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Abstract 

The present study deals with heterogeneous learning rules in speculative markets 

where heuristic strategies reflect the rules-of-thumb of boundedly rational investors. The 

major challenge for “chartists” is the development of new models that would enhance 

forecasting ability particularly for time series with dynamic time- varying, nonlinear features. 

This paper introduces fuzzy learning rules with the incorporation of beliefs, preferences and 

idiosyncratic behavioral patterns for decision-making and trading under uncertainty. The 

efficiency of a technical trading strategy based on a neurofuzzy model is investigated, in 

order to predict the direction of the market for NASDAQ Composite, NIKKEI255 and 

FTSE100. Moreover, it is demonstrated that the incorporation of the estimates of the 

conditional volatility changes strongly enhances predictability, as it provides valid 

information for a potential turning point on the next trading day. The total return of the 

proposed volatility-based neurofuzzy model, including transaction costs, is consistently 

superior to a markov-switching model, a recurrent neural network as well as to the buy & 

hold strategy for all indices. The findings can be justified by invoking either the “volatility 

feedback” theory or the existence of portfolio insurance schemes in the equity markets and 

are also consistent with the view that volatility dependence produces sign dependence. 

Overall what leads to optimal prediction is the dynamic update of the expectations and 

preferences of the heuristic learning rules combined with the adaptive calibration of the 

“degrees-of-belief” that match agent’s “fads”. 
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1. Introduction 

Heterogeneous agents approach challenges the conventional representative, rational 

agent framework. Heterogeneity in expectations can lead to market instability and 

complicated dynamics of prices, which are driven by endogenous market forces. Simon 

(1957) argued that, boundedly rational agents using simple rules-of-thumb for their 

decisions under uncertainty, provides a more accurate and realistic description of human 

behavior than perfect rationality with optimal decision rules. Ever since the introduction of 

the Efficient Markets Hypothesis, fully rational agents were considered the driving forces of 

markets, which in turn operated in a way to aggregate and process the beliefs and demands 

of traders reflecting all available information (Fama, 1970, 1991). But the empirical evidence 

from financial markets was not in full accordance with the Efficient Markets Hypothesis. 

The alternative behavioral model suggested was based on relaxing strict rational agent 

assumptions and introducing market frictions. The key arguments of behavioral agent based 

models as reported by Hommes (2001, 2005, and 2006) are closely related to Keynes view 

that “expectations matter”, to Simon’s result that humans are boundedly rational and to 

Kahneman-Tversky analysis in psychology that individual behavior under uncertainty can 

be described by simple heuristics and biases. 

In view of empirical studies that stock prices can be predicted with a fair degree of 

reliability advocates of Efficient Markets Hypothesis (e.g. Fama and French, 1995) claim that 

such results are based on time-varying-equilibrium expected returns generated by rational 

pricing in an efficient market which compensates for the level of risk undertaken. On the 

contrary, opponents (e.g. La Porta, et. al., 1997; Shiller, 2002) argue that predictability reflects 

the psychological factors and fashions or "fads" of irrational investors in a speculative 

market. This irrational behavior has been emphasized by Shleifer and Summers (1990) and 

Black (1986) in their exposition of noise traders who act on the basis of imperfect information 

and consequently cause prices to deviate from their equilibrium values. Arbitrageurs dilute 

a minor part of these shifts in prices, yet the major component of deviation is tradable. 

Moreover, Black claimed that noise traders play a useful role in promoting market liquidity. 

Overall, there are two types of agents in heterogeneous agent models: “fundamentalists”, 

who base their expectations upon dividends, earnings, growth or even macroeconomic 

factors, and “chartists” (noise traders and technical analysts) who instead base their trading 
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strategies upon historical patterns and heuristics and try to extrapolate trends in future asset 

prices (Brock and Hommes, 1998). The present study focuses on the latter. 

 

2. Asset returns and volatility dynamics 

Fluctuations in actual prices, many times even greater than those implied by changes in 

the market fundamentals, are inferred by Shiller (1987) as being the result of waves of 

optimistic or pessimistic market psychology. The sharp stock US market decline of 22% on 

October 19, 1987, in the complete absence of news about fundamentals, appears to contradict 

conventional theory as suggested by the Efficient Markets Hypothesis. Moreover, the 

empirical investigation of the relation between stock return volatility and stock returns has a 

long tradition in finance literature. According to the “time-varying risk premium theory” 

(Bekaert and Wu, 2000) the return shocks are caused by changes in conditional volatility. 

When ‘bad’ news arrives in the market the current volatility increases and this causes 

upward revisions of the conditional volatility.  This increased conditional volatility has to be 

compensated by a higher expected return, leading to an immediate decline in the current 

value of the market. An asymmetric nature of the volatility response to return shocks 

emerges from the above theory. While bad news generates an increase in conditional 

volatility, the net impact of good news in not clear. Another explanation to the asymmetric 

reaction of the conditional volatility may be offered through the “leverage effects” (Christie, 

1982). A negative (positive) return increases (reduces) financial leverage, which makes the 

stock riskier (less risky) and increases (reduces) volatility.  The causality however here is 

different: the return shocks lead to changes in conditional volatility, whereas the time-

varying premium theory contends the opposite. An alternative rationalization for the 

relation of conditional volatility revisions and stock returns may be offered by invoking 

trigger strategies in the equity markets (Krugman, 1987). Institutional participants in equity 

markets react whenever the maximum expected loss of portfolios, as measured for example 

by the Value-at-Risk (VaR), reaches a predetermined level and therefore share price 

dynamics are being driven, partly, by revisions in the measured conditional volatility1.  Each 

time the conditional volatility rises, a number of those portfolios will deviate from their pre-

                                                 
1
 VaR depends entirely on a multiple of the estimated conditional volatility under the assumption of normally distributed 

returns.  
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determined level of VaRs, hitting their risk limits and this will generate a re-allocation of 

assets towards safer ones. When portfolio insurers leave the market the stock prices must 

fall in order for the other investors to be given an incentive to hold a larger quantity of stock. 

If a rational expectations world is further assumed then investors take into account the 

effects of portfolio insurance schemes and no drop in stock prices is being observed. 

