly if at least one other player participates: for each player
i, for all Ai ∈ {1, . . . , n} we have π(1, Ai) < π(0, Ai).

Assumption 2. If nobody participates, the best-response is to participate: for each player i
we have π(0, 0) < π(1, 0).

I refer to the game defined above as the participation game. As an example of a participa-
tion game, consider the model presented in Harrington (2001), where a group of n + 1 people
stand around a lake and someone is drowning in this lake. Each person has the opportunity
to rescue this person. Each person receives a payoff of b if the drowner is rescued, but the
person who actually rescues the person incurs a cost c. The payoff function for each player i
is:

π(0, 0) = 0,

π(1, 0) = b− c,

π(0, Ai) = b, for all Ai > 0,

π(1, Ai) = b− c, for all Ai > 0,

where b, c > 0 and b > c. I will refer to this game as Harrington’s model.
Proceeding with the general participation game, it is easy to see that there is no symmetric

equilibrium in pure strategies in this game. To see this, suppose that everyone else participates.
Then by Assumption 1 it is optimal to not participate. Suppose that no one else participates.
Then by Assumption 2 it is optimal to participate. Hence neither of the pure strategies is
a best response against itself. However, there is a symmetric mixed equilibrium that can
be derived as follows. Suppose that n people participate with probability p. The (n + 1)-th

2In a mixed equilibrium the players are indifferent given the actions of the other players. It is convenient
to set the number of other players equal to n.
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person should be indifferent between participating and not participating. The expected payoff
of participating is:

n∑
k=0

(
n

k

)
pk(1− p)n−kπ(1, k), (1)

and the expected payoff of not participating is:

n∑
k=0

(
n

k

)
pk(1− p)n−kπ(0, k). (2)

In equilibrium, these two payoffs should be equal:

n∑
k=0

(
n

k

)
pk(1− p)n−kθk = 0, (3)

where θk ≡ π(0, k) − π(1, k). This parameter signifies the incentive to not participate if k
people are already participating. From Assumptions 1 and 2, it follows that θ0 < 0 and
θk > 0 (for k > 0). If everyone participates with probability equal to a root of (3) in the unit
interval, then this would be a symmetric Nash equilibrium. Define the function

fm(p) =
m∑

k=0

(
m

k

)
pk(1− p)m−kθk, (4)

where 0 < m ≤ n. Let pm denote a root of fm(·). Before we continue the examination of
the properties of the symmetric equilibrium, I first present the following proposition that
characterizes all equilibria.

Proposition 1. There are 2n+1 − 1 equilibria. In each of these equilibria, each member of a
set M ⊆ N (with the exception of the empty set) participates with probability p > 0 and each
member of N\M does not participate. Moreover:

1. If #M = 1, then p = 1 (equilibrium in pure strategies).

2. If #M > 1, then p is the unique root of f#M−1(·), 0 < p < 1.

Outline of the proof. First, I show that there are no symmetric pure strategy equilibria, but
there are (n + 1) asymmetric pure strategy equilibria, in which one player participates and
the other players do not. I proceed by showing that there exists a symmetric mixed-strategy
equilibrium. Next it is shown that if a group of (n + 1) players play a symmetric equilibrium,
then if a (n + 2)-th player joins but does not participate, then this is an equilibrium for
the game with (n + 2) players. Therefore, there are also equilibrium in which a subset of m
players participate with a certain probability while the remaining (n + 1−m) players never
participate. The symmetric mixed-strategy equilibrium is unique because the root of fn(·),
that characterizes the symmetric equilibrium, is unique. The same holds for the root of the
function fm(·), that characterizes the equilibria in which a subset of m players participate,
and therefore each of these equilibria is also unique. Hence there are exactly 2n+1−1 equilibria
(which is the number of subsets of N minus one). Now all that has to be shown is that there
are no other equilibria. If there is any other equilibrium, then there has to be an asymmetric
strictly mixed-strategy equilibrium. It turns out that these do not exist. See Appendix A for
the details. �
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Corollary 1. There is a unique symmetric mixed equilibrium, where everybody participates
with probability pn, the unique root of the function fn(·).

From now on my focus will be on the symmetric equilibrium. This equilibrium has the fol-
lowing property:

Proposition 2. In the symmetric equilibrium of the participation game we have pn+1 < pn:
the probability of participation declines if group size increases.

