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Abstract

We construct an evolutionary version of Theocharis (1960)’s seminal work on the sta-

bility of equilibrium in multi-player quantity-setting oligopolies. Two sets of behavioral

heuristics are investigated under fixed and endogenously evolving fractions: (myopic)

Cournot firms vs. Nash firms and Cournot firms vs. rational firms. The analysis with

evolutionary competition between these heuristics nests the famous Theocharis instabil-

ity threshold, n = 3, as a special case and shows that Theocharis’result is quite robust.

For evolutionary competition between the Cournot and the rational heuristic, both the

existence and the magnitude of this threshold depend on the information costs associ-

ated with the rational heuristic. When information costs are positive a bifurcation route

to chaos occurs as the number of firms increases. The evolutionary model therefore ex-

hibits perpetual but bounded fluctuations, a feature not present in Theocharis’original

model.
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1 Introduction

The seminal paper of Theocharis (1960) shows that, in a quantity-setting game with firms

using the Cournot (1838) adjustment process,1 the Cournot-Nash equilibrium becomes un-

stable as the number of firms increases.2 In fact, with linear demand and constant marginal

costs, the Cournot-Nash equilibrium loses stability and bounded but perpetual oscillations

arise already for triopoly (n = 3). For more than three firms oscillations grow unbounded, but

they are limited once the non-negativity price and demand constraints bind. This remarkable

result has sparked a substantial literature on the stability of the Cournot-Nash equilibrium.

Fisher (1961) and McManus (1964), for example, show that with linear demand and quadratic

costs stability can be recovered when adjustment toward the best response is not instantan-

eous and/or marginal costs are increasing. Moreover, for the continuous adjustment process

the Cournot-Nash equilibrium is always locally stable for this specification. Hahn (1962)

extends this latter result by deriving global stability conditions for general demand and cost

structures.3 In Okuguchi (1970) both the actual output and expectations of rivals’output

follow a continuous adjustment process. Restrictions on the speeds of adjustment are derived

in relation to the rate of marginal cost increase such that stability is regained for an arbitrary

number of players. In an oligopoly game where players follow a discrete-time best-response to

adaptively formed expectations about rivals’output, Szidarovszky, Rassenti, and Yen (1994)

1Firms employ a Cournot adjustment process (or display Cournot behavior) whenever they take the last
period’s aggregate output of their rivals as a predictor for the current period choices of those rivals and best-
respond to it. This is sometimes also referred to as best-reply dynamics, and we will use the two concepts
interchangeably.

2Puu (2008) argues that this argument was already made, in Swedish and some 20 years before Theocharis
(1960), by the Swedish economist Tord Palander (see Palander (1939)).

3Al-Nowaihi and Levine (1985) identify and correct an error in the proof of Hahn (1962)’s global stability
result and show that it only holds for n ≤ 5, where n is the number of firms.
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find restrictions on the coeffi cients of adaptive expectations such that the Cournot-Nash equi-

librium is stable.

As an alternative to this stream of models of learning and adaptation one can consider

models of introspection. In these models firms have full knowledge of the demand function

and of their own and their opponents’cost functions. Common knowledge of rationality then

allows firms to derive and coordinate on the Cournot-Nash equilibrium through deductive

reasoning.4 The Cournot-Nash equilibrium is also supported by more sophisticated learning

models. For instance, fictitious play converges to Nash equilibrium play for fairly general

oligopolies and for an arbitrary number of players (see Thorlund-Petersen (1990)).

There has been some dissatisfaction in the literature with the assumption of Cournot

behavior (i.e. the expectation that rivals will not revise their output from the last period)

as a reasonable quantity-adjustment process because it is, in fact, continuously invalidated

outside equilibrium (see e.g. Seade (1980), Al-Nowaihi and Levine (1985)). On the other

hand, the assumption of rational play has been criticized extensively because it demands too

much from the cognitive capabilities of the players. In this paper we introduce a model that

presents a middle ground between adaptation and introspection.

In our evolutionary model of Cournot competition firms switch between different heuristics

(or equivalently, between different expectation rules concerning aggregate output of rivals) on

the basis of past performance, as in e.g. Brock and Hommes (1997) and Droste, Hommes, and

Tuinstra (2002). We consider the interaction between Cournot behavior and more sophistic-

ated, but costly, play. The latter may for example correspond to fully rational play. Thus, we

relax the assumption of homogenous expectations, while preserving the Cournot adjustment

dynamics of Theocharis (1960). We find that Theocharis (1960)’s classical instability is quite

robust: it persists under evolutionary selection of heterogenous heuristics. The threshold

number of players that triggers instability varies with the costs of the sophisticated rule and

with evolutionary pressure. As the number of firms increases, a period-doubling route to

4However, coordination problems may emerge when the Cournot-Nash equilibrium is not unique.
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chaos may arise, and the model might exhibit complicated but bounded dynamics, a feature

not present in the original model of Theocharis (1960).

Section 2 briefly reviews the general n-player Cournot model with homogenous rational

play along with the Theocharis (1960) instability threshold under the original Cournot adjust-

ment process. Section 3 introduces Cournot population games with two sets of heterogenous

learning rules —Cournot vs. Nash and Cournot vs. rational —with a fixed distribution of the

population of firms over the different types. Switching between learning rules based on past

performance is allowed in Section 4, whereas Section 5 illustrates the global dynamics of this

evolutionary model for the Cournot oligopoly game with linear inverse demand —constant

marginal costs (i.e. Theocharis (1960)’s specification). Analytical and numerical results are

reported along with the key (in)stability thresholds of the number of players for the two sets

of heuristics. Finally, we discuss our results in Section 6.

2 The Cournot model

Consider a homogeneous Cournot oligopoly model with n firms. Inverse demand is given

by a twice continuously differentiable inverse demand function P (Q) with P (Q) ≥ 0 and

P ′ (Q) ≤ 0 for every Q. Here Q =
∑n

i=1 qi is aggregate output, with qi production of firm

i. The cost function C (qi) is twice continuously differentiable and the same for every firm.

Moreover, C (qi) ≥ 0 and C ′ (qi) ≥ 0 for every qi.

Each firm wants to maximize instantaneous profits P (Q−i + qi) qi − C (qi), where Q−i =∑
j 6=i qj = Q− qi. This gives the first order condition:

P (Q−i + qi) + qiP
′ (Q−i + qi)− C ′ (qi) = 0, (1)

with second order condition for a local maximum given by 2P ′ (Q−i + qi) + qiP
′′ (Q−i + qi)−

C ′′ (qi) ≤ 0.
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The first order condition (1) implicitly defines the best-response correspondence or reaction

curve:

qi = R(Q−i). (2)

We assume that a symmetric Cournot-Nash equilibrium q∗, that is, the solution to q∗ =

R ((n− 1) q∗), exists and is unique. Aggregate production is then given by Q∗ = nq∗.

From the first order condition (1) we find that:

dqi
dQ−i

= R′ (Q−i) = − P ′ (Q) + qiP
′′ (Q)

2P ′ (Q) + qiP ′′ (Q)− C ′′ (qi)
. (3)

Note that the second order condition for a local maximum implies that the denominator,

evaluated at the Cournot-Nash equilibrium, is negative. Typically the numerator is also

negative (although this is not necessarily the case if the inverse demand function is suffi ciently

convex), and therefore we generally have R′
(
Q∗−i

)
< 0.

The key question now is: how does firm i learn to play q∗ and, more specifically, what

does i believe about Q−i at the time when the production decision has to be made?

2.1 Rational play

One approach is to assume complete information, rational firms, and common knowledge

of rationality. In that case each firm can derive the Cournot-Nash equilibrium, and firms

implicitly coordinate on playing that equilibrium. Note that this implies that firms form

correct expectations about opponents’choices, i.e.

Qe
−i,t = Q−i,t.