Furthermore, many researchers study the contemporaneous relationship between the one-

day stock index returns and the associated changes in the level of implied volatility indices 

(Whaley 2000, Simon 2003, Giot 2005). The results indicate the existence of a negative and 

statistically significant relationship between the returns of the S&P100 (NASDAQ 100) and 

the implied volatility VIX (VXN) index. Specifically, for the S&P100 index this relationship 

has been also found to be asymmetric in the sense that negative stock index returns are 

associated with greater proportional changes in implied volatility measures than are positive 

returns. The explanation offered for this opposite response is that option traders react to 

negative returns by bidding up the implied volatility. Nonetheless, empirically there is a 

growing debate whether the implied volatility can be used as a forward indicator of the 

underlying equity index. This issue has not been treated properly in the literature with the 

exception of a paper by Giot (2005) who regressed the forward looking S&P100 index 

returns, over various time intervals, on 21 dummy variables representing equally spaced 

percentiles of a rolling two-year history of VIX. Giot (2005) concludes that positive forward-

looking returns are to be expected for long positions at high levels of the implied volatility 

indices.  

In one part of this study the trading implications of conditional volatility are examined 

within a broader framework as concerns the nonlinear functional form of the forecast 

generating mechanism as well as the presence of past returns that might have forecasting 

power. Christoffersen and Diebold (2003) in their paper show that volatility dependence 

produces sign dependence, and therefore forecastability, as long as expected returns are 

nonzero. The intuition behind this relationship is that volatility changes will alter the 

probability of observing negative or positive returns. More specifically, the higher the 

volatility, the higher the probability of a negative return, as long as the expected returns are 

positive. Moreover, they show that this result is entirely consistent with the existence of no 

conditional mean dependence, or the absence of conditionally Gaussian distributions. In that 
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context, the predictive return sign ability of trading rules that rely on a simple switching 

strategy is investigated: positive predicted returns are executed as long positions and 

negative returns as short positions. A similar strategy has been employed, with considerable 

success, by a number of other researchers (Gençay 1998b, Gençay 1998a, Fernández-

Rodriguez et. al., 2000) etc. In general terms they find that the returns from the switching 

strategy are higher than those from the passive one for annual returns, even when 

transaction costs are high. They also find that the asset return predictability is increased 

during volatile periods. The buy and sell signals are produced from technical trading 

strategies that incorporate various linear or non-linear econometric models.  

 

3. Nonlinear forecasting and boundedly rational decision-making with Fuzzy inference 

systems 

In heterogeneous markets the major challenge for “chartists” is the development of new 

models, or the modification of existing methods, that would enhance forecasting ability 

particularly for time series with dynamic time variant patterns. Conventional time series 

analysis, based on stationary stochastic processes does not always perform satisfactorily on 

economic and financial time series (Harvey, 1989). The reason is that economic data are not 

generally described by simple linear structural models, white noise or even random walks. 

The most commonly used techniques for financial forecasting are Regression methods and 

Αutoregressive Μoving Αverage (ARMA) models (Box and Jenkins, 1970). These methods 

have been used extensively in the past, but they often fail to give an accurate forecast for 

some series because of their nonlinear structures and some other inherent limitations. Even 

though ARCH/GARCH models (Bollerslev 1986, Engle 1982) deal with non-constant 

variance, still some series cannot be explained or predicted satisfactorily, due to inherent 

chaotic or noise patterns, fat tails, or other nonlinear components.  

Extensive research in the area of nonlinear modeling has shown that neural networks 

enhance financial forecasting, mainly because they perform advanced mathematical and 

statistical processes such as nonlinear interpolation and function approximation. Neural 

Networks are parallel computational models comprising input and output vectors as well as 

processing units (neurons) interconnected by adaptive connection strengths (weights), 

trained to store the “knowledge” of the network. Adya et. al. (1998) demonstrated the 

advanced predictive ability of neural networks for time series forecasting. White (1989) and 
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Kuan et. al. (1994), suggested that the relationship between neural networks and 

conventional statistical approaches for time series forecasting is complementary. Refenes et 

al. (1994) indicated that traditional time series techniques for forecasting have reached their 

limitation in applications with nonlinearities within the data sets. Additionally, the function 

approximation properties of neural networks have been thoroughly investigated by many 

authors. The results in Cybenko (1989), Funahashi (1989), Hornik (1991), Hornik et. al. (1989, 

1990), Gallant et. al. (1988, 1992) and Hecht-Nielsen (1989) demonstrated that feedforward 

networks with sufficiently many hidden units and properly adjusted parameters can 

approximate any function to any desired degree of accuracy. Poddig (1993) applied a 

feedforward neural network to predict the exchange rates between American Dollar and 

Deutsche Mark, and compared results to regression analysis. Other examples using neural 

networks in stock and currency markets include Gençay (1998), Green et. al. (1994), Manger 

(1994), Rawani (1993), Weigend (1991), Yao et. al. (1996) and Zhang (1994). However, 

conventional time series analysis techniques as well as neural networks incorporate in terms 

of input variables, only quantitative factors, such as stock returns, indices and other financial 

or economic magnitudes. A number of qualitative factors, e.g., macroeconomical or political 

effects as well as traders psychology or “fads”, may seriously influence the market trend, 

thus it is important to capture this unstructured expert knowledge.  

Fuzzy logic has been implemented initially in the area of control systems and decision 

theory and recently in economic applications with highly promising results. It provides a 

means of representing uncertainty with imprecise data. In that sense it is an excellent tool for 

the boundedly rational agent who uses rules-of-thumb for decision-making and learning 

under uncertainty. Specifically, in a fuzzy system numeric variables (inputs and outputs) are 

translated into fuzzy linguistic terms representing beliefs, e.g. “low” and “high”. Each term 

is described by a membership function, which estimates the “degree” to which a variable 

belongs to a fuzzy set. Finally, fuzzy inference or learning rules represented in IF-THEN 

statements are specified to associate the fuzzy input to the output fuzzy set. Thus, the IF-

THEN rules could comprise an efficient mechanism of incorporating heterogeneous beliefs 

of the agent in a technical trading system. In general, Fuzzy systems are widely applied in 

fields like classification, decision support, process simulation and control systems, exactly 

because are effective means of modeling human expert knowledge, experience, intuition, 
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etc., (Sugeno 1988, Kosko 1992, Klir et. al.1995, Jamshidi et. al. 1997, Mamdani 1974, 1977). 

