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Abstract

We show how simple statistical techniques for capturing critical transitions used in

natural sciences, fail to capture economic regime shifts. This implies that we need to

use model-based approaches to identify critical transitions. We apply a heterogenous

agents model in a standard housing market model to show that these family of models

generate non-linear responses that can capture such transitions. We estimate this model

for the United States and the Netherlands and find that first, the data does capture the

heterogeneity in expectations and, second, that the qualitative predictions of such non-

linear models are very different to standard linear benchmarks. It would be important

to identify which approach can serve best as an early warning indicator.
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prices
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1 Introduction

The magnitude of the recent financial crisis and the fact that it has caught most of the

economics profession by surprise is an indication that the tools we have in our hands do not
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Figure 1: Number of sea urchins per m2 (left panel) and the percentage of algal cover (right
panel). Reproduced from Scheffer (2009).

necessarily help us identify the weaknesses in the system. This implies that to the extent that

we have early warning systems, they do not work well in terms of predicting abrupt changes.

These tools are typically linear in nature, and recently efforts have concentrated in borrowing

techniques from the natural sciences which acknowledge the complexity, non-linearities, of the

underlying systems.1 Complex methods capture such abrupt changes, which are identified

with critical transitions in natural sciences. One example given by Scheffer (2009) is the

1983/1984 Caribbean coral reef collapse. This was associated with a sudden collapse in the

number of sea urchins on the sea floor, which caused a sudden increase of algal cover. This is

illustrated in Fig. 1.

A second example of a critical transition mentioned by Scheffer (2009) is the birth of the

Sahara desert. The sudden desertification of the Sahara desert, around 5,500 years ago, is

believed to be the result of slowly changing insolation, which in turn was due to slow changes

in the angle of the Earth’s axis of rotation with respect to the sun. As depicted in Fig. 2, this

gradual change in insolation drove the system to a tipping point, resulting in an abrupt shift

in climate and vegetation cover over the Sahara.

The question that arises from this is whether the series themselves exhibit properties

around the time these transitions happen and therefore pre-announce their occurrence. Schef-

fer (2009) and Scheffer et al. (2009) argue that around these moments, time series are char-

acterized by a critical slowing down in terms of pace. This implies that the system’s memory

increases, and that it recovers more slowly from shocks. An important advantage of such

a technique would be its a-theoretical nature. No views about what drives the state of the

variable would have to be imposed in order to identify this critical slow down. We will see

however, that the conditions allowing for such an a-theoretical early warning are very stringent

and that when applied to either stock market data (high frequency) or more traditional macro

1See the opening address to the ECB Central Banking Conference on 18 November 2010, by the ECB
President, Jean-Claude Trichet where he said that “in the face of the crisis, we felt abandoned by conventional
tools”, and called for the development of complex systems based approaches to augment existing ways of
understanding the economy.
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Figure 2: Summer insolation (top panel) and desert dust sedimentation in the ocean in front
of the west-African coast (bottom panel). Reproduced from Scheffer (2009).

series like housing prices (low frequency), they do not appear to work well. Ditlevsen and

Johnsen (2010) and Thompson and Sieber (2011) provide compelling arguments why Schef-

fer’s a-theoretical approach may fail in the presence of noise, as the noise may induce early

transitions before a slowdown can be detected.

This implies that a-theoretical methods do not work very well in terms of identifying

points in time around which the system is about to acquire very different properties. We

then need to turn to methods that allow for the existence of multiple equilibria and identify

the conditions under which they prevail. Fig. 3 shows how a system can move from single

to multiple equilibria as conditions (y-axis) change, but it also shows how equilibria can be

both stable as well as unstable, depending on the value of a bifurcation parameter. In what

follows, we will show how these dynamics can be illustrative of the market for housing in the

US and the Netherlands. In order to do this, we have to abandon the a-theoretical methods

and make some assumptions about key variables in the markets. Heterogenous agents models

(HAMs) are one way of imposing behavioral assumptions on a specific market, that will allow

for non-linear responses and which can lead to the types of dynamics described in Fig. 3.

