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Abstract

In the 16th century, foreign ships passing through the Sound had
to pay ad valorem taxes, known as the Sound Dues. To give skippers
an incentive to declare the true value of their cargo, the Danish Crown
reserved the right to purchase it at the declared value. We show that it
is an equilibrium for the authorities to confiscate the cargo with some
fixed probability independent of the declared value. This does not
induce truth-telling, but does generate the desired tax revenue. Other
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1 Introduction

In the 16th century, the Kingdom of Denmark controlled both sides of the

Sound (Øresund), an important waterway at the time situated between

present-day Denmark and Sweden. All foreign ships passing through this

strait had to make a stop in Helsingør (known in English as Elsinore, the

stage for Shakespeare’s Hamlet) and pay taxes to the Danish Crown, which

amounted to 1-2% of the value of the cargo. These taxes are often referred to

as Sound Dues. Although obviously unfamiliar with the concept of incentive

compatibility, the Danish Crown was fully aware that such a tax would give

skippers a strong incentive to cheat and declare a value much lower than the

true one. It came up with an intriguing solution. The Crown reserved the

right to purchase the cargo at the value declared by the skipper. Thus, a

skipper who declared a value that was too low ran the risk of losing his cargo

at a price below market value. But a skipper who declared a value that was

too high ran the risk of paying too much in taxes.1

Although this mechanism is clearly ingenious, it does raise a number

of questions. First, what is the optimal confiscation strategy for the tax

authority? Obviously, it cannot be part of a Nash equilibrium to never

purchase the cargo. Then, the threat of confiscation would simply be empty.

Second, is this mechanism truth-revealing? That is, does it give skippers the

incentive to always declare the true value of their cargo? Third, is this an

optimal mechanism? Can it yield the desired tax revenue? Put differently,

did this mechanism really amount to sound taxation or was there something

rotten in the state of Denmark? We address these questions in this paper.

Obviously, the relevance of our analysis goes far beyond some tax scheme

in Medieval Europe. There are numerous instances where a similar tax has

either been proposed or implemented. In 1891, New Zealand passed a Land

and Income Tax act, based on a ”self-assessment with the shrewd device of

1This mechanism is described in some papers in the Economics literature (Gerchak and
Fuller, 1992; Niou and Tan, 1994). It is also mentioned in Shasha (2007) and in Maczak
(1972), as cited by Odlyzko (2004).
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making Government’s purchase at the tax value an effective check on the

owner’s assessment” (Condliffe 1930, p. 182, as quoted by Niou and Tan,

1994). Dr. Sun Yat-sen, the first provisional president when the Republic

of China was founded in 1912, proposed a land tax using the exact same

mechanism: landowners are taxed according to their declared value of the

land, and the government can also buy back the land at the same price.2

Anyone buying a house in southern Europe may face property taxes based

on self-declared value.3 Other examples include land tax in India around 1900

as well as in present-day Taiwan, taxes on works of art leaving Mussolini’s

Italy, and British taxes on imported American Jerome clocks (see Gerchak

and Fuller, 1992, and the references therein).

In our model we assume that, using the terminology of the Sound Dues

example, the skipper knows the true value of his cargo, but the taxation

authority does not. We thus analyze a signaling model with asymmetric in-

formation. We restrict our attention to cases in which the taxation authority

has no clue about the true value. It could base its action on some estimate

of the value, but we deliberately abstract from this possibility. We find that,

in any equilibrium of our model, the tax authorities use a mixed strategy.

Surprisingly, there are equilibria in which the probability that the authori-

ties will confiscate the cargo does not depend on the declared value. In other

words, there are equilibria in which the authorities use what we will refer

2Niou and Tan (1994) quote at length: ”How indeed can the price of the land be
determined? I would advocate that the landowner himself should fix the price. The
landowner reports the value of his land to the government and the government levies a
land tax accordingly... [T]he government makes two regulations: first, that it will collect
taxes according to the declared value of the land; second, that it can also buy back the
land at the same price... According to my plan, if the landowner makes a low assessment,
he will be afraid lest the government buy back his land at that value and make him lose
his property; if he makes too high an assessment, he will be afraid of the government taxes
according to this value serious possibilities, he will certainly not want to report the value
of his land too high or too low; he will strike a mean and report the true market price to
the government” (Sun, 1924: 177-178).

3See the Guardian (2004): ”In all three countries [France, Spain and Italy], these
taxes are charged on the value of the property as declared in the deed of sale, which has
traditionally borne little resemblance to the price actually paid. The penalties for tax
dodging in this way are severe and include compulsory state purchase at the declared
value, plus fines.”
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to as a signal-independent strategy. If we restrict attention to such simple

strategies, we can show that this tax scheme is not a truth-revealing mech-

anism, but that it does allow the taxation authorities to exactly collect the

desired tax revenue in expected value. In a zero-sum game, any equilibrium

has this property.

To derive these results, we develop a general model that applies to more

than just taxation issues. We will show that a similar mechanism can also

be used to dissolve a public-private partnership. Suppose that a public party

wants to end some joint-venture with a private party. Also assume that the

private party is fully informed about the true value of the joint-venture, but

the public party is not. The public party can then ask the private party to

name a price m, with the understanding that the public party could either

decide to sell its own share to the private party at price m, or to buy the

private party’s share at price m. We use our general model to analyze this

mechanism, and compare it to a case in which the public party makes a take-

it-or-leave-it offer to the private party. We show that the first mechanism

is desirable if the public party is sufficiently efficient in running the joint-

venture by itself.