Outline of the proof. It is shown that fn+1(pn) > 0 and fn+1(0) < 0. Since pn+1 is the unique
root of fn+1(·), it must be in the interval (0, pn). See Appendix B for the details. �

This proposition shows the free-riding problem that is inherent to public good games.

3 The probability that no one participates

Let Sn ≡ (1 − pn)n+1. This is the probability that no one participates. I am interested in
how Sn depends on n. Returning to Harrington’s model, where the benefit to each player
if the public good is provided is b and the cost of provision of the public good is c (both
benefit and cost do not depend on how many people participate) and the probability of
breakdown is always increasing. To find the Nash-equilibrium observe that in the equilibrium
the expected payoff of participating, b−c, is equal to the expected payoff of not participating,
b[1− (1− p)n]), where the latter expression is the probability that at least one other person
participates. Equating these two expressions, after some manipulation, yields

(1− pn)n = 1− c

b
. (5)

Now we see that Sn =
(
1− c

b

)
(1 − pn). Since pn is decreasing in n, it follows that Sn is

increasing.
Now note that in general if Sn+1 > Sn, then:

(1− pn+1)n+2 > (1− pn)n+1 ⇔ pn+1 < 1− (1− pn)
n+1
n+2 ≈ pn, (6)

where the approximation holds if n large. This can be seen as an indication that it might be
difficult to find examples where Sn+1 ≤ Sn for n large. However, one can construct examples
in which Sn is decreasing. For instance, consider the following game: θ0 = −1, and θk = αβk

for all k ≥ 1. Assume that α > 0 and 0 < β < 1. It can be shown that (see Appendix D):

Sn =

[
β

n
√

(1 + α)/α− (1− β)

]n+1

. (7)

Take β = 1
25 and α = 25

4 . Numerical calculations show that S1 = 0.0400, S2 = 0.0399,
S3 = 0.0378, S4 = 0.0359. So, S4 < S3 < S2 < S1. In this example, θ2, θ3 etcetera are very
close to zero and, hence, π(0, k) ≈ π(1, k) for k ≥ 2: that is, players are basically indifferent
between participating and not participating. In this, what I will call the counterexample, there
are strong positive externalities: the incentive to not participate, although present, becomes
very small as n increases. The counterexample shows that large groups can exhibit a larger
degree of cooperation than small groups.
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The following two propositions present sufficient conditions under which the probability of
breakdown does increase. The first condition, presented in Proposition 3, is weak in the sense
that it only depends on the ratio of θ0 and θ1. The second condition, presented in Proposition
4, states that monotonicity of the payoffs, i.e. θ1 < θ2 < . . ., is also a sufficient condition. The
counterexample implies that these condition are not neccesary.

Proposition 3. If |θ0| < |θ1|, then

(i) Sn+1 > Sn for all n ∈ N,

and, moreover,

(ii) S∞ = limn→∞ Sn ≥ e
θ0
θ1 ,

(iii) the expected number of participants is less than one.

Outline of proof. These results follows from the fact that not only is pn+1 < pn, the difference
between pn+1 and pn cannot be arbritrarily small for given n. Using an upper bound for pn+1

(given pn), a lower bound for Sn+1 (given Sn) is obtained. Subsequently the lower bound is
used to proof the results. See Appendix C for the details. �

It is interesting to notice that if |θ0| < |θ1|, then the values of θ2, . . . , θn are completely
irrelevant: the probability of breakdown will increase. The intuition behind this is the follow-
ing: If the number of players increases, then the probability to participate in general will be
small, i.e. from Proposition 3 (iii) we know that pn < 1/n. Hence for the individual decision
maker, it is likely that either no other players participate or one other player participates.
Unless the incentives to participate if more than one other player participates are high, the
player can ignore the probability that more than one other player participates. In this case
only θ0 and θ1 matter. What if the incentives to participate if more than one other player
participates are high? The scope for this limited since high incentives would mean a low θ2,
but θ2 > 0. If θ1 > θ0, then the incentives cannot be raised high enough to make Sn go down.