Our paper is organized as follows. Section 2 briefly describes the shortcomings of existing

early warning indicators. It then outlines the a-theoretical criteria that Scheffer et al. (2009)

describe to capture critical transitions in the natural sciences. We then show a number of

examples with applications to stock market data where, although visible to the naked eye,

critical transitions cannot be captured by these techniques. Section 3 then turns to a model-

based approach, based on heterogenous agents models (HAMs), to capturing these dynamics.

We describe first a traditional housing price model. We then borrow an application of the

HAMs methodology from Boswijk et al. (2007), and apply it on the housing market. In

Section 4 we then take the implied model to the data and discuss the results for the US and

the Netherlands. Section 5 summarizes the conclusions and discusses how this methodology
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Figure 3: Bifurcation diagram. Reproduced from Scheffer (2009).

can contribute to policy making.

2 Early Warning Systems for financial crises

The clean-up cost of the financial crisis was estimated by the IMF to be 11.9 trillion US dollars

($1800,- per every adult and child on the planet). Numerous attempts have been made to

develop systems that can detect underlying instabilities in the economic system, commonly

referred to as Early Warning Systems (EWSs). Traditionally, the approach to developing

EWSs consists of a number of steps. First, provide an operational definition of a crisis (bank-

ing, currency, sovereign debt, liquidity). Second, identify one or more key economic and/or

financial variables to monitor over time. Third, define when an alarm is raised, either when

these variables exceed certain threshold values or when measures that capture the probability

of a certain event happening in a given horizon exceeds permissible levels. Several approaches

exist in the literature: the signal approach (Kaminsky et al., 1998), binomial/multinomial

logit/probit models (e.g. Demirgüç-Kunt and Detragiache, 2005), binary recursive trees (e.g.

Davis and Karim, 2008) or Markov switching models for currency crises (Abiad 1999; Arias and

Erlandsson, 2005). Although these models provide significant in-sample explanatory power,

in that some or more of their parameters are significant, they have poor out-of-sample pre-

dictive ability (Berg et al., 1999, 2005; Davis and Karim, 2008). A possible explanation for

this might be that a linear logit/probit type of regression approach ignores several important

issues. These range from ignoring nonlinear effects, (Berg and Patillo, 1999; Kaminsky et al.,
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1998) failing to acknowledge that a panel data approach can only be valid when different crises

(across countries and time) are universally caused by identical factors, Van den Berg et al.

(2008) or have identical dynamics, neither of which is true in practice. Last, crises incorporate

important self-fulfilling elements implying that they can occur very quickly and before there

is a significant long-term deterioration in economic fundamentals (Oh et al., 2006).

A complex systems approach put forward by Scheffer et al. in the Sept. 2009 issue of Nature,

summarizes the statistical properties of the system prior to transitions as follows: around that

point, the system exhibits slower recovery from perturbations. As the system slows down

before it changes equilibrium, the intrinsic rates of change decrease and the system recovers

slower from shocks. This implies an increase in the ’memory’ and they show that this is

captured with both an increase in the variance of the variable as well as its autocorrelation.

We have estimated the time-varying autocorrelation and variance for a number of stock market

data (Figs 17-18 in the Appendix). These figures plot the original series (stock market index),

the log return and then the time-varying standard deviations as well as the AR(1) coefficient,

calculated for two different windows (20 and 60 days). The picture that emerges is similar in

most series that we have tried. Take Fig. 17 (upper panel) which refers to the S&P 500 index.

The series shows the 1987 crash when the index has a clear break in its value. The value of

the standard deviation is indeed increasing for a period before the crisis but it is not higher

than previous peaks. At the same time, the AR(1) coefficient is very far from the value of

one associated with the assumed high autocorrelation. The same can bee seen for the dotcom

bubble burst (Fig. 17, lower panel), the Hang Seng index during the Asian crisis (Fig. 18, upper

panel) or the S&P500 after the collapse of Lehman Brothers (Fig. 18, lower panel). There

maybe a number of reasons why these techniques are not successful in capturing important

changes. First, they are designed for smooth differential equations that are deterministic in

nature. Instead, economic series are governed by stochastic movements that may blur the

power of these measures. Second, there is an important role of self-fulfillment in economic

series unlike those in the natural sciences. Both of these would imply that series would already

tip from one state to the other some time before the statistics were allowed to take the values

indicated by the techniques.

