
Behavioral Learning Equilibria

Cars Hommesa, Mei Zhub,a ∗

a CeNDEF, School of Economics, University of Amsterdam

Roetersstraat 11, 1018 WB Amsterdam, Netherlands

b Institute for Advanced Research, Shanghai University of Finance and Economics,

and the Key Laboratory of Mathematical Economics(SUFE), Ministry of Education, Shanghai 200433, China

November 23, 2012

Abstract

We propose behavioral learning equilibria as a plausible explanation of coordina-

tion of individual expectations and aggregate phenomena such as excess volatility

in stock prices and high persistence in inflation. Boundedly rational agents use a

simple univariate linear forecasting rule and correctly forecast the unconditional

sample mean and first-order sample autocorrelation. In the long run, agents learn

the best univariate linear forecasting rule, without fully recognizing the structure of

the economy. The simplicity of behavioral learning equilibria makes coordination of

individual expectations on such an aggregate outcome more likely. In a first appli-

cation, an asset pricing model with AR(1) dividends, a unique behavioral learning

equilibrium exists characterized by high persistence and excess volatility, and it is

stable under learning. In a second application, the New Keynesian Phillips curve,

multiple equilibria co-exist, learning exhibits path dependence and inflation may

switch between low and high persistence regimes.
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1 Introduction

Expectations feedback plays a crucial role in economics and finance. Since the in-

troduction by Muth (1961), and its application in macroeconomics by Lucas (1972), the

Rational Expectations Hypothesis (REH) has become the predominant paradigm. A Ra-

tional Expectations Equilibrium (REE) is in fact a fixed point of an expectations feedback

system. Typically it is assumed that rational agents perfectly know the correctly specified

market equilibrium equations as well as their parameter values.

Despite its popularity, the REH has been criticized for its highly demanding and un-

realistic information requirements. Adaptive learning models have been proposed as an

alternative to rational expectations; see, e.g., Evans and Honkapohja (2001, 2011) and

Bullard (2006) for extensive surveys and references. In contrast to rational expectations,

adaptive learning models assume that agents do not have perfect knowledge about market

equilibrium equations, but agents are assumed to have some belief, the perceived law of

motion, about the actual law of motion; the relevant parameters are not known, but are

estimated by recursive techniques based on past observations. The implied actual law of

motion under adaptive learning is thus a time-varying self referential system, depending

on the perceived law of motion. In this framework, a rational expectations equilibrium

is simply a situation in which the implied law of motion exactly coincides with the per-

ceived law of motion, and adaptive learning may converge to such a rational expectations

equilibrium. Convergence of adaptive learning to a rational expectations equilibrium can

occur when the perceived law of motion is correctly specified.

In general, however, a perceived law of motion will be misspecified. White (1994)

argues that an economic model or a probability model is only a more or less crude ap-

proximation to whatever might be the “true” relationships among observed data and

consequently it is necessary to view economic and/or probability models as misspecified

to some greater or lesser degree. Sargent (1991) develops a notion of equilibrium as a fixed

point of an operator that maps the perceived law of motion (a vector ARMA process)

into a statistically optimal estimator of the actual law of motion. This may be viewed

as an early example of a Restricted Perceptions Equilibrium (RPE), as defined by Evans

and Honkapohja (2001), formalizing the idea that agents have misspecified beliefs, but

within the context of their forecasting model they are unable to detect the misspecifica-

tion. Branch (2006) gives an excellent survey and argues that RPE is a natural alternative

to rational expectation equilibrium, because it is to some extent consistent with Muth’s
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original hypothesis of REE while allowing for bounded rationality by restricting the class

of perceived laws of motion. Fuster et al. (2010) and Fuster et al. (2011, 2012) propose a

concept of natural expectations, where agents use simple, misspecified models, e.g., linear

autoregressive models, for their perceived law of motion. They argue that economists and

non-economists –statisticians, professional forecasters, and firms– regularly make some

simplifications of models. Simple models are easier to understand, easier to explain, and

easier to employ. Simplicity also reduces the risks of overfitting, which is the reasoning

that underlies many formal model selection criteria. However, they do not pin down the

parameters of the forecasting model through consistency requirements as in a restricted

perceptions equilibrium nor do they allow the agents to learn an optimal misspecified

model through empirical observations.

The main contribution of our paper is to develop a general behavioral learning equili-

brium (BLE) concept. The general idea of a BLE is that agents try to learn a simple,

but misspecified forecasting rule with an intuitive, behavioral interpretation. Here we

model a BLE as a first order Stochastic Consistent Expectations Equilibrium (SCEE),

which may be viewed as the simplest RPE. A BLE seems more likely as a description

of aggregate behavior, because a large population of individual agents may coordinate

their expectations more easily to learn a simple, parsimonious behavioral equilibrium.