Proposition 3 shows that, under a fairly weak condition only dependent on the ratio of
θ0 and θ1, the probability of breakdown in binary public good games is increasing in group
size. Hence, this paradoxical result (not only will people participate less, the group as a
whole will participate less) appears very robust to different payoff specifications. Moreover
S∞ is always bigger than e−1 ≈ 0.3679. So, in all participation games satisfying the condition
|θ0| < |θ1|, the probability of breakdown is increasing and always more than 37% in the limit.
The Proposition also shows that on average less than one person participates and thus the
public good is underprovided (more than one being socially optimal).3

As an example of how to use Proposition 3 consider the following extension of Harrington’s
model. Suppose that being recognized as a rescuer has merits of its own. If there are k rescuers,
then each obtains an extra payoff of H/k. Now, θ0 = −[b + H − c] and θ1 = c−H/2, where I
assume that H < 2c and b+H− c > 0. The condition |θ0| < |θ1| corresponds to H < 4

3c− 2
3b.

So, if the hero bonus is sufficiently small, then the probability that no one rescues the drowner
is still increasing in group size. Notice that for n > 2 the equilibrium strategy will in general
not be solvable without resorting to numerical methods.

For the second sufficient condition I will focus on monotonically increasing payoff func-
tions. This corresponds to negative externalities. The purpose of this is twofold: (1) it will

3The socially optimal outcome maximizes π(0, k)(n + 1 − k) + π(1, k)k with respect to k.
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yield another sufficient condition for the probability of breakdown to be increasing and (2) the
sufficient condition of Proposition 3 does not always yield ‘nice’ conditions as the application
in Section 4.2 shows whereas the condition for a negative externality is easier to interpret.

Suppose we have a game with n+1 players such that θ0 = −1 (just a normalization) and,
for all k = 1, . . . , n, θk+1 > θk. If the θk’s are increasing, then π(0, k) − π(1, k) is increasing
in k. As more players participate the incentive to not participate becomes stronger; this is
the case of a negative externality (cf. Anderson and Engers (2005) who focus solely on such
monotonic payoff functions).

Construct now an auxiliary game with parameters θC
0 = −1 and for all k > 0, θC

k+1 = θC
k

such that this game with n+1 players has the same symmetric equilibrium as the game above
with increasing θk’s. Note that for every n such an auxiliary game can be uniquely constructed.
Observe that for the auxiliary game it is known that the probability of breakdown is increasing
in n (since it is a game similar to the one analyzed at the beginning of Section 3). Denote the
equilibrium of the auxiliary game by pC

n . By construction pC
n = pn, where pn is the probability

of participation in the game with a negative externality. If we can show that pn+1 < pC
n+1,

then (1 − pn+1)n+2 > (1 − pC
n+1)

n+2 > (1 − pC
n )n+1 = (1 − pn)n+1. Then the probability of

breakdown in a game where, for all k > 0, θk+1 > θk, is increasing in group size.
I will now show that pn+1 < pC

n+1. Examining the function fn(p), I observe that it is a
weighted average of the θ′ks. The most weight is given to k = b(n + 1)pc since in a binomial
distribution this is the most likely outcome.4 An equilibrium is then a p which shifts the
weights in such a way that the weighted average is zero. In the auxiliary game, there exists
an integer m ∈ {1, . . . , n} such that for 0 < k < m we have θC

k > θk and for k ≥ m we have
θC
k ≤ θk. This implies that θC

n+1 < θn+1. So, in determining the equilibrium in the original
game pn+1 has to be smaller than pC

n+1 to compensate.
The following proposition is thus obtained.

Proposition 4. If, for all k > 0, θk+1 > θk, then Sn is increasing in n.

Proposition 4 shows that if the parameters θk are increasing, then this is also a sufficient
condition for the probability of breakdown to be increasing. Increasing θk’s can be interpreted
as negative externalities. As the counterexample in Section 3 shows, if the parameters θk

decrease sufficiently fast, then the probability of breakdown can decrease. Hence, sufficiently
strong positive externalities in the payoff (and |θ0| > |θ1|) might mitigate the paradox.

4 Applications

4.1 R&D and teamwork

An economic application is teamwork. Suppose that the R&D-department of a company con-
sists of n+1 employees. Each employee has to decide whether to exert effort or not. The effort
is interpreted as contributing to the research project. If an employee exerts effort, then some
innovation is created and the employee bears a cost c. The employee values this innovation,
but the value only depends on the number of employees that have exerted effort (including
the employee himself). Denote this value by V (k), where k is the number of participants, and
assume, without loss of generality, that V (0) = 0. The payoff function, using the notation of

4The truncation function is denoted by b·c.
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Section 2, is π(ai, Ai) = V (ai + Ai)− aic. Notice that

θk = V (k)− V (k + 1) + c. (8)

To fit into my framework, the following restrictions are needed:

θ0 = −V (1) + c < 0 (9)
θk = V (k)− V (k + 1) + c > 0 for all k ≥ 1 (10)

If we assume that V (·) is concave, then the θk’s are increasing in k, i.e.