Financial and marketing applications have also been reported (Altrock, 1997). One 

important advantage of fuzzy inference systems is their linguistic interpretability. When 

implementing fuzzy systems, the focus is paid on modeling fuzziness and linguistic 

vagueness using membership functions. The fuzzy system approach has been applied to 

different forecasting problems whereby the operator's expert knowledge is used for 

prediction (Kaneko 1996, Al-Shammari, et. al. 1998). Although the fuzzy logic-based 

forecasting shows promising results, the process to construct a fuzzy logic system is 

subjective and depends on some ad-hoc assumptions. The learning rules derived in this way 

may not always yield the best forecast, and the choice of membership functions depends on 

trial and error. Neural networks’ learning ability can be utilized to adjust and fine-tune the 

fuzzy membership functions. The combination of both techniques results in a hybrid 

Neurofuzzy model which incorporates the learning ability of the neural network and the 

functionality of the fuzzy expert system. In a Neurofuzzy system the basic concept is the 

derivation of various parameters of a fuzzy inference system by means of adaptive training 

methods obtained from neural networks (Buckley et. al. 1994, Lin et. al. 1996, Nishina et. al., 

1997).  

The present study advances the literature on heterogeneous learning rules in speculative 

markets where strategies reflect the "fads" of boundedly rational investors, by introducing a 

technical trading system with the incorporation of beliefs and idiosyncratic behavioral 

patterns represented by fuzzy inference rules. In technical terms, it expands the literature 

that has utilized separately neural networks or fuzzy logic systems in forecasting 

applications, by presenting a hybrid Neurofuzzy approach that leads to superior predictions 

upon the direction-of-change of the market. Moreover, beyond the existing practice that has 

utilized as inputs return lags, moving averages etc, it is demonstrated that the Neurofuzzy 

model leads to superior predictions via the incorporation of volatility changes in addition to 

endogenous return lags. The purpose of this paper is to illustrate this concretely through an 

investigation of the relative direction-of-change predictability of the proposed volatility-

based Neurofuzzy trading model compared to other well-established nonlinear trading 

models. 
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The remainder of this paper is organized as follows. Section 4 describes how the 

Neurofuzzy model for heuristic learning in heterogeneous markets is constructed. In Section 

5 the other forecasting models used in this study are described. Section 6 provides a brief 

review of conditional volatility models. Finally, the empirical results are shown in Section 7 

and Section 8 provides concluding remarks. 

 

4. Heterogeneous beliefs and heuristic learning under incomplete information: the 

hybrid Neurofuzzy model 

The superior functionality of the Neurofuzzy trading system lies in the efficient 

mechanism of incorporating the heterogeneous beliefs of the agent under uncertainty and 

imprecise knowledge, called fuzzy learning rules (or inference rules, using the fuzzy logic 

terminology). Fuzzy learning, represented in IF-THEN statements, is specified to associate 

input and output variables of a system, which in this case is a heterogeneous financial 

market, while modeling human expert knowledge, experience, psychology patterns and 

intuition of the agent. Consequently, the IF-THEN rules’ set-up provides a very realistic 

model of the decision-making process under which rule-of-thumb traders operate.   

 Technically, the Neurofuzzy architecture consists of the input, the rule layer and the 

output layer. In the input fuzzy layer all the input variables are translated into fuzzy 

linguistic terms. Each term is described by fuzzy membership functions, which estimate the 

“degree of belief”, whereas in the Boolean formalism the particular variable would have a 

crisp numeric value. The type of membership functions is configured in this layer, whereas 

the parameters of these functions are processed and optimized via neural network learning. 

The fuzzy learning rules consist of two parts, the “IF” part and “THEN” part. The “IF” part 

utilizes an “AND” association. This operator proposed by Zimmermann et. al. (1978) 

represents the minimum value among all the validity values of the “IF” part. The output 

fuzzy layer incorporates the fuzzy membership functions for outputs. Finally, in the 

defuzzification layer, the output is converted from fuzzy variables back into crisp values. 

The aforementioned structure utilizes the Mamdani (1997) approach of fuzzy learning. 

Alternatively, Sugeno’s (1985) approach introduces linear dependences of each rule on the 

system’s input variables, whereby no defuzzification process is required. The more general 

first-order Sugeno fuzzy model has rules of the form ”IF x is A AND y is B THEN  
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1 2
z h c x d x= + ⋅ + ⋅ ” , where A and B are fuzzy sets while c, d, and h are parameters. 

Because of the linear dependence of each rule on the system’s input variables the Sugeno 

system is suited for modeling complex nonlinear systems by interpolating multiple linear 

models.  

In order for agents to forecast the upward and downward trends of the financial 

market, a three-input, two rule first order Sugeno model is utilized, where the parameters c, 

d, k and h of the nth rule contribute via the following first order polynomial: 

1 2 3n n n n n
z h c x d x k x= + + +        (1) 

This model comprises two parameter sets, namely the membership function parameters and 

the polynomial parameters (c, d, h, k), which are all time-varying in order to account for 

dynamic persistence and structural changes in the input variables, and adaptively updated 

(the time index is dropped to improve readability). In the proposed architecture two 

membership functions are used for each input corresponding to two regimes, or beliefs as 

being perceived by the boundedly rational agents, namely “low” and “high”.  The hybrid 

learning process uses a Levenberg-Marquardt neural back-propagation algorithm (Hagan et. 

al., 1994) to optimize the membership parameters and a least squares-type algorithm to 

solve for the polynomial parameters. The polynomial parameters are updated first using a 

least squares-type algorithm and the membership parameters are then updated by 

backpropagating the errors. Finally, in order to solve for all parameters the squared error 

objective function is used: 

       21
( )

2
oE y y= −            (2) 

where yo the target output and y the system output for N size sample.  