Suppose the actual law of motion (ALM) of the economy is a high dimensional linear

stochastic system. But agents do not fully recognize the high dimensional structure and

they use a simple univariate AR(1) rule to forecast the economy. In a first order SCEE the

mean and the first-order autocorrelation of realized prices in the economy coincide with

the corresponding mean and first-order autocorrelation of agents’ AR(1) perceived law

of motion (PLM). Moreover, a simple adaptive learning scheme –Sample Autocorrelation

Leaning (SAC-learning)– with an intuitive behavioral interpretation, enforces convergence

to the (stable) BLE. In this paper we formalize the concept of BLE in the simplest class of

models one can think of: a one-dimensional linear stochastic model driven by an exogenous

linear stochastic AR(1) process. Agents do not recognize, however, that the economy is

driven by an exogenous AR(1) process yt and forecast the state of the economy xt using

a simple univariate AR(1) rule. Within this simple class of models we are able to fully

characterize the BLE and their stability under learning. While this class of models is

strikingly simple, it already yields rich dynamical behavior, including high persistence,

excess volatility and multiple equilibria.

The simple class of models that we study, contains two standard and empirically rele-
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vant applications. In the first - an asset pricing model driven by an exogenous stochastic

dividend process - the BLE is unique and SAC-learning always converges to the BLE. The

BLE is characterized by highly persistent prices (close to unit root) and excess volatility

with asset price volatility more than doubled compared to REE. In the second application

- a New Keynesian Philips curve (NKPC) - driven by an exogenous AR(1) process for

the output gap and an independent and identically distributed (i.i.d.) stochastic shock

to inflation - multiple stable BLE may co-exist. In particular, for empirically plausible

parameter values a BLE with highly persistent inflation exists, matching the stylized facts

of US-inflation data. Coordination on a behavioral learning equilibrium may thus explain

excess volatility in stock prices and high persistence in inflation (cf. Milani, 2007).

Related literature

Our behavioral equilibrium concept is closely related to the Consistent Expectations

Equilibrium (CEE) introduced by Hommes and Sorger (1998), where agents believe that

prices follow a linear AR(1) stochastic process, whereas the implied actual law of motion

is a deterministic chaotic nonlinear process. Along a CEE, price realizations have the

same sample mean and sample autocorrelation coefficients as the AR(1) perceived law of

motion. A CEE is another early example of a RPE and may be seen as an “approximate

rational expectations equilibrium”, in which the misspecified perceived law of motion is

the best linear approximation within the class of perceived laws of motion of the actual

(unknown) nonlinear law of motion. Hommes and Rosser (2001) investigate CEE in

an optimal fishery management model and use numerical simulations to study adaptive

learning of CEE in the presence of dynamic noise. The adaptive learning scheme used

here is SAC-learning, where the parameters of the AR(1) forecasting rule are updated

based on the observed sample average and first-order sample autocorrelation. Sögner

and Mitlöhner (2002) apply the CEE concept to a standard asset pricing model with

independent and identically distributed (i.i.d.) dividends and show that the unique CEE

coincides with the REE. As we will see in the current paper, introducing autocorrelations

in the stochastic dividend process will lead to a learning equilibrium different from REE.

Tuinstra (2003) analyzes first-order consistent expectations equilibria numerically in a

deterministic overlapping generations (OLG) model. Hommes et al. (2004) generalize the

notion of CEE to nonlinear stochastic dynamic economic models, introducing the concept

of stochastic consistent expectations equilibrium (SCEE). In a SCEE, agents’ perceptions
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about endogenous variables are consistent with the actual realizations of these variables

in the sense that the unconditional mean and autocorrelations of the unknown nonlinear

stochastic process, which describes the actual behavior of the economy, coincide with the

unconditional mean and autocorrelations of the AR(1) process agents believe in. In a

SCEE agents use the optimal (univariate) linear forecasting rule in an unknown nonlinear

stochastic economy. Although an SCEE is not a REE, because the linear forecast does

not coincide with the true conditional expectation, along a SCEE forecasting errors are

unbiased and uncorrelated. Hommes et al. (2004) apply this concept to an OLG model

and study the stability of SCEE under sample autocorrelation learning (SAC-learning)

by numerical simulations.

Showing theoretically existence of SCEE has proven to be technically difficult, while

convergence of SAC-learning has been studied only by numerical simulations. The prin-

ciple technical difficulty here is to calculate autocorrelation coefficients, prove existence

of fixed points and analyze the relationship between SCEE and sample autocorrelation

learning in a highly nonlinear system. Branch and McGough (2005) obtain existence re-

sults on first-order SCEE theoretically and analyze the stability of SCEE under real-time

learning numerically in a stochastic non-linear self-referential model where expectations

are based on an AR(1) process. Lansing (2009) considers a special class of SCEE in the

same reduced-form New Keynesian Philips curve that we will use, where the value of the

Kalman gain parameter in agents’ forecast rule is pinned down using the observed auto-

correlation of inflation changes. Lansing (2010) studies a Lucas-type asset pricing model

where agents believe stock prices follow a geometric random walk without drift and he

pins down the forecasting model to match the first order autocorrelation of the model

and the data. Lansing (2010), however, does not contain theoretical existence results or

multiple equilibria, while learning is based on numerical simulations. Similarly, Adam and

Marcet (2009, 2010) consider a general risk-neutral asset pricing model where agents hold

subjective priors about the price process, but they do not pin down parameters in agents’

perceived law of motion through learning. Bullard et al. (2008, 2010) add judgment into

agents’ forecasts and use the concept of SCEE to provide a related interesting concept of

exuberance equilibria. They study the resulting dynamics in the New Keynesian model

and a standard asset pricing model, respectively, where the driving variables are white

noises (no autocorrelations), and find high persistence and excess volatility.

