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Abstract

The notion of dynamic, endogenous diversity and its role in theories of invest-
ment and technological innovation is addressed. We develop a formal model of an
innovation arising from the combination of two existing modules with the objective
to optimize the net benefits of diversity. The model takes into account increasing
returns to scale and the effect of different dimensions of diversity on the proba-
bility of emergence of a third option. We obtain analytical solutions describing
the dynamic behaviour of the values of the options. Next diversity is optimized
by trading off the benefits of recombinant innovation and returns to scale. We
derive conditions for optimal diversity under different regimes of returns to scale.
Threshold values of returns to scale and recombination probability define regions
where either specialization or diversity is the best choice. In the time domain, when
the investment time horizon is beyond a threshold value, a diversified investment
becomes the best choice. This threshold will be larger the higher the returns to
scale.
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1 Introduction

When making decisions on investment in technological innovation, implicitly or explicitly
choices are made about diversity of options, strategies or technologies. Such choices
should ideally consider the benefits and costs associated with a certain level of diversity
and arrive at an optimal trade-off. One important benefit of diversity relates to the nature
of innovation, which often results from combining existing but separate technologies or
knowledge bases (Ethiraj and Levinthal, 2004). For instance, a laptop computer in essence
is a combination of a desktop computer and a battery; the windmill is a combination of
the water mill technology and the idea of a sail (i.e. wind turned into kinetic energy); a
laser is quantum mechanics integrated into an optical device; and an optical fibre used
in telecommunication is a laser applied to glass technology.

Here we propose a theoretical framework for the description of a generic innovative
process resulting from the interaction of two existing but different technologies. The
interaction will depend on how these two options match. Matching can occur via spillover
or recombination, leading to modular innovation.1 The model will allow addressing the
problem of optimal diversity in the context of modular innovation, building upon the
conceptual framework in van den Bergh (2008). The main idea is that in an investment
decision problem where available options may recombine and give birth to an innovative
option (technology), a certain degree of diversity of parent options can lead to higher
benefits than specialization.

Usually in economics and finance, diversity is seen as conflicting with efficiency of spe-
cialization. Such efficiency is claimed on the basis of increasing returns to scale arising
from fixed costs, learning, network and information externalities, technological comple-
mentarities and other self-reinforcement effects. Arthur (1989) studies the dynamics of
competing technologies in cases where increasing returns cause path dependence and self-
reinforcement, possibly leading to lock-in. This can be seen as a descriptive or positive
approach to understand the dynamics of systems in the presence of positive feedback. Our
approach instead is normative in that it studies the efficiency of the system of different
options, considering total net benefits of technologies over time, including innovation-
related and scale-related effects of diversity.

The positive role of diversity is recognized in option value and real option theories,
which clarify when to keep different options open in the face of irreversible change and
uncertain circumstances (Arrow and Fisher, 1974; Dixit and Pindyck, 1994). However,
these theories treat diversity as exogenous and do not consider innovation, whereas our
model treats diversity as endogenous and contributing to the value of the overall system
beyond merely keeping decisions open.

The relevance of our analysis relates to myopia of economic agents, both in private
(management) and public (politicians and public servants) sectors. In real world decision
making short term interests often prevail, possibly since the advantages of increasing re-
turns are perceived as more clear and certain than the advantages of diversity and recom-
binant innovation. Fleming (2001) argues that one reason for uncertainty in recombinant
innovation is that inventors experiment with unfamiliar technologies and unexploited
combination of technologies. The trade-off between short term efficiency and long term
benefits from diversity resembles the exploitation versus exploration problem (March,
1991; Rivkin and Siggelkow, 2003). In fact, recombinant innovation can be regarded as

1What economics calls spillover corresponds to recombination or cross-over in genetics and evolution-
ary computation and to modular innovation in biology and technological innovation studies.
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a form of exploration and search.
A model of diversity connects not only with the research on modularity but also with

the approach of evolutionary economics as expressed by Nelson and Winter (1982), Dosi
et al. (1988), Frenken (1999) and Potts (2000) among others. However, evolutionary
economics tends to avoid the notions of optimality and efficiency in terms of maximizing
a net present value function. Our approach in fact can be seen as combining diversity-
innovation ideas from evolutionary economics with optimality and cost-benefit analysis
of neoclassical economics. Adopting the view of an evolutionary approach we will talk of
a population of parent options and an offspring to refer to the innovative option. Here
we will deal with the smallest population possible, namely only two parent options, so as
to keep the model simple and allow for analytical solutions.

Following Stirling (2007), we will consider three dimensions of diversity, namely vari-
ety, balance and disparity. Variety refers to the number of starting options, the elements
in the parent population. Balance denotes the relative size or distribution of parent op-
tions. And disparity indicates the degree of difference between the options, representing
a sort of distance in technological, organizational or institutional space.

A motivation for the proposed model is the recent attention for a socio-technological
transition to a renewable energy system (Geels, 2002; van den Bergh and Bruinsma,
2008). Diversity can here be related to lock-in of an inferior or undesirable technology,
such as fossil-fuel based electricity generation that contributes considerably to global
warming. A diversity analysis of energy systems can provide insight into the appropriate
level of diversity that should be aimed for or maintained in different phases of an energy
transition (van den Heuvel and van den Bergh, 2008).

This paper is organized as follows. Section 2 presents a simple pilot model to illustrate
the main concepts and their interactions. Section 3 develops a generalization of this model
that includes a more elaborate structure of diversity. In section 4 we solve the model and
obtain a general solution for the value of the innovative option as a function of time.
Section 5 introduces a size effect into the probability of recombinant innovation. In
section 6 we address the optimization problem for the different versions of the model,
and present conditions under which diversity or specialization is optimal. We also study
the effect of the time horizon on the optimal solution. Section 7 concludes and provides
suggestions for further research.

2 A pilot model

Consider a system of two investment options that can be combined to give rise to a third
one. Let I denote cumulative investment in the parent options. Investment I3 in the
new option only occurs if it emerges, which happens with probability PE . The growth
rates of parent options are proportional to investments, with shares α and 1 − α. We
assume no depreciation and a constant allocation of investment through time. Let O1

and O2 represent the values of the cumulative investment in parent options and O3 the
(expected) cumulative investment in the innovative option. The dynamics of the system
can then be described by the set of differential equations:

Ȯ1 = I1 = αI

Ȯ2 = I2 = (1 − α)I (1)

Ȯ3 = PE(O1, O2)I3
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The optimization problem that we address is how to set an α that maximizes the final
total benefits of parent and innovative options.

The matching factor PE denotes the probability of emergence of the third option
through recombinant innovation. Since this is a random event, such a rate of growth is
the expected value of the investment into the new option. Recombinant innovation is
a binary event where the new option emerges with probability PE and nothing happens
with probability 1−PE . Then the expected value is simply PE times the capital invested
in the new option I3.

The probability of emergence depends on two factors, namely the diversity of the
parent options and a scaling factor π which can be interpreted as the effectiveness of the
R&D process underlying the recombinant innovation:

PE(O1, O2) = πB(O1, O2) (2)

R&D effectiveness π can be seen to depend on learning and progress in general. Diversity
is expressed as the balance B of parent options: the more equal the sizes of parent
options (cumulative investment) are, the larger is the probability of emergence.2 When
one option is zero we have pure specialization. The balance function must have the
following properties: B(O1, O2) ∈ [0, 1], B(O1 = O2) = 1 (maximum diversity or perfect
balance) and limOi→0 B(Oi, Oj)|Oj=const = 0 with i, j = 1, 2 and i 6= j. We consider the
following functional specification for the balance (figure 1):

B(O1, O2) = 4
O1O2

(O1 + O2)2
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Figure 1: Graph of the diversity function with two parent options.