In the case of income taxation, it is hard to imagine that a mechanism

similar to that of the Sound Dues could be used. It is not feasible to acquire

the entire income of a person at some price, especially if it is unclear how

high that income actually is. Still, we will show that we can also apply our

general model to such tax audits. Rather than the choice of whether or not

to acquire some property, the tax authority then has the choice whether or

not to audit some tax return. Qualitatively, the results are the same to those

in the Sound Dues case: by randomly auditing a fixed fraction of tax returns,

the tax authorities can make sure that they raise the desired tax revenue in

expected value. Further applications of our framework include the use of

shotgun clauses, and the allocation of an indivisible item.

We are not the first to give a game-theoretic treatment of these issues.

Niou and Tan (1994) focus on Sun Yat-sen’s land tax. They assume that the
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tax authority will use an audit to appraise the true value of the land before

they decide whether to purchase it, and show that landowners will always

underreport. In our model, we show that the tax authority does not need

such appraisals. Also in our model landowners do underreport, but the tax

authority is still able to obtain the desired tax revenue. Gerchak and Fuller

(1992) focus on the dissolution of a partnership through a shotgun clause.

They use a private-value set-up in which the declaring party is uncertain

about the valuation of the claiming party. We focus on the case of a common

value.

The remainder of this paper is structured as follows. In the next section

we present our general model. That model is specified in general terms rather

than being tailored to the Sound Dues application, to allow for alternative

interpretations. In Section 3 we solve the general model, while we consider

the special case of a zero-sum game in Section 3.2. Section 4 considers other

applications of our framework, and presents some additional results. Section

5 concludes.

2 The model

We have two players, a declarer d and a claimant c. We will refer to the

declarer as being male, and to the claimant as being female. The timing of the

game is as follows. First, Nature decides on the type v of the declarer, which

is his private information. It is common knowledge that v is drawn from

probability density function f(v) with support [0, v]. Second, the declarer

announces some value m. For ease of exposition but without loss of generality,

we assume that m is restricted to some interval [0,m], where m can be

arbitrarily large. Third, the claimant either accepts (A) or rejects (R) the

message of the declarer. Both actions have well-defined consequences. In the

Sound Dues example, the declarer is the skipper whose cargo has true value

v. The value that he declares to the tax authorities is m. The claimant is

the tax authority that can either accept the declaration, or reject it. If she

accepts, the skipper pays a tax tm which based on his announced value m,
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with t ∈ (0, 1). If she rejects, she buys the cargo at price m.

The payoffs in each outcome may depend both on the true type v and

on the signal m of the declarer. Given v and m, let Ad(v, m) and Rd(v,m)

denote the payoff of the declarer in case the claimant chooses, respectively,

Accept or Reject. Using similar notation, the payoffs to the claimant are

denoted by Ac(v, m) and Rc(v, m). We assume that the payoff functions

are differentiable in both arguments. In our Sound Dues example, if the

claimant accepts, the declarer pays taxes tm, so payoffs are Ac(v, m) = tm

and Ad(v, m) = −tm. If she rejects, she buys the cargo at price m. We then

have Rc(v, m) = v −m and Rd(v, m) = m− v.

For our analysis, we need a number of mild assumptions on the payoff

functions. First, we need the following separability assumption to hold:

Assumption 1. There exists a function S(v) and a constant c > 0, such

that we can write S(v) = Ad(v, m) + c ·Rd(v, m), for all v and m.

In other words, we require that some linear combination of the payoffs

to the declarer if the claimant accepts, and if she rejects, does not depend

on the action m of the declarer. Another way to interpret the assumption is

that the ”size of the cake” does not depend on the message m that is sent – if

we define the size of the cake as Ad + cRd. More technically, this assumption

implies that if the claimant always plays Accept with probability 1/(1 + c)

and Reject with probability c/(1+c), then the declarer is indifferent between

all messages. The assumption is satisfied in the Sound Dues example, as

Ad(v,m) + t ·Rd(v, m) = −tm + t(m− v) = −tv.

One direct implication of Assumption 1 is that4 sign (∂Ad/∂m) 6= sign

(∂Rd)/∂m. We thus have two possibilities. First, if the claimant accepts,

then the declarer benefits from sending a higher message, while if the claimant

rejects, the declarer benefits from sending a lower message. Alternatively, it

is exactly the other way round. We make a similar assumption for the payoffs

to the claimant. Moreover, we assume that in cases that the declarer benefits

4We use the convention that sign (x) = +1 if x > 0, sign (x) = −1 if x < 0, and
sign (x) = 0 if x = 0.
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from a higher message, the claimant is hurt by a higher message, and vice-

versa. In that sense, there is always a conflict of interest between declarer

and claimant. Taken together, these assumptions imply:

Assumption 2. Let sign
(

∂Rd

∂m

)
= sign

(
∂Ac

∂m

) 6= sign (∂Rc

∂m
) for all v and m.

For a relevant problem, we require that the message m affects the payoffs:

Assumption 3. Let ∂Rd

∂m
6= 0 for all v and m.

We also need that the incentives of the claimant depend on the type v of

the declarer. More precisely, we assume that the payoffs of the claimant are

increasing in v if she rejects, but decreasing in v if she accepts – or vice-versa.

Thus:

Assumption 4. Let sign (∂Rc

∂v
) 6= sign (∂Ac

∂v
) for all v and m.

This assumption also implies that, for each m, Rc and Ac cross at most

once in v. Finally, we need the following single-crossing condition:

Assumption 5. For each v ∈ [0, v], there is a unique m ∈ (0,m) such that

Rc(v, m) = Ac(v, m).

It is easy to see that all assumptions are satisfied for our Sound Dues

example.