The current paper studies first order SCEE in a simple, but general class of models,

one-dimensional linear stochastic models driven by an exogenous linear AR(1) process.
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Our paper makes two methodological contributions. First, we prove existence of first

order SCEE and fully characterize the (multiple) equilibria in this simple class of models.

Second, we present the first proof that the first order SCEE is stable under SAC-learning

and provide simple and intuitive stability conditions. Although the class of models we

study is simple, it contains two important standard applications: an asset pricing model

and the New Keynesian Philips curve. For both applications learning of a behavioral

learning equilibria generates empirically relevant stylized facts such as excess volatility,

high persistence and multiple equilibria.

A number of other related papers studied the effects of learning from different perspec-

tives. Timmermann (1993, 1996) shows that learning helps to explain excess volatility

and predictability of stock returns in a similar present value asset pricing model. In Tim-

mermann (1993, 1996), however, the perceived law of motion is correctly specified and the

parameters are estimated by adaptive learning, so that in the long run learning converges

to REE. Bullard and Duffy (2001) introduce adaptive learning into a general-equilibrium

life-cycle economy with capital accumulation and show that in contrast to perfect-foresight

dynamics, the system under least-squares learning possesses equilibria that are charac-

terized by persistent excess volatility in returns to capital. Sargent et al. (2009) find

that occasional shocks can trigger, via the learning dynamics, sudden departures from

a rational expectations equilibrium. Huang et al. (2009) show that the self-confirming

equilibrium under adaptive expectations is the same as the steady state rational expecta-

tions equilibrium for all admissible parameter values, but that the dynamics around the

steady state are substantially different between the two equilibria. Guidolin and Timmer-

mann (2007) characterize equilibrium asset prices under adaptive, rational and Bayesian

learning schemes in a model where dividends evolve on a binomial lattice and find that

learning introduces serial correlation and volatility clustering in stock returns. Branch

and Evans (2010) find existence of multiple restricted perceptions equilibria and that the

model under real-time learning is capable of matching key aspects of the data regarding

regime-switching stock price returns and volatilities. Branch and Evans (2011) illustrate

that agents are likely to temporarily believe that the price process is a random walk with-

out drift. An important difference between our analysis and the literature above, though,

is that here excess volatility and persistence are not just the result of transitory learning

dynamics and do not vanish after the economy converges to the equilibrium. Another

conceptual difference is our behavioral interpretation of the first order SCEE as what is

perhaps the simplest example of a RPE. A behavioral learning equilibrium together with
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an intuitive SAC-learning scheme may explain coordination of individual expectations on

(almost) self-fulfilling equilibria.

The paper is organized as follows. Section 2 introduces the main concepts, the first-

order SCEE, sample autocorrelation learning and their interpretation as a behavioral

learning equilibrium. Section 3 focusses on existence of first-order SCEE and stability

under SAC-learning within a simple linear class of one-dimensional models driven by an

exogenous AR(1) process. Section 4 discusses two applications, an asset pricing model and

a New Keynesian Philips curve, illustrating the empirical relevance of BLE in explaining

excess volatility, inflation persistence and regime switching. Finally, Section 5 concludes.

2 Main concepts

This section introduces the main concepts. Suppose that the law of motion of an

economic system is given by the stochastic difference equation

xt = f(xe
t+1, yt, ut), (2.1)

where xt is the state of the system (e.g. an asset price or inflation) at date t and xe
t+1

is the expected value of x at date t + 1. This denotation highlights that expectations

may not be rational. Here f is a continuous function, {ut} is an i.i.d. noise process with

mean zero and finite absolute moments1, where the variance is denoted by σ2
u, and yt is

a driving variable (e.g. dividends or the output gap), assumed to follow an exogenous

stochastic AR(1) process

yt = a + ρyt−1 + εt, 0 ≤ ρ < 1, (2.2)

where {εt} is another i.i.d. noise process with mean zero and finite absolute moments,

with variance σ2
ε , and uncorrelated with {ut}. The mean of the stationary process yt is

ȳ = a
1−ρ

, the variance is σ2
y = σ2

ε

1−ρ2 and the kth-order autocorrelation coefficient of yt is

ρk, see for example, Hamilton (1994).