3 Heterogeneous beliefs and the Housing Market

As purely statistical measures do not identify critical transitions, we turn next to a model-

based approach. We will apply a model, based on Brock and Hommes (1997, 1998), in which

agents have heterogenous beliefs. In this class of models agents are boundedly rational and

have different views about the future values of key variables. At the same time, their beliefs are

allowed to switch from one period to the next between a number of strategies available, based
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on how well they have done in the past (forecast error). The advantage of such techniques is

that they allow for endogenous dynamics to be at play, and do not preclude the fact that even

if systems are globally stable, they maybe locally unstable for values of parameters that are

economically meaningful. Such models have been widely used in the finance literature (see

Boswijk, Hommes and Manzan (2007) for an application but also a comprehensive summary of

the literature) and are only beginning to enter the macro field, which has been very reluctant

to allow for bounded rational agents. In what follows we will apply heterogeneity of agents on

a traditional housing price model.2 The housing market is of particular relevance as it is an

important contributor to growth and acts as a leading indicator for the business cycle (Leamer

2007). Also, since housing markets are known to be subject to booms and busts, allowing for

non-linear responses is of particular relevance. Based on a standard model for housing prices,

we will begin with identifying what affects the annual cost of housing, also known as the

imputed rent, Ht. This is the sum of a number of variables, based on Himmelberg et al.,

(2005) shown below:

Ht = Ptr
rf
t + Ptωt − Ptqt+1 − Ptγt (1)

Let Pt denote the price for one unit of housing at time t. The first component is the

cost of foregone interest that the homeowner would have earned by investing in something

other than a house, calculated as the price of housing Pt times the risk-free interest rate rrft .

The second term represents the one-year cost of such things as property taxes minus tax

deductability, and maintenance costs. The third term, Ptqt+1, is the expected capital gain

(or loss) during the year, and the fourth term, Ptγh,t, represents an additional risk premium

to compensate homeowners for the higher risk of owning versus renting. Following the no

arbitrage condition, one year rent must equal the sum of the annual cost of renting (Qt). We

can therefore substitute Ht with Qt, the actual cost of renting, where the capital gain is now

calculated as this period’s realization, vis-á-vis last period.

3.1 The housing market model

Boswijk, Hommes and Manzan (2007) (BHM hereafter) proposed an agent-based model for

stock prices, which we apply here in the context of the housing market. A similar exercise,

although theoretical only, is done by Burnside et al. (2011). Their approach has two important

differences. First, agents disagree about the fundamental value of housing, whereas we assume

that agents agree about the fundamental value of houses but disagree about how prices return

to it. Second, their model is epidemiological in nature, in that agents infect each other. In our

approach, agents are simple optimizers who rely on past performance to evaluate and revise

2For a similar exercise see also Kouwenberg and Zwinkels (2011).
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their beliefs. We assume two types of agents h ∈ {1, 2}. Assume that the demand for housing

of individuals can be represented by a continuous variable, measuring the number of units of

housing demanded. Based on the equation for imputed rents, actual rents are equal to:

Qt = Pt

(
rrft + ωt

)
− Ptqt − Ptγt. (2)

where qt = Pt
Pt−1
− 1 is the actual capital gain. As already mentioned, the variable Ptγt

represents the additional risk premium to compensate houseowners for the higher risk of

owning versus renting. We interpret γt to be the excess return on housing, γt = Rt such that

by rearranging (2) and leading one period, we then have the definition of R (see also Ambrose

et al. 2011, Campbell et al., 2009):

Rt+1 =
Pt+1 +Qt+1

Pt
− (1 + rt+1),

where rt+1 = rrft+1 + ωt+1 assumed here to be constant (r) for simplicity. The demand, zh,t, of

agents of belief type h is determined by maximizing one-period ahead excess returns adjusted

for risk:

Eh,t (Rt+1zh,t)− aVarh,t (Rt+1zh,t) , (3)

where a is a measure of risk aversion.