∂θk

∂k
= V ′(k)− V ′(k + 1) > 0. (11)

Under concavity of V (·), the probability that the patent is not discovered is increasing in the
number of co-workers. Concavity can be interpreted in the following manner: the effort of
each employee increases the value of the innovation, but the additional value diminishes. This
lack of ‘synergy’ does not imply that team work is necessarily unwanted. In a cooperative
equilibrium, that maximizes nV (k)− ck with respect to k, the optimal number of employees
that exert effort can be larger than one. However, if a company puts together a research team,
then some additional value of working together is expected. One could imagine that V (·) is
S-shaped and teamwork would only create additional value if the number of contributors is
below a certain number.5 In a natural manner, this yields non-monotonic θk’s and the result
from Proposition 3 is useful.

The condition |θ0| < |θ1| yields (from Proposition 3):

V (2) < 2c. (12)

A possible interpretation of (12) is the following: If you could put in twice the effort, then
this is not profitable. While you may benefit if others exert effort, it does not pay to do the
extra effort yourself. This ensures that the probability that the patent is not discovered is
increasing in the number of co-workers. This example also shows that in not every application
the assumption of monotonicity is innocuous.

4.2 International debt overhang

Another application, due to Kaneko and Prokop (1993), is debt overhang. Kaneko and Prokop
(1993, p.2) define it as follows:

The term ‘debt overhang’ expresses a situation where a sovereign country has bor-
rowed money from foreign banks and has not succeeded in fulfilling the scheduled
repayments for some period. The existence of the debt overhang is a serious prob-
lem for the debtor country, which keeps the country in a bad economic situation.

I discuss a symmetric version of their model. In this game there are n + 1 creditors and one
country that is in debt. The debtor country is treated as part of the environment and not as
an active player.

5A function V (k) is S-shaped if there exists k̄ ∈ R such that it is convex for all k < k̄ and concave for all
k > k̄.
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Each creditor holds a debt of size D. I assume that total outstanding debt is constant,
i.e. (n + 1)D = D̄. If the number of creditors increases, then they also hold a smaller share of
total debt. This assumption is needed to ensure that below the parameters θk do not depend
on n.

The creditors can sell off their debt at a secondary market price. The market price is given
by the pricing function P : R+ → R+ whose domain is total outstanding debt. For instance,
if a creditor has an outstanding debt of D and total outstanding debt is D̄, then it can sell
of this debt at DP (D̄).6 The larger the debt (and the higher the probability of default), the
lower the price of buying back the debt.

I follow Kaneko and Prokop (1993) and suppose that each creditor can either sell its debt
now at a price P (D̄) or wait for one period and then sell it. If the creditor postpones, then its
debt will rise to βD, where β > 1 is one plus the interest rate. However, the present value of
the debt will stay D. The price of buying back debt in the next period is P (β(n + 1− k)D),
where k is the number of other creditors that have not postponed. Each creditor has two
actions: sell or postpone.

For the moment, and contrary to Kaneko and Prokop (1993), assume that P (·) is a de-
creasing and differentiable function. Since P (·) is a decreasing function, we have that:

DP (D̄) > DP (βD̄), (13)

where the present value of debt stays constant at D, but the price of buying back debt
does change. From (13) it follows that it is optimal for the creditors to sell if none of the
other creditors have sold. I will show that this game can be considered as a participation
game. In terms of the participation game selling is equal to participating and (13) is equal to
Assumption 2. In order to qualify as a participation game, it must also be optimal to postpone
if one other creditor sells:

DP (β(D̄ −D)) > DP (D̄), (14)

which boils down to β < n+1
n . This is equal to Assumption 1 if either the number of creditors

is small or the interest rate is not too large. From Corollary 1, it follows that there is a unique
symmetric equilibrium in this game.