As an alternative to rational play, one may consider long-memory learning processes such

as fictitious play, which are known to generate convergence to the Cournot-Nash equilibrium
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under rather general demand-cost oligopoly structures.5 Introduced originally as an algorithm

for computing Nash equilibria (see Brown (1951)), fictitious play adjustment asserts that each

player best-responds to the empirical distribution of the opponents’past record of play. For

Cournot games with a linear inverse demand function this boils down to playing against the

time average of the opponents’past quantities, that is playing against

Qe
−i,t =

1

t

t−1∑
s=0

Q−i,s.

We will employ Nash or “equilibrium”play as a proxy for this belief-based learning process,

i.e.:

Qe
−i,t = Q∗−i,

where Q∗−i is the opponents’aggregate Nash equilibrium quantity.
6 Note that decisions under

rational play may deviate from equilibrium play if not all firms are rational (see the discussion

of rational play in a heterogeneous environment in Subsection 3.2).

2.2 Learning rules

In a dynamic, boundedly rational environment, one possible reading of the reaction curves (2)

is that each player best-responds to expectations about the other players’strategic choices:

qit = R
(
Qe
−i,t
)
.

A number of ‘expectation formation’or ‘learning’rules are encountered in the literature.

One of them, fictituous play, was already discussed above. Another well-known classic ex-

pectation formation rule is adaptive expectations where current expectations about aggregate

5Linear two-player Cournot games (see Deschamp (1975)) and nonlinear, unimodal n-player Cournot games
(see Thorlund-Petersen (1990)) display the Fictitious Play Property (FPP), i.e. fictitious play converges to
the Cournot-Nash equilibrium.

6Note that the ‘Nash firms’in Droste, Hommes, and Tuinstra (2002) correspond to rational firms in the
terminology of the current paper (and not to our Nash firms, who always play the Cournot-Nash equilibrium).
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output of the other firms is a weighted average of previous period’s expectations and the last

observed aggregate output of the other firms:

Qe
−i,t = αQe

−i,t−1 + (1− α)Q−i,t−1.

That is, for 0 < α < 1, a firm adapts its expectations in the direction of the last observed

aggregate output of the other firms.7 For α = 0 we obtain naive expectations:

Qe
−i,t = Q−i,t−1. (4)

In the next subsection we will investigate the dynamics under expectation rule (4) in more

detail.

2.3 The Theocharis instability threshold

If all firms use the Cournot adjustment heuristic, that is, best respond to naive expectations

about aggregate output of the other n− 1 firms, quantities evolve according to the following

system of n first order difference equations

q1,t = R (q2,t−1 + q3,t−1 + . . .+ qn,t−1) ,

q2,t = R (q1,t−1 + q3,t−1 + . . .+ qn,t−1) , (5)

...

qn,t = R (q1,t−1 + q2,t−1 + . . .+ qn−1,t−1) .

Local stability of the Cournot-Nash equilibrium is determined by the eigenvalues of the Jac-

obian matrix of (5), evaluated at that Cournot-Nash equilibrium. This Jacobian matrix is

7See Fisher (1961) for an adaptive behavior process, where the quantity produced is adapted in the direction
of the best response to previous period’s aggregate output, that is, qt = αqt−1 + (1− α)R (Q−i,t−1).
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given by 

0 R′
(
Q∗−1

)
· · · R′

(
Q∗−1

)
R′
(
Q∗−2

)
0

...
...

. . . R′
(
Q∗−(n−1)

)
R′
(
Q∗−n

)
· · · R′

(
Q∗−n

)
0


. (6)

Note that, because no firm responds to its own previous decision, all diagonal elements are

0, and that the off-diagonal elements in row i are all equal to R′
(
Q∗−i

)
, since individual

production levels only enter through aggregate production of the other firms. Moreover,

at the symmetric Cournot-Nash equilibrium we have Q∗−i = (n− 1) q∗ for all i = 1, . . . , n,

and therefore all off-diagonal elements of (6) are the same and equal to R′ ((n− 1) q∗). The

Jacobian matrix (6) then has n− 1 eigenvalues equal to −R′ ((n− 1) q∗) and one eigenvalue

equal to (n− 1)R′ ((n− 1) q∗) which, in absolute value, is the largest one. From this it follows

immediately that the symmetric Cournot-Nash equilibrium is stable whenever

ξn (q∗) ≡ (n− 1) |R′ ((n− 1) q∗)| < 1. (7)

It is also illustrative to consider what happens when the initial quantities are symmetric,

that is qi,0 = q0 for all i. In that case quantities will be symmetric, qit = qt = Qt
n
, for every

future period t. The dynamics then reduce to the following single difference equation8

Qt =

n∑
i=1

R (Q−i,t−1) =

n∑
i−1

R

(
n− 1

n
Qt−1

)
= nR

(
n− 1

n
Qt−1

)
,

for which the fixed point Q∗ is obviously stable when (7) holds.

One would expect that ξn (q∗) = (n− 1) |R′ ((n− 1) q∗)| increases with n and that there-

fore the Cournot-Nash equilibrium always becomes unstable for n large enough. However,

since in general q∗ depends on n, in principle a market structure may exist such that the term

|R′ ((n− 1) q∗)| decreases in n faster than 1
n
, which could make ξn (q∗) a decreasing function

8This could alternatively be expressed as qt = R ((n− 1) qt−1) .
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of n. This seems to be unlikely, however, and to the best of our knowledge a market structure

with that property has not been considered in the literature.9 From now on, therefore, we

assume that ξn (q∗) increases monotonically in n and a threshold value n̂ of n exists such that

ξn̂−1 (q∗) < 1 ≤ ξn̂ (q∗).

Leading Example As a leading example we consider the original specification of Theocharis

(1960), where inverse demand is linear, P (Q) = a−bQ, and marginal costs are constant:

Ci(qi) = cqi, for all i, with a > c ≥ 0 and b > 0. The unique and symmetric Cournot-

Nash equilibrium is given by q∗ = a−c
b(n+1)

, with aggregate output given by Q∗ = n
n+1

a−c
b
.

The reaction function —abstracting from non-negativity constraints for the moment —

equals:

R (Q−i) =
a− c

2b
− 1

2
Q−i = q∗ − 1

2
(Q−i − (n− 1) q∗) . (8)

We therefore obtain R′ (Q−i) = −1
2
. That is, an increase in aggregate output of the other

firms by one unit would lead to a decrease in output of firm i by 1
2
.10 Also note that if the

other firms produce on average more than the Cournot-Nash equilibrium quantity, firm

i reacts by producing less than that quantity (and the other way around). From stability

condition (7) it follows immediately that the Cournot-Nash equilibrium is stable under

Cournot behavior or best-response dynamics for this specification only when n = 2, and

that it is unstable with exploding fluctuations for n > 3 (and neutrally stable, resulting

in bounded oscillations, for n = 3). The reason for this instability is ‘overshooting’:

if, for example, aggregrate output is above the Cournot-Nash equilibrium quantity, firms

9For the specification of Theocharis (1960), with linear inverse demand function and constant marginal
costs the reaction curve is linear with a constant slope that is independent of n (see our Leading Example
below). For an iso-elastic inverse demand function and constant marginal costs the slope of the reaction
curve, evaluated at the Cournot-Nash equilibrium does depend upon n. In this case ξn (q∗) = 1

2 (n− 2)
and the Cournot-Nash equilibrium is neutrally stable under the Cournot adjustment heuristic for n = 4 and
unstable for n > 5 (see Ahmed and Agiza (1998) and Puu (2008)). Puu (2008) provides an example for which
the Cournot dynamics do remain stable when n increases, but he assumes that the cost function of each
firm depends directly upon the number of firms n, reducing capacity of an individual firm and increasing its
marginal costs, when the number of firms increases.
10In general, the decrease in firm i’s output might even be larger than the aggregate increase in other firms

outputs, leading to an aggregate decrease in production. This happens when R′ (Q−i) < −1 or, as can be
easily checked, when C ′′ (qi) > P ′ (Q), that is, when marginal costs are decreasing faster than price (for an
example, see e.g. Droste, Hommes, and Tuinstra (2002)).
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respond by reducing output. For n > 3 the aggregate reduction in output is so large that

the resulting deviation of aggregate output from the equilibrium quantity is larger than

before, and so on.