Agents are assumed to be homogeneous with respect to their expectations regarding the

variance, that is, Varh,t ((Pt+1 +Qt+1)/Pt − (1 + r)) = Vt, while they are heterogeneous con-

cerning their expectations of excess return Eh,t ((Pt+1 +Qt+1)/Pt − (1 + r)). For simplicity,

we also assume Vt to be constant over time: Vt = V . Maximizing Eq. (3) leads to the demand

for housing:

zh,t =
Eh,t (Pt+1 +Qt+1) /Pt − (1 + r)

aV
,

of agents of type h.

Upon aggregation of the demand across these two types of agents, the market clearing

condition is:
2∑

h=1

nh,t (Eh,t (Pt+1 +Qt+1) /Pt − (1 + r))

aV
= S, (4)

where S is the stock of housing, assumed to be constant, and nh,t is the fraction of agents in

every period that have expectation of type h.3

3We assume that S is large enough, such that neither type has an incentive to sell short on houses.
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Solution 1 Solving the market clearing condition leads to the following price equation:

(1 + r + α)Pt =
2∑

h=1

nh,tEh,t (Pt+1 +Qt+1) , (5)

where α = aV × S.

Following BHM, we assume that the fundamental process underlying the model, i.e. Qt,

follows a geometric Brownian motion with drift, i.e.:

logQt+1 = µ+ logQt + υt+1, {υt}
i.i.d.∼ N(0, σ2

υ),

from which we obtain:
Qt+1

Qt

= (1 + g)εt+1,

with g = eµ+ 1
2
σ2
υ − 1 and εt+1 = eυt+1− 1

2
σ2
υ , such that Et(εt+1) = 1.

We define the fundamental price as the price that would prevail under rational expecta-

tions Et(Rt+1) about the conditional mean of Rt, while expectations regarding the conditional

variance are again constant: Varh,t(Rt+1) = V . Note that V may, but need not, correspond to

the actual conditional variance. The present definition is convenient, as it is the equilibrium

price around which the market prices will fluctuate; it is the market price that would prevail

if agents have correct expectations about the first conditional moment, regardless of whether

their beliefs regarding the conditional variance are also correct. Under rational expectations

on the first conditional moment, we can re-write the price equations (5):

(1 + r + α)Pt = Et (Pt+1 +Qt+1) .

Solution 2 By applying the law of iterated expectations and imposing the transversality con-

dition, we obtain the fundamental price solution:

P̃t = Et

[
∞∑
i=1

Qt+i

(1 + r + α)i

]
=
∞∑
i=1

(1 + g)iQt

(1 + r + α)i
=

1 + g

r + α− g
Qt, r + α > g.

Definition 3 We define, Xt = Pt
P̃t
− 1, the price relative to its fundamental.

Solution 4 It follows that the price equation (5) simplifies to:

Xt =
1

Υ

2∑
h=1

nh,tEh,t (Xt+1) ,
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where Υ = (1+r+α)/(1+g) is the discount factor, which depends on the underlying parameters

of the model.

3.2 Two types of agents

Following Boswijk, Hommes and Manzan (2007) we assume that each of the two types of

agents have AR(1) type beliefs about Xt+1, but with different values of φ:

E1,t (Xt+1) = θ + φ1Xt−1,

E2,t (Xt+1) = θ + φ2Xt−1,

where φ1 6= φ2. The parameter θ represents a bias in the individuals’ expectations and for

simplicity we assume it to be the same for both types of agents.