3 Analysis

In this section, we analyze the model that we set up above. We first analyze

the general model in Section 3.1, focusing on Bayesian Nash equilibria that

have a particularly simple form. Doing so allows us to derive the expected

equilibrium payoffs to both players. In Section 3.2, we restrict attention

to zero-sum games. For such games, we can derive expected payoffs in all

Bayesian Nash equilibria. The implications for our Sound Dues example are

discussed in Section 3.3.
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3.1 General analysis

A strategy for the declarer assigns to each type v a probability density func-

tion zv(m), with support [0, m]. Beliefs of the claimant assign to each message

m a probability distribution of possible types βm on [0, v]. A strategy for the

claimant is a function which, given beliefs βm, maps [0,m] into the unit in-

terval, i.e. p : [0, m] → [0, 1] where p(m) denotes the probability with which

the claimant plays Reject if she observes signal m. Both players want to

maximize their ex ante expected payoffs.

We focus on equilibria that have a particularly simple form. Suppose that

the claimant uses a strategy that does not depend on the message m that

the declarer sends. We will refer to such a strategy as a signal-independent

strategy:

Definition 1. The claimant uses a signal-independent strategy if her

action does not depend on the action of the declarer: p(mi) = p(mj) for all

mi,mj ∈ [0, m].

There are a number of reasons to focus on such strategies. First, since

these strategies are simple, they require relatively little sophistication for

the players in this game. Wilson (1987) criticizes most of the game theory

literature as relying too much on common-knowledge assumptions, and ar-

gues for the use of simple mechanisms that do not require such assumptions.

This is known as the Wilson Doctrine (see also e.g. Chung and Ely, 2007).

Although our signal-independent strategies do not strictly satisfy Wilson’s

requirements, they are at least a step in that direction. Second, we will show

that with signal-independent strategies, the tax authority is able to raise the

desired tax revenue in expected value. In that sense, it cannot do better than

using such strategies. It also implies that there is no necessity to second-guess

the declarer. If the equilibrium yields the required tax revenue anyhow, then

e.g. hiring an appraiser is completely redundant and would only add to the

costs of tax collection.5 Third, there are obvious practical advantages to us-

5Note that this is something that Niou and Tan (1994) do worry about.
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ing a signal-independent strategy. The rule is easy to communicate to the

agent in charge of the actual collection of taxes, and it is easy to monitor.

The rule does not depend on the actual distribution of values, which implies

it is stable through time and across circumstances.

We immediately have:

Proposition 1. Under Assumptions 1 to 5 it cannot be an equilibrium for the

claimant to use a signal-independent strategy other than p = p∗ ≡ c/(1 + c).

Proof. Suppose that the claimant uses some signal-independent strategy p.

Take p∗ = c/(1 + c). Using Assumption 1, the declarer is indifferent between

all messages m ∈ [m, m], i.e.

∂Rd

∂m
p∗ +

∂Ad

∂m
(1− p∗) = 0.

Suppose p > p∗. In that case, if we have ∂Rd/∂m > 0, then

∂Rd

∂m
p +

∂Ad

∂m
(1− p) > 0,

which implies that all types v of the declarer will choose m = m. However, us-

ing ∂Rd/∂m > 0 and Assumptions 2 and 5, we see that Rc(v, m) < Ac(v, m)

for all v, which implies that the claimant then wants to switch to Accept, i.e.

set p = 0 < p∗. We thus obtain a contradiction. Similarly, if ∂Rd/∂m < 0,

then given the strategy of the claimant, all types v of declarer will play

m = 0. From ∂Rd/∂m < 0 and the Assumptions 2 and 5, we now know

that Rc(v, 0) < Ac(v, 0) for all v. Thus, again, we obtain a contradiction. A

similar argument shows that the claimant cannot play some p < p∗.

Thus, if there is a Bayesian Nash equilibrium in which the claimant uses

a signal-independent strategy, it must have p(m) = p∗ for all m. As we will

illustrate in Section 4.2, there may be infinitely many signal-independent

equilibria, as the declarer has great leeway in choosing his strategy. Two

types of equilibria are of particular interest. In a separating equilibrium,

each type of declarer chooses a different signal. Upon observing his signal, the

claimant can thus infer the true type of the declarer. In a pooling equilibrium
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each type of declarer selects the same signal m, which makes m completely

uninformative. We can show the following:

Proposition 2. Under Assumptions 1 to 5 the game has exactly one fully

separating equilibrium in which the claimant uses a signal-independent strat-

egy, and exactly one pooling equilibrium in which the claimant uses a signal-

independent strategy.

Proof. First note that in any equilibrium in which the claimant uses the

strategy p(m) = p∗, she should be indifferent between Accept and Reject.

This implies the following restriction:

E [Rc (v,m) |m] = E [Ac (v,m) |m] ⇔ E [g (v, m) |m] = 0, (1)

where g(v, m) ≡ Rc(v, m)−Ac(v,m). The conditional distribution of v given

m follows from the strategy of the declarer.

We know from Assumption 5 that for each type v of declarer there exists a

unique m, m∗(v) say, such that g(v, m∗(v)) = 0. Using the implicit function

theorem and Assumptions 2, 3 and 4 we see that dm∗
dv

= ∂g/∂m
∂g/∂v

is either strictly

positive or strictly negative. As a consequence m∗(v) is strictly monotonic.

Observing that E [g (v,m) |m] = g(v, m∗(v)) = 0, it easily follows that we

have a unique separating equilibrium in which the declarer plays strategy

m∗(v) and the claimant plays Reject with probability p∗. In this equilibrium,

the conditional distribution of v given m is very simple, since v is known with

certainty given m.

Next, consider a pooling equilibrium in which each type v of declarer se-

lects the same signal. Define the continuous function H(m) ≡ E [g (v,m) |m] =∫ v̄

0
g(v, m)f(v)dv. In a pooling equilibrium the signal m chosen by the de-

clarer must be such that H(m) = 0. Note that

∂H

∂m
=

∫ v̄

0

∂g(v, m)

∂m
f(v)dv. (2)

Suppose now that ∂Rd/∂m > 0. Then ∂g/∂m < 0 from Assumption 2,

and thus ∂H/∂m < 0. Moreover, using Assumption 5 we then know that for
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all v we have g(v, 0) > 0 and g(v, m) < 0. In turn, this implies that H(0) > 0

and H(m) < 0. Hence, we see that there exists a unique signal, m∗∗ say, such

that H(m∗∗) = 0. It easily follows that we have a pooling equilibrium in which

all types of declarer give the signal m∗∗ and the claimant plays Reject with

probability p∗. The case with ∂Rd/∂m < 0 can be discussed in a similar way.