Agents are boundedly rational and do not know the exact form of the actual law of

motion (2.1). We assume that, in order to forecast xt+1, agents only use past observations

xt−1, xt−2, · · · , etc. Hence, agents do not recognize that xt is driven by an exogenous

stochastic process yt. Instead agents believe that the economic variable xt follows a simple

1The condition on finite absolute moments is required to obtain convergence results under SAC-

learning.
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linear stochastic process. More specifically, agents’ perceived law of motion (PLM) is an

AR(1) process2, as in Hommes et al. (2004) and Branch and McGough (2005), i.e.

xt = α + β(xt−1 − α) + δt, (2.3)

where α and β are real numbers with β ∈ (−1, 1) and {δt} is a white noise process; α is

the unconditional mean of xt and β is the first-order autocorrelation coefficient. Given the

perceived law of motion (2.3), the 2-period ahead forecasting rule for xt+1 that minimizes

the mean-squared forecasting error is

xe
t+1 = α + β2(xt−1 − α). (2.4)

Combining the expectations (2.4) and the law of motion of the economy (2.1), we obtain

the implied actual law of motion (ALM)

xt = f(α + β2(xt−1 − α), yt, ut), (2.5)

with yt an AR(1) process as in (2.2).

Stochastic Consistent Expectations Equilibrium (SCEE)

We are now ready to recall the definition of SCEE. Following Hommes et al. (2004)3,

the concept of first-order SCEE is defined as follows.

Definition 2.1 A triple (µ, α, β), where µ is a probability measure and α and β are

real numbers with β ∈ (−1, 1), is called a first-order stochastic consistent expectations

equilibrium (SCEE) if the following three conditions are satisfied:

S1 The probability measure µ is a nondegenerate invariant measure for the stochastic

difference equation (2.5);

S2 The stationary stochastic process defined by (2.5) with the invariant measure µ has

unconditional mean α, that is, Eµ(x) =
∫

x dµ(x) = α;

S3 The stationary stochastic process defined by (2.5) with the invariant measure µ has

unconditional first-order autocorrelation coefficient β.

2In this paper we focus on a univariate stochastic process (2.1) for the law of motion of the economy

and an AR(1) PLM (2.3) and forecasting rule (2.4). More generally one may consider an N-dimensional

state vector Xt and a higher-order linear AR(p) or a VAR forecasting model.
3In Hommes et al. (2004), the actual law of motion is xt = f(xe

t+1, ut), without the driving variable

yt. However, the definitions of SCEE and SAC-learning can still be applied here.
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That is to say, a first-order SCEE is characterized by the fact that both the uncondi-

tional mean and the unconditional first-order autocorrelation coefficient generated by the

actual (unknown) stochastic process (2.5) coincide with the corresponding statistics for

the perceived linear AR(1) process (2.3). This means that in a first-order SCEE agents

correctly perceive the mean and the first-order autocorrelation (i.e., the persistence) of

economic variables although they do not correctly specify their model of the economy.

Our SCEE concept may be viewed as the simplest example of a RPE, where agents

predict an unknown stochastic law of motion by a first-order linear approximation. It

should be stressed that the SCEE has an intuitive behavioral interpretation, and therefore

we refer to a first-order SCEE as a behavioral learning equilibrium (BLE). In a SCEE

agents use a linear forecasting rule with two parameters, the mean α and the first-order

autocorrelation β. Both can be detected from past observations by inferring the average

price (or inflation) level and the (first-order) persistence of the time series. For example,

β = 0.5 means that, on average, prices mean-revert toward their long-run mean by 50%.

These observations could be made by “guestimating” the mean and the persistence from

an observed time series of aggregate variables. It is interesting to note that in learning-

to-forecast laboratory experiments with human subjects, for many individuals forecasting

behavior is well described by simple rules, such as a simple AR(1) rule, see for example,

Hommes et al. (2005), Adam (2007), Heemeijer et al. (2009) and Hommes (2011).

Finally, we note that in a first-order SCEE, the orthogonality condition imposed by

Restricted Perceptions Equilibrium (RPE)4

Ext−1[xt − α− β(xt−1 − α)] = E(xt−1 − α)[xt − α− β(xt−1 − α)] = 0

is satisfied. The orthogonality condition shows that agents can not detect the correlation

between their forecasting errors and perceived model, see Branch (2006). The first-order

SCEE is a RPE where agents have their model incorrect; but within the context of their

forecasting model agents are unable to detect their misspecification.