Note that homogeneous beliefs, φ1 = φ2 < Υ, would lead to the price converging to

the fundamental price, whereas homogeneous beliefs φ1 = φ2 > Υ would imply a bubble,

where prices would deviate more and more from the fundamental price.4 If one of the belief

parameters, φ1 say, is smaller than Υ, and the other, φ2, larger than Υ, the fractions of

agents being of belief type 1 or 2, determine whether prices are temporarily converging to

the fundamental price or diverging. Since agents are allowed to switch between the two

different types of beliefs, the fractions themselves are changing over time. This in turn implies

that the system may temporarily be in a bubble regime, where prices deviate further from

fundamentals, or in a correction regime, with prices converging back to the fundamental.

The switching between the two types of beliefs is based on the recent past performance of

the strategies, measured in terms of realized profits, πh,t−1.

Definition 5 We define realized profits as follows:

πh,t−1 = (Xt−1 −ΥXt−2)zh,t−2

= cnst.× (Xt−1 −ΥXt−2)(φ1Xt−3 −ΥXt−2).
(6)

The fractions are determined by a logistic switching model with a-synchronous updating:

n1,t = (1− δ)n1,t−1 + δ
eβπ1,t−1

eβπ1,t−1 + eβπ2,t−1

= (1− δ)n1,t−1 + δ
1

1 + e−β(Xt−1−ΥXt−2)(φ1−φ2)Xt−3

n2,t = 1− n1,t.

(7)

4A house price bubble occurs when agents have unreasonably high expectations about future capital gains,
leading them to perceive their user cost to be lower than it actually is and thus pay “too much” to purchase
a house today.
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The term a-synchronous updating refers to the fact that only a fraction δ of agents re-

evaluates and updates beliefs according to the logit model in each given period.5 Parameter

β, referred to as the intensity of choice, represents the sensitivity of agents’ way of updating

with respect to small changes in past performance πh,t−1.

We estimate the model in two steps: first we estimate the deviations of prices from their

fundamental value, {Xt}, using housing prices, and rents.6 Second we use the estimated

deviations to estimate the agent-based model, through minimizing the sum of squared in-

sample forecast errors:

SSE =
T∑
t=1

(
Xt −

φ1n1,tXt−2 + φ2n2,tXt−2 + θ

Υ

)2

, (8)

where nh,t depends on past prices, and parameters φ1, φ2, β, δ and Υ, as described above. As

the dependence of nh,t on the model parameters is nonlinear, the estimation is performed using

nonlinear OLS.

3.3 Local stability result

Before turning to the results we present a simulation, by means of an example, in which we

show how our model can show a bifurcation at which the fundamental price changes from

being locally stable to locally unstable. We consider the example where θ = 0, i.e. there is no

bias in the individuals’ expectations. The system is locally stable if the following condition

holds: ∣∣∣∣φ1 + φ2

2Υ

∣∣∣∣ < 1 (9)

In the simulations we take Υ = 1.05, β = 500. Fig. 4 shows the long-run values of the

variable X against θ. We show these for two different sets of values for parameters φ1 and

φ2. The left-hand side panel shows the case where x = 0 is a locally stable equilibrium for

θ = 0, while the right hand side panel shows that for slightly different values of φ1 and φ2,

x = 0 corresponds to a locally unstable equilibrium for θ = 0. Instead, two new locally stable

equilibria have appeared on either side of x = 0.

In the next section we will estimate the model for the US and the Netherlands. In both

cases we will see that the values assumed for φ1 and φ2 here are not very different to what the

data justifies. It is therefore possible that small shocks in the way people form expectations

5The results reported are for δ = 1, but we will also include later these results in which δ is estimated
freely.

6The results reported use log-difference between house prices and fundamental price as value of Xt, that is,
Xt = lnPt− ln P̃t, rather than the formula in Definition 3, Xt = Pt

P̃t
− 1. This will be updated in later versions

of this research paper. The difference between the two measures is typically small.
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Figure 4: Bifurcation diagram. Belief parameters: φ1 = 0.94, φ2 = 1.14 (left panel) φ1 = 0.96,
φ2 = 1.16 (right panel).

can lead to the fundamental price being a locally unstable equilibrium of house prices, while

there are stable equilibria on either side of the fundamental price.