2This idea is consistent with both tacit and codified knowledge. In the case of tacit knowledge
more balance can be seen as more opportunities for cooperation and exchange of information among
engineers. With codified knowledge, balance can involve a single engineer combining different types of
codified technological information.
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Assuming that investment in parent options begins at time t = 0, their value at time t
is simply O1(t) = αIt and O2(t) = (1−α)It. Under this assumption the balance function
is independent of time: B = 4α(1 − α). Consequently the probability of emergence
is constant and only depends on the initial allocation α. The innovative option grows
linearly with time then:

O3(t) = 4πI3α(1 − α)t (3)

The optimization problem of this investment decision is addressed considering the joint
benefits of parents and innovative options. In order to model the trade-off between
diversity and scale advantages of specialization we introduce a returns to scale parameter
s. This acts on the cumulative investment in each option, in order to capture not only
economies of scale but also learning over time. We can then express the overall benefits
from investment as:

V (α; T ) = O1(T ; α)s + O2(T ; α)s + O3(T ; α)s (4)

Where t = T is the time horizon. According to this expression, once we substitute the
expressions of options’ values, the maximization problem of the investment decision can
be written as

max
α∈[0,1]

V (α; T ) = T sIs
[

αs + (1 − α)s + Csαs(1 − α)s
]

(5)

where C = 4πI3
I

. This factor weights the contribution of diversity to total benefits. Such
a contribution will be larger for a larger probability of recombination π. It is useful to
normalize the benefits function to its value in case of specialization V (α = 0; T ) = V (α =
1; T ) = IsT s:

Ṽ (α) ≡
V (α; T )

IsT s
= αs + (1 − α)s + Csαs(1 − α)s (6)

Depending on returns to scale s and the factor C, Ṽ will be maximum for α = 1/2
(maximum diversity) or for either α = 0 or α = 1 (specialization). It is instructive to
look at some examples of the curve Ṽ (α) for different values of returns to scale s and
efficiency π. Setting I = 4I3 we have C = π. Figure 2 reports the normalized benefits
curves in a case of increasing returns to scale (s = 1.2) for six different values of the factor
π. Here either specialization or diversity is the best choice, depending on the efficiency
of the recombinant innovation process as captured by the probability factor π. There
is a threshold value π for this probability such that for π < π the optimal decision is
specialization, while for π > π diversity is optimal. Conversely, given an intensity of
recombinant innovation π one can derive the turning point s of returns to scale at which
maximal diversity (α = 1/2) becomes optimal. This is given by the threshold level s that
solves the equation

Ṽ
(

α = 1/2
)

=
1

2s

[

2 +

(

C

2

)s]

= 1 (7)

If C = 0 (for instance with π = 0) we have s = 0. If C = 1 (for instance with I = 4I3

and π = 1) we find s ≃ 1.2715. There is no closed form solution s as function of other
parameters, but we can instead solve for C. For s > 1 this solution is

C = 2(2s − 2)1/s (8)

Since C = 4πI3/I, equation (8) links the ratio of investments invested and the proba-
bility of recombination to the level of returns to scale: any value higher than C causes
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Figure 2: Normalized final benefits Ṽ as a function of the investment share α under increasing returns
to scale (s = 1.2) for different values of the innovation efficiency factor π = 0, 0.2, 0.4, 0.6, 0.8, 1. Here
I = 4I3.

diversity to be the optimal solution. Furthermore, since C(s) is increasing, concave and
converging to 4, there is a sort of saturation effect: as returns to scale get larger, less and
less investment is needed in the new technology to make diversified investment the best
choice.3 In the limit of infinite returns to scale, the threshold value of I3/I approaches
1/π. This leads to:

Proposition 1. For a given positive value of the recombination probability π, if I3/I >
1/π benefits from diversity are larger than benefits from specialization for any value of
returns to scale s.

The reason is that the rate of growth of innovation is unbounded: with infinite invest-
ment I3, the maximally diversified innovation system can always be rendered the optimal
choice of the allocation problem, no matter how small the recombination probability
π > 0 is and no matter how large the returns to scale parameter s is.

Assume the ratio of investments I3/I is given. For s = 1 (constant returns to scale)
we have Ṽ (1/2)s=1 = 1 + C/4 ≥ 1, since C ≥ 0. If a positive level of investment I3 is
devoted to the innovative technology, the following statement holds true:

Proposition 2. The threshold s below which a diversified system is the optimal choice
has the property that s ≥ 1 and s > 1 iff π > 0.

3We have d
ds2(2s − 2)1/s = (2s − 2)1/s

[

2s ln 2
s(2s−2) −

ln(2s−2)
s2

]

. The first term is 2s ln 2
2s−2 ≥ (2s−2) ln 2

2s−2 = ln 2,

while ln(2s−2)
s is increasing and converges to ln 2 from below. This means that d

dsC(s) ≥ 0 ∀s > 1.
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Corollary 1. For all decreasing or constant returns a maximum value of total final
benefits is realized for the allocation α = 1/2, i.e. for maximum diversity.

This result holds true no matter what value the factor C assumes.4 In other words,
in all cases of decreasing returns to scale up to constant returns it is better to split
equally the investment among the two parent options. Notice that diversity is optimal
also in absence of recombinant innovation, when returns to scale are low enough. This
situation is summarized in figure 3. The case of increasing returns to scale is the most
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Figure 3: Normalized final benefits Ṽ as a function of the investment share α under decreasing returns
to scale (s = 0.5) for different values of the innovation efficiency factor π = 0, 0.2, 0.4, 0.6, 0.8, 1. Here
I = 4I3.

interesting and also the one that better represents real cases of technological innovation,
among others, because of fixed costs and learning. In this regime we study the tradeoff
between scale advantages and benefits from diversity. If the probability of recombinant
innovation is insufficiently large, returns to scale may be too high for diversity to be the
optimal choice. In figure 2 this holds for the bottom four curves. In general we have the
following result, which completes Proposition 1:

Corollary 2. Diversity α = 1/2 can be optimal also with increasing returns to scale
(s > 1) provided that the probability of recombination π is large enough.

4Consider the function f(s) ≡
(

2 + (C/2)s
)

/2s. The statement is true if f(s) ≥ 1 ∀s ∈ [0, 1]. Since
f ′(s) < 0 ∀s ≥ 0, f(s) is a decreasing function for fixed C. For fixed s instead f is an increasing function
of C. When C = 0 f(1) = 1 and f(s) ≥ 1 ∀s ∈ [0, 1]. When C > 0 f(1)|C>0 > f(1)|C=0 = 1 and
f(s)|C>0 > f(s)|C=0 = 1 ∀s ∈ [0, 1]. This proves proposition 1.
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3 A general model

Now we present a more general model of recombinant innovation which will relax some
of the assumptions of the pilot model and at the same time we will enter the structure
of the probability of emergence. We allow for non-zero initial values of parent options
and consider a marginally diminishing effect of options’ size on PE. The optimization of
diversity is addressed for the more general model then, with successive steps of increasing
complexity.

3.1 Innovation probability and diversity factors

We define the probability of emergence of an innovative option PE as depending positively
on the diversity ∆ of parent options and negatively on the disparity D:

PE(O1, O2) = k
∆(O1, O2)

Dγ
(9)

The factor k can be interpreted as the effectiveness of recombinant innovation. The
parameter γ allows for a non-linear effect of disparity D. It can be seen to express the
concept of “cognitive distance” between two technologies: it may be that two ideas are
very different but historical or geographical events make the cognitive distance small, for
instance through interdisciplinary research.