Since the present value of debt, D, is constant for a creditor, the creditor is just interested
in the price at which the debt is sold off. Hence, the payoff function is can be simplified to
this price. The parameters of the model are defined as follows:

θk = P (β(D̄ − kD))− P (D̄). (15)

If β < n+1
n and P (·) is decreasing, then θ0 < 0 and θk > 0 for all k ≥ 1 ensuring that we have

a participation game. Notice that:

∂θk

∂k
= −βDP ′(β(D̄ − kD)) > 0, (16)

and thus θk is increasing in k. Hence, it follows directly from Proposition 4, that an increase in
the number of creditors implies that the probability that no one sells is increasing. Therefore
having more creditors has a detrimental effect on debt overhang. This result is, unlike the
results of Kaneko and Prokop (1993), valid for a small number of creditors.

6This price is often far below 1; in the case of Bolivia in 1985 the price of buying back one dollar of debt
was 5 cent (cf. Kaneko and Prokop, 1993, p.2).
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Kaneko and Prokop (1993) do not assume that P (·) is decreasing: they merely assume that
P (0) ≥ P (D̄) > P (βD̄). In this case, Proposition 3 can still be used to formulate sufficient
conditions for the probability that no one sells to increase. First, to have θk > 0, for all k ≥ 1,
we need:

P (β(D̄ − kD)) > P (D̄). (17)

The condition |θ0| < |θ1| (from Proposition 3) yields

2P (D̄) < P (βD̄)− P (β(D̄ −D)). (18)

If (17) and (18) both hold, then the probability that no one sells increases in the number
of creditors. Remark that the sufficient condition of Proposition 3 does not yield easily in-
terpretable conditions. The reasonable assumption of a decreasing pricing function, however,
implies negative externalities and gives the desired result immediately.

5 Conclusion

This paper has investigated if it is possible in a participation game for large groups to have a
lower probability probability of breakdown. The counterexample showed that this is possible,
but it is not easy to find these example as strong positive externalities seem to be required for
this phenomenon to occur. However, I presented two (mild) sufficient conditions under which
the probability of breakdown turned out to be increasing. Previous work by Anderson and
Engers (2005) already showed how negative externalities will lead to a higher probability of
breakdown, but I presented another condition only dependent on the incentive to participate
if no or one other player participates. In the example about R&D I argued that assuming
negative externalities is not always as innocuous as it seems. This paper only gives sufficient
conditions. Clearly, necessary conditions or a full characterization of the set of parameters,
for which the probability of breakdown is decreasing, are the next step.
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A Proof of Proposition 1

It is convenient to present the following Lemmata first.

Lemma 1. There exists no symmetric pure strategy equilibrium.

Proof. Suppose all players participate: ai = 1 and Ai = n for all i. Each player then receives
a payoff π(1, n). However, by Assumption 1 the best-response is to not participate since
π(0, n) > π(1, n). Suppose all players do not participate: ai = 0 and Ai = 0 for all i. However,
by Assumption 2 the best-response is to participate. �

Lemma 2. There are (n + 1) non-symmetric pure strategy equilibria.

Proof. Let Ai ≥ 1 be the number of other people who participate. Those who participate
have a payoff π(1, Ai) < π(0, Ai) (Assumption 1). Clearly, if Ai ≥ 1, this cannot be an
equilibrium. This does not hold for Ai = 0, since π(1, 0) > π(0, 0) (Assumption 2). Only one
player participates is an equilibrium. There are (n + 1) of these equilibria. �

Lemma 3. There exists a unique symmetric mixed-strategy equilibrium where everyone par-
ticipates with probability p ∈ (0, 1).

Proof. We know that p must be a real positive root of fn(·) defined in (4). First, it has to be
shown that it exists. Second, it has to be shown that it is unique.

It is straightforward to show that there is at least one root on the unit interval. Note that
by Assumption 1 and 2:

fn(0) = π(0, 0)− π(1, 0) = θ0 < 0 (19)
fn(1) = π(0, n)− π(1, n) = θn > 0, (20)

and remark that fn(·) is a continuous function. This also implies that generically the number
of roots is odd.

To proof unicity, notice that, for p 6= 1, fn(·) can be rewritten as:

fn(p) = (1− p)n
n∑

k=0

(
n

k

)
rkθk, (21)

where r ≡ p/(1−p). This allows us to look at the roots of
∑n

k=0

(
n
k

)
rkθk. By using Descartes’

sign rule (see Atkinson, 1989, p. 95), we now easily obtain that the root is unique. �

In determining all asymmetric equilibria, it is useful to think of a person joining the group.
Suppose that a group of n+1 players has already decided to participate with the equilibrium
probability of pn. If an extra person would join this group, what would this person do? The
next Lemma shows that this person becomes a bystander: someone who does not participate.