The architecture of the proposed model consists of five sequential “learning layers” 

represented by ,l i
L where l=1,…,5 the index of each layer, i the ith node of layer ,l i

L and j the 

number of inputs. In the first layer the grades μ of the membership functions i.e. “degrees of 

belief” of each input j are generated: 

     ( )1,
:

ii M j
L xµ         (3) 

In the second “learning layer” the rule weight coefficients are produced. In this layer a weight 

is attributed on each learning rule, which is not necessary symmetric, corresponding to the 

agent’s preference of the influence of the rule to the final decision.  Intelligently, as it is 
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illustrated below, the system adaptively “learns by itself” and attributes the optimal weight 

to each rule in order to match the trader’s expectations, instead of keeping it constant based 

on an ex-ante “rational” assumption. At the third layer the weights are normalized: 

    ( )2, 1
:

i

m

i i M jj
L w xµ

=
=∏        (4) 

3,

1 2

: i
ii

w
L w

w w
=

+
      (5) 

Within the fourth layer the learning rule outputs are calculated as follows: 

                         ( )4, 1 2 3
:

i ii i i i i i i
L y w z w c x d x k x h= = + + +           (6) 

Finally, in the final “learning layer” all the inputs from the previous layer are aggregated 

producing the output of the system as a piecewise linear interpolating function, dynamically 

calibrated by the input-dependent normalized weights: 

                       ( ) ( )5, 1 1 1 1 2 1 3 1 2 2 1 2 2 2 3 2:
i i

i

L y y w c x d x k x h w c x d x k x h= = + + + + + + +∑      (7) 

The last equation can be reformulated in the following matrix format:  

1 1 1 2 1 3 1 2 1 2 2 2 3 2 1   1 1 1 2   2 2 2                    
T

y w x w x w x w w x w x w x w c d k h c d k h   = ⋅ = ⋅    X W    (8) 

The solution for the weight vector W to the above equation, if the X matrix was invertable 

and considering that the weights are known, could be the following: 

         -1= ⋅W X Y         (9) 

However, since this is not always applicable, other methods are used such as lower 

triangular or more robust orthogonal decompositions. In this study Singular Value 

Decomposition method (SVD) (Golub et. al., 1971; Golub et. al., 1989; Horn et. al., 1991) is 

used. The SVD method has the advantage of using principal components to remove 

unimportant information related to white or heteroscedastic noise and thereby lessens the 

chance of overfitting. The Χ matrix is decomposed into a diagonal matrix D that contains the 

singular values, a matrix U of principal components, and an orthogonal normal matrix of 

right singular values V. The weight matrix is finally solved for using: 

               −= ⋅ ⋅ ⋅1 T
W V D U Y       (10) 

For the fuzzification of the input variables used by the technical trader, symmetric 

triangular membership functions are applied, in order to optimize the training performance 

in terms of computational load (Ishibuchi et. al., 1995). Additionally, because triangular 

functions contain two parameters, the ai “peak” and the bi “support” parameter, 
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corresponding to the “degree” and “range” of the belief, are perfectly suited for modeling the 

agent’s uncertainty perception mechanism. The membership function is as follows: 

                             ( )
1 ,  if 

2 2

0,                           else
i

j i i

j i

M j i

x a b
x a

x bµ

 − − − ≤= 


               (11) 

The adaptive-expectations rule of the gradient descent algorithm for the “degree-of-belief” 

parameter is given below:  

                      
, 1 ,

a

i t i t

i

E
a a

p a

η
+

∂
= − ⋅

∂
         (12) 

where p the training sample size and ηα the learning rate (e.g. determines the change of the ai 

values and eventually the convergence of the square error function). A similar rule applies 

for the “range-of-belief” parameter. The following chain rule is used to analyze the total 

derivative to its partial derivatives: 

                         i

i

Mi i

i i i M i

y wE E y

a y y w a

µ

µ

∂∂ ∂∂ ∂ ∂
= ⋅ ⋅ ⋅ ⋅

∂ ∂ ∂ ∂ ∂ ∂
    (13) 

The partial derivatives are derived below: 

                         ( )
21

2
oE y y= −     ⇒   oE

y y e
y

∂
= − =

∂
       (14) 

                        
1

n

ii
y y

=
=∑   ⇒   1

i

y

y

∂
=

∂
           (15) 

                        

1

i

i in

ii

w
y z

w
=

=

∑
    ⇒   

( )

1

ii

n

i

i

i

z yy

w
w

=

−∂
=

∂
∑

     (16) 

                        ( )
1

i

m

i M j

j

w xµ
=

=∏     ⇒   
( ) ( )

i i

i i

M j M j

w w

x xµ µ

∂
=

∂
            (17) 

                                

( )
j

j

2 s
,     x

2

0,                   x
2

j i i

i
i

i

i i

i

ign x a b
a

b

a b
a

µ

 ⋅ − − ≤∂ = 
∂  − >

         (18) 

 

similarly: 

                      
( )1

i iM M j

i i

x

b b

µ µ∂ −
=

∂
         (19) 
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Substituting into the chain rule equation: 

                             ( )
( )

( )
( )

1

2 sign

i

i j io i

n

i M j i

i

i

z y x awE
y y

a x b
w

µ

=

− ⋅ −∂
= − ⋅ ⋅ ⋅

∂
∑

         (20) 

                         ( )
( )

( )
( )

1

1
i

i

M jio i

n

i M j i

i

i

xz y wE
y y

b x b
w

µ

µ

=

−−∂
= − ⋅ ⋅ ⋅

∂
∑

       (21) 

The function sign(arg) takes the value of 1 if the argument is positive and zero otherwise. 

The adaptive rule for the “degree-of-belief” parameter is provided in the following recursive 

equation:  

                            
( )

( ) ( )
( ), 1 ,

1

2  

i

i j i oa i

i t i t n

M j i

i

i

z y sign x aw
a a y y

p x b
w

η

µ
+

=

 
 
 − ⋅ −
 = − ⋅ ⋅ ⋅ ⋅ −
 
 
 
 

∑
       (22) 

whereas for the “range-of-belief” parameter: 

                             
( )

( ) ( )
( ), 1 ,

1

1
i

i

M ji ob i

i t i t n

M j i

i

i

xz yw
b b y y

p x b
w

µη

µ
+

=

 
 
 −−
 = − ⋅ ⋅ ⋅ ⋅ −
 
 
 
 

∑
       (23) 

To sum up, the hybrid learning rule consists of two passes, in a way simulating the 

decision process of the trader. In each estimation step, during the forward pass the 

polynomial parameters and weights (“adaptive expectations” and ”preferences” ) are calculated 

using SVD method, while the membership parameters (“degree” and “range” of beliefs) 

remain fixed. Thereafter, the outputs are produced using the previously calculated 

polynomial parameters and in the reverse pass the errors are backpropagated within the 

learning layers to determine the membership parameter updates, while the polynomial 

parameters are kept fixed. 

 

5. Other Forecasting models 

The Neurofuzzy model is compared against a Markov-Switching model and a Recurrent 

Neural Network in order to examine its relative predictability and profitability performance. 