Finally, note that in the pooling equilibrium the conditional distribution of

v given m is simply equal to the unconditional distribution of v.

The proofs of the propositions above also suggest how we can construct

equilibria with signal-independent strategies. We have from the proof of

Proposition 1 that, in such an equilibrium, the declarer is necessary indiffer-

ent between all possible messages he can send. For any v, there always exists

a unique m∗(v) that makes the claimant indifferent between accepting and

rejecting. The unique fully separating equilibrium then has a declarer of type

v sending exactly the message m∗(v). Upon observing m, the claimant then

exactly knows which type of declarer she is facing, which is v(m) = m∗−1(m).

But more equilibria exist. For the claimant to be willing to mix between

Accept and Reject, it is not necessary that she can exactly infer the type

of declarer she is facing from observing the message m that the declarer

sends. It is sufficient that she faces the required type v on average. Consider

for example the situation in Figure 1. Suppose that types are uniformly

distributed. Suppose that, for this particular situation, the function m∗(v) is

given by the straight line. Then it is part of the fully separating equilibrium

for the declarer to always exactly play m∗(v). But the declarer may just as

well add some noise to his signal. Suppose that a type v plays a message

m that is drawn from a uniform distribution between the two dotted curves.

From the figure, it is then easy to see that, for the claimant, the expected

value of v given m is not affected. Hence, this strategy is also part of an

equilibrium.

Our unique pooling equilibrium takes this argument to the extreme. It

can even be an equilibrium for the declarer to play the same message m∗∗,

regardless of his type – as long, given the distribution of types, m∗∗ is con-
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Figure 1: Equilibria

structed in such way that the claimant is exactly indifferent between Accept

and Reject.

From the discussion above, we immediately have that the declarer has the

same expected payoff in any signal-independent equilibrium. The expected

payoff of the claimant seems to depend on the strategy used by the declarer.

In case Rc(v,m) and Ac(v,m) are linear in both m and v, however, the

expected payoff of the claimant is independent of the declarer’s strategy.

Proposition 3. If Rc(v, m) and Ac(v, m) are linear in both v and m, and

Assumptions 1-5 are satisfied, then each Bayesian Nash equilibrium in which

the claimant uses a signal-independent strategy yields the same expected pay-

off for the declarer and the claimant. The expected payoff for the declarer is
1

1+c
E[S(v)] and the expected payoff for the claimant is proportional to E[v].

Proof. In Appendix.

12



3.2 The zero-sum game

Now consider the zero-sum version of our game, where Rd(v, m)+Rc(v,m) =

0 and Ad(v, m) + Ac(v,m) = 0 for all v and m. Hence, this reflects situa-

tions in which the declarer makes (or receives) the payment directly to the

claimant. This is also satisfied for the Sound Dues example. Note however

that this does not imply that our game is a classic two-person simultaneous-

move complete-information zero-sum game: despite that payoffs always sum

to zero, we still have a signalling model with asymmetric information.

Under this assumption, we can show that every equilibrium of our game

(and not just the equilibria in which the claimant plays a signal-independent

strategy) has the same ex ante expected payoffs for both players. Luce and

Raiffa (1957, Appendix 2) show that a characteristic of complete-information

zero-sum games is that any equilibrium has the same ex ante equilibrium

payoffs. We can show that the same result holds in our zero-sum game with

incomplete information. In turn, this implies for our Sound Dues example

that the claimant is always able to achieve the desired tax revenue.

We first establish the following result.

Proposition 4. Any equilibrium of the zero-sum game necessarily has the

claimant being indifferent between Accept and Reject, for every message m.

Proof. First note that the result trivially holds for those m in which the

claimant strictly mixes between the two actions. Next, let p(m) = 1 for

some m and let v be a type of declarer that selects this signal m with positive

probability in equilibrium. Note that, given the signal m, the claimant plays

Reject with certainty. We will argue now that for the given v and m we

must have g(v,m) ≤ 0. Suppose otherwise that g(v, m) > 0. There are two

cases to distinguish: ∂Rd/∂m > 0 and ∂Rd/∂m < 0. The proof is similar

for the two cases and shown only for ∂Rd/∂m > 0. Observe that in case

∂Rd/∂m > 0 we can find an m′ > m and m′ sufficiently close to m such that

both Ad(v, m′) > Rd(v, m) and Rd(v,m′) > Rd(v,m). Hence, regardless of

the value of p (m′), it is always optimal for a declarer of type v to deviate
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to m′, which cannot be possible in equilibrium. Therefore, p(m) = 1 implies

that g(v, m) ≤ 0 for all types v of declarer that play action m in equilibrium.

Furthermore, in the case that p(m) = 1, the claimant’s payoff from play-

ing Reject should be at least as large as the payoff from playing Accept:

E [Rc (v,m) |m] ≥ E [Ac (v,m) |m], or equivalently, E [g (v, m) |m] ≥ 0. This

contradicts with g(v, m) ≤ 0 unless E [g (v, m) |m] = 0.

The proof for the case that p(m) = 0 for some m goes along the same

lines.

We then have:

Proposition 5. Under Assumptions 1 to 5, the zero-sum game has the same

ex ante expected payoffs in any equilibrium: 1
1+c
E [S (v)] for the declarer and

− 1
1+c
E [S (v)] for the claimant.