3 Heterogeneity in behaviour in Cournot oligopolies

In this and the following sections we study the Cournot model as a population game, in order

to facilitate studying the aggregate behavior of a heterogeneous set of interacting quantity-

setting heuristics. We consider a large population of firms from which in each period groups

of n firms are sampled randomly and matched to play the one-shot n-player Cournot game.

We assume that a fixed fraction ρ ∈ [0, 1] of the population uses one heuristic, and a fraction

1 − ρ uses another. After each one-shot Cournot game, the random matching procedure is

repeated, leading to new combinations of the two types of firms. The distribution of possible

samples follows a binomial distribution with parameters n and ρ. The assumption of fixed ρ

will be relaxed in Section 4. Below we will discuss two stylized examples with heterogenous

heuristics:11 Cournot vs. Nash firms and Cournot vs. rational firms.

3.1 Cournot firms vs. Nash firms

Suppose that a fraction ρ of the population of firms produces the Nash equilibrium quantity

q∗ and a fraction 1 − ρ observes the population-wide average quantity qt−1 produced in the

previous period and best responds to it, qt = R
(
(n− 1) qt−1

)
, where qt is the quantity pro-

duced by each Cournot firm in period t. Making use of the law of large numbers, the average

quantity played in the previous period can be expressed as:

qt−1 = ρq∗ + (1− ρ) qt−1.

11See Ochea (2010) for more examples, including simulations, for the duopoly model with Cournot vs.
fictitious play, with similar qualitative results.
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Therefore we obtain:

qt = R ((n− 1) (ρq∗ + (1− ρ) qt−1)) . (9)

Note that qt = q∗ is a fixed point of this difference equation. The following result follows from

straightforward differentiation of (9).

Proposition 1 The Cournot-Nash equilibrium q∗ is a locally stable fixed point of the model

with exogenous fractions of Nash and Cournot firms if and only if

(n− 1) (1− ρ) |R′ ((n− 1) q∗)| < 1, (10)

where ρ is the fraction of Nash firms.

In general an increase in ρ pulls the average output qt−1 towards the Cournot-Nash equi-

librium quantity q∗ and thereby weakens the tendency of overshooting which causes instability

in the original model of Theocharis (1960). An increase in ρ will therefore tend to stabilize

the dynamics around q∗. Note that, obviously, for ρ = 0 condition (10) reduces to condition

(7).

Leading Example (continued) For the linear inverse demand — constant marginal cost

model, which has R′ ((n− 1) q∗) = −1
2
, condition (10) reduces to (n− 1) (1− ρ) < 2.

From this it follows that for any value of ρ < 1 there exists a market size nN such that

the dynamics become unstable whenever n > nN . This critical threshold value of n is

given by

nN =
3− ρ
1− ρ. (11)

For example, if the population of firms is evenly spread between Nash and Cournot firms,

that is ρ = 1
2
, we obtain n < 5 as stability condition (and of course we obtain n < 3 for

ρ = 0).
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3.2 Cournot firms vs. rational firms

Now consider the setting where the polulation consists of rational firms and Cournot firms,

where the fraction of rational firms is equal to ρ. A fully rational firm is assumed to know

the fraction of Cournot firms in the population. Moreover, it knows exactly how much these

Cournot firms will produce. However, we assume that it does not know the composition of

firms in its market (or has to make a production decision before observing this). The rational

firm therefore maximizes expected profits, that is, it solves12

max
qi

E [P (Q−i + qi) qi − C (qi)] .

It forms expectations over all possible mixtures of heuristics resulting from independently

drawing n − 1 other players from a large population, each of which is either a Cournot or a

rational firm. Rational firm i therefore chooses quantity qi such that the objective function

n−1∑
k=0

(
n− 1

k

)
ρk (1− ρ)n−1−k [P ((n− 1− k) qt + kqr + qi) qi − C (qi)] ,

is maximized. Here qr is the (symmetric) output level of each of the other rational firms, and

qt is the output level of each of the Cournot firms. The first order condition for an optimum

is characterized by equality between marginal cost and expected marginal revenue. Typically,

marginal revenue in the realized market will differ from marginal costs.

Given the value of qt, all rational firms coordinate on the same output level qr. This gives

equilibrium condition

n−1∑
k=0

(
n− 1

k

)
ρk (1− ρ)n−1−k×

[P ((n− 1− k) qt + (k + 1) qr) + qrP ′ ((n− 1− k) qt + (k + 1) qr)− C ′ (qr)] = 0. (12)

12Note that the solution to this problem is typically different from the solution to
maxqi

[
P
(
Qe−i + qi

)
qi − C (qi)

]
, unless P (·) is a linear function.
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Let the solution to (12) be given by qr = H (qt, ρ). It is easily checked that if the Cournot

firms play the Cournot-Nash equilibrium quantity q∗, or if all firms are rational, then rational

firms will play the Cournot-Nash equilibrium quantity, that is H (q∗, ρ) = q∗, for all ρ and

H (qt, 1) = q∗ for all qt. Moreover, if a rational firm is certain it will only meet Cournot firms,

that is ρ = 0, it plays a best response to current aggregate output of these Cournot firms,

that is H (qt, 0) = R ((n− 1) qt), for all qt. In the remainder we will denote by Hq (q, ρ) and

Hρ (q, ρ) the partial derivatives of H (q, ρ) with respect to q and ρ, respectively.

Cournot firms play a best-response to the average quantity played at time t− 1, where a

rational firm’s choice at time t− 1 is H (qt−1, ρ). Cournot firms therefore produce

qt = R ((n− 1) (ρH (qt−1, ρ) + (1− ρ) qt−1)) , (13)

whereas the output of a rational firm in period t is given by qrt = H (qt, ρ). We have the

following result.

Proposition 2 The Cournot-Nash equilibrium is a locally stable fixed point for the model

with exogenous fractions of rational and Cournot firms if and only if

|Hq (q∗, ρ)| < 1, (14)

where ρ is the fraction of rational firms.

Proof. Straightforward differentiation of (13) gives stability condition

|(n− 1) (ρHq (q∗, ρ) + (1− ρ))R′ ((n− 1) q∗)| < 1. (15)

In order to determine Hq (q∗, ρ) we totally differentiate the first order condition (12), which
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gives

n−1∑
k=0

(
n− 1

k

)
ρk (1− ρ)n−1−k [(n− 1− k) (P ′ (Q∗) + q∗P ′′ (Q∗))] dqt+

n−1∑
k=0

(
n− 1

k

)
ρk (1− ρ)n−1−k [(k + 1) (P ′ (Q∗) + q∗P ′ (Q∗)) + P ′ (Q∗)− C ′′ (q∗)] dqr = 0.

Using
∑n−1

k=0

(
n−1
k

)
ρk (1− ρ)n−1−k = 1 and

∑n−1
k=0

(
n−1
k

)
ρk (1− ρ)n−1−k k = ρ (n− 1), and re-

arranging we find that

dqr

dqt
= Hq (q∗, ρ) = − (1− ρ) (n− 1) (P ′ (Q∗) + q∗P ′′ (Q∗))

ρ (n− 1) (P ′ (Q∗) + q∗P ′ (Q∗)) + 2P ′ (Q∗) + q∗P ′ (Q∗)− C ′′ (q∗) . (16)

Substituting (16) into stability condition (15) and rearranging gives

(n− 1) (ρHq (q∗, ρ) + (1− ρ))R′ ((n− 1) q∗) =

(1− ρ) (n− 1) (P ′ (Q) + q∗P ′′ (Q))

ρ (n− 1) (P ′ (Q∗) + q∗P ′′ (Q∗)) + 2P ′ (Q∗) + q∗P ′′ (Q∗)− C ′′ (q∗) = Hq (q∗, ρ) ,

from which stability condition (14) follows immediately.