These models are described below.  
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Markov – Switching model 

A well-established class of Regime-switching models assumes that the regime that 

occurs at time t cannot be observed, and is determined by an unobservable process, denoted 

as
t

s . In case of only two regimes (e.g. “low” and “high”) 
t

s  can simply be assumed to take 

on 2 values, such that an ( )1AR  model in both regimes is given by 

 0,1 1,1 1

0,2 1,2 1

    if 1,

    if 2,
t t t

t

t t t

y s
y

y e s

ϕ ϕ ε

ϕ ϕ

−

−

 + + == 
 + + =

       (24) 

The most popular model in this class, which was advocated by Hamilton (1989), is the 

Markov-Switching model, in which the process
t

s is assumed to be a 1st order Markov-

process (i.e. the current regime
t

s only depends on the regime one period ago, 1
t

s − ). The 

model is completed by defining the transition probabilities of moving from one state to the 

other: 

                 
( )
( )

1 11

1 12

1 1

2 1
t t

t t

P s s p

P s s p

−

−

= = =

= = =
 and  

( )
( )

1 21

1 22

1 2

2 2
t t

t t

P s s p

P s s p

−

−

= = =

= = =
     (25) 

where 
ij

p  is equal to the probability that the Markov chain moves from state i  at time 

1t − to state j  at time t . In order to define proper probabilities, they should be 

nonnegative, and it should also hold that 
11 12

1p p+ =  and
21 22

1p p+ = . Additionally, in 

the Markov-Switching models the unconditional probabilities ( )t
P s i=  for 1,  2i =  that 

the process is in each of the regimes are defined. Via the theory of ergodic Markov chains it 

is straightforward to show that for the 2-state MSW model these unconditional probabilities 

are given by Hamilton (1994): 

 ( ) ( )22 11

11 22 11 22

1 1
1 ,        2

2 2
t t

p p
P s P s

p p p p

− −
= = = =

− − − −
       (26) 

 

Recurrent Neural Network 

A single hidden layer feedforward network with sufficiently hidden units and 

properly adjusted parameters can theoretically approximate any function to any desired 

degree of accuracy2. The output of a neural network is produced via the application of a 

                                                 
2
 Despite the importance of selecting the optimum number of hidden neurons, there is no explicit formula for that matter. The 

geometric pyramid rule proposed by Masters (1993) considers mn   ⋅ neurons for a three-layer network with n inputs and m 

outputs. Katz (1992) indicates that an optimal number of hidden neurons can be found between one-half to three times the 
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transfer function. The functionality is to modulate the output space as well as prevent 

outputs from reaching very large values which can “block” training3. Learning typically 

occurs through training, where the training algorithm iteratively adjusts the connection 

weights. Common practice is to divide the sample into three distinct sets called the training, 

validation and testing (out-of-sample) sets; the training set is the largest and is used by the 

neural network to learn the patterns presented in the data, the validation set is used to 

evaluate the generalization ability in order to avoid overfitting and the training set should 

consist of the most recent observations that are processed for testing predictability4. 

Specifically, if 1, ,( , ..., )
t p t

x x=
t
X is the input of a single layer feedforward network with q 

hidden units, the output is given by: 

                 ( )0 0 ,
1 1

,
q p

t i i ij j t

i j

y S G x fβ β α α
= =

   = + + =    
∑ ∑ t

x z         (27) 

where i=1,…,q and j=1,…,p. Consider ( )0 11, ..., ,  ,... ...,
T

q ij qp
β β α α α=z  as the weight vector 

and S, G transfer functions. The solution of the network considers estimation of the 

unknown vector z with a sample of data values. A recursive estimation methodology, which 

is called backpropagation is used to estimate the weight vector, as follows:  

                  1 ( , ) ( , )
t t t t t

z z f z y f zη+
 = + ∇ ⋅ − t t

x x         (28) 

where ( , )f z∇
t
x  is the gradient vector with respect to z and η the learning rate. The 

learning rate controls the size of the change of the weight vector on the t-th iteration. The z 

vector update is achieved via the minimization of the mean square error function.  

Whilst feedforward neural networks appear to have no memory since the output at 

any time instant depends entirely on the inputs and the weights at that instant, Recurrent 

neural networks exhibit characteristics simulating short-term memory. In this study, Elman 

Recurrent neural networks (Elman, 1990) have been utilized. In Elman networks with a 

single hidden layer the lagged outputs of the hidden neurons are fed back into the hidden 

                                                                                                                                                        

number of inputs, whereas Ersoy (1990) proposes doubling the number of neurons until the network’s RMSE performance 

deteriorates. 
3
 Levich et. al. (1993) and Kao et. al. (1992) found that hyperbolic sigmoid and tansigmoid transfer functions are appropriate for 

financial markets data because they are nonlinear and continuously differentiable which are desirable properties for network 

learning 
4
 The validation error starts decreasing until the network begins to overfit the data and the error will then begins to rise. The 

weights are calculated at the minimum value of the validation error. 
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neurons themselves. Ιf 1, ,( , ..., )
t p t

x x=
t
X  is the input with q hidden units and t the time 

index, the output of the network is given by: 

               
0 ,

1

q

t i i t t

i

y G gβ β ε
=

 
 = + ⋅ +
 
 
∑          (29) 

where 

            
, 0 , , 1

1 1

p q

i t i ij j t ih h t

j h

g G x gα α δ
−

= =

  = + +   
∑ ∑       (30)   

and ( )0 11 11, ..., ,  ,... ..., , ,... ...,
T

q ij qp ih qq
β β α α α δ δ δ=z the weight vector and G the hyperbolic 

tangent sigmoid transfer function. 

 

6. Volatility modeling 

The basic assumption for the estimation of conditional variance is that 
1

( )n
t t

r
=

 which 

represents daily returns of the price of a financial asset, follows the stochastic process: 

           
t t t t t t

r eµ µ σ ε= + = +      (31) 

where 2 2
1 1

( / ), ( / )
t t t t t t

E r F E e Fµ σ
− −

= =  and ( / )
t t t

eε σ=  has a conditional distribution 

function ()
t

F ⋅ . Under the parametric approach specific distributions for ()
t

F ⋅  are considered 

such as the Gaussian N(0,1), the Student-t or the Generalized Error Distribution (GED).  The 

conditional variance can be estimated by various models such as moving average 

(Alexander, 1998), given by the equation: 

                2 2

1

1
( )      

1

m

m

t t j t

j

r
m

σ µ
−

=

= ⋅ −
−
∑   (32) 

where 
1

1 m

m

t t j

j

r
m

µ
−

=

= ⋅∑ , the moving average of m trading days. Alternatively it can be 

estimated by one of the family of GARCH models (Hentschel, 1995). In particular, the 

GARCH(1,1) model is given by: 

                   2 2 2
0 1 1 1

( )
t t t t

rσ α α µ βσ
− −

= + − +       (33) 

where
1

(1 / )
T

t t ii
T rµ

−=
= ∑ . A special case of GARCH models is the Exponentially Weighted 

Moving Average (EWMA) specification, adopted by the Riskmetrics (RM) model of 

J.P.Morgan, under which: 
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                  2 2 2
1 1

(1 )( )
t t t t

rσ λσ λ µ
− −

= + − −        (34) 

Riskmetrics has chosen λ=0.94 and λ=0.97 as the optimal decay factor for daily and monthly 

data respectively (Jorion, 2000). 