As observed by Stirling (2007) diversity is a multidimensional concept. In a study of
innovation he indicates three dimensions: variety, disparity and balance. Diversity can
be expressed as follows:

∆(O1, O2) = δNDB(O1, O2) (10)

Variety N and disparity D are set exogenously, while balance B is a function of the
values of the existing options. The factor δ is a scaling parameter that can be set to
normalize maximum diversity to one. Variety indicates the number of parent options
present (technologies, organizations, investment projects, firms, etc.). Disparity captures
how “different” or how far apart in technology space the two options are. In principle
D can assume any positive value since it expresses a degree of differentiation among two
alternatives (sort of distance between different species, as in Weitzman, 1992). Balance
expresses how (un)equally different options are present in a population, assuming that
the more balanced a system is, the more diversified. The mathematical expression of PE

shows that disparity has two opposite effects on the probability of recombinant innovation,
a direct and an indirect one. The overall effect will depend on the parameter γ. We regard
the value of γ as an empirical issue. It is likely that γ differs between technologies and
innovation processes.

3.2 The balance function

A balance function is defined in the positive octant of a n-dimensional space. A functional
specification of the balance of two options x and y should have the following properties:

1. it is symmetric in its arguments B(x, y) = B(y, x)

2. the maximum value (normalized to one) is attained on the diagonal B(x, x) ≥
B(x, y) ∀x, y ≥ 0
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3. the minimum value (lowest balance) is attained when one of the two options is zero:
B(x, 0) = B(0, x) = 0 < B(x, y) ∀y > 0

4. it is homogeneous of degree zero: B(λx, λy) = B(x, y)

The latter means that the balance of two quantities can be expressed as a function of
their ratio b = O1/O2 (simply put λ = 1/x). The functional specification of the balance
that we adopt is the so-called “Gini” balance:5

B(O1, O2) = 1 −
(O1 − O2)

2

(O1 + O2)2
= 4

O1O2

(O1 + O2)2
(11)

The main reason for such a choice is the differentiability in O1 = O2. Expressed as a
function of the ratio the above specification reads B(b) = 4 b

(1+b)2
.

3.3 The innovation effectiveness factor

Equation (9) contains a scaling factor, k, which must be such that PE ≤ 1. Diversity
∆ assumes values in a compact interval [0, ∆max], depending on variety N , disparity D
and balance B. Variety is set to N = 2 (two parent options). Disparity, we restricted to
two discrete values, D = 1 (identical options) and D = 2 (maximum disparity). Balance
takes values in the interval [0, 1]. Looking at equation (10), the maximum value ∆max is
attained for N = 2 and D = 2. Setting δ = 1

4
we have ∆max = 1. Resuming, we have the

following cases:

∆min = 0 for N = 1, B = 0, D = 1

∆max = 1 for N = 2, B = 1, D = 2

If we substitute equation (10) into equation (9), the probability of emergence is given by
PE = πB(O1, O2), where we define

π =
k

4
ND1−γ

This is a static probability factor which tells about the nature of interacting technologies
(their number is held fixed to N = 2 here): with a cognitive distance γ > 1 the closer
technologies are to each other (lower disparity D) the more likely recombination occurs.
Normalization is achieved by requiring that π ≤ 1, which translates in the following
condition for the efficiency factor k

k ≤
4Dγ−1

N
(12)

The factor k captures all effects that influence the recombinant innovation process other
than N , D and B. For instance, two recombinant innovation processes with the same
number of parent options, the same disparity and the same balance may render different
values of the innovation likelihood PE due to different recombination efficiency k, possibly
reflecting different levels of knowledge (education) or experience.

5Other specifications are possible, for instance B(O1, O2) = 1− |O1−O2|
O1+O2

and B(O1, O2) = min{O1,O2}
max{O1,O2}

(see also Stirling, 2007). A detailed analysis of the latter specification is available upon request. The
case O1 = O2 = 0 is excluded by all these specifications. This is a rather degenerate and irrelevant case,
however, as we are only interested in systems with at least one option (∃ i = 1, 2 | Oi > 0). Otherwise
we can always define B(0, 0) = limO1,O2→0B(O1, O2) = 1.
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4 Solving the dynamic model

Our model of recombinant innovation consists of the system of equations (1) and the
definitions (9) and (10). Here we relax the hypothesis of zero initial values of parent
options. This introduces more complicated dynamics into the system. In this section
we solve this dynamic model. The solutions will be used in section 6 to address the
optimization of diversity.

Assuming for parent options a constant allocation of capital I over time I1
I2

= α
1−α

results in a constant linear growth (accumulation) of parent options O1 and O2. The
time pattern of the innovative option is non-linear:

O1(t) = O10 + I1t

O2(t) = O20 + I2t (13)

O3(t) = I3

∫ t

0

PE(s)ds

The first two equations of system (13) are independent. The third equation depends on
the first and the second through the probability of emergence PE(t) = πB

(

O1(t), O2(t)
)

.
The value of the innovative option at time t is then

O3(t) = 4I3

∫ t

0

PE(s)ds = πI3

∫ t

0

O1(s)O2(s)
(

O1(s) + O2(s)
)2ds (14)

Before computing the integral (14) we will analyse the dynamic behaviour of the balance
function. If the initial value of parent options is zero (O01 = O02 = 0) the balance
is constant and equal to 4α(1 − α); this is the case of the pilot model, where also the
innovative option grows linearly in time.

If we allow for positive initial values O10, O20 we obtain the following function of time

B = 4
(O10 + αIt)(O20 + (1 − α)It)

(O10 + O20 + It)2
−→ 4α(1 − α) (15)

where the last limit holds for t >> Oi0/(αI), i = 1, 2. In the long run the balance
converges to a constant value, which depends only on the investment shares and is the
same that results for zero initial values. We can state the following proposition then:

Proposition 3. In the long run the balance converges to the constant value B(α) =
4α(1 − α), which is independent of initial values of parent options.

The dynamics of the balance in the transitory phase (t ∼ Oi0/(αI)) depends on initial
conditions and on the investment share α and can be understood easily by looking at
options trajectories in (O1, O2) space. Starting from the expression of the two options’
ratio O1

O2
= O10+αIt

O20+(1−α)It
one can eliminate time and express one option in terms of the

other:

O2 = O20 −
1 − α

α
O10 +

1 − α

α
O1

The starting point (t = 0) of each trajectory is determined by the initial values (O10, O20).
The slope is the ratio of investment shares. For our recombinant innovation system we
identified seven major cases, which are reported in figure 4 (for a detailed analysis of
each of these cases see van den Bergh and Zeppini-Rossi, 2008). In principle the optimal
condition for recombinant innovation is when the balance is constant and maximal (case
7). In general for constant balance the following condition applies:

10



Figure 4: Trajectories of the two parent options in (O1, O2) space. Trajectory “1” has O10 < O20 and
α < 1/2, trajectory “2” has O10 < O20 and α > 1/2, trajectory “3” has O10 > O20 and α < 1/2,
trajectory “4” has O10 > O20 and α > 1/2, trajectory “5” has O10 6= O20 and α = 1/2, trajectory
“6” has O10 = O20 and α < 1/2 and trajectory “7” has O10 = O20 and α = 1/2. The trajectory of
constant balance has a slope equal to the ratio of the coordinates of the starting point.