Sample autocorrelation learning

In the above definition of first-order SCEE, agents’ beliefs are described by the linear

forecasting rule (2.4) with fixed parameters α and β. However, the parameters α and

β are usually unknown. In the adaptive learning literature, it is common to assume

4Readers are referred to Evans and Honkapohja (2001) and Branch (2006) for further discussion on

the orthogonality condition and RPE.
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that agents behave like econometricians using time series observations to estimate the

parameters as additional observations become available. Following Hommes and Sorger

(1998), we assume that agents use sample autocorrelation learning (SAC-learning) to

learn the parameters α and β. That is, for any finite set of observations {x0, x1, · · · , xt},
the sample average is given by

αt =
1

t + 1

t∑
i=0

xi, (2.6)

and the first-order sample autocorrelation coefficient is given by

βt =

∑t−1
i=0(xi − αt)(xi+1 − αt)∑t

i=0(xi − αt)2
. (2.7)

Hence αt and βt are updated over time as new information arrives. It is easy to check

that, independently of the choice of the initial values (x0, α0, β0), it always holds that

β1 = −1
2
, and that the first-order sample autocorrelation βt ∈ [−1, 1] for all t ≥ 1.5

Adaptive learning is sometimes referred to as statistical learning, because agents act as

statisticians or econometricians and use a statistical procedure, such as OLS, to estimate

and update parameters over time. SAC-learning may be viewed as another statistical

learning procedure. We would like to stress, however, that SAC-learning has a simple

behavioral interpretation that agents simply infer the sample average and persistence

(i.e. first-order autocorrelation) from time series observations. We focus on the sample

average for αt in (2.6) and sample first-order autocorrelation for βt in (2.7) over the entire

time-horizon, but one could also restrict the learning to the last T observations with T

relatively small (e.g., T = 100 or even smaller). In fact, it is relatively easy for agents

to “guestimate” the mean and first-order autocorrelation directly based on an observed

time series.

Define

Rt =
1

t + 1

t∑
i=0

(xi − αt)
2,

then the SAC-learning is equivalent to the following recursive dynamical system (see

5The definition of the first-order sample autocorrelation coefficient in (2.7) is only slightly different

from least-squares learning, where in fact βt = (
t−1∑
i=0

(xi − x̄−t )(xi+1 − x̄+
t ))/(

t−1∑
i=0

(xi − x̄−t )2), with x̄−t =

1
t

t−1∑
i=0

xi, x̄
+
t = 1

t

t∑
i=1

xi. However, the sample autocorrelation coefficient in (2.7) always satisfies |βt| ≤ 1,

while the OLS estimate does not. This property is a natural “projection facility” for the SAC-learning

process, which is the terminology used in Evans and Honkapohja (2001) to bound parameters in ordinary

least-squares learning to avoid explosive dynamics.
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Appendix A).





αt = αt−1 +
1

t + 1
(xt − αt−1),

βt = βt−1 +
1

t + 1
R−1

t

[
(xt − αt−1)

(
xt−1 +

x0

t + 1
− t2 + 3t + 1

(t + 1)2
αt−1 − 1

(t + 1)2
xt

)

− t

t + 1
βt−1(xt − αt−1)

2
]
,

Rt = Rt−1 +
1

t + 1

[ t

t + 1
(xt − αt−1)

2 −Rt−1

]
.

(2.8)

The actual law of motion under SAC-learning is therefore given by

xt = f(αt−1 + β2
t−1(xt−1 − αt−1), yt, ut), (2.9)

with αt, βt as in (2.8) and yt as in (2.2).

In Hommes and Sorger (1998), the map f in (2.9) is a nonlinear deterministic function

depending only on αt−1 + β2
t−1(xt−1−αt−1), without the driving variable yt and the noise

ut. Hommes et al. (2004) extend the CEE framework to SCEE, with f a nonlinear

stochastic process (without exogenous driving variable yt), but existence and stability

under learning are hard to obtain in a nonlinear framework. In this paper to make the

model analytically tractable, the map f is assumed to be a linear function, depending

on the forecast αt−1 + β2
t−1(xt−1 − αt−1), the noise ut, and also on an exogenous AR(1)

process yt.

3 Main results in a simple linear framework

Assume that the true law of motion of the economy is a one-dimensional linear stochas-

tic process xt, driven by an exogenous AR(1) process yt. More precisely, the actual law

of motion of the economy is given by

xt = f(xe
t+1, yt, ut) = b0 + b1x

e
t+1 + b2yt + ut, (3.1)

yt = a + ρyt−1 + εt, (3.2)

where 0 < ρ < 1, as before, and b1 is in the interval (−1, 1).6 Before turning to SCEE,

consider rational expectations first.

6This assumption is made to ensure stationarity; for |b1| > 1 the dynamics under learning easily

becomes explosive.
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3.1 Rational expectations equilibrium

Under the assumption that agents are rational, a straightforward computation (see

Appendix B) shows that the rational expectations equilibrium x∗t satisfies

x∗t =
b0

1− b1

+
ab1b2

(1− b1ρ)(1− b1)
+

b2

1− b1ρ
yt + ut. (3.3)

Thus based on the expression of the rational expectations equilibrium x∗t in (3.3), its

unconditional mean and variance are, respectively,

x∗ := E(x∗t ) =
b0(1− ρ) + ab2

(1− b1)(1− ρ)
, (3.4)

V ar(x∗t ) = E(x∗t − x∗)2 =
b2
2σ

2
ε

(1− b1ρ)2(1− ρ2)
+ σ2

u. (3.5)

Furthermore, the first-order autocovariance and autocorrelation of rational expectations

equilibrium x∗t are, respectively,

E(x∗t − x∗)(x∗t−1 − x∗) =
b2
2ρσ2

ε

(1− b1ρ)2(1− ρ2)
,

Corr(x∗t , x
∗
t−1) =

ρb2
2

b2
2 + (1− b1ρ)2(1− ρ2)σ2

u

σ2
ε

.