4 Empirical results

In what follows we estimate the two-type heterogenous beliefs BHM model and present the

results for the housing market of the US and the Netherlands. We use an OECD housing

dataset as described in Rousová and Van den Noord (2011), which contains quarterly data

for nominal and real house prices as well as price-to-rent ratios from 1970Q1 to 2010Q4 (see

Appendix for more details).

4.1 The US Housing Market

Fig. 5 presents the US house price index with its estimated fundamental value (left panel)

and the log-difference between the two (right panel). We see that house prices have been

increasing rapidly since the mid-1990s and have peaked around 2008. For the period after

that, the model shows that house prices, even though on a declining path, have remained

above the fundamental value.

We then ask whether the Scheffer model of critical transitions presented in Section 2 could

identify abrupt shifts. Fig. 6 presents the same pictures as in Figs 17-18 for US house prices.

We see that both the standard deviation and the AR(1) coefficient are increasing prior to the

start of the house price decline but the measures do not capture a pattern that is identifiably

different than other occurrences in the sample.
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Parameter estimates for heterogenous agents model

Table 1 shows the estimated results for the period considered. The values for φ1 and φ2 are

estimated to be 0.892 and 1.130, and more importantly are significantly different from each

other. The data therefore confirms the presence of time-varying heterogeneity in the way that

agents form expectations.

Table 1: Estimates for the US housing market, 1970-2010

Estimate Standard Error Pr(> |t|)
φ1 0.892 0.059 < 2e− 16 ***
φ2 1.130 0.069 < 2e− 16 ***
β 2716 3463 0.434
θ 0.0012 0.0009 0.189

Υ 1.010 0.015 < 2e− 16 ***

Note: Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’; Residual standard error: 0.01104 (156 degrees of freedom)

We also find that θ is not significantly different than zero. The ratio on the left-hand-side

of the stability condition (9) is estimated to be
∣∣∣ φ̂1+φ̂2

2Υ

∣∣∣ = 1.0010, which implies that the system

is just in the unstable regime.

Estimated time-dependent fractions (US)

Fig. 7 plots the log-difference between house prices and fundamental (upper panel), the pro-

portion n1 of agents forming expectations of type 1 associated with φ1 < 1 (middle panel),

in other words, those agents who expect a return to the fundamentals, and finally the AR(1)

coefficient (lower panel).
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Figure 6: Results for US: Scheffer method
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Figure 8: Fancharts for US data: estimates of the 5, 15, 50, 85 and 95% quantiles of the
density forecasts (dashed lines) based on the BHM model (top panels) and an AR(5) model
(lower panels). The deviation from the fundamental, is represented by the red solid lines.

We see that there is time-varying volatility in the way that agents form expectations.

Around 2007, n1 is estimated to be very small, implying that most agents agreed that house

prices would continue to deviate from the fundamental value. This contributed to actual

house prices being persistently above the fundamental price, a fact that we associate with the

existence of a bubble. Around 2009, n1 is very close to one; in other words, agents agree that

prices will return to their fundamental price.

Fancharts for the US

We examine next how the heterogenous agents model forecasts, by comparison to a linear AR

benchmark model.

Fig. 8 provides quantiles of density forecasts constructed for both models. The dashed

lines correspond to estimates of the 5, 15, 50, 85 and 95% quantiles of the density forecasts,

based on the BHM model (top panels) and an AR(5) model (lower panels). The AR order of

5 was used to ensure that both models have the same number of parameters. The variable of

interest, the deviation from the fundamental, is represented by the red solid lines. The left

hand side panels shows in-sample forecasts for the last 10 years of data. The right-hand-side

panels correspond to 5-year ahead out-of sample forecasts starting at the end of the data-set

(2010Q4). We observe that the density forecasts are qualitatively different. In particular,

we see that the BHM model predicts the over-valuation to resume, even after the peak of a
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Figure 9: Results for US: multiple equilibria, noise and bifurcation
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Figure 10: Results for US: Pitchfork bifurcation

bubble, while the AR(5) model predicts a progressive convergence of prices to its fundamental.