Lemma 4 (The bystander). The following is an equilibrium: in a group of size n + 2, let
n+1 players participate with probability pn and the remaining player (the bystander) will not
participate.
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Proof. For the players who participate this is obviously an equilibrium strategy. For the
bystander, the benefit of not participating over participating is given by:

n+1∑
k=0

(
n + 1

k

)
pk

n(1−pn)n−kθk = pn+1
n θn+1+

n∑
k=0

(
n

k

)
pk

n(1−pn)n−kθk×
[
(n + 1)(1− pn)

n + 1− k

]
. (22)

Note that (i) the first term on the RHS is positive and (ii) the second term on the RHS is
also positive. In order to see the latter recall that

∑n
k=0

(
n
k

)
pk

n(1−pn)n−kθk = 0. Observe that
this sum consists of one negative term at k = 0 followed by exclusively positive terms. The
new weighing factor (n + 1)/(n + 1− k) puts more emphasis on these positive terms since it
increases as k increases. Hence, the bystander will not participate. �

Lemma 5. Any non-empty subset of the group of players can play the symmetric mixed
equilibrium for a subset of that size with the rest of the group being bystanders.

Proof. Follows from Lemma 4. �

Lemma 6. There exists no non-symmetric strictly mixed equilibrium.

Proof. Suppose that each member of the group in an arbitrary mixed equilibrium participates
with probability pi, where i = 1, . . . , n + 1, and pi 6= pj for some i, j. Suppose the focus is on
a subset of the group without members n1, . . . , nm. Call this subset M ≡ N\{n1, . . . , nm}.
The probability that k players in this subset participate is:

∑
K⊆M,#K=k


∏

j∈K

pj

(∏
`/∈K

(1− p`)

) . (23)

This expression is obtained by summing over all subsets of M of size k and calculating
the probability that for each of these subsets the k people in this subset participate. Let
Pr(k|n1, . . . , nm) denote this probability. If k < 0 or k > #N −m, then Pr(k|n1, . . . , nm) is
defined to be zero. Notice that Pr(k|i) = Pr(k|i, j)× (1− pj) + Pr(k − 1|i, j)× pj .

For any i, j ∈ N , in a strictly mixed equilibrium the following should hold:

n∑
k=0

Pr(k|i)θk = 0 (24)

n∑
k=0

Pr(k|j)θk = 0. (25)

Both player i and j should be indifferent between participating and not participating. This
is equivalent with:

n∑
k=0

[Pr(k|i, j)× (1− pj) + Pr(k − 1|i, j)× pj ]θk = 0 (26)

n∑
k=0

[Pr(k|i, j)× (1− pi) + Pr(k − 1|i, j)× pi]θk = 0, (27)
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which implies that in equilibrium:

pi = pj =
∑

Pr(k|i, j)θk∑
Pr(k|i, j)θk −

∑
Pr(k − 1|i, j)θk

. (28)

Since pi = pj holds for any i and any j, this contradicts are earlier statement that pi 6= pj for
some i, j. Hence there are no non-symmetric strictly mixed equilibria. �

Proposition 1 follows easily from Lemmata 1–6. Observe that for each subset of N (with
the exception of the empty set), there is an equilibrium where the members of the subset
participate with the same probability and the other players do nothing. The number of subsets
is 2n+1. Moreover, these probabilities are the unique root of fm(·), where m the number of
players that participate. So there are exactly 2n+1 − 1 equilibria.

B Proof of Proposition 2

Note that fn+1(p) can be rewritten as:

fn+1(p) = pn+1 × θn+1 + (1− p)×
n∑

k=0

n + 1
n + 1− k

(
n

k

)
pk(1− p)n−kθk. (29)

To see that fn+1(pn) > 0, note that:

1. The first term on the RHS of (29) is positive,

2. The second term on the RHS of (29) is also positive in pn. It is known that∑n
k=0

(
n
k

)
pk

n(1 − pn)n−kθk = 0. Observe that this sum consists of one negative term at
k = 0 followed by exclusively positive terms. The new weighing factor (n+1)/(n+1−k)
puts more emphasis on the latter terms since it increases as k increases.