The following result shows that, under the familiar and relatively innocuous assumption

that inverse demand is “not too convex”, the Cournot-Nash equilibrium will be locally stable

when at least half of the firms is rational.

Corollary 3 Let inverse demand satisfy P ′ (Q∗) + q∗P ′′ (Q∗) < 0. Then we have

(n− 1)R′ ((n− 1) q∗) ≤ Hq (q∗, ρ) ≤ 0,

for all ρ ∈ [0, 1]. Moreover, if there are at least as many rational firms as Cournot firms,

ρ ≥ 1
2
, the Cournot-Nash equilibrium is locally stable for model (13).
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Proof. From the proof of Proposition 2 we obtain

Hq (q∗, ρ) = − (1− ρ) (n− 1) (P ′ (Q∗) + q∗P ′′ (Q∗))

ρ (n− 1) (P ′ (Q∗) + q∗P ′ (Q∗)) + 2P ′ (Q∗) + q∗P ′ (Q∗)− C ′′ (q∗) .

By assumption P ′ (Q∗) + q∗P ′′ (Q∗) < 0, and by the second order condition for a (local)

maximum, 2P ′ (Q∗) + q∗P ′ (Q∗) − C ′′ (q∗) ≤ 0, it follows that Hq (q∗, ρ) ≤ 0. Furthermore,

Hq (q∗, ρ) is increasing in ρ, taking its lowest value at ρ = 0, which gives (see (3)) Hq (q∗, 0) =

(n− 1)R′ ((n− 1) q∗).

Moreover, since 2P ′ (Q∗) + q∗P ′′ (Q∗) − C ′′ (q∗) ≤ 0, the numerator is certainly larger

(in absolute value) than the denominator when ρ ≥ 1
2
, implying that the Cournot-Nash

equilibrium is locally stable for those values of ρ.

Rational firms respond to Cournot firms by selecting a high (low) production level when

the Cournot firms choose a low (high) production level qt in that period, taking into account

that there are other rational firms —typically their output level will be somewhere between q∗

and R ((n− 1) qt). Rational firms therefore partly neutralize the deviation of Cournot firms

from the Cournot-Nash equilibrium quantity. Hence, their stabilizing effect on the dynamics is

stronger than that of Nash firms. However, if the number of rational firms is suffi ciently small,

the Cournot-Nash equilibrium may still be unstable, as the following example illustrates.

Leading Example (continued) Substituting the linear inverse demand function and linear

cost function into first order condition (12) and solving for qr we find

qrt = H (qt, ρ) =
a− c− b (n− 1) (1− ρ) qt

b (2 + (n− 1) ρ)
= q∗ − (1− ρ) (n− 1)

2 + (n− 1) ρ
(qt − q∗) . (17)

Note that for ρ ∈ (0, 1) and qt 6= q∗ either R ((n− 1) qt) < H (qt, ρ) < q∗ < qt or
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R ((n− 1) qt) > H (qt, ρ) > q∗ > qt. Moreover, it is straightforward to check that

qt = R ((n− 1) (ρH (qt−1, ρ) + (1− ρ) qt−1))

= q∗ − (1− ρ) (n− 1)

2 + (n− 1) ρ
(qt−1 − q∗)

= H (qt−1, ρ) = qrt−1,

that is —in the special case where inverse demand is linear —the Cournot firms produce

the same quantity in period t as the rational firms did one period earlier. This clearly

illustrates the advantage the latter have over the former.

Stability condition (14) reduces to (1− 2ρ) (n− 1) < 2. Clearly, for ρ ≥ 1
2
this stability

condition is always satisfied. For ρ < 1
2
, however, the Cournot-Nash equilibrium becomes

unstable for a high enough market size n. In fact, for ρ < 1
2
and n > nR with

nR =
3− 2ρ

1− 2ρ
, (18)

the Cournot-Nash equilibrium is unstable (but comparing (18) with (11) reveals that, for

equal ρ, nR > nN , that is, rational firms present a stronger stabilizing force than Nash

firms).

4 Evolutionary competition between heuristics

In this section we develop an evolutionary version of the model outlined in Section 3. As

before, in every period t, groups of n firms are drawn from a large population to play the

n-player Cournot game, where each firm uses one of two heuristics. In contrast to the pre-

vious section we now assume that firms may switch between different heuristics according

to a general, monotone selection dynamic, capturing the idea that heuristics that perform
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relatively better are more likely to spread through the population.13

Before we can specify this evolutionary updating we need to determine profits generated

by each of the two available heuristics, taking into account that a firm using one heuristic

can be matched up with either 0, 1 up to n − 1 firms using that same heuristic, with the

remaining firms using the alternative heuristic. That is, if we let q1 and q2 be the two

quantities prescribed by heuristics 1 and 2, and if we let ρ be the fraction of firms using

heuristic 1, expected profits Π1 for heuristic 1 are given by

Π1 = F (q1, q2, ρ) =
n−1∑
k=0

(
n− 1

k

)
ρk (1− ρ)n−1−k [P ((k + 1) q1 + (n− 1− k) q2) q1 − C (q1)] ,

(19)

with expected profits for heuristic 2 given by Π2 = F (q2, q1, 1− ρ). If the population of firms

and the number of groups of n firms drawn from that population are large enough average

profits will be approximated quite well by these expected profits, which we will use as a proxy

for average profits from now on.

There might be a substantial difference in sophistication between different heuristics. Con-

sequently, some heuristics may require more information or effort to implement than others.

Therefore we allow for the possibility that heuristics involve an information or deliberation

cost, κi ≥ 0, that may differ across heuristics. Performance of a heuristic is then given by the

difference between average profits generated in the market game and these information costs,

Vi = Πi − κi.

We are now ready to introduce evolutionary updating. Let the fraction of firms using the

first heuristic be given by ρt in period t. This fraction evolves endogenously according to an

evolutionary dynamic which is an increasing function of the performance differential between

13One such an updating mechanism was investigated in Droste, Hommes, and Tuinstra (2002) for an evol-
utionary competition between the Cournot and rational heuristics in a Cournot duopoly game and extended
in Ochea (2010) to a wide selection of learning heuristics.
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the two heuristics, that is

ρt = G (V1,t−1 − V2,t−1) = G (Π1,t−1 − Π2,t−1 − κ) .

Here κ ≡ κ1 − κ2 ≥ 0 is the difference in information or deliberation costs, which we assume

to be nonnegative without loss of generality.14 The map G : R → [0, 1] is a continuously

differentiable, monotonically increasing function with G (0) = 1
2
, G (x) + G (−x) = 1, that

is, it is symmetric around x = 0, limx→−∞G (x) = 0 and limx→∞G (x) = 1. Note that it is

straightforward to generalize this approach to allow for more heuristics, or to let evolution

depend upon performance of the heuristics from earlier periods.

In the next two subsections we will discuss the evolutionary versions of the two scenarios

from Section 3: Cournot firms versus Nash firms and Cournot firms versus rational firms,

respectively.