Proposition 4. The balance is constant through time and equal to B(α) = 4α(1−α) iff

O10

O20

=
α

1 − α
(16)

For a proof of this proposition see appendix A. This configuration falls into cases 1,
4 and 7 of figure 4. As a function of time the balance may have a critical point t∗ where
it reaches its maximum value.6 Figure 5 shows two examples of monotonic and non-
monotonic dynamics. Here we have set I = 4, with initial values O10 = 1 and O20 = 2.
In example 2 we have α/(1 − α) = 3: there is a time t∗ = 1/2 when the balance is equal
to one (a perfectly similar pattern one would obtain in case 3). In example 1 the balance
is monotonically decreasing, with α/(1 − α) = 1/4. In general B(t) is decreasing when

α
1−α

< O10

O20
< 1 and increasing when α

1−α
> O10

O20
> 1, while a non-monotonic behaviour is

obtained for α
1−α

< 1 < O10

O20
or O10

O20
< 1 < α

1−α

Now we proceed to the integration of balance, giving the value of the innovative
option at time t. We assume that k = 4Dγ−1/N , so that π = 1 (maximal efficiency of
recombinant innovation). Equation (14) becomes

O3(t) = 4I3

∫ t

0

(O10 + αIs)(O20 + (1 − α)Is)

(O0 + Is)2
ds (17)

6The critical time value is t∗ = (O20 − O10)/(2α − 1)I.
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The detailed solution of this integral is in appendix B. The final result is the following:

O3(t) = 4
I3

I

[

(

O10 − αO0

)2
(

1

O0 + It
−

1

O0

)

+ (18)

+
(

O10 − αO0

)

(1 − 2α) ln
O0 + It

O0
+ α(1 − α)It

]

If condition (16) holds, O10 = αO0 and the expression of the innovative option reduces
to O3(t) = 4I3α(1 − α)t as in the pilot model. This linear expression of O3(t) is also
valid in the early stages of innovation, namely when It << O0. In the long run instead
the logarithmic term can not be neglected and the value of innovation is approximately
given by

O3(t) ≃ 4
I3

I

[

(

O10 − αO0

)

(1 − 2α) ln
It

O0
+ α(1 − α)It

]

(19)

The coefficient of the logarithmic term will determine whether the time pattern of the
innovative option will be concave (positive sign) or convex (when the sign is negative).
The first case arises when α < 1/2 and α < O10/O0 or α > 1/2 and α > O10/O0. These
are exactly the conditions of cases 3 (α < 1/2 and O10 > O20) and 2 (α > 1/2 and
O10 < O20) in the previous list, when the balance has a critical point t∗. The convex time
pattern occurs when balance does not have a critical point instead. For example take
O0 = 3, O10 = 1, O20 = 2, α = 2/3. Since O10/O20 = 1/2 < α/(1 − α) = 2 we have that
option 3 follows a concave time pattern, O3(t) = 4

3

[

2t + ln(1 + t) − t
1+t

]

.
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5 A size effect

5.1 Specifying the size effect

Up to now, the probability of emergence of a third option was basically an index of
diversity of two starting options and the dynamics of the system was driven by their
balance. We now introduce a size effect into the probability of emergence. This is meant
to capture the positive effect that a larger cumulative size has on the probability of
emergence, i.e. a kind of economies of scale effect in the innovation process. If the size
effect is captured by a factor S(O1, O2), the probability of emergence of the third option
can be expressed as:

PE = πB(O1, O2)S(O1, O2) (20)

The size effect is defined to have the following properties. First it is increasing in the size
of each parent option with marginally diminishing effects. Second it must be bounded,
to guarantee that the probability PE is in the interval [0, 1]. In addition, it should
not overlap with the balance factor, which means that only the total sum of the sizes
of options matters and not their distribution. These properties can be understood as
capturing increased learning subject ultimately to saturation. One attractive functional
specification is the following:

S(O1, O2) = 1 − e−σ(O1+O2) (21)

Here ∂S/∂Oi = ∂S/∂O = σ/eσO, with O =
∑

i Oi. The parameter σ captures the
sensitivity of PE to the size when the balance is kept constant: the higher σ, the stronger
the size effect.7 After including the size factor, the probability of emergence as a function
of time looks

PE(t) = πB(t)
(

1 − e−σ(O0+It)
)

(22)

Note how the effect of size on the probability of emergence does not depend on whether
it comes from “old” value O0 or from “new” investment It. This is not true for the
balance.8

The size effect converges to one (limt→∞S(t) = 1): after a time long enough (It >>
O0) the effect of cumulative size on PE vanishes.

5.2 Time pattern of PE with constant balance

In order to understand the impact of the size of parent options on the innovation process
we look at the behaviour of the probability of emergence through time for few different
values of the balance in the particular setting in which the balance is constant (condition
(16)). Assume that the efficiency of recombination is maximal (π = 1), so that PE(t; α) =
B(α)S(t), with B(α) = α(1 − α). Considering the previous analysis of the balance and
the specification of the size effect, in the long run we have

limt→∞PE(t) = B(α) (23)

In the case α = 1/2 we have the maximal balance B(α) = 1. This means that the third
option can arise with certainty only in an infinite time. The size factor S(t) describes

7Alternatively, one could allow for heterogeneous effects with the specification 1 − e−σ1O1−σ2O2 . For
example, this can address two different technologies operating in different sectors with different sensitiv-
ities σ1 and σ2.

8Formally, S(t) is invariant to a time shift t → t∗ such that O0 + It = O∗
0 + It∗, while B(t) is not.
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a saturation effect of the probability of emergence PE . We might think of the event of
innovation as occurring suddenly at a time tE . Then we can write PE(t) = Prob(tE < t).
In cases other than the symmetric one the balance is suboptimal (B < 1) and PE(t) < 1
∀t. This can be summarized in the following proposition:

Proposition 5. When a marginal diminishing size effect is introduced in the probability
of emergence, innovation occurs almost surely iff the balance is constant and equal to its
maximum value (B = 1).

Table 1 helps to get an idea of how the balance and the size factor jointly determine
the probability of emergence. Here the balance is constant and the dynamics is due only
to the size effect. We set σ = 1/O0 and consider the investment shares α = 1/2, α = 1/3,
α = 1/4 and α = 1/8:

PE It >> O0 It = 3O0 It = 2O0 It = O0 It = 0
(S = 1) (S ∼= 0.98) (S ∼= 0.95) (S ∼= 0.87) (S ∼= 0.63)

α = 1/2 B = 1 100% 98% 95% 87% 63%

α = 1/3 B = 8/9 89% 87% 84% 77% 56%

α = 1/4 B = 3/4 75% 74% 71% 65% 47%

α = 1/8 B = 7/16 44% 43% 42% 38% 28%

Table 1: Probability of emergence for different values of balance B and size factor S.

In the long run the size factor is nearly one and the probability of emergence eventually
reflects the balance of the two options.

5.3 Solving the dynamic model with the size factor

We now integrate the third equation of the model (1) with a full specification of the
probability of emergence, taking into account the balance and the size effect together.
Beforehand it is useful to write down the general expression of the probability of emer-
gence as a function of time (again we assume π = 1):

PE(t) = 4
(O10 + αIt)(O20 + (1 − α)It)

(O10 + O20 + It)2

(

1 − e−σ(O0+It)
)

(24)

We will proceed in steps in order to better understand the effect of size in the model. First
assume that the investment shares are set in a way that their ratio equals the ratio of
the initial values of the parent options (condition (16)). In this case we obtain a constant
balance B = 4α(1 − α) and the rate of growth PE of the third option becomes

PE(t) = B
(

1 − e−σ(O0+It)
)

(25)

With this specification of the dynamics we obtain the following time pattern for option
the innovative option:

O3(t) = I3B

[

t +
e−σO0

σI

(

e−σIt − 1
)

]

(26)
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The first term of this expression is what we have without size factor. The second term
comes from the size effect. Here Ȯ3(t) > 0 and Ö3(t) > 0 ∀t ≥ 0.9 This means the
innovative option has a convex time pattern. Such a behaviour accounts for a transitory
phase in which the innovation “warms up” before becoming effective. This is a stylized
fact of innovation processes.