Multiple equilibria

The left panel of Fig. 9 assumes no shocks and shows simulations on how a slowly varying θ can

induce critical transitions between two attractors. When we allow for small shocks (the size

of which is a 10th of the estimated noise), we see that indeed the actual noise overwhelms the

dynamics, such that we have early transitions and/or repetitive jumps between two stochastic

attractors (right graph). We also performed similar simulations as a function of the parameter

Υ. The results are shown in Fig. 10. The simulations produce what is known as a pitchfork

bifurcation. For the estimated value of Υ = 1.010 the system has two stable equilibria, which

diverge as this value decreases. If however, it increases slightly above this value it produces a

stable system with one equilibrium.

4.2 The Dutch housing market

We repeat the same exercise for the Dutch housing market.
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Fig. 11 shows the evolution of house prices and the fundamental as well as their log-

difference. We see that since the end of the 1990s, housing prices have been above the fun-

damental and it is only very recently that they have started coming back. They do remain

however a long way away from what would be identified with equilibrium prices. This follows

however a period of almost 20 years, starting in the early 1980s when prices were below the

fundamental value.

We examine then whether the Scheffer et al.’s method captures these transitions, shown

in Fig. 12. We see that again, neither the value of the standard deviation nor the AR(1)

coefficient are good indicators of a transition that is about to happen.

Parameter estimates for heterogenous agents model

Table 2 shows the estimated results for the period considered. The values for φ1 and φ2

are estimated to be 0.9849 and 1.040, and more importantly are significantly different from

each other. Just like in the US case, the data does confirm the presence of time-varying

heterogeneity in the way that agents form expectations.

The value of Υ is fixed to 1.01 because when we estimate it freely we get unrealistically

large values (1.51). We estimate the bias in expectations (θ) not be statistically different than

zero. The stability condition for the system is then identified with
∣∣∣ φ̂1+φ̂2

2Υ

∣∣∣ = 1.0024, which

implies that the system is just in the unstable regime.

Estimated time-dependent fractions (NL)

Fig. 13 plots the log-difference between housing price and its fundamental value (upper panel),

the proportion n1 of agents forming expectations of type 1 associated with φ1 < 1 (middle

16
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Figure 12: Results for NL: Scheffer method

Table 2: Estimates for the NL housing market, 1970-2010

Estimate Standard Error Pr(> |t|)
φ1 0.9849 0.01495 2e− 16 ***
φ2 1.040 0.01576 2e− 16 ***
β 12420 21050 0.556
θ 0.00299 0.002071 0.151

Υ 1.01 - -

Note: Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’; Residual standard error: 0.0259 (157 degrees of freedom)

panel), the agents expecting a return to the fundamentals, and finally the AR(1) coefficient

(lower panel).

We see that there is considerable more volatility in the way that agents form expectations

by comparison to the US. Agents appear to be more keen to change the way they form

expectations. It is not easy to see which period we could identify with a bubble, although we

see that at the start of the period when prices started being above the fundamental price, at

the end of the 1990s, almost all agents were predicting that this will continue to remain so

(n1 very close to zero).
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Fancharts for the Netherlands

We examine next how the heterogenous agents model forecasts, by comparison to a linear AR

benchmark model.

Fig. 14 provides quantiles of density forecasts constructed for both models. The dashed

lines correspond to estimates of the 5, 15, 50, 85 and 95% quantiles of the density forecasts,

based on the BHM model (top panels) and an AR(5) model (lower panels). The AR order of

5 was used to ensure that both models have the same number of parameters. The variable of

interest, the deviation from the fundamental, is represented by the red solid lines. The left

hand side panels shows in-sample forecasts for the last 10 years of data. The right-hand-side

panels correspond to 5-year ahead out-of sample forecasts starting at the end of the data-

set (2010Q4). For the in-sample forecasts we see that the BHM model predicts that house

prices will not be below fundamental prices. The AR model on the other hand does predict

that prices can potentially be below the fundamental value. Similarly in the out-of-sample

forecasts, the BHM model has again an upward bias, but more importantly, its mean forecast

predicts a divergence in prices from the fundamental, whereas the AR model predicts a return

to the fundamental price.
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Figure 14: Fancharts for NL data: estimates of the 5, 15, 50, 85 and 95 % quantiles of the
density forecasts (dashed lines) based on the BHM model (top panels) and an AR(5) model
(lower panels). The deviation from the fundamental, is represented by the red solid lines.
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Figure 15: Results for NL: multiple equilibria, noise and bifurcation