4.1 Cournot firms vs. Nash firms

Let the (time-varying) fraction of Nash firms in period t be given by ρt. As discussed in

Section 3 Nash firms choose the Cournot-Nash equilibrium quantity and Cournot firms best-

respond to the population-wide average quantity played in the previous period. The quantity

dynamics of the model can therefore be represented by (see equation (9)):

qt = R
(
(n− 1)

(
ρt−1q

∗ +
(
1− ρt−1

)
qt−1

))
. (20)

Let ΠN,t = ΠN (qt, ρt) = F (q∗, qt, ρt) and ΠC,t = ΠC (qt, ρt) = F (qt, q
∗, 1− ρt), where F (·) is

given by equation (19), denote the average payoffs accruing to the Nash and Cournot firms

in period t, respectively. The fraction of Nash firms ρt then evolves endogenously according

14Note that κ does not necessarily have to represent the difference in information or deliberation costs; it
could also present some predisposition or bias towards one of the heuristics.
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to

ρt = G (ΠN,t−1 − ΠC,t−1 − κ) . (21)

Given that at the Cournot-Nash equilibrium both types of firms choose the same quantity

q∗ we necessarily have that Π∗N = Π∗C . Let ρκ = G (−κ) denote the equilibrium steady state

fraction of Nash firms. Recall that, in absence of information costs, the population of firms

spreads evenly over the two heuristics, that is: ρ0 = G (0) = 1
2
.

Proposition 4 The equilibrium (q∗, ρκ) of the model with evolutionary competition between

the Cournot heuristic and the Nash heuristic, given by equations (20) and (21), is locally

stable if and only if the following condition holds:

|(n− 1) (1− ρκ)R′ ((n− 1) q∗)| < 1. (22)

Proof. The dynamical system, consisting of equations (20) and (21), can be written as

qt = Ψ1

(
qt−1, ρt−1

)
≡ R

(
(n− 1)

(
ρt−1q

∗ +
(
1− ρt−1

)
qt−1

))
, (23)

ρt = Ψ2

(
qt−1, ρt−1

)
≡ G

(
ΠN

(
qt−1, ρt−1

)
− ΠC

(
qt−1, ρt−1

)
− κ
)
.

To evaluate local stability of the equilibrium (q∗, ρκ) we need to determine the eigenvalues of

the Jacobian matrix, evaluated at that equilibrium, of system (23).

In order to do so, first note that

∂Ψ1

∂ρt−1

= (n− 1) (q∗ − qt−1)R′
(
(n− 1)

(
ρt−1q

∗ +
(
1− ρt−1

)
qt−1

))
,

which, when evaluated at (q∗, ρκ), equals zero because in equilibrium qt−1 = q∗.
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Second, observe that ΠN,t−1 − ΠC,t−1 can be written as

4ΠN = ΠN,t−1 − ΠC,t−1 =
n−1∑
k=0

Ak
(
ρt−1

)
Bk (qt−1, q

∗) ,

where Ak
(
ρt−1

)
=
(
n−1
k

)
ρkt−1

(
1− ρt−1

)n−1−k
is independent of qt−1 and

Bk (qt−1, q
∗) = P ((n− 1− k) qt + (k + 1) q∗) q∗ − C (q∗)− [P ((n− k) qt + kq∗) qt − C (qt)]

is independent of ρt−1. We then have

∂ 4 ΠN

∂qt−1

=

n−1∑
k=0

Ak
(
ρt−1

) ∂Bk (qt−1, q
∗)

∂qt−1

and
∂ 4 ΠN

∂qt−1

=

n−1∑
k=0

∂Ak
(
ρt−1

)
∂ρt−1

Bk (qt−1, q
∗) .

It follows that Bk (q∗, q∗) = 0 and ∂Bk(qt−1,q∗)
∂qt−1

∣∣∣
q∗

= −q∗P ′ (Q∗)−P (Q∗) +C ′ (q∗) which equals

0 by the first order condition for a Cournot-Nash equilibrium. Evaluated at the equilibrium

(q∗, ρκ), we therefore have
∂4Π
∂qt−1

= ∂4Π
∂ρt−1

= 0 and this gives

∂Ψ2

∂qt−1

∣∣∣∣
(q∗,ρκ)

= G′ (−κ)
∂ 4 ΠN

∂qt−1

∣∣∣∣
(q∗,ρκ)

= 0 and
∂Ψ2

∂ρt−1

∣∣∣∣
(q∗,ρκ)

= G′ (−κ)
∂ 4 ΠN

∂ρt−1

∣∣∣∣
(q∗,ρκ)

= 0.

Summarizing the above results, it follows that the Jacobian matrix of dynamical system

(23), evaluated at the equilibrium (q∗, ρκ), is given by ∂Ψ1

∂qt−1

∣∣∣
(q∗,ρκ)

0

0 0

 .

This Jacobian matrix has eigenvalues λ1 = ∂Ψ1

∂qt−1

∣∣∣
(q∗,ρκ)

= (n− 1) (1− ρκ)R′ ((n− 1) q∗) and

λ2 = 0, and the equilibrium is therefore locally stable if and only if |λ1| < 1, that is, if

condition (22) is satisfied.

Note the similarity between the stability condition for the model with evolutionary com-
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petition between the two heuristics (condition (22)), and the stability condition for the model

where the number of firms using each heuristic is fixed (condition (10)). Moreover, even

in the absence of information costs, κ = 0, the introduction of Nash players may fail to

stabilize the Cournot-Nash equilibrium. For κ = 0 the stability condition (22) reduces to

|(n− 1)R′ ((n− 1) q∗)| < 2, which typically will not hold for n large enough (although the

condition for local stability is weaker than under pure Cournot behavior, see condition (7)).

4.2 Cournot vs. rational firms

Now consider evolutionary competition between the Cournot and rational heuristic. Again the

fraction of firms employing the rational heuristic will be determined by the payoff differential

between the two heuristics, that is:

ρt = G (ΠR,t−1 − ΠC,t−1 − κ) , (24)

where κ ≥ 0 are the information costs that firms using the rational heuristic incur, and

ΠR,t = ΠR (qt, ρt) = F (H (qt, ρt) , qt, ρt) and ΠC,t = ΠC (qt, ρt) = F (qt, H (qt, ρt) , 1− ρt)

denote the average profits of the rational and Cournot firms, respectively. Given the fraction

of rational firms ρt, the quantity produced by the Cournot firms evolves as

qt = R
(
(n− 1)

(
ρt−1H

(
qt−1, ρt−1

)
+
(
1− ρt−1

)
qt−1

))
. (25)

The following proposition holds:

Proposition 5 The equilibrium (q∗, ρκ) of the model with evolutionary competition between

the Cournot heuristic and the rational heuristic, given by equations (24) and (25), is locally

stable if and only if the following condition holds:

|Hq (q∗, ρκ)| < 1. (26)
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Proof. The full model, consisting of equations (24) and (25), is given as

qt = Φ1
(
qt−1, ρt−1

)
≡ R

(
(n− 1)

(
ρt−1H

(
qt−1, ρt−1

)
+
(
1− ρt−1

)
qt−1

))
, (27)

ρt = Φ2
(
qt−1, ρt−1

)
≡ G(ΠR,t−1 − ΠC,t−1 − κ).

In order to determine local stability of (q∗, ρκ) we need to determine the Jacobian matrix of

system (27), evaluated at that equilibrium.