The time pattern of O3(t) tends to the asymptote πI3B
(

t − e−σO0/σI
)

: after a suf-
ficiently long time the innovative option attains linear growth. An indication of the
characteristic time interval of transitory phase is given by the intercept t̂ = e−σO0

σI
B. De-

pending on the sensitivity parameter σ and depending on the total initial value of the
parent options and their cumulative investment I, the transitory phase can last a very
long time or may be very brief: the higher the sensitivity σ or the initial value O0 or the
investment rate I, the shorter the transitory phase and the faster the innovative option
gets to linear growth. In figure 6 we plot an example of function O3(t): here we have set
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Figure 6: Value of the innovative option at time t, case of constant balance (B = 1, σ = 1/400, I = 4
and O10 = O20 = 2).

α = 1/2, π = 1, I3 = 1, I = 4, σ = 1/400, and O10 = O20 = 2. With these values we
have O3(t) = t + 100e−0.01t(e−0.01t − 1) and the asymptote is t − 100e−0.01.

Relaxing the assumption of constant balance, we have to solve the following integral:

Oσ
3 (t) = 4I3

∫ t

0

(O10 + αIs)(O20 + (1 − α)Is)

(O0 + Is)2

(

1 − e−σ(O0+Is)
)

ds

We call this solution Oσ
3 (t) to differentiate it from the solution without size effect. Ap-

pendix B contains the detailed derivation. The result is

Oσ
3 (t) = BI3t + B

e−σO0

σI

(

e−σIt − 1
)

+
4I3

I
σEG ln

O0 + It

O0
+

+
4I3

I
EG

[ 1

O0

(

1 − e−σO0
)

−
1

O0 + It

(

1 − e−σ(O0+It)
)

]

+ (27)

+
4I3

I

[

σEG − (EH + FG)
]

[ ∞
∑

k=1

(

− σ(O0 + It)
)k

k · k!
−

∞
∑

k=1

(

− σO0

)k

k · k!

]

9The first derivative is Ȯ3(t) = I3PE(t) while the second derivative is Ö3(t) = I3πBσIe−σ(O0+It)
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Here B = 4α(1 − α) is the value of the balance when it does not depend on time.
E = O10(1−α)−αO20, F = α, G = −E and H = (1−α). When the balance is constant
we have O10(1−α) = O20α, and the expression of O3(t) only contains the first two terms
since E = G = 0. When the balance is not constant the time pattern of the third option
contains a logarithmic term, a negative exponential divided by a linear function and two
infinite sums, one constant and the other dependent on time. As argued in appendix B,
the two sums converge to negative exponentials. This means that the infinite sum which
depends on time goes to zero for It >> O0. In the long run the time pattern of Oσ

3 is
given by the following expression:

Oσ
3 (t) ≃ 4α(1 − α)I3t − 4

I3

I
σ[O10(1 − α) − O20α]2 ln

It

O0
(28)

Without size effect we have (see equation (19))

O3(t) ≃ 4α(1 − α)I3t + 4
I3

I
[O10(1 − α) − O20α](1 − 2α) ln

It

O0

When a size factor is present, the logarithmic term adds negatively to the value of the
innovative option, producing the expected convex time pattern which tells about the
diminishing marginal contribution of parent technologies. Without size effect the loga-
rithmic term can be either positive or negative instead. This shows how a marginally
diminishing size effect is important in reproducing the typical threshold effect of recom-
binant innovations. The contribution of the logarithmic term depends much on the value
of the sensitivity σ, which should be assessed empirically for each context.

6 Optimization of diversity

Now we address the problem of optimal diversity in the general model. As in the pilot
model, the objective function is the sum of final benefits from parent and innovative
options, where each contribution is affected by a returns to scale parameter. The maxi-
mization problem is then as follows:

max
α∈[0,1]

O1(t; α)s + O2(t; α)s + O3(t; α)s (29)

The solution will in general be a function of the time horizon, α∗(t). Before solving for
α∗ we study in some detail the first order conditions for the pilot model because many
of its properties remain valid in more complex specifications. Moreover, the pilot model
serves as a benchmark for the general dynamic case.

6.1 The shape of the benefits curve

Substituting the solutions Oi(t) of the pilot model (see section 2), the maximization
problem becomes

max
α∈[0,1]

Ṽ (α; T ) = αs + (1 − α)s + Csαs(1 − α)s (30)

The first order necessary condition for maximization of final benefits is

∂Ṽ

∂α
= sαs−1 − s(1 − α)s−1 + Css

[

α(1 − α)
]s−1

(1 − 2α) = 0 (31)
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There may be one or three interior solutions to this equation. The symmetric solution
α = 1/2 always exists. Depending on the returns to scale parameter s two other solutions
are present, α1(s) and α2(s). They are symmetric with respect to α = 1/2 (the whole
investment system is symmetric without initial values of parent options) so that α1+α2 =
1 and if they exist they always give a minimum value of benefits, while α = 1/2 may be
either a minimum or a maximum. The transition from α = 1/2 as a minimum to α = 1/2
as a maximum depends on the appearance of these two roots. In general for a given value
of the factor C there is a threshold level of returns to scale ŝ at which α = 1/2 is neither
a maximum or a minimum. This threshold value is given by a tangency requirement

∂2Ṽ

∂α2

∣

∣

∣

∣

α=1/2

= 0

Computing the second derivative in α = 1/2 and setting it to zero one works out the
condition

ŝ =

(

C

2

)ŝ

+ 1 (32)

This means that for a given probability of recombinant innovation (C given) the threshold
value of returns to scale ŝ is a fixed point of the function f(s) =

(

C
2

)s
+ 1. With C = 1

(for instance with I = 4I3 and π = 1) we have ŝ ≃ 1.3833. Note that ŝ > 1 since C ≥ 0.
Then we have the following proposition:

Proposition 6. A necessary condition for only 1 stationary point (α = 1/2 a local and
global minimum) is increasing returns to scale. With decreasing returns there are always
3 stationary points.

Conversely, given a value s of returns to scale, one can compute the transition value
in terms of the probability of recombination, Ĉ = 2(s− 1)1/s. For C > Ĉ there are three
stationary points.

The following figures show Ṽ (α) and its derivative10 for two different values of returns
to scale. In the first case (s = 1.5, figure 7) the only stationary point is α = 1/2, a local
and global minimum of final benefits. Global maxima are the corner solutions α = 0 and
α = 1. In the second case (s = 1.2, figure 8) there are three stationary points: α = 1/2
is now a local (and also global) maximum, while the two symmetric stationary points, α1

and α2, are local and global minima.
We can compare the transition value ŝ with the value s, i.e. the threshold between

diversity and specialization as optimal solution for maximum final benefits (section 2):

Proposition 7. In general ŝ ≥ s ≥ 1 and ŝ = s = 1 only for π = 0 (no recombinant
innovation).

This means that three different regions can be identified in the returns to scale domain,
as shown in figure 9.