Proof. By Proposition 4, in any equilibrium the claimant is indifferent be-

tween Reject and Accept. In particular, E [Rc (v, m) |m] = E [Ac (v,m) |m].

Using Rd(v,m) = −Rc(v, m) and Assumption 1, we then have:

E [Rd (v, m) |m] = E [S(v)− c ·Rd(v, m)|m] (3)

or

E [Rd (v,m) |m] =
1

1 + c
E [S (v) |m] . (4)

The ex ante expected payoff in equilibrium is the expected value over m. For

the declarer, this is

E [E [Rd (v, m) |m]] =
1

1 + c
E [S (v)] . (5)

The result for the claimant follows directly.

Hence, the ex ante expected payoff of each player is a function of only

S(·), c and the distribution of v, and can be calculated without knowing the

precise equilibrium strategies of both players. In particular, in the context

of zero-sum games this is also true if the claimant does not restrict attention

to signal-independent strategies.
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3.3 Sound Dues

The above results have important implications for our Sound Dues example,

which is a zero-sum game with payoffs Rd (v, m) = − (v −m) = −Rc (v,m)

and Ad (v, m) = −tm = −Ac (v, m). Note that S(v) = −tv and c = t.

From Proposition 5 we immediately have that in any equilibrium the ex ante

expected tax revenue equals t
1+t
E[v]. With complete information the tax

revenue would be tE[v]. Hence, in any equilibrium the taxpayer on average

underreports his valuation by a factor 1
1+t

. At this point the expected cost of

receiving a lower price for the asset in case of purchase is equal to the expected

benefit of paying a lower tax. The government can use this knowledge to

adjust the tax rate and raise precisely the desired amount of tax revenue

that would be raised if v were complete information.

Proposition 6. In the Sound Dues game, the King of Denmark can achieve

any desired effective tax rate t∗ ∈ [0, 1/2) in expected value by imposing a

true tax rate t = t∗/(1 − t∗), and by requiring the toller to confiscate cargo

with fixed probability p∗ = t/(1 + t), regardless of its declared value.

This proposition shows that the taxation scheme discussed above is ef-

ficient in the following sense. Suppose that the King has decided that the

optimal tax rate is some t∗. How this optimal tax rate has been determined,

is immaterial and beyond the scope of this paper. It could be the tax rate

that maximizes expected tax revenue, but the King could also have some

other objective function. Then the proposition implies that the King can

exactly raise the desired tax revenue t∗v in expected value by imposing a

tax rate t = t∗/(1 − t∗) and playing a signal-independent strategy. Note

that this is true even though the taxpayer does not declare the true value

in equilibrium. In the separating equilibrium of Proposition 2, we even have

that each individual precisely pays the desired tax burden, rather than only

in expected value. The Sound toll scheme is a sound taxation scheme. Note

however that the mechanism is not truth-telling, and in most cases not even

15



truth-revealing.6 But for the expected tax revenue, this is immaterial.

In the analysis above, we assumed that any given cargo is worth just

as much to the skipper as it is to the tax authority. In practice, this may

not be true. It is likely that the tax authority faces some transaction costs

from appropriating a cargo and selling it on the market. Our framework

easily allows for that possibility. Suppose for example that a cargo that is

worth v to the skipper only has value φv for the tax authority, with φ ∈
(0, 1). In that case, we no longer have a zero-sum game. Still, we can use

the analysis in Section 3.1 to construct equilibria with signal-independent

strategies. Consider for example a fully separating equilibrium. We still have

Ad(v,m) = −tm,Ac(v,m) = tm,Rd(v, m) = −(v−m), but Rc(v, m) = φv−
m. The value of c in Assumption 1 still is t/(1+ t), but for the tax authority

to be indifferent between Accept and Reject, we now need m = φv/(1 + t).

The expected revenue for the tax authority then is φt
1+t
E[v] in any signal-

independent equilibrium. Again, this implies that the King can achieve any

effective tax rate, provided φ is not too high. Different from the zero-sum

case however, we no longer have that this is true in any equilibrium: it only

holds in the signal-independent equilibria.

4 Other applications

In the previous sections, we set up a general model and applied it to the

Sound Dues case. In this section, we discuss some further applications of

our general framework. Table 1 presents payoffs for the general model as

well as for the applications that we discuss. In all applications we select

some arbitrarily large values for m and v. We focus on the fully separating

equilibrium discussed in Proposition 2 and/or the ex ante equilibrium payoffs.

[INSERT TABLE 1 ABOUT HERE]

6It only is in the separating equilibrium described in Proposition 2.
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4.1 Dissolving a public-private partnership

In this subsection we apply our framework to the case of terminating a public-

private partnership. Such partnerships, in which a private party and a pub-

lic party both own half of the project, are often used in e.g. infrastructure

projects. At some point the public party may consider to end the partner-

ship, either by transferring control fully to the private party, or by obtaining

full control for itself. The problem is that the private party is often bet-

ter informed about the value of the business. The public party could then

use a mechanism not unlike that in the Sound Dues example: it could ask

the private party to name a price m with the understanding that the public

party could either decide to sell its own share to the private party at price

m, or to buy the private party’s share at price m. Alternatively, the private

party could itself announce a price k at which it is willing to either sell its

own share, or to buy the share of the private party. An obvious question is

which mechanism would yield the highest expected revenue for the private

party. We will show that the private party wants to name a price itself if it

is sufficiently inefficient in running the project.

A private party owns half of the shares in some project, the government

owns the other half. The private party manages the project and has inside

information about the true value v ≥ 0. The government wants to end the

partnership. It invites the private party to announce the price m ≥ 0 at

which it is willing to sell its share in the project. However, the government

also reserves the right to sell its share to the private party at that price.