Multiple equilibria

The left graph of Fig. 15 shows simulations on how a slowly varying θ can induce critical

transitions, absent of shocks. When we introduce shocks (even very small ones, a 10th of the

estimated noise), we see that indeed the actual noise overwhelms the dynamics such that we

have early transitions and/or repetitive jumps between two stochastic attractors (right graph).

Similarly we repeat the exercise for the discount factor Υ shown in Fig. 16. The value

for the discount factor is set equal to that estimated for the US at 1.01. We see the same

pitchfork bifurcation as in the US.
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5 Summary/conclusions

In this paper we ask whether we can use statistical, a-theoretical models to foresee abrupt

changes in economic series. We borrow from the critical transitions literature, and in particular

from the technique put forward by Scheffer et al. (2009). In our estimations, we observe no

discernible critical slowdown as soon as critical points are approached, in any way that it

could provide an early warning. Our intuition tells us that the stochastic nature of economic

systems is the reason for this. Noise plays a very important role, in that it induces shifts when

multiple attractors exist, before these statistical methods are allowed to take the threshold

values mentioned. In this respect, the attractors found play the role of sticky states, where the

system tends to spend more time. Due to this, we then turned to a model-based approach to

predict regime shifts. To this end we have applied a heterogenous agents model, where agents

have heterogeneous and time-varying beliefs about future state variables. This approach falls

in the category of boundedly rational models but it does require that the form of agents’

beliefs is specified. The important feature of such an approach is that it does allow for

multiple equilibria and we can experiment with the conditions which cause the shift between

them. Our estimations, in particular the large estimated noise levels, do explain why the

regimes shifts cannot be detected in a clear cut way using Scheffer’s approach.

Nevertheless, we believe that these models help us make the following case. First, the

data do justify the existence of multiple beliefs. It is true that the form of expectations is

assumed but the data does capture significant (statistically and economically) differences in

the way that people believe prices will revert to fundamentals. This is qualitatively a very

different model than the traditional RE models where agents are both homogenous and are

bound by the steady state. Second, the exact parameterization of these beliefs can make a

difference between having a stable or unstable system. It would be important then to have

precise estimates of these values. Third, using these non-linear models to forecast does lead
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to very different predictions by comparison to the benchmark linear model. It would therefore

be very important to identify reliable criteria according to which to rank these models.
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Appendix

5.1 Graphs: Examples of potential regime shifts in finance
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Figure 17: Price, log-return, time-varying standard deviation and AR(1)-coefficient; upper
panel: 1987 crash, S&P 500 index; lower panel: dot.com bubble burst, NASDAQ index
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Figure 18: Price, log-return, time-varying standard deviation and AR(1)-coefficient; upper
panel: Asian crisis, HangSeng index; lower panel: Collapse Lehman Bros, S&P 500 index
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5.2 Data

We use an OECD housing dataset as described in Rousová and Van den Noord (2011). For

20 countries (including the US and the Netherlands) this dataset contains quarterly data for

nominal and real house prices from 1970.1 to 2010.4 (see Rousová and Van den Noord (2011),

OECD Economics Department Working Papers No. 882, Appendix 1-2, page 22-23, for the list

of countries and corresponding data sources). The nominal house price is indexed using 2005 as

base year. The real house price index is derived by deflating with the private final consumption

expenditure deflator, available from the OECD Economic Outlook 89 database. The price-

to-rent ratio is defined as the nominal house price index divided by the rent component of

the consumer price index, made available by the OECD. Long term interest rates are also

retrieved from the OECD Economic Outlook 89 database.
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