10In figures 7 and 8 we show Ṽ ′(α)/s = αs−1 − (1−α)s−1 +
[

α(1−α)
]s−1

(1−2α), which has the same

roots as Ṽ ′(α).
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Figure 7: Normalized final benefits Ṽ (α) and its derivative. Case s = 1.5.
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Figure 8: Normalized final benefits Ṽ and its derivative. Case s = 1.2.

Figure 9: With a positive probability of recombinant innovation π > 0 we have ŝ > s > 1.
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6.2 Optimization with size effect and zero initial values

In this subsection we consider zero initial values for the parent options and a probability
of emergence PE containing both the balance and the size factors. Without initial values
the balance is constant, but PE depends on time because of the size effect. The expression
of the innovative option is given by (26). Substituting this into the objective function of
the maximization problem (29), we obtain

V (α, t) = (αIt)s +
(

(1 − α)It
)s

+
[

4πI3α(1 − α)
]s[

t + g(t)
]s

(33)

where g(t) = (e−σIt − 1)/σI. If we normalize the objective function dividing it by (It)s

(benefits from specialization) we have

Ṽ (α, t) = αs + (1 − α)s + Csm(t)sαs(1 − α)s (34)

where the constant factor is again C = 4πI3/I. Now a time dependent factor shows up,

m(t) = 1+ e−σIt−1
σIt

, with m′(t) > 0, limt→0 m(t) = 0 and limt→∞ m(t) = 1. The factor m(t)
monotonically modulates the contribution of innovative recombination to final benefits,
being very small at early stages and converging to one as σIt >> 1.

In the long run (It >> O0) the model converges to the pilot model, where only C
appears in the expression of final benefits. One can incorporate m(t) into C defining
a function C(t) = Cm(t). Final benefits with size effect (34) are formally the same as
in the pilot model (6): only difference is that constant C now depends on time. This
consideration is maximally important for the optimization of diversity. Even if the size
effect makes the investment system dynamic, still the optimal solution will be either
α = 0, 1 or α = 1/2. The optimal diversity now is time dependent but it can be just
one of these values. This is better understood by looking at figures 2 and 3. Given I, I3

and π, as time flows the factor C(t) increases and the benefits curve goes from the lower
curve π = 0 (representing C = 0) to the upper curve π = 1 (which stands for C = 1).

The first order necessary condition for optimization of diversity in this dynamic setting
is the following:

sαs−1 − s(1 − α)s−1 + C(t)s
[

α(1 − α)
]s−1

(1 − 2α) = 0 (35)

The analysis of section 6.1 can be repeated by substituting the constant factor C with
the function C(t). In particular the transition value ŝ where α = 1/2 becomes a (local)
maximum of benefits is given by

ŝ(t) =

(

C(t)

2

)ŝ(t)

+ 1 (36)

Now the transition value is a function of time. It may also be interesting to think in
terms of transition time t̂: for a given value of returns to scale s one computes the factor
C that satisfies the equation above:

C(t̂) = 2(s − 1)1/s (37)

Similarly to the transition from one to three stationary points, also the threshold
analysis for optimal diversity is formally the same as in the pilot model. We define the
threshold value s(t) as the returns to scale level at which, for a given time horizon t, the
benefits with α = 1/2 are the same as the benefits from specialization (α = 0, 1):

Ṽ
(

α = 1/2
)

=
1

2s(t)

[

2 +

(

C(t)

2

)s(t)]

= 1 (38)
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Proposition 8. For a given time horizon t diversity (α = 1/2) is optimal iff s < s(t).

How does s(t) behave? The larger t, the larger s(t). The intuition behind this is
as follows. C(t) is increasing, which means that time works in favour of recombinant
innovation. As time goes by, the region of returns to scale where diversity is optimal
enlarges. The threshold s(t) converges to the value s of the pilot model (see figure 10).
It is important to observe that even with π = 1 diversity may never become the optimal
solution if returns to scale are too high (s < s). But if investment I3 is large enough,
diversity will always become the optimal choice. This is consistent with proposition 1:
given returns to scale s, if one has infinite disposal of investment I3, threshold s can
always be made such that s > s, so that at some time t one will see s(t) > s.

Figure 10: As time goes by, the region of returns to scale where diversity is optimal becomes larger.

Alternatively one can define a threshold time horizon t such that for t < t specializa-
tion is optimal, while for t ≥ t diversity is the best choice.

C(t) = 2
(

2s − 2
)1/s

(39)

We want to understand how such a threshold time depends on returns to scale. The
function C(t) is monotonically increasing: the inverse C−1(·) can be defined (increasing
as well) and a unique solution t exists. The right hand side of (39) is increasing11 in s.
We then have the following result:

Proposition 9. For higher returns to scale s the threshold time horizon t is larger and
it takes a longer time for diversity (α = 1/2) to become the optimal decision.

Concluding, the size effect introduces a dynamical scale effect into the system. The
optimal solution may change through time, but in this case it can only switch from
α = 0, 1 to α = 1/2. This happens if and only if the probability of recombination π is
large enough (see corollary 2 in section 2).

Finally, in the limit of infinite time (It >> O0) the size effect saturates (limt→∞ S(t) =
1). This means that if one faces a time horizon long enough the size factor can be
discarded in the probability of emergence of recombinant innovation. Not considering the
transitory phase, the solution for optimal diversity at time t >> O0/I is approximated
by the solution of the static pilot model.

6.3 The effect of non-zero initial values on the optimal strategy

Now we want to see what happens if we consider the initial value of parent options in the
optimization of final benefits. Equation (18) shows the value of the innovative option in
this case:

O3(t) = C
[

f(α, t) + α(1 − α)It
]

(40)

11We have d
ds2s+1

(

2s−1 − 1
)

= 2s+1 ln 2(2s − 1) > 0 since s > 0.
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where C = 4πI3/I. Comparing this with the expression that we used in the model of
section 2 we have one more term:

f(α, t) =
(

O10 − αO0

)2
( 1

O0 + It
−

1

O0

)

+
(

O10 − αO0

)

(1 − 2α) ln
O0 + It

O0

This is the sum of two terms: one is hyperbolic and converges to a negative value as time
goes to infinity. The other is logarithmic and monotonically increasing or decreasing
depending on the factor (O10 − αO0

)

(1 − 2α). The objective function for maximization
of final benefits is

V (α, t) =
(

O10 + αIt
)s

+
(

O20 + (1 − α)It
)s

+ Cs
[

f(α, t) + α(1 − α)It
]s

(41)

Normalizing this function to (It)s as done before is less meaningful since with non-zero
initial values (It)s does no longer represent the value of benefits with specialization.
Nevertheless this normalization leaves us with an adimensional function and allows to
compare the results with other versions of the model. The normalized benefits are

Ṽ (α, t) =

(

O10

It
+ α

)s

+

(

O20

It
+ 1 − α

)s

+ Cs

[

f(α, t)

It
+ α(1 − α)

]s

(42)

The first order necessary condition for a maximum is

(

O10

It
+ α

)s−1

−

(

O20

It
+ 1 − α

)s−1

+ (43)

+ Cs

[

f(α, t)

It
+ α(1 − α)

]s−1(
1

It

∂f(α, t)

∂α
+ 1 − 2α

)

= 0

The solution to this equation is rather complicated. The main result is a reduction of
symmetry in the system (unless O10 = O20). Note that α = 1/2 is not a solution to
the above equation in general.12 Optimal diversity is represented by a function of time
α∗(t). In figure 11 we report the graph of benefits for five different times. The optimal
share α∗ is seen to shift with time. Moreover, there is an “overshooting” effect during the
transitory phase: if at some time t1 the optimal solution is α∗(t1) < 1/2, the system will
first experience a period of time during which the optimal share is larger than 1/2 and
then go back to the symmetric allocation. In the long run, when t >> O0/I, symmetry
is restored. The effect of the initial values of capital stocks has then dissipated and we
are back in the situation of the pilot model.