 

7. Empirical results  

Let Pt be the daily index price. The daily returns are then calculated by 

1
log( ) log( )

t t t
r P P

−
= − . The performance of the models is examined using logarithmic 

returns of the most prominent indices of U.S.A, Southeast Asia and Europe, namely 

NASDAQ Composite, NIKKEI255 and FTSE100 indices, from 2/8/1971 to 2/5/2002 (8087 

observations) in case of NASDAQ and NIKKEI255, whereas from 1/2/1984 to 2/5/2002 (4722 

observations) for FTSE100. The predictive performance of the models is examined in the 

period 4/8/1998 – 2/5/2002 (1000 observations) which has been reserved for out-of-sample 

testing purposes. This sample contains diverse regimes and several “problematical” events 

including the Asian crisis and the rise and fall of the tech-market bubble, which makes the 

analysis particularly interesting and applicable to other turbulent periods (e.g. the current 

financial crisis of 2007-2008 which leads to global recession and was caused by the credit 

insolvency of investment institutions and high oil prices).  

Specifically, the inputs (xj) of the Neurofuzzy model correspond to the returns (rt) of 

the previous p days and the volatility daily changes 
1t t

δσ σ σ
−

= −  while the output (y) is 

the forecasted one-day-ahead return (
t̂

r ). The conditional volatility daily changes were 

calculated for the same periods via 20-day Moving Average, RiskMetrics (with 0.94 decay 

factor) and GARCH(1,1) models5. The inputs in the Recurrent neural network correspond to 

the daily returns over the previous p days, following Gençay (1998a, b) and Fernadez-

Rodriguez et. al. (2000), while for the Markov-Switching model also p lagged daily returns 

are used as well as two beliefs (i.e. “low” and “high”) in order to directly correspond to the 

membership function architecture of the Neurofuzzy model. For the test period the models 

utilize a moving window of all previous observations as a training sample and produce 

forecasts for each day within the corresponding period. The validation sample for each case 

                                                 
5 The exponentially moving average corresponds to the approach adopted by RiskMetrics and for that reason it is denoted here 

as RM (0.94). 
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is the 30% of the training set, and is used to evaluate the generalization ability and avoid 

overfitting. The training set consists of the most recent observations that are processed in 

each case. The training and validation samples utilize a moving window of all previous 

observations in order to produce forecasts for each day within each backtesting period.  

The volatility-based Neurofuzzy model (symbolized as VNF) corresponds to a 

specification where two lags of the returns and one lag of the conditional volatility changes 

appear in Eq.3 (j=3)6. The corresponding notation with the embedded volatility measure is 

VNF-MA(20), VNF-RM(0.94) and VNF-GARCH(1,1). In case of the Recurrent neural 

network (RNN) the best forecasting ability was derived empirically by a topology which 

incorporated 10 neurons (g) in the hidden layer and an output layer with a single neuron 

(y)7. The Markov-Switching model (MSW) model uses two lags of the returns corresponding 

to an AR(2) model in both regimes.  

In order to account for the use of nonlinear models a test for the presence of non-

linear dependence in the series is conducted. To that end, the well-known BDS test statistic 

was used, which under the null of i.i.d. is given by (Brock et.al., 1991): 

         1/2
, , 1, ,( ) [ ( ) ( )] / ( )m

m T m T T m T
W T C Cε ε ε σ ε= −        (35) 

, ( )m T
C ε is the correlation integral from m dimensional vectors that are within a distance ε 

from each other, when the total sample is T, and , ( )m T
σ ε is the standard deviation of , ( )m T

C ε . 

Under the null hypothesis, , ( )m T
W ε , has a limiting standard normal distribution. The BDS 

test has been applied on: (a) the original data, (b) the residuals from an autoregressive filter 

AR(2) (based on the selected return lags), in order to ensure that the null is not rejected due 

to linear dependence, and (c) the natural logarithm of the squared standardized residuals 

from a AR(2) - GARCH-M (1,1) model in order to ensure that rejection of the null is not due 

to conditional heteroscedasticity (De Lima, 1996).  

                                                 
6
 The procedure for the selection of the lags involved the the calculation of the Ljung-Box statistics for the first 10 lags of the 

series. Significant autocorrelations of up to the second lag of the return series were identified. Additionally, the Akaike and 

Schwarz Information Criteria (AIC, SIC) that were estimated for the first six lags provided the minimum value at the second 

lag. As concerns the conditional volatility variable, sensitivity and RMSE analyses for different number of lags were conducted 

on the VNF but the results were not found to be qualitatively different from those presented in Table 2. Similar exercises were 

conducted for a different number of lagged returns but again the results are not better than those shown in Table 2.  
7
 This empirical result follows Katz (1992) and Ersoy (1990).  
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Insert Table 1 here 

In all three cases the null of i.i.d. at the 1% marginal significance level could be rejected and 

the evidence seemed to suggest that a genuine non-linear dependence is present in the data.   