Note that in the special case σu = 0, the above expression reduces to Corr(x∗t , x
∗
t−1) = ρ,

that is, when there is no exogenous noise ut in (3.1), the persistence of the REE coincides

exactly with the persistence of the exogenous driving force yt.

3.2 Existence of first-order SCEE

Now assume that agents do not recognize that the economy is driven by an exogenous

AR(1) process, but use a simple univariate linear rule to forecast the state of the economy.

Given that agents’ perceived law of motion is an AR(1) process (2.3), the actual law of

motion becomes

xt = b0 + b1[α + β2(xt−1 − α)] + b2yt + ut, (3.6)

where yt is given in (3.2). The mean of xt in (3.6), denoted by x̄, is computed as

x =
b0 + b1α(1− β2) + b2a/(1− ρ)

1− b1β2
. (3.7)

Imposing the first consistency requirement of a SCEE on the mean, i.e. x = α, and

solving for α yields

α∗ =
b0(1− ρ) + ab2

(1− b1)(1− ρ)
. (3.8)
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Comparing with (3.4), we conclude that in a SCEE the unconditional mean α∗ coincides

with the REE mean. That is to say, in a SCEE the state of the economy xt fluctuates on

average around its fundamental value x∗.

Next consider the second consistency requirement of a SCEE on the first-order au-

tocorrelation coefficient β of the PLM. A straightforward computation (see Appendix

C) shows that the first-order autocorrelation coefficient Corr(xt, xt−1) of the ALM (3.6)

satisfies

Corr(xt, xt−1) = b1β
2 +

b2
2ρ(1− b2

1β
4)

b2
2(b1β2ρ + 1) + (1− ρ2)(1− b1β2ρ)σ2

u

σ2
ε

=: F (β). (3.9)

The second consistency requirement of first-order autocorrelation coefficient β yields

F (β) = β. (3.10)

The actual law of motion (3.1-3.2) depends on seven parameters b0, b1, b2, a, ρ, σ2
ε and

σ2
u. The constants b0 and a only affect the level of fluctuations through the mean α∗ in

(3.8), but not the persistence, i.e. they do not affect F (β) in (3.9). Moreover, only the

ratio σ2
u/σ

2
ε of noise terms matters for the persistence F (β) in (3.9). Hence, the existence

of first-order SCEE (α∗, β∗) depends on four parameters b1, b2, ρ and σ2
u/σ

2
ε

Define G(β) := F (β)− β. Since 0 < ρ < 1 and |b1| < 1,

G(0) =
b2
2ρ

b2
2 + (1− ρ2)σ2

u

σ2
ε

> 0

and

G(1) =
b2
2(b1 + ρ) + b1(1− ρ2)(1− b1ρ)σ2

u

σ2
ε

b2
2(b1ρ + 1) + (1− ρ2)(1− b1ρ)σ2

u

σ2
ε

− 1

=
−b2

2(1− b1)(1− ρ)− (1− b1)(1− ρ2)(1− b1ρ)σ2
u

σ2
ε

b2
2(b1ρ + 1) + (1− ρ2)(1− b1ρ)σ2

u

σ2
ε

< 0.

Therefore, there exists at least one β∗ ∈ (0, 1), such that G(β∗) = 0, i.e. F (β∗) = β∗.

That is,

Proposition 1 In the case that 0 < ρ < 1 and |b1| < 1, there exists at least one nonzero

first-order stochastic consistent expectations equilibrium (SCEE) (α∗, β∗) for the economic

system (3.6) with α∗ = b0(1−ρ)+ab2
(1−b1)(1−ρ)

= x∗ and 0 < β∗ < 1.
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It is useful to discuss the special case without dependence on an exogenous AR(1)

driving variable yt, that is, b2 = 0 (no driving variable), ρ = 0 (no autocorrelation in the

driving variable), or σ2
ε = 0 (no stochasticity in the driving variable). In all these cases,

(3.9) reduces to F (β) = b1β
2. Hence, without a driving exogenous AR(1) process, the

unique first-order SCEE β∗ = 0 and coincides with the REE.

Since the solutions β∗ of the consistency requirement (3.10) depend continuously on

the parameters, we conclude that for b2 ≈ 0 (a weak driving variable), ρ ≈ 0 (almost

no autocorrelation in the driving variable), or σ2
ε ≈ 0 (weak stochasticity in the driving

variable) the system has a unique SCEE β∗ ≈ 0. Hence, when the exogenous AR(1)

driving force is weak, there is a unique low persistence SCEE.