6.4 Optimization in the general case

In this last section we address the optimization of the more general model, with a size
factor and initial values different from zero. The value of the innovative option at time t
is given by (27). With such solution the value of final benefits from the overall investment
is as follows:

V (α, t) =
(

O10 + αIt
)s

+
(

O20 + (1 − α)It
)s

+ (44)

+ Cs
[

B(α)It + B(α)
e−σO0

σ

(

e−σIt − 1
)

+ h(α, t)
]s

12The symmetric allocation is still a solution in the particular case of equal initial values O10 = O20.
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Figure 11: Final benefits with positive initial values and no size effect. Here we have O10 = 1, O20 = 10,
s = 1.2, π = 1 and I = 4I3 = 1. The five time horizons are in units of 1/I.

where h(α, t) collects all terms in the expression of O3 but the first two. Note that it is
not possible to separate this expression into two factors dependent separately on t and α
as we managed to do in section 6.2. The contribution of innovation (the term multiplied
by Cs) consists of three terms. The first is the linear one, which appears also in the
pilot model. The second is a direct effect of the size factor. The third one is due to the
presence of non-zero initial values of parent options. This expression combines the effects
that we have been analysing separately so far. If we normalize this expression dividing
it by Ists we obtain

Ṽ (α, t) =

(

O10

It
+ α

)s

+

(

O20

It
+ 1 − α

)s

+ Cs

[

B(α)n(t) +
h(α, t)

It

]s

(45)

where n(t) = 1 + e−σO0/(σIt)(e−σIt − 1). This time factor can be expressed in terms of
the factor m(t) that we have introduced in section 6.2: n(t) = e−σO0m(t) + 1 − e−σO0 ,
n(0) ≃ 1 − e−σO0 , n′(t) = e−σO0m′(t) > 0 and limt→∞ n(t) = 1. The smaller the sum
of initial values (O0) the closer n(t) is to m(t). With no initial values n(t)|O0=0 = m(t).
The effect of n(t) is symmetric: the benefits curve rises from lower values where the
contribution of innovation is negligible to higher values where diversity may be the optimal
choice eventually. The presence of non-zero initial values brakes the symmetry of the
system through the term h(α, t) and the ratios O10/It and O20/It. α = 1/2 is not a
solution to the optimization problem in general, but the benefits curve moves towards a
symmetric shape around the point α = 1/2.

In the long run (It >> O0), the initial values become negligible and the size factor
converges to one. In other words, if the time horizon is long enough, the general case
reduces to the much simpler pilot model.

7 Conclusions and further research

This study has proposed a model of an investment allocation problem where the decision
maker faces a trade-off between scale advantages and diversity benefits through recom-
binant innovation. We considered three different versions of the model with increasing
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levels of complexity. First a pilot model was developed to express the core elements of
recombinant innovation. A more general model devoted attention to the detailed struc-
ture of diversity and allowed initial values of parent options to be different from zero.
Finally, a third version introduced a diminishing marginal size effect in the probability
of emergence of a recombinant innovation.

The initial part of the analysis consisted of deriving a solution for the model dynamics.
A condition for constant diversity of the system of parent options is that the ratio of
investment shares equals the ratio of initial values of parent options. When this is not the
case, diversity will change over time and may be increasing, decreasing or non monotonic
depending on the relative value of these two ratios. Nevertheless, in all cases diversity
converges to the same constant value in the long run. The investment shares and the
initial values of parent options determine the shape of the time pattern of the innovative
option. In the long run only a linear and a logarithmic term count. The time pattern of
innovation may be either convex or concave.

In order to account for a diminishing marginal effect of parent options in recombinant
innovation, a size factor is included in the innovation probability. In the long run the
value of innovation reduces again to a linear plus logarithmic term. But in this case there
can only be a convex time pattern. This shape reflects the typical threshold effect of
recombinant innovations.

We optimized diversity given a final benefits function, which comes down to finding an
optimal balance or an optimal trade-off between the benefits of diversity due to recombi-
nant innovation and the benefits associated with returns to scale. We derived conditions
for optimal diversity under different regimes of returns to scale. Maximum diversity, ex-
pressed by a perfectly symmetric system with α = 1/2, may be either a local maximum
or a local minimum of final benefits, depending on the level of returns to scale. When
diversity is a local maximum, two other stationary points of final benefits are present.
We have defined two threshold values of returns to scale: the first one is the value where
the system makes a transition from one to three stationary points of final benefits. The
second threshold is the returns to scale level below which diversity is a global maximum
of final benefits.

The presence of a size factor in the probability of emergence makes the returns to
scale threshold time dependent. This suggests a threshold analysis in the time domain:
for a given level of returns to scale, when the investment time horizon is beyond a critical
value, the best choice becomes diversity. This threshold time horizon will be larger
the higher are the returns to scale. Introducing positive initial values of parent options
breaks the symmetry of the system. An investment share α = 1/2 is no longer a general
solution to the maximization problem then. In the long run symmetry is restored, that
is, approximated through convergence. Maximal diversity (α = 1/2) then will become
optimal eventually if increasing returns are not too high.

Several directions for future research can be identified. Investment in the innovative
option can be endogenized, i.e. made part of the allocation decision. Extending the
number of parent options allows for an examination of the role of disparity (one of the
dimensions of diversity), as well as for assessing the marginal effect of new options (e.g.,
diminishing returns) and the optimal number of options. Finally, the value of parent
options can be modelled as a stochastic process, which suggests an analogy between the
innovative option and a financial derivative: parent options would then play the role of
underlying assets.
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Appendix A Condition for constant balance

Here we give a proof of the necessary and sufficient conditions of constant balance for the
“Gini” specification.

In order to prove necessity we differentiate the expression B
(

O1(t), O2(t)
)

with respect
to time and see under which conditions the derivative is equal to zero. Using the chain
rule we have

dB

dt
=

∂B

∂O1

dO1

dt
+

∂B

∂O2

dO2

dt
(46)

where

∂B

∂Oi
=

Oj(Oj − Oi)

(Oi + Oj)3
i, j = 1, 2 i 6= j

Time derivatives are given by the specifications of the model (1). If now one substitutes
the time flow of each option value, O1(t) = O10 + αIt and O2(t) = O20 + (1 − α)It, the
time derivative of balance becomes

dB

dt
=

O10 − O20 + (2α − 1)It

(O10 + O20 + It)3

[

(O10 + αIt)(1 − α)I − (O20 + (1 − α)It)αI
]

(47)

Setting this derivative to zero we obtain

(O10 + αIt)(1 − α) = (O20 + (1 − α)It)(αI)

This equation must hold true for any value of t. For instance, taking t = 1/I we have

O10

O20
=

α

1 − α

which is condition (16).