The trading rule works as follows; at the end of each trading day the models are 

being re-estimated over a rolling sample with a length equal to the training period. When 

the output of a model is greater than 0 this is used as a buy signal and a value less than 0 as 

a sell signal. The total return, when transaction costs are not considered, is estimated as: 

         
1

1

n T

t

n

R s r
+ +

+

= ⋅∑          (36) 

where T indicates the out-of-sample horizon, 
t

r  is the realized return and 
t̂

s  is the 

recommended position which takes the value of (-1) for a short and (+1) for a long  position 

(e.g. Gençay 1998b, Jasic et. al. 2004). In order to evaluate the forecast accuracy of the 

models, the percentage of correct predictions or correctly predicted signs was calculated as 

follows: 

 Sign Rate
h

T
=       (37) 

where h is the number of correct predictions. Two other comparative profitability measures 

were also considered: the Ideal Profit (IP) and the Sharpe ratio (SR). The IP compares the 

forecasting system return against the perfect forecaster and is calculated by: 

 

1

1

1

1

n T

t t

t n

n T

t

t n

s r

R

r

+ +

= +

+ +

= +

=
∑

∑
    (38) 

where the value R = 0 is considered as a benchmark to evaluate the performance of a trading 

strategy. When the direction indicator 
t

s  takes the correct position for all observations in the 

sample, then R = 1, whereas if all forecasted positions are wrong, then the value is R = -1. The 

SR is the proportion of the mean return of the trading strategy over its standard deviation. 

The higher the SR is the higher the return and the lower the volatility: 

      T

T

R

R

SR
µ

σ
=      (39) 
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Finally, as a measure of the predictability the Henriksson-Merton (HM) statistic 

(Henriksson and Merton, 1991) was employed for the 
t

r (realized) and 
t̂

r (forecasted) returns. 

The statistic is based on the following contingency table: 

        0            0
t t

r r> ≤  

               
ˆ 0

ˆ 0
t

t

r

r

>

≤

1

1 1 2 2

                       

         

n n

N n N n

 
 
 − −  

             (40) 

where n1 is the number of correct forecasts in “up” markets, n2 is the number of incorrect 

forecasts in “down” markets and N1 , N2 the number of up-market and down-market 

periods, respectively in the sample. Henriksson and Merton showed that n1 has a 

hypergeometric distribution under the null hypothesis of no market–timing ability, which 

may be approximated by: 

            1 1 1 2
1 2

( )
~ ,   

( 1)

nN n N N N n
n N

N N N

 −     − 
        (41) 

where 
1 2

N N N= + and 
1 2

n n n= + . 

The empirical results of the comparative implementation of all models are reported 

in Table 2.  

Insert Table 2 here 

Considering total returns, a trading rule with any of the VNF models dominates the RNN 

and the MSW as well as the Buy & Hold (B&H) strategy consistently for all indices. 

Specifically, in case of NASDAQ the total return for the trading strategy based on the VNF-

RM(0.94) model (173.6%) outperforms impressively RNN (29.2%), MSW (40.2%) and B&H 

strategy (4.5%) as well as the other volatility –based NF models (83.3% for VNF-MA(20) and 

108.9% for VNF-GARCH(1,1)). The same applies with the inclusion of transaction costs, 

which are estimated as 0.05% for each one-way trade, following Hsu and Kuan (2005) and 

Fama and Blume (1966). Again, the trading rule remains significantly profitable (e.g. 150.4% 

return for VNF-RM(0.94) model). The fact that VNF-RM(0.94) model outperforms RNN, 

MSW (40.2%) and B&H strategy is also depicted in the proportion of correctly predicted 

signs (55.3%) which is higher compared to the aforementioned models. The HM test 

provides a further validation of the statistical significance of the sign rate with a 4.692 value 

at the one-sided 1% level. Additionally, the SR (annualized) and the IP are much higher than 

for RNN and MSW models and relatively higher that for the other two VNF models. In case 
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of FTSE100 the VNF-MA(20) model provides the best results (102.6% or 78.7% after 

commissions and 52.8% sign rate) compared to other VNF models but again with an 

indicating superiority relatively to the RNN and MSW models (i.e. a total loss of  6.4% for 

the RNN model and a gain of 31.4% for the RNN model). The statistical significance (HM 

test) of the optimal VNF predictor (3.772), the SR (1.297) and the IP (0.108) scores confirm the 

above results. Finally, in the NIKKEI255 case the VNF-GARCH(1,1) model provided the best 

out-of-sample performance with a total return of 87.5% (57.4% after costs), sign rate of 50.1% 

(statistically significant at the 1% level), SR of 0.901 and IP of 0.078. It is noticeable that the 

B&H strategy in the examined period for NIKKEI255 produced a 53.2% loss. The significant 

profitability of the VNF-GARCH(1,1) model may be compromised with the marginal 

improvement of the sign rate (barely over 50%), yet it is due to the substantial improvement 

of the quantitative importance of the correctly forecasted signs. In terms of RMSE the results 

for the VNF models for all indices are consistently lower compared to the RNN and 

relatively the same for the MSW model, with one exception for the VNF-GARCH(1,1) model 

in case of NASDAQ index. The overall return of VNF models compared to the B&H policy is 

always superior for all indices. The fact that all models outperform B&H strategy accords 

with previous results derived by Fernández et. al. (2000) as well as with the conclusions 

reached by Christoffersen and Diebold (2003).  

The comparison between the three different specifications for the volatility-based NF 

models show that simple methods of historical volatility measurement, like the equally 

weighted and the exponentially weighted moving averages, can produce sign forecasts that 

are no worse than those obtained from more complicated econometric models that are often 

used to model conditional volatility. This has not been surprising since it is documented that 

forecasts of volatility, e.g for the NASDAQ index from MA rules (Schwert, 2002) closely 

approximate those from GARCH (1,1) models. Simon (2003) also reports that the Glosten-

Jagannathan-Runkle (1993) GARCH volatility forecasts of the NASDAQ 100 average 3.0 

percentage points higher that the actual when the EWMA volatility forecasts are only 1.5 

percentage points below actual volatility.   

Overall, the predictive ability of the VNF models is significantly higher compared to 

the other models. A possible explanation is that a B&H strategy would be the best for the 

stock indices in the extreme case with no turning points in the testing period. However, 



21 

when there are many turning points during a period and the more turning points occur, the 

better the VNF model will be in prediction performance. Technically, in terms of sign 

prediction, the proposed model acting as a dynamically-adjusted piecewise linear 

interpolator compared to the static nonlinear neural predictor or the probabilistic regime-

switching Markov model, leads to more precise identification of turning points. Model-wise, 

it is the dynamic update of the of “expectations” and ”preferences” (polynomial parameters) of 

the fuzzy learning rules indicating the efficient decision-making mechanism of incorporating 

the heterogeneous beliefs (“fads”) of the trader under uncertainty, and the adaptive 

“calibration” of the “degree- and range-of-belief” membership functions to match the agent’s 

expectations of “low” and “high” regime, that leads to more precise and prompt 

identification of market turning points and optimal prediction. 