We assume that the government may be less efficient than the private

party in running the firm, i.e. we assume that the true value to the govern-

ment is δ(v, r), where the parameter r ∈ [0, 1] is a measure of government

efficiency, and δ(v, 0) = 0 for all v, δ(v, 1) = v for all v, and ∂δ(v, r)/∂r > 0

for all v and r. Note that 0 ≤ δ(v, r) ≤ v for all v and r. The value of r is

common knowledge.

This game corresponds to the one discussed in Section 2 with the declarer

the private party and the claimant the government. The action Reject corre-
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sponds to privatization (selling the government’s stake), while action Accept

corresponds to nationalization (buying the stake of the private party). If the

government rejects, the private party obtains an additional half of the project

at a price m, while the true value is v. The governments sells its share at

price m. Hence Rd(v, m) = v − m and Rc(v, m) = m. If the government

accepts, it buys the private party’s share at a price m, so Ad(v, m) = m

and Ac(v,m) = δ(v, r) − m. Moreover S(v) = v and c = 1 (see Table 1).

Note that we set the value of the original 50% share equal to zero, implicitly

assuming that retaining only a 50% share is not an option.7

For the sake of argument, focus on the fully separating equilibrium de-

scribed in Proposition 2. In this equilibrium we have m∗(v) = 1
2
δ(v, r) and

p∗ = 1
2
. The corresponding ex ante expected revenue is 1

2
E[δ(v, r)] for the

government and 1
2
E[v] for the private party, so both obtain half of what the

project is worth if they run it themselves. From Proposition 3, we have that

all other signal-independent equilibria yield the same expected revenues in

the case that δ(v, r) is linear in v. Of course, if r < 1, this is not an efficient

outcome since joint payoffs are then maximized when the government sells

its shares with probability 1.

An alternative mechanism for the government is to announce a price

k ≥ 0, rather than inviting the informed private party to do so. Given r, the

government maximizes

∆(k, r) = k[1− F (k)] + E [δ(v, r)− k|v ≤ k]

= k[1− 2F (k)] +

∫ k

0

δ(v, r)f(v)dv, (6)

with F (·) the cumulative distribution function of v. Assume that ∆(·) has a

unique interior maximum, and solve the first-order condition (FOC)

1− 2F (k) + (δ(k, r)− 2k)f(k) = 0. (7)

7Alternatively, we might assume that the value of the original 50% share is 1
2γ (v) to

either party, where 0 ≤ γ (v) ≤ v. To obtain the ‘additional’ payoffs of the game, we
now need to subtract 1

2γ (v) from each from the payoffs Rd(v, m), Rc(v, m), Ad(v,m) and
Ac(v, m). Thus, we may ignore the term 1

2γ (v).
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As δ(k, r) − 2k < 0, we have that at the optimal solution F (k) < 1
2
, so the

optimal price k̂(r) is smaller than the median of the valuation distribution.

Comparing 1
2
E[δ(v, r)] with ∆(k̂, r), we have

Proposition 7. There is an r′ ∈ (0, 1] such that the government has a higher

ex ante expected revenue by announcing a price itself if r < r′, and by inviting

the private party to announce a price if r ≥ r′.

Proof. First, take r = 0. We then show that ∆(k̂(0), 0) > 1
2
E[δ(v, 0)]. Note

that

∆(k, 0) = k[1− 2F (k)]. (8)

Thus, ∆(k̂(0), 0) ≤ 0 implies that 1− 2F (k̂(0)) ≤ 0, which violates the FOC

(7). So, we must have ∆(k̂(0), 0) > 0 = 1
2
E[δ(v, 0)].

Second, take r = 1. We then show that ∆(k̂(1), 1) ≤ 1
2
E[δ(v, 1)] = 1

2
E[v].

Consider therefore the situation in which the government announces the price

k. Suppose, for the moment, that v were known to the government. In that

case we have the following: (i) if v − k > k, then the project is privatized

and the government’s revenue is k, and (ii) if v − k ≤ 0, then the project is

fully nationalized and the government’s revenue is v − k. Hence, if v were

known to the government, its revenue would be v − max{v − k, k}. This

expression is maximized if k = 1
2
v, so with complete information the ex ante

expected revenue of the government would be 1
2
E[v]. Return now to the case

in which the true v is unknown to the government. Then, the government’s

revenue is at most 1
2
E[v], since it cannot possibly be worse off if it has more

information.

The above analysis implies that ∆(k̂ (r) , r) and 1
2
E[δ(v, r)] as a function

of r cross an odd number of times. In order to show that they cross exactly

once, notice by using the envelope theorem that

d∆(k̂(r), r)

dr
=

∫ k̂(r)

0

∂δ

∂r
f(v)dv > 0, (9)

and
d1

2
E[δ (v, r)]

dr
=

1

2

∫ v̄

0

∂δ

∂r
f(v)dv > 0. (10)
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Since k̂(r) is increasing in r,8 the derivatives intersect at most once. But if

∆(k̂ (r) , r) and 1
2
E[δ(v, r)] cross n times, the derivatives must intersect at

least n − 1 times. Hence, there are at most two intersections of ∆(k̂ (r) , r)

and 1
2
E[δ(v, r)]. Since there is an odd number of intersections, there is only

one intersection.

Hence, only a relatively efficient government finds it optimal to invite

the private party to announce a price at which the government will either

sell or buy. An inefficient government is better off announcing a price itself.

The intuition is as follows. By letting the private party announce a price,

the public party gives away its bargaining power, but can keep the private

party in check by the threat of buying at the price that the private party

chooses. But as the public party becomes more inefficient, this becomes less

of a threat, as the private party knows that the public party is not able to

get much value out of the entire firm, and hence is also not willing to pay a

high price.