It is known from Lemma 3 that fn+1(·) has a unique positive real root at pn+1. Since pn+1

is the unique root of fn+1(·), fn+1(0) < 0 and fn+1(pn) > 0, pn+1 must be in the interval
(0, pn).

C Proof of Proposition 3

The symmetric Nash-equilibrium is the root of fn(·). Remark that if p 6= 1 we can write

fn(p) = (1− p)n
n∑

k=0

(
n

k

)
rkθk, (30)

where r = p/(1 − p). Note that r is a monotonic transformation from [0, 1) to [0,∞). Since
the root of fn(·) is never equal to 1, it is possible to focus on the roots of:

gn(r) =
n∑

k=0

(
n

k

)
rkθk. (31)

Let rn denote the unique positive real root of gn(·). Note that pn = rn
1+rn

. The following
Lemmata, that are needed for the proof of the Proposition, are presented in terms of rn.
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Lemma 7. For every n ∈ N, we have rn+1 < n
n+1rn.

Proof. If gn+1(nrn/(n + 1)) > 0, then rn+1 < n
n+1rn. This follows from gn+1(0) < 0 and

gn+1(·) continuous. It has to be shown that gn+1(nrn/(n + 1)) > 0 given that gn(rn) = 0. Let
r ≡ rn and s ≡ n

n+1r to simplify notation. Observe that:(
n

0

)
θ0 +

(
n

1

)
rθ1 =

(
n

0

)
θ0 +

n + 1
n

(
n

1

)(
n

n + 1
r

)
θ1 (32)

=
(

n + 1
0

)
θ0 +

(
n + 1

1

)
sθ1 (33)

and, since gn(r) = 0 that,(
n

0

)
θ0 +

(
n

1

)
rθ1 = −

(
n

2

)
r2θ2 − . . .−

(
n

n

)
rnθn. (34)

Combining these two results gives:

gn+1

(
n

n + 1
r

)
> 0 (35)

⇔ −
(

n

2

)
r2θ2 − . . .−

(
n

n

)
rnθn +

(
n + 1

2

)
s2θ2 + . . . +

(
n + 1

n

)
snθn + sn+1θn+1 > 0 (36)

⇔ −
(

n

2

)
r2θ2 − . . .−

(
n

n

)
rnθn +

n + 1
n− 1

(
n

2

)
s2θ2

+ . . . +
n + 1

1

(
n

n

)
snθn + sn+1θn+1 > 0

(37)

⇔
n∑

i=2

{(
n

i

)
θi

[
n + 1

n + 1− i
×
(

n

n + 1

)i

− 1

]
r

}
+ sn+1θn+1 > 0. (38)

Since sn+1θn+1 > 0, it suffices to show that the following is true for every n and for all
i = 2, . . . , n:

n + 1
n + 1− i

×
(

n

n + 1

)i

− 1 ≥ 0. (39)

Rearrange this to obtain:

ni

(n + 1− i)(n + 1)i−1
− (n + 1− i)(n + 1)i−1

(n + 1− i)(n + 1)i−1
=

ni − (n + 1− i)(n + 1)i−1

(n + 1− i)(n + 1)i−1
≥ 0, (40)

which is equivalent with:
ni − (n + 1− i)(n + 1)i−1 ≥ 0. (41)

The rest of the proof is by induction. Let i = 2. Now (41) boils down to n2− (n− 1)(n+1) =
n2 − n2 + 1 = 1 ≥ 0. Next, assume that (41) is true for an i > 2 and show that it also is
true for i + 1. Assume that ni − (n + 1 − i)(n + 1)i−1 ≥ 0 is true. It has to be shown that
ni+1 − (n− i)(n + 1)i ≥ 0 is true. Rewrite this as:

ni+1 − (n− i)(n + 1)i = n[ni − (n + 1− i)(n + 1)i−1] + i(n + 1)i−1 > 0, (42)

since ni − (n + 1− i)(n + 1)i−1 ≥ 0 by assumption and since i(n + 1)i−1 > 0. �
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Lemma 8. If rn+1 < n
n+1rn and r1 < 1, then for all n we have (1 + rn)n+1 > (1 + rn+1)n+2.