First, let us determine the partial derivatives of Φ2 with respect to qt−1 and ρt−1, respect-

ively. To that end, note that we can write the profit differential as

4ΠR = ΠR,t−1 − ΠC,t−1 =
n−1∑
k=0

Ak
(
ρt−1

)
Dk

(
qt−1, ρt−1

)

with Ak
(
ρt−1

)
=
(
n−1
k

)
ρkt−1

(
1− ρt−1

)n−1−k
, which does not depend upon qt−1, and

Dk

(
qt−1, ρt−1

)
= P

(
(n− 1− k) qt−1 + (k + 1) qrt−1

)
qrt−1 − C

(
qrt−1

)
−
[
P
(
(n− k) qt−1 + kqrt−1

)
qt−1 − C (qt−1)

]
,

which depends upon ρt−1 through q
r
t−1 = H

(
qt−1, ρt−1

)
. Note that Dk (q∗, ρκ) = 0. Moreover,

the partial derivatives of Dk

(
qt−1, ρt−1

)
, evaluated at the equilibrium (q∗, ρκ) are given by

∂Dk

(
qt−1, ρt−1

)
∂qt−1

∣∣∣∣∣
(q∗,ρκ)

= [P (Q∗) + q∗P ′ (Q∗)− C ′ (q∗)] (Hq (q∗, ρκ)− 1) = 0,

∂Dk

(
qt−1, ρt−1

)
∂ρt−1

∣∣∣∣∣
(q∗,ρκ)

= [P (Q∗) + q∗P ′ (Q∗)− C ′ (q∗)]Hρ (q∗, ρκ) = 0.

where the second equalities follows from the fact that P (Q∗) + q∗P ′ (Q∗) = C ′ (q∗) is the first

order condition of any firm in a Cournot-Nash equilibrium. Using this it follows immediately
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that

∂Φ2

∂qt−1

∣∣∣∣
(q∗,ρκ)

= G′ (−κ)
∂ 4 ΠR

∂qt−1

∣∣∣∣
(q∗,ρκ)

= G′ (−κ)

n−1∑
k=0

Ak (ρκ)
∂Dk

(
qt−1, ρt−1

)
∂qt−1

∣∣∣∣∣
(q∗,ρκ)

= 0

and

∂Φ2

∂ρt−1

∣∣∣∣
(q∗,ρκ)

= G′ (−κ)
∂ 4 ΠR

∂ρt−1

∣∣∣∣
(q∗,ρκ)

= G′ (−κ)
n−1∑
k=0

 ∂Ak (ρt−1

)
∂ρt−1

∣∣∣∣∣
ρκ

Dk (q∗, ρκ) + Ak (ρκ)
∂Dk

(
qt−1, ρt−1

)
∂ρt−1

∣∣∣∣∣
(q∗,ρκ)


= 0.

The Jacobian matrix of (27), evaluated in the equilibrium (q∗, ρκ), therefore has the following

structure  ∂Φ1

∂qt−1

∣∣∣
(q∗,ρκ)

∂Φ1

∂ρt−1

∣∣∣
(q∗,ρκ)

0 0

 ,

which has eigenvalues λ1 = ∂Φ1

∂qt−1

∣∣∣
(q∗,ρκ)

and λ2 = 0. Consequently, the equilibrium is locally

stable when

|λ1| =

∣∣∣∣∣ ∂Φ1

∂qt−1

∣∣∣∣
(q∗,ρκ)

∣∣∣∣∣ = |(n− 1) (ρκHq (q∗, ρκ) + (1− ρκ))R′ ((n− 1) q∗)|

= |Hq (q∗, ρκ)| < 1,

where the last equality follows from the proof of Proposition 2.

Again, note the similarity between the stability condition for the evolutionary model

(condition (26)) with that of the model with fixed fractions (condition (14)). The next result

follows immediately from Corollary 3 and Proposition 5 and the fact that ρ0 = G (0) = 1
2
.

Corollary 6 Suppose P ′ (Q∗) + q∗P ′′ (Q∗) < 0 and that there are no information costs for

the rational heuristic, κ = 0. Then the equilibrium (q∗, ρ0) of the model of evolutionary
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competition between the Cournot and the rational heuristic is locally stable.

5 Global dynamics and perpetual bounded fluctuations

In this section we study the global dynamical behavior of the two evolutionary models dis-

cussed in Section 4, by means of numerical simulations. In order to do so we need to specify

the inverse demand and cost structures, as well as the evolutionary process. We will use the

inverse linear demand curve, P (Q) = a− bQ, and constant marginal costs, Ci (qi) = cqi, from

our leading example and Theocharis (1960). Recall that this gives rise to reaction curve

qi = Ri (Q−i) =
a− c

2b
− 1

2
Q−i, (28)

and a unique and symmetric Cournot-Nash equilibrium given by

q∗ =
a− c

b (n+ 1)
. (29)

For the evolutionary process we use the logit dynamics, as for example discussed in Brock

and Hommes (1997):15

G (Π1,t−1 − Π2,t−1 − κ) =
1

1 + exp [−β (Π1,t−1 − Π2,t−1 − κ)]
. (30)

Here parameter β ≥ 0 measures evolutionary pressure: for a higher value of β firms are more

likely to switch to the more successful heuristic from the previous period.

The assumption of linear inverse demand and constant marginal costs allows us to rewrite

15The logit dynamics can alternatively be expresed as

ρt =
exp [β (Π1,t−1 − κ)]

exp [β (Π1,t−1 − κ)] + exp [βΠ2,t−1]
,

which is a more common but equivalent formulation.
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expected payoffs for heuristic 1, using
∑n−1

k=0

(
n−1
k

)
ρk (1− ρ)n−1−k k = (n− 1) ρ, as follows

Π1 = F (q1, q2, ρ) = q1 (a− b [q1 + (n− 1) q]− c) , (31)

where q = ρq1 + (1− ρ) q2. That is, expected payoffs for heuristic 1 are equal to payoffs

obtained when playing once against the average production level in the population.

5.1 Global evolutionary dynamics for Cournot vs. Nash firms

First we consider the model of evolutionary competition between the Cournot and the Nash

heuristic. Using (31), the payoff differential between Nash and Cournot firms can be written

as

ΠN,t − ΠC,t = b (1 + (1− ρt) (n− 1)) (qt − q∗)2 . (32)

Note that, outside of equilibrium and not taking into account information costs κ, average

payoffs of Nash firms will always be higher than those of Cournot firms. Moreover, the

differences in payoffs increases with the deviation of qt from the Cournot-Nash equilibrium,

and with the fraction of Cournot firms. The intuition for the higher profitability of Nash

firms is the following. Suppose qt > q∗ (a similar argument holds for qt < q∗). The profit

maximizing output then is to produce less than q∗. Nash firms are then closer to the optimal

quantity than Cournot firms and therefore (given that the profit function is concave) have

higher payoffs.

Using (8) and (32) the full evolutionary model can now be written as

qt = q∗ − 1

2

(
1− ρt−1

)
(n− 1) (qt−1 − q∗) , (33)

ρt =
1

1 + exp
[
−β
(
b
(
1 +

(
1− ρt−1

)
(n− 1)

)
(qt−1 − q∗)2 − κ

)] .
The equilibrium of this dynamical system is given by (q∗, ρκ), where ρκ = [1 + exp [βκ]]−1 ≤ 1

2
.

Note that in equilibrium Cournot firms perform better than Nash firms, because Π∗C = Π∗N
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and Nash firms need to pay (higher) information costs. The equilibrium fraction of Nash

firms is determined by the product of β and κ. This fraction will be lower if information

costs for the Nash heuristic are higher, and it will be lower, for the same information costs, if

evolutionary pressure (as measured by β) is higher. Note however that outside of equilibrium

the effects of β and κ differ.

The equilibrium is locally stable for (n− 1) (1− ρκ) < 2 (see condition (22) from Propos-

ition 4). From ρκ ≤ 1
2
it follows immediately that the equilibrium is always unstable when

n > 5, even in the absence of information costs, and independent of the value of β. Moreover,

if ρκ <
1
3
(that is, if β × κ > ln 2) the equilibrium is unstable even for n = 4 (note however

that the equilibrium is always locally stable for n = 3, provided β × κ is finite, whereas the

case n = 3 is only neutrally stable in Theocharis (1960)). It may seem counterintuitive that

even a costless Nash heuristic, which always gives higher expected payoffs than the Cournot

heuristic, is unable to stabilize the dynamics for higher values of n. The reason is the follow-

ing. Outside of equilibrium the Nash heuristic indeed outperforms the Cournot heuristic, and

firms switch from the latter to the former, thereby increasing ρ. This stabilizes the dynamics

and drives qt to q∗. At the equilibrium, however, payoffs for both heuristics are the same, and

there is no evolutionary pressure against the Cournot heuristic. Firms are therefore indifferent

between the two heuristics and half of them will choose the Cournot heuristic, destabilizing

the Cournot-Nash equilibrium again. Note that qualitatively similar dynamics will emerge if

ρt would be determined not just by last period’s average payoffs, but by, say average profits

of the last T periods.