On the other hand, consider the other extreme case with strong dependence on the

AR(1) driving variable yt, i.e. |b2| → ∞ (strong dependence on the AR(1) driving variable)

or σ2
u = 0 (no exogenous shock ut, but only an AR(1) driving variable yt). In both cases,

(3.9) reduces to

F (β) =
b1β

2 + ρ

b1β2ρ + 1
. (3.11)

In this case we have a unique SCEE (see Appendix D). Furthermore, in the case of

positive expectations feedback, i.e., b1 > 0, because F (0) = ρ and F ′(β) = 2b1β(1−ρ2)
(ρb1β2+1)2

> 0

for β ∈ (0, 1), we have F (β) > ρ. Consequently

β∗ > ρ.

In the special case where also b1 = 0, F (β) ≡ ρ and hence β∗ = ρ. Based on the above

analysis, we have the following proposition.

Proposition 2 Under the conditions in Proposition 1, if b2 → ∞ or σ2
u → 0, then

the nonzero first-order stochastic consistent expectations equilibrium (SCEE) (α∗, β∗) is

unique. Furthermore in the case 0 ≤ b1 < 1, the unique SCEE satisfies β∗ ≥ ρ.

The fact that β∗ ≥ ρ means that along the first-order SCEE the persistence of the economy

is larger than under REE. Hence, the fact that agents do not recognize that the economy

is driven by a relatively strong exogenous AR(1) process leads to excess volatility.

To summarize, when the dependence on the AR(1) driving variable is weak, a unique

low persistence SCEE exists. If, on the other hand, the dependence is strong, a unique

high persistence, excess volatility SCEE exists. It turns out that for intermediate values

of the parameter b2, multiple SCEE may coexist. The next proposition states, however,

that at most three different SCEE coexist (the proof is given in appendix E).
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Proposition 3 For the economic system (3.1-3.2) with 0 < ρ < 1 and |b1| < 1, at most

three first-order stochastic consistent expectations equilibria (SCEE) (α∗, β∗) coexist.

In our applications is Section 4 we will see that the asset pricing model has a unique

excess volatility SCEE, while the New Keynesian Philips curve can have multiple SCEE.

3.3 Stability under SAC-learning

In this subsection we study the stability of SCEE under SAC-learning. The ALM of

the economy under SAC-learning is given by




xt = b0 + b1[αt−1 + β2
t−1(xt−1 − αt−1)] + b2yt + ut,

yt = a + ρyt−1 + εt.
(3.12)

with αt, βt updated based upon realized sample average and sample autocorrelation as in

(2.8). Appendix F shows that the E-stability principle applies and that the stability under

SAC-learning is determined by the associated ordinary differential (ODE) equation7





dα

dτ
= x̄(α, β)− α =

b0 + α(b1 − 1) + b2a/(1− ρ)

1− b1β2
,

dβ

dτ
= F (β)− β =

b2
2(b1β

2 + ρ) + b1β
2(1− ρ2)(1− b1β

2ρ)σ2
u

σ2
ε

b2
2(b1β2ρ + 1) + (1− ρ2)(1− b1β2ρ)σ2

u

σ2
ε

− β,

(3.13)

where x̄(α, β) is the implied mean given by (3.7) and F (β) the implied first-order auto-

correlation given by (3.9).

A first-order SCEE (α∗, β∗) corresponds to a fixed point of the ODE (3.13). Moreover,

a SCEE (α∗, β∗) is locally stable under SAC-learning, if it is a stable fixed point of the

ODE (3.13).

A straightforward computation shows that the eigenvalues of the Jacobian JG(α∗, β∗)

of (3.13) are given by (b1 − 1)/(1 − b1(β
∗)2) (the coefficient of α in the first ODE) and

F ′(β∗)− 1 (since the second ODE is independent of α). Since, by assumption, b1 < 1 the

first eigenvalue is always < 0. Hence, the local stability of a first-order SCEE (α∗, β∗)

under SAC-learning only depends on the slope F ′(β∗):

Proposition 4 A first-order SCEE (α∗, β∗) is locally stable under SAC-learning if

F ′(β∗) < 1,

where F is the implied first-order autocorrelation in (3.9).

7See Evans and Honkapohja (2001) for discussion and a mathematical treatment of E-stablility.
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Proof. See Appendix F.

Recall from Subsection 3.2 that F (0) > 0 and F (1) < 1, so that at least one first-order

SCEE exists. If the SCEE is unique, then by continuity of F it must be that at the unique

intersection point F ′(β∗) < 1 and, according to proposition 4, the unique SCE is (locally)

stable under SAC-learning.8 Numerical simulations suggest that a unique SCEE is even

globally stable under SAC-learning. In the case of multiple first-order SCEE, the graph

of the map F has multiple fixed points. Since F (0) > 0 and F (1) < 1, typically F will

then have three fixed points, two locally stable first-order SCEE separated by an unstable

SCEE. Indeed in the application of the New Keynesian Philips curve in Subsection 4.2

we will meet exactly this situation.