 

8.  Conclusions 

The present paper expands the literature on heterogeneous learning rules in speculative 

markets where heuristic strategies reflect the rules-of-thumb of boundedly rational 

investors, by introducing a trading system with the incorporation of beliefs, preferences and 

idiosyncratic behavioral patterns represented by fuzzy learning rules. Moreover, beyond the 

existing practice that has utilized separately neural networks or fuzzy logic systems in 

financial forecasting applications, it presents a volatility-based hybrid Neurofuzzy model 

that leads to superior predictions upon the direction-of-change of the market.  

The results suggest that with the inclusion of transaction costs, the performance of 

the proposed Neurofuzzy models (VNF) in case of returns of NASDAQ Composite, FTSE100 

and NIKKEI255, is consistently superior to the Markov-switching models, Recurrent Neural 

Networks as well as the Buy & Hold strategy for all indices. The daily volatility changes of 

the conditional volatility which are embedded in the Neurofuzzy model and were produced 

from alternative estimating techniques generated a substantial improvement of the 

profitability per unit of risk over the investigated market period, as it provided valid 

information for a potential turning point on the next trading day. Specifically, these results 

seem to indicate that the volatility-based Neurofuzzy model has been optimally “trained” to 

correctly relate changes in conditional volatility with the “sign” of the market one day 

ahead. This may be attributed to a number of reasons. The first associates increases in 

volatility to higher expected returns. In the case when increases in volatility are generated 
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from “bad” news lower prices will occur the next trading day. However, when increases in 

volatility are generated from “good” news it is not clear what the net effect on prices will be. 

The second reason associates increases in volatility with trigger strategies followed by many 

portfolio managers. Every time volatility rises, the risk limit is being hit for some portfolios 

and then liquidation follows, thus putting a pressure on the market.  The results are in broad 

accordance to the conclusions reached from a “statistical” perspective according to which 

there is a close relationship between asset return signs and asset return volatilities.  

Overall what leads to higher predictability is the dynamic update of the 

“expectations” and “preferences” of the heuristic learning rules combined with the adaptive 

calibration of the “degrees-of-belief” that match agent’s “fads”. 
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TABLE 1: BDS test 

 

Correlation dim. m=2 m =3 m =4 
Index 

Dim. distance ε=1 ε=1.5 ε=1 ε=1.5 ε=1 ε=1.5 

Raw data 37.671 36.145 45.860 44.472 51.296 48.581 

AFR 34.736 34.449 42.998 43.019 48.344 47.151 
NASDAQ 

Composite 

NLSSR 13.433 10.892 15.011 12.514 15.114 12.638 

Raw data 9.930 11.916 13.000 15.373 15.186 17.434 

AFR 9.785 11.871 12.665 15.159 14.817 17.216 FTSE100 

NLSSR 5.517 5.338 5.108 4.917 4.348 4.157 

Raw data 24.704 23.491 33.338 30.759 39.566 35.119 

AFR 24.513 23.237 33.289 30.615 39.568 35.021 NIKKEI255 

NLSSR 11.618 10.363 13.657 12.042 13.983 12.035 

 

Notes    

- Raw data = daily index returns, AFR = residuals from an autoregressive filter AR(2), NLSSR = natural logarithm of the 

squared standardized residuals from AR(2) - GARCH-M (1,1)  model. 

- m = dimension, ε = number of standard deviations of the data. 

- Significance at the 1% level corresponds to the critical value 2.58. 
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TABLE 2: Out-of-sample performance of the trading models 

 

Index Model 
Total Return 

(%) 

B&H Return 

(%) 
Sign Rate HM test RMSE 

Sharpe Ratio 

(ann.) 
Ideal Profit 

VNF-RM(0.94) 
173.6  

(150.4) 
0.553 4.692* 0.025 1.170 0.098 

VNF-MA(20) 
83.3  

(59.1) 
0.527 2.401** 0.024 0.553 0.047 

VNF-GARCH(1,1) 
108.9  

(86.1) 
0.540 3.364* 0.039 0.727 0.061 

RNN 
29.2  

(3.2) 
0.525 1.993** 0.029 0.190 0.016 

NASDAQ 

Composite 

MSW 
40.2  

(17.8) 

4
.5

  

0.536 2.920** 0.024 0.268 0.022 

VNF-RM(0.94) 
52.9  

(29.1) 
0.518 3.124* 0.012 0.664 0.056 

VNF-MA(20) 
102.6  

(78.7) 
0.528 3.772* 0.013 1.297 0.108 

VNF-GARCH(1,1) 
47.3  

(25.3) 
0.505 1.436*** 0.013 0.601 0.049 

RNN 
-6.4  

(-32.0) 
0.477 -0.188 0.015 -0.079 -0.007 

FTSE100 

MSW 
31.4  

(5.6) 

-1
7

.3
 

0.505 1.591*** 0.013 0.395 0.033 

VNF-RM(0.94) 
36.2  

(9.5) 
0.483 1.324*** 0.015 0.364 0.033 

VNF-MA(20) 
26.4  

(2.3) 
0.485 2.344** 0.015 0.274 0.018 

VNF-GARCH(1,1) 
87.5  

(57.4) 
0.504 3.582* 0.015 0.901 0.078 

RNN 
5.7  

(-19.4) 
0.462 -1.217 0.019 0.063 0.005 

NIKKEI255 

MSW 
23.5  

(-5.0) 

-5
3

.2
 

0.482 1.191*** 0.015 0.237 0.021 

 

Notes 

- VNF=Volatility-based Neurofuzzy Model. RNN = Recurrent Neural Network. MSW=Markov-Switching Model 

- MA(20) = Moving Average with a 20 days window, RM(0.94) = RiskMetrics’  exponentially weighted MA rule (decay 

factor = 0.94), GARCH(1,1)= Bollerlsev GARCH model   

HT test = Henriksson and Merton (1981) test, asymptotically distributed as N(0,1).     

- In parenthesis Total Return after transaction costs (0.05% average fixed cost for each one-way trade) 

- The sign rate measures the proportion of correctly predicted signs. The Sharpe ratio is defined as the ratio of the mean 

return of the strategy over its standard deviation (it has been annualized by multiplying it with the squared root of 250). 

The Ideal Profit is the ratio of the returns of the trading strategy over the returns of a perfect predictor.  

-  (*), (**), (***) indicate significance at the one sided 1%, 5% and 10% levels.  