These dynamics are illustrated by Figure 1 below, that shows numerical simulations for

the model with a = 17, b = 1, c = 10, β = 2.8 and no information costs for Nash firms,

κ = 0. Panel (a) shows a bifurcation diagram, where for convenience the number of firms,

n, is treated as a continuous variable (which, although diffi cult to interpret economically, is

mathematically no problem, see equation (33)). The number of firms varies from n = 3 to

n = 10 and the vertical axis shows the values of qt to which the dynamics converges. For n = 4
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quantities converge to the Cournot-Nash equilibrium level of q∗ = 7
4
, but at n = 5 a so-called

period-doubling bifurcation occurs leading to a stable period two cycle for n equal to 6, 7 or

8. Along such a cycle quantities and fractions oscillate between two levels. As n increases

even further more complicated dynamic behavior occurs. Panel (b) shows the dynamics of

qt for n = 10, which indeed is quite erratic. Panels (c) and (d) illustrate the dynamics in

more detail. Panel (c) shows the difference in average profits, ∆Π = ΠN,t − ΠC,t, which —

as argued above — is always positive, implying that ρt ≥ 1
2
for all t. Starting with equal

shares of heuristics, quantities start to diverge, leading the profit difference and subsequently

the fraction of Nash firms to increase. When the fraction of Nash firms is larger than 7
9

(indicated by the horizontal dashed line in panel (d)) the quantities start to converge again,

which decreases the profit differential and the number of Nash firms, and so on. Panel (e)

shows the attractor in (qt, ρt)−space for n = 10 and panel (f) presents, for n = 10, numerical

evidence (a strictly positive largest Lyapunov exponent) for chaos, in certain regions of the

intensity of choice parameter β.
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(a) Bifurcation diagram (qt, n)
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(f) Largest Lyapunov exp.

Figure 1: Linear n-player Cournot game with Cournot vs. Nash firms. Panel (a) depicts
a period-doubling route to complex quantity dynamics as the number of firms n increases.
Instability sets in already for the quintopoly game. Panel (b)-(d) display oscillating time series
of the quantity chosen by the Cournot type, profit differential between Nash and Cournot firms
and fraction of Nash firms, respectively. The threshold fraction of Nash players ρ = 7/9 for
which the dynamics become stable is also marked in Panel (d). A typical phase portrait
is shown in Panel (e) while Panel (f) plots the largest Lyapunov exponent for increasing β.
Game and behavioral parameters: n = 10, a = 17, b = 1, c = 10, κ = 0, β = 2.8.
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These numerical findings demonstrate, to a certain extent, that the original result by

Theocharis (1960) is robust. For higher values of n the dynamics is unstable. There is also an

important difference. The best response dynamics in Theocharis (1960) constitute a system

of linear differential equations which diverge from the equilibrium when n > 3, until the

non-negativity constraints on price and/or production become binding. The endogenously

evolving fraction of Nash firms in our model introduces a nonlinearity in the model that gives

rise to perpetual endogenous fluctuations, without non-negativity constraints playing a role:

quantities and prices remain strictly positive.

5.2 Global evolutionary dynamics for Cournot vs. rational firms

We now replace the Nash heuristic from the previous section by the rational heuristic. We

know that, in period t, the rational firms play (see (17)):

qrt = H (qt, ρt) = q∗ − (1− ρt) (n− 1)

2 + (n− 1) ρt
(qt − q∗)

Using (31) we obtain the following payoff difference

ΠR,t − ΠC,t = b

(
n+ 1

2 + (n− 1) ρt

)2

(qt − q∗)2 .

Note that, disregarding information costs κ for the moment, payoffs for the rational players

are always higher, on average, than those of the Cournot players, as was to be expected.

This difference is increasing in the deviation of the best reply output from the Cournot-

Nash equilibrium value and decreasing in the number of rational firms. The full model with
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evolutionary competition between the rational and Cournot heuristics now becomes

qt = H
(
qt−1, ρt−1

)
= q∗ −

(
1− ρt−1

)
(n− 1)

2 + (n− 1) ρt−1

(qt−1 − q∗) , (34)

ρt =
1

1 + exp

[
−β
(
b
(

n+1
2+(n−1)ρt−1

)2

(q∗ − qt−1)2 − κ
)] .

The equilibrium of dynamical system (34) is given by (q∗, ρκ) =
(

a−c
b(n+1)

, [1 + exp [βκ]]−1
)

and it is locally stable for (1− 2ρκ) (n− 1) < 2, that is (see local stability condition (26) from

Proposition 5 and condition (18) for this specific example)

ρκ >
1

2

n− 3

n− 1
.

Clearly, in the absence of information costs (κ = 0), ρ0 = 1
2
and the equilibrium is locally

stable, independent of the other parameters (n and β). On the other hand, if κ > 0 and

evolutionary pressure β becomes very large (so that ρκ becomes arbitrarily small) the fraction

of rational firms in equilibrium will be so small that the equilibrium is unstable for all n > 3,

as in the original contribution of Theocharis (1960). In fact, the model is unstable for n ≥ 4

when ρκ <
1
6
, that is whenever β × κ > ln 5 ≈ 1.609.

Figure 2 shows the results of some numerical simulations of the model with a = 17, b = 1,

c = 10, β = 5 and κ = 1
2
. Note that in this case ρκ =

[
1 + exp

[
5
2

]]−1 ≈ 0.076, from which

it follows immediately that the dynamics will be unstable for any n > 3. Panel (a) shows

a bifurcation diagram for n = 2 to n = 8, establishing that a stable period two cycle exists

for n = 4 and more complicated behavior emerges for larger values of n. Panels (b)-(d) show

the dynamics of quantities, profit differences and fractions for n = 8, respectively. Note that

close to the equilibrium (in fact, when |qt − q∗| < 1
9

√
2
(
1 + 7

2
ρt
)
) Cournot firms do better than

rational firms because they do not have to pay information costs and the difference in average

profits is relatively small. This decreases the number of rational firms, which destabilizes

the quantity dynamics. As the dynamics moves away from the equilibrium, eventually the
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rational heuristic outperforms the Cournot heuristic and firms switch back to the former,

increasing ρt. Now, when ρt >
5
14
(the horizontal dashed line in panel (d)) the quantity

dynamics stabilizes again and quantities converge to their Cournot-Nash equilibrium level,

and the whole story repeats. Panel (f) shows that, for n = 8, the largest Lyapunov exponent

is strictly positive if the evolutionary pressure β is high enough, indicating chaotic behavior

in our model.
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(a) Bifurcation diagram (qt, n)
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(c) Rational profits differential
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(e) Phase plot (qt,ρt), n = 8
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Figure 2: Linear n-player Cournot game with Cournot vs. rational firms. Panel (a) depicts a
sequence of period-doubling bifurcations as the number of players n increases. Instability sets
in already for the triopoly game. Panel (b)-(d) display oscillating time series of the quantity
chosen by the Cournot firm, rational type profit differential (net of predictor costs κ = 0.5)
and fraction of rational firms, respectively. The threshold fraction of rational firms ρ = 5/14
for which the dynamics become stable is also marked in Panel (d). A typical phase portrait
is shown in Panel (e) while Panel (f) plots the largest Lyapunov exponent for increasing β.
Game and behavioral parameters: n = 8, a = 17, b = 1, c = 10, κ = 0.5, β = 5.
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6 Discussion and concluding remarks

In the paper we investigated and generalized Theocharis (1960)’s seminal work on the stability

of the Cournot-Nash equilibrium in multi-player, quantity-setting games. Theocharis (1960)

considered Cournot’s adjustment process where each firm selects the quantity that would

maximize its profit, under the assumption that the other firms produce the same quantities

as they did in the previous period. He found that, in a specification with linear inverse

demand and constant marginal costs, the Cournot-Nash equilibrium is neutrally stable for

three firms, and unstable when there are more than three firms.