This is also a sufficient condition for constant balance as one can see by direct sub-
stitution:

B(t) = 4
(O10 + αIt)(O20 + (1 − α)It)

(O10 + O20 + It)2
= 4

(O10 + αIt)(O10
1−α

α
+ (1 − α)It)

(O10 + O10
1−α

α
+ It)2

= 4
(1 + α

O10
It)(1−α

α
+ 1−α

O10
It)

(1 + 1−α
α

+ It
O10

)2
= 4

1 − α

α

(1 + α
O10

It)2

( 1
α

+ It
O10

)2
= 4

1 − α

α
α2 = 4α(1 − α)

Appendix B General solution to the dynamic model

Here we report the steps of the integration of the probability of emergence as defined in
(24), that is, the integration of the third equation of the model (1) leading to the time
value of the third option O3. This computation contains the solution without size effect
as a particular case. In what follows we set I3 = 1 for investment in the innovative option.
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O3(t) =

∫ t

0

4
(O10 + αIs)(O20 + (1 − α)Is)

(O0 + Is)2

(

1 − e−σ(O0+Is)
)

ds (48)

We substitute s = (x − O0)/I and obtain

O3 =
4

I

∫ O0+It

O0

(E + Fx)(G + Hx)

x2

(

1 − e−σx
)

dx (49)

where E = O10(1− α)− αO20, F = α, G = −E and H = (1− α). The expression above
is the difference of two integrals (for ease of notation we consider indefinite integrals for
the moment). The first one is

∫

(E + Fx)(G + Hx)

x2
dx = EG

∫

dx

x2
+ (EH + FG)

∫

dx

x
+ FH

∫

dx

= −
EG

x
+ (EH + FG)lnx + FHx

As for the second integral we have

∫

(E + Fx)(G + Hx)

x2
e−σxdx = EG

∫

e−σx

x2
dx + (EH + FG)

∫

e−σx

x
dx +

+ FH

∫

e−σxdx =

= −
FH

σ
e−σx − EG

e−σx

x
+

+ [EH + FG − σEG]
[

lnx +

∞
∑

k=1

(−σx)k

k · k!

]

When substituting the latter two results into equation (49) we obtain

∫

(E + Fx)(G + Hx)

x2

(

1 − e−σx
)

dx = −
EG

x
+ FHx + FH

e−σx

σ
+

+ EG
e−σx

x
+ σEGlnx +

+ [σEG − (EH + FG)]
∞

∑

k=1

(−σx)k

k · k!

It is instructive to look first at the case of constant balance. The necessary and sufficient
condition can be written as O10(1 − α) = O20α. Then EG = 0, EH + FG = 0 and
FH = α(1 − α) and the integral above simplifies to

∫

(E + Fx)(G + Hx)

x2

(

1 − e−σx
)

dx

∣

∣

∣

∣

B=const

= α(1 − α)
(

x +
e−σx

σ

)

(50)

The solution for the value of the third option as a function of time is then
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O3(t) =
4

I
α(1 − α)

(

x +
e−σx

σ

)

∣

∣

∣

∣

x=O0+It

x=O0

= Bt + B
e−σO0

σI

(

e−σIt − 1
)

(51)

where B = 4α(1−α). It is useful to check the “physical” dimensions of the solution just
obtained. The first term Bt is time (balance is dimensionless). The second term is time
again, since σ is capital−1 while I is capital per unit of time. Not surprisingly O3 has a
time dimension, after we have set I3 = 1.

Relaxing the condition of constant balance we have the following general result for
the value of the innovative option at time t:

O3(t) =
4

I

∫ x=O0+It

x=O0

(E + Fx)(G + Hx)

x2

(

1 − e−σx
)

dx = (52)

= Bt + B
e−σO0

σI

(

e−σIt − 1
)

+
4

I
σEG log

O0 + It

O0
+

+
4

I
EG

[ 1

O0

(

1 − e−σO0
)

−
1

O0 + It

(

1 − e−σ(O0+It)
)

]

+

+
4

I

[

σEG − (EH + FG)
]

[ ∞
∑

k=1

(

− σ(O0 + It)
)k

k · k!
−

∞
∑

k=1

(

− σO0

)k

k · k!

]

The first two terms are what we have with constant balance (see section 5.3). In the
short run (It << O0) we have O3(t) ≃ Bt. A bit more complex is the analysis of the
long run behaviour (t >> O0/I). The part referring to constant balance will tend to a
linear growth, as we have seen already in the main text. In the logarithmic term the
value of the new investment It overcomes the initial option value O0. The second part
of the third term vanishes even faster than the exponential term of the part relative to
constant balance, because of the presence of t in the denominator. Finally the infinite
sum containing t goes to zero at least exponentially: this can be seen by noting that for
even values of k we have (O0 + It = y)

(−y)k

2k · k!
<

(−y)k

k · k!
<

(−y)k

k!

For odd values of k the inequalities are reversed. This means that our series is bounded
between the functions −1 + e−(O0+It) and −1 + e−(O0+It)/2, implying that it goes to zero
at least exponentially:

∞
∑

k=1

(

− σ(O0 + It)
)k

k · k!
= −σ(O0 + It) +

σ2(O0 + It)2

2 · 2
−

σ3(O0 + It)3

3 · 3!
+

σ4(O0 + It)4

4 · 4!
− . . .

< −σ(O0 + It) +
σ2(O0 + It)2

2
−

σ3(O0 + It)3

3!
+

σ4(O0 + It)4

4!
− . . .

= −1 + e−σ(O0+It) ≤ 0
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∞
∑

k=1

(

− σ(O0 + It)
)k

k · k!
= −σ(O0 + It) +

σ2(O0 + It)2

2 · 2
−

σ3(O0 + It)3

3 · 3!
+

σ4(O0 + It)4

4 · 4!
− . . .

> −
σ(O0 + It)

2
−

σ(O0 + It)

2
+

σ2(O0 + It)2

22 · 2!
−

σ3(O0 + It)3

23 · 3!
+ . . .

= −1 −
σ(O0 + It)

2
+ e−

σ(O0+It)
2

Alternatively one can think that for k >> 1 we have k · k! ≃ kek log k−k ≃ k!. This means
that the infinite sums in the expression of O3(t) do not differ too much from negative
exponential functions. In particular the one depending on t goes to zero as time is long
enough (It >> O0). Consequently we are left with the following long run functional
behaviour:

O3(t) ≃ B
(

t −
e−σO0

σI

)

+
4

I
σEG log

It

O0
+ (53)

+
4

I
EG

[ 1

O0

(

1 − e−σO0
)

]

−
4

I

[

σEG − (EH + FG)
]

D(σ, O0)

The factor D(σ, O0) =
∑∞

k=1
(−σO0)k

k·k!
only depends on parameters σ and O0; similarly to

what we have noticed for the series dependent on t we can say that such a quantity is
bounded between e−O0 and e−O0/2. In particular one can easily see that C(σ, O0) is finite:

∞
∑

k=1

(

− σO0

)k

k · k!
= −σO0 +

σ2O2
0

2 · 2
−

σ3O3
0

3 · 3!
+

σ4O4
0

4 · 4!
− . . .

< −σO0 +
σ2O2

0

2
−

σ3O3
0

3!
+

σ4O4
0

4!
− . . .

= −1 + e−σO0 ≤ 0

∞
∑

k=1

(

− σO0

)k

k · k!
= −σO0 +

σ2O2
0

2 · 2
−

σ3O3
0

3 · 3!
+

σ4O4
0

4 · 4!
− . . .

> −
σO0

2
−

σO0

2
+

σ2O2
0

22 · 2!
−

σ3O3
0

23 · 3!
+

σ4O4
0

24 · 4!
− . . .

= −1 −
σO0

2
+ e

−σO0
2

Obviously the expression in (53) must be positive. The third and fourth terms are
constant and since we consider long run behaviour of the system it does not really matter
whether they are positive or negative. Actually the third term is negative, while the
fourth can be either negative or positive depending on σ, the investment share α and the
initial values O10 and O20. The second term is negative, since G = −E. But in the long
run the linear function overcomes the logarithmic one. Then we can be sure that what
we obtain for O3(t) in the long run is a positive quantity.
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