4.2 Shotgun clauses

In this subsection we analyze the dissolution of a partnership via a buy-

sell (or put-call) clause. Such clauses, also known as Shotgun clauses, are

often included in partnership agreements. The party that wishes to end the

relationship (the declarer) gives his estimate of the value of the firm, the

other party (the claimant) then has the choice of buying his share, or to sell

her share to him at the declared price (see Gerchak and Fuller, 1992).

For our framework to apply, we do need that the declarer has private

information about the true value of v, while the claimant does not have that

information. This is the case, for example, if the declarer is an insider to the

business, say an owner-manager, and the responder is an outside owner. We

assume that the claimant owns a fraction s of the business initially, where

0 < s < 1.

8This can be verified by totally differentiating the FOC (7) and using the second-order
condition.
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The declarer announces a value m ≥ 0, after which the claimant may

either sell her share at the declared value (Reject) or buy him out at this price

(Accept).9 We thus have a zero-sum game. Also note that this application

is closely related to the one in the previous section. We use this application

to illustrate that there may be infinitely many signal-independent equilibria.

The payoffs of this zero-sum game are given by Rd(v, m) = (v −m)s =

−Rc(v, m) and Ad(v, m) = −(v−m)(1−s) = −Ac(v,m) (see Table 1), which

satisfy the assumptions of our general model, with S(v) = 0 and c = (1−s)/s.

We immediately have that the expected equilibrium payoff as given in

Proposition 5 equals zero. This implies that on average the declared value

is equal to the true value: E[m] = E[v].10 Using Proposition 2 we find the

fully separating equilibrium where the declarer announces the true value, i.e.

m∗(v) = v, and the responder sells with probability p∗ = 1 − s. But as

we mentioned before, the declarer has considerable leeway in constructing

his strategy. If the responder uses p∗ = 1 − s, then any strategy for which

E [g(v, m)|m] = 0 will do. Here the latter reduces to

E [−(v −m)s− (v −m)(1− s) |m] = 0 ⇔ E [v|m] = m. (11)

Hence, for example, the following also constitutes an equilibrium strategy for

the declarer: set m equal to E[v] + ε with probability 1
2

and equal to E[v]− ε

otherwise, where ε > 0. Note that there are infinitely many strategies of this

form.

4.3 Tax auditing

Consider the case of income tax auditing. Suppose that a citizen has income

v ≥ 0, and is obliged to pay taxes at a rate t. Suppose that he reports an

income of m ≥ 0. If the tax authority accepts this declaration, he faces a

total tax bill of tm, thus Ad(v,m) = −tm and Ac(v, m) = tm. However,

9Different from Gerchak and Fuller (1992), we assume that the value v is the true value
to both players, and that the responder does not know v.

10Gerchak and Fuller (1992) conclude instead that the declarer will always underreport
the value of the business.
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the tax authority may also choose to audit this tax return. The costs of

doing so are K > 0. By doing an audit, the tax authority learns true income

v, taxes this income at a rate t, and also imposes a fine at a rate f > t

on the difference between true income v and declared income m. Hence

Rd(v, m) = −tv − f(v −m) and Rc(v, m) = tv + f(v −m)−K.11

To find a fully separating equilibrium, we first, we need to show that it

is possible to find a c such that the sum Ad(v, m) + c · Rd(v, m) does not

depend on m. It is easy to see that this is true for c = t/f . Next, we need

a reporting strategy m(v) that makes the tax authority always indifferent

between Accept and Reject. Hence we need m(v) such that

tm(v) = tv + fv − fm(v)−K,

which implies12 m∗(v) = v −K/(t + f).

Hence, as in the Sound Dues example, the tax authority is able to obtain

the desired tax revenue by simply using a signal-independent strategy. That

is, the tax authority will audit a fixed fraction of tax returns, but will pick

those returns at random, without taking into account the income that is

declared on those returns. In the separating equilibrium, all citizens declare

an income that is too low. The income that is declared, is decreasing in the

costs of an audit K, but increasing in the tax rate t and the fine f .

4.4 Allocating an indivisible item

As a final example, consider a situation where two players are to allocate

an indivisible item with value v ≥ 0 among themselves. They both own an

equal share but only player 1 (the declarer) knows the true value. One way

of doing this is by a ‘divide-and-choose’ method (see e.g. Moldovanu, 2002).

Both players deposit a large sum T/2 (T >> v) into a pot also including the

11Note that this specification implicitly assumes that the citizen will always choose to
set m ≤ v: with m > v the specification would imply a bonus for overreporting one’s
income. Since the equilibrium that we will find does have m < v, we ignore this problem.

12For this to be an equilibrium, we need m∗(v) > 0 ∀v, which implies that we need a
lower bound of v ≥ K/(t+f) for the possible values of v. Having such a lower bound does
not affect our results.
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item. The declarer then splits the pot into two parts, one of which contains

the item plus an amount m ≥ 0, after which the claimant may choose his

preferred part – either the part including the item (which corresponds to the

action Reject) or the part with money only (Accept).

Again we have a zero-sum game with Rd(v,m) = −1
2
(v − T ) − m =

−Rc(v, m) = −Ad(v,m) = Ac(v, m), S(v) = 0 and c = 1 (see Table 1),

which satisfy the assumptions of our general model. From Proposition 5 we

immediately have that the ex ante expected payoffs to both players are zero,

which indicates that this method for dividing the indivisible item is fair. In

the fully separating equilibrium of Proposition 2 we have m∗(v) = 1
2
T − 1

2
v

and p∗ = 1
2
. The main difference between this game and the previous games

is that in the separating equilibrium the value m now depends negatively on

the true value v.

5 Conclusion

In this paper, we studied an ingenious method used by Danish authorities

in Medieval times to collect taxes. The authorities raised taxes on the basis

of the declared value of the cargo, but reserved the right to purchase the

cargo at that declared value. We showed that, although this is not a truth-

revealing mechanism, it does allow the authorities to raise the desired tax

revenue in expected value. This is always true in zero-sum games, but also in

non-zero-sum games if we restrict attention to signal-independent strategies

for the Danish authorities.