In this paper we relax the assumption that all firms use the Cournot adjustment process.

Instead, we develop a model in which firms choose between the Cournot heuristic and a

more sophisticated, but possible costly, heuristic. Firms choose a heuristic on the basis

of past profitability of the different rules. The two well-known sophisticated heuristics we

consider are the Nash heuristic, where firms always play the Cournot-Nash equilibrium, and

the rational heuristic, where firms take into account the behavior of the Cournot firms as well

as the behavior of the other rational firms in determining their optimal quantity. We derive

local stability conditions for our evolutionary model and find that introducing heterogeneity

in heuristics tends to stabilize the dynamics, but that perpetual fluctuations are still very

well possible, making the result of Theocharis (1960) quite robust.

In particular, for his specification with a linear inverse demand function and constant

marginal costs we find the following. Whereas in the original model of Theocharis (1960) the

dynamics are unstable for n > 3, the dynamics are unstable in the model with evolutionary

competition between the Cournot heuristic and the Nash heuristic for n > 5. Moreover, if

information costs for the Nash heuristic are positive, and evolutionary pressure (as measured

by the parameter β) is strong enough, the dynamics are also unstable for n = 5 and n = 4

(that is, for all n > 3). The results for evolutionary competition between the Cournot heuristic

and the rational heuristic are different. Most importantly, in absence of information costs for
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the rational heuristic, the Cournot-Nash equilibrium is locally stable for any n ≥ 2. With

strictly positive information costs, which seems to be the more relevant case for the rational

heuristic, the Cournot-Nash equilibrium becomes unstable if either the number of firms n, or

the evolutionary pressure, as measured by β, increases. In particular, for β high enough, the

equilibrium will be unstable for all n > 3. In Figure 3 we plot the bifurcation curves (βPD, n)

for the two sets of heuristics discussed in this paper (where, for convenience, we interpret n

as a continuous variable again).16

4 6 8 103
0

1

2

3

4

5

n

β P
D unstable

stable

(a) Cournot vs.Nash firms, κ = 0
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Figure 3: Period-doubling bifurcation curves in (β, n) space. When a period-doubling curve
is crossed from below the interior Cournot-Nash equilibrium loses stability and a two-cycle is
born. Panel (a): Cournot vs. Nash firms; Panel (b): Cournot vs. rational firms. Information
costs for the rational firms are set to κ = 1.

Figure 3 nicely illustrates the relationship between evolutionary pressure and market size,

as measured by β and n, respectively. It also shows that in the absence of information costs,

κ = 0, which in terms of local stability is equivalent with β = 0, the equilibrium is unstable

under evolutionary competition between the Cournot and Nash heuristics for n > 5 and

locally stable for evolutionary competition between the Cournot and rational heuristics for

16For a discussion on these period-doubling thresholds for more general learning rules, i.e. adaptive expect-
ations and fictitious play heuristics, see Chapter IV in Ochea (2010).
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all n.

The analysis provided in this paper can be extended by considering other behavioral heur-

istics, but we believe this will lead to qualitatively similar results. We decided to focus on

the Cournot, Nash and rational heuristics, since they are the most commonly considered

heuristics. In particular, there is evidence from laboratory experiments with paid human

subjects that the Cournot heuristic is quite relevant. Cox and Walker (1998), for example,

study a laboratory experiment on a Cournot duopoly model with a linear inverse demand

function and a quadratic cost function. They show that, when the Cournot-Nash equilib-

rium is unstable under the Cournot adjustment dynamics (which happens when marginal

costs are decreasing suffi ciently quickly), participants’quantity choices fail to converge to the

(interior) Cournot-Nash equilibrium, which suggests that stability under the Cournot adjust-

ment heuristic may have some predictive power. Furthermore, Rassenti, Reynolds, Smith,

and Szidarovszky (2000) present a laboratory experiment on a Cournot oligopoly model with

a linear inverse demand function, constant (but asymmetric) marginal costs, and five suppli-

ers. In this setting the Cournot-Nash equilibrium is unstable under the Cournot heuristic.

They indeed find that aggregate output oscillates around the equilibrium without conver-

ging to it over time. Individual behavior however is not explained very well by Cournot

behavior. Finally, Huck, Normann, and Oechssler (2002) discuss a linear (and symmetric)

Cournot oligopoly experiment with four suppliers. They do not find that quantities explodes,

as the Theocharis (1960) model predicts. Instead the time average of quantities converges

to the Cournot-Nash equilibrium quantity, although there is substantial volatility around the

Cournot-Nash equilibrium quantity throughout the experiment. Interestingly, Huck, Nor-

mann, and Oechssler (2002) find that a process where participants mix between the Cournot

adjustment heuristic and imitating the previous period’s average quantity gives the best de-

scription of their behavior. This supports our model of heterogeneous heuristics. In fact,

we could easily use our framework to study evolutionary competition between an imitation

heuristic and the Cournot heuristic. For the linear setup and in absence of information costs
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for either heuristic the condition for local stability then becomes n ≤ 6.17

In addition to extending the literature on stability of the Cournot-Nash equilibrium that

originated from Theocharis (1960), our paper also contributes to a separate but related lit-

erature on complicated dynamics and endogenous fluctuations in Cournot oligopoly. This

literature typically considers Cournot duopolies with non-monotonic reaction functions that

are postulated ad hoc (Rand (1978)), derived from iso-elastic demand functions together with

substantial asymmetries in marginal costs (Puu (1991)) or derived from cost externalities

(Kopel (1996)), and shows that the Cournot adjustment process might exhibit periodic cycles

and chaotic behavior. For these models with non-monotonic reaction curves complicated be-

havior might also arise for other adjustment or learning processes (see e.g. Agiza, Bischi,

and Kopel (1999), Bischi, Naimzada, and Sbragia (2007)). Although non-monotonic reaction

curves cannot be excluded on economic grounds18 complicated behavior in our model seems

to emerge in a much more natural fashion and perpetual but bounded fluctuations occurs

even for linear reaction curves.

17When a fraction ρt of the population imitates last period’s average and a fraction of 1−ρt uses the Cournot
adjustment heuristic, then the average quantity produced evolves as qt = ρtqt−1 + (1− ρt)R

(
(n− 1) qt−1

)
.

It can be shown that the equilibrium (q∗, ρκ) is stable in the evolutionary model if and only if
|ρκ + (1− ρκ) (n− 1)R′ ((n− 1) q∗)| < 1. In absence of information costs (κ = 0 and ρ0 = 1

2 ) and with linear
inverse demand and constant marginal costs (so that R′ ((n− 1) q∗) = − 12 ) we obtain that the Cournot-Nash
equilibrium is localy stable in this setting for n ≤ 7 (incidentally, Huck, Normann, and Oechssler (2002) find
that behavior is best described by ρ ≈ 0.43, for which the Cournot-Nash equilibrium will also be locally
stable for all n ≤ 6). Note that the equilibrium is more stable than when there is evolutionary competition
between the Cournot and Nash heuristic, with no information costs for the latter. The intuition is that if the
current average output is, for example, higher than the equilibrium output level, Cournot players will produce
less than the equilibrium quantity in the next period, whereas imitators will produce more. The behavior of
imitators therefore has a stronger stabilizing effect upon the dynamics than the behavior of Nash players.
18Corchon and Mas-Colell (1996) show that any type of behavior can emerge for continuous time gradient (or

best-reply) dynamics in heterogeneous oligopoly, although Furth (2009) argues that for homogeneous Cournot
oligopoly there are certain restriction as to what behavior can arise. Relatedly, Dana and Montrucchio (1986)
show that in a duopoly model where firms maximize their discounted stream of future profits and play Markov
perfect equilibria — and therefore have rational expectations — any behavior is possible for small discount
factors.
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