Proof. It is sufficient to show that this results holds for the limit case of rn+1 = n
n+1rn. This

defines a recursive relation and therefore rn can be rewritten as an explicit function of n, i.e.
rn = r1

n . It has to be shown that:(
1 +

r1

n

)n+1
>

(
1 +

r1

n + 1

)n+2

. (43)

Let Tn ≡
(
1 + r1

n

)n+1. Note that limn→∞ Tn = er1 since ex =
(
1 + x

n

)n. Using the logarithmic
derivative rule, it follows that:

dTn

dn
=
[
log
(
1 +

r1

n

)
− n + 1

n + r1

r1

n

](
1 +

r1

n

)n+1
, (44)

which has to be strictly negative. Equivalently:

log
(
1 +

r1

n

)
<

n + 1
n + r1

r1

n
. (45)

Since r1/n < 1 by assumption, we can use the following power function (Apostol, 1967: pp.
388–391) to replace log

(
1 + r1

n

)
with:

r1

n
+

∞∑
k=1

[
− 1

2k

(r1

n

)2k
+

1
2k + 1

(r1

n

)2k+1
]

. (46)

It is easily checked that r1
n < n+1

n+r1

r1
n if r1 < 1. Remark further that:

− 1
2k

(r1

n

)2k
+

1
2k + 1

(r1

n

)2k+1
< 0 (47)

⇔ − 1
2k

+
1

2k + 1
× r1

n
< 0 (48)

⇔ r1

n
<

2k + 1
2k

, (49)

which is true if r1 < 1. These two facts imply that

log
(
1 +

r1

n

)
=

r1

n
+

∞∑
k=1

[
− 1

2k

(r1

n

)2k
+

1
2k + 1

(r1

n

)2k+1
]

<
r1

n
<

n + 1
n + r1

r1

n
. (50)

Therefore, Tn is decreasing in n if r1 < 1, which concludes the proof. �

Now we are able to provide the proof of Proposition 3.

Proof of part (i) We have to show that:

(1− pn)n+1 < (1− pn+1)n+2 (51)

⇔
(

1
1 + rn

)n+1

<

(
1

1 + rn+1

)n+2

(52)

⇔ (1 + rn)n+1 > (1 + rn+1)n+2. (53)

Now if we solve (3) for n = 1, then we see that the condition that |θ0| < |θ1| is equivalent to
p1 < 1

2 . Since p1 < 1
2 implies that r1 < 1 and, from Lemma 7, we know that rn+1 < n

n+1rn,
the result follows from Lemma 8.
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Proof of part (ii) Let r̂n ≡ r1
n . Note that rn < r̂n and (1 + rn)n+1 < (1 + r̂n)n+1. Taking

the limit we obtain:
S∞ = lim

n→∞
(1 + rn)n+1 < er1 . (54)

Since limn→∞(1 + rn)n+1 =
[
limn→∞(1− pn)n+1

]−1 and substituting r1 = p1/(1 − p1) leads
to:

lim
n→∞

(1− pn)n+1 > e−p1/(1−p1), (55)

where the RHS is equal to eθ0/θ1 .

Proof of part (iii) The expected number of participants is the probability of participation,
pn, times group size, n + 1 (since the number of participants follows a binomial distribution).
We have to proof that (n + 1)pn < 1. Substituting pn = rn/(1 + rn) yields:

rn <
1
n

. (56)

It is known that r1 < 1 and rn+1 < n
n+1rn. Therefore rn < 1

nr1 < 1
n .

D Derivation of the probability of breakdown in the coun-
terexample

The probability of participation is implicitly defined by:
n∑

k=0

(
n

k

)
pk(1− p)n−kθk = 0, (57)

which in this case may be rewritten as:

−(1− p)n + α
n∑

k=1

(
n

k

)
(βp)k(1− p)n−k = 0. (58)

If β < 1, then some straightforward algebra yields:

−(1− p)n + α[βp + (1− p)]n ×
n∑

k=1

(
n

k

)(
βp

βp + (1− p)

)k ( 1− p

βp + (1− p)

)n−k

= 0. (59)

Now the part behind the summand is a proper binomial again and represents ‘the probability
of at least one success’. Exploiting this fact, we obtain:

−(1− p)n + α[βp + (1− p)]n
(

1−
(

1− p

βp + (1− p)

)n)
, (60)

which is equivalent to:

−(1− p)n + α[βp + (1− p)]n − α(1− p)n = 0, (61)

which is easily solved for p. This yields:

pn =
n
√

(1 + α)/α− 1
n
√

(1 + α)/α− (1− β)
. (62)

Applying Sn = (1− pn)n+1 gives the desired result.
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