Apart from raising the required tax revenue, the mechanism has other

obvious advantages. It is simple, and therefore easy to communicate to any

civil servant that is involved in the collection of taxes. It is relatively cheap,

as it does not require costly appraisals. Of course, there are disadvantages to

the mechanism as well. The tax authority does need to acquire the cargo in

some cases, which implies costs of storage and resale, for example. Still, such

costs are implicitly taken into account in the general model we propose. The

required tax revenue that the mechanism allows the government to raise, are
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net of such costs.

We set up a general framework, that also allowed us to study other issues,

such as the termination of a public-private partnership, and the auditing of

income tax returns. In all cases, we assumed that one party is fully informed

about the true value of some item, whereas the other party is not informed

at all. In all cases, we showed that using a mechanism similar to that of the

Sound Dues allows the uninformed party to obtain its required revenue in

expected value. For the case of ending a partnership, a substantial body of

literature has studied other and more complicated mechanisms in contexts

where both parties are informed (for a survey, see Moldovanu, 2002). Yet, the

beauty of the mechanism we described in this paper is that being completely

uninformed does not hurt a party at all in acquiring the expected value of

its share in the partnership.
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Appendix

Proof of Proposition 3 Observe that ex ante there is a joint distribution

of v and m. Nature chooses v and then type v employs a (possibly mixed)

strategy resulting in a (random) m. Then the claimant observes m and the

conditional distribution of v is recovered. Since, in general, the distributions

of v and m may be degenerate, we need the following results from measure

theory in the derivations below (for a comprehensive discussion of measure

theory, see Ash, 1972). Below the subindex associated with an expectation

symbol denotes the probability measures which are relevant while taking the

expectation.

Lemma 1. Let h1 : R→ R and h2 : R→ R be continuously differentiable and

bounded functions. Furthermore, let X and Y be two random variables with

25



probability spaces (ΩX ,B(ΩX), µX) and (ΩY ,B(ΩY ), µY ), which are respec-

tively the outcome space, the associated Borel-field and a probability measure.

Denote the combined probability space by (ΩX×ΩY ,B(ΩX)⊗B(ΩY ), µX⊗µY ).

Then:

(i) EXY [h1(x) + h2(y)] = EX [h1(x)] + EY [h2(y)]

(ii) EY [EX [h1(x)|y]] = EX [h1(x)].

Proof. Ad (i) The expected value is given by:

EXY [h1(x) + h2(y)] =

∫

ΩX×ΩY

[h1(x) + h2(y)]dµX ⊗ µY

=

∫

ΩX×ΩY

h1(x)dµX ⊗ µY +

∫

ΩX×ΩY

h2(y)dµX ⊗ µY .

Applying Fubini’s Theorem (see Ash, 1972) yields:

EXY [h1(x) + h2(y)] =

∫

ΩX

dµX(x)

∫

ΩY

h1(x)dµY (y) +

∫

ΩY

dµY (y)

∫

ΩX

h2(y)dµX(x)

=

∫

ΩX

h1(x)dµX(x) +

∫

ΩY

h2(y)dµY (y)

= EX [h1(x)] + EY [h2(y)].

Ad (ii) See Theorem 6.5.4 (a) of Ash (1972).

Let us now consider the linear case, where Rc(v, m) = αv + βm and

Ac(v,m) = γv + δm. Assumptions 2, 4 and 5 imply that

(a) either α > 0 > γ and β < δ

(b) or γ > 0 > α and β > δ.

Note that all functions we encounter are continuously differentiable and

bounded. The expected payoff for the declarer in any signal-independent

equilibrium is given by:

EV M [pRd(v, m) + (1− p)Ad(v,m)] =
1

1 + c
EV M [cRd(v,m) + Ad(v,m)]

=
1

1 + c
EV [S(v)],
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where the last equality follows from Lemma 1.

In a signal-independent equilibrium the claimant should be indifferent

between Reject and Accept:

EV [Rc(v, m)− Ac(v,m)|m] = EV [(α− γ)v + (β − δ)m|m] = 0.

Rewriting this we see that

EV [v|m] + ρm = 0,

where ρ ≡ β−δ
α−γ

< 0. Note that this equation only needs to hold for m that

are played in equilibrium.

The expected payoff for the claimant in a signal-independent equilibrium

is:

EV M [pRc(v, m) + (1− p)Ac(v,m)].

Note that this is an expectation over a bivariate distribution. Choosing

λ ≡ pα + (1− p)γ and µ ≡ pβ + (1− p)δ, we see that the expected payoff is:

Payoff for the claimant = EV M [λv + µm]

= λEV [v] + µEM [m]

= λEV [v]− µ

ρ
EM [EV [v|m]]

=

(
λ− µ

ρ

)
EV [v],

where Lemma 1 is used repeatedly.
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General model

Reject Accept
Declarer Rd(v, m) Ad(v, m)

Claimant Rc(v,m) Ac(v,m)

Taxation

Purchase Tax
Taxpayer − (v −m) −tm

Government v −m tm

Dissolving a public-private partnership

Sell (privatize) Buy (nationalize)
Private party v −m m
Government m δ(v, r)−m

Shotgun clauses

Sell Buy
Declarer (v −m) s − (v −m) (1− s)

Claimant − (v −m) s (v −m) (1− s)

Tax auditing

Not audit Audit
Manager −tv − f(v −m) −tm

Owner tv + f(v −m)−K tm

Allocating an indivisible item

Item Money
Player 1 −1

2
(v − T )−m 1

2
(v − T ) + m

Player 2 1
2
(v − T ) + m −1

2
(v − T )−m

Table 1: Payoffs for the general model and its applications.
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