4 Two applications

In this section we discuss two applications: an asset pricing model driven by AR(1)

dividends and a New Keynesian Philips curve driven by an exogenous AR(1) process for

the output gap. In both applications we study existence of first-order SCEE and stability

under SAC-learning with parameters taken from the empirical literature.

4.1 An asset pricing model with AR(1) dividends

A simple example of the general framework (3.1-3.2) is given by the standard present

value asset pricing model with stochastic dividends; see for example Campbell et al.

(1997) and Brock and Hommes (1998). Here we consider AR(1) dividends instead of i.i.d.

dividends.

4.1.1 The model

Assume that agents can invest in a risk free asset or in a risky asset. The risk-free

asset is perfectly elastically supplied at a gross return R > 1. pt denotes the price (ex

dividend) of the risky asset and yt denotes the (random) dividend process. Let Ẽt, Ṽt

denote the subjective beliefs of a representative agent about the conditional expectation

and conditional variance of excess return pt+1 + yt+1−Ryt. The representative agent is a

8The only exception is a hairline case where the graph of F is tangent to the diagonal at its unique

fixed point β∗ and F ′(β∗) = 1. In such a hairline case, the SCEE may also be locally stable under

SAC-learning, but stability does not follow directly from the E-stability principle.
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myopic mean-variance maximizer of tomorrow’s wealth. Optimal demand zt for the risky

asset by the representative agent is then given by

zt =
Ẽt(pt+1 + yt+1 −Rpt)

ãṼt(pt+1 + yt+1 −Rpt)
=

Ẽt(pt+1 + yt+1 −Rpt)

ãσ2
,

where ã > 0 denotes the risk aversion coefficient and the belief about the conditional

variance of the excess return is assumed to be constant over time9, i.e. Ṽt(pt+1 + yt+1 −
Rpt) ≡ σ2.

Equilibrium of demand and supply implies

Ẽt(pt+1 + yt+1 −Rpt)

ãσ2
= zs,

where zs denotes the supply of outside shares in the market, assumed to be constant over

time. Without loss of generality10, we assume zero supply of outside shares, i.e. zs = 0.

The market clearing price in the standard asset pricing model is then given by

pt =
1

R

[
pe

t+1 + ye
t+1

]
, (4.1)

where pe
t+1 is the conditional expectation of next period price pt+1 and ye

t+1 is the condi-

tional expectation of next period dividend yt+1.

Dividend {yt} is assumed to follow an AR(1) process (2.2). Suppose that the risky

asset (share) is traded, after payment of real dividends yt, at a competitively determined

price pt, so that yt is known by agents, and11

ye
t+1 = a + ρyt. (4.2)

9This assumption is consistent with the assumption that agents believe that prices follow an AR(1)

process and dividends follow a stochastic AR(1) process with finite variance. Of course, as discussed in

Branch and Evans (2010, 2011), agents might also not know Ṽt and need to learn it. However in this

paper we focus on the theoretical analysis of SCEE and its stability under SAC-learning in a relatively

simple framework. We leave the case of learning of the variance for future work.
10In the case zs > 0, the difference with the analysis below only lies in the mean of the SCEE α∗ =

ȳ−eaσ2zs

R−1 . The analysis on autocorrelations and variances remains the same.
11Notice that agents are assumed to know the exogenous dividend process and forecast it correctly. An

exogenous dividend process is easier to forecast than endogenously determined equilibrium prices. In a

rational homogeneous world, agents believe that prices are completely determined by dividends and use

the dividend process to compute rational equilibrium prices. Our agents however are boundedly rational,

believing that prices are not completely determined by dividends, but that “other factors” may affect

prices in an economy whose structure is not fully understood. As a first order approximation of these

“other factors”, our boundedly rational agents use a simple AR(1) rule to forecast endogenous prices.
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The market clearing price in the standard asset pricing model with AR(1) dividends is

then given by

pt =
1

R

[
pe

t+1 + a + ρyt

]
, (4.3)

Compared to the general framework (3.1), here we have b0 = a
R
, b1 = 1

R
, b2 = ρ

R
and

σu = 0.

4.1.2 Theoretical results

Following the general results on SCEE in Section 3, the rational expectations equilib-

rium p∗t becomes

p∗t =
aR

(R− 1)(R− ρ)
+

ρ

R− ρ
yt. (4.4)

In particular, if {yt} is i.i.d., i.e., a = ȳ and ρ = 0, then p∗t ≡ a
R−1

= ȳ
R−1

is constant.

The corresponding unconditional mean and the unconditional variance of the rational

expectation price p∗t are given by, respectively,

p∗ := E(p∗t ) =
a

(R− 1)(1− ρ)
=

ȳ

R− 1
, (4.5)

V ar(p∗t ) = E(p∗t − p∗)2 =
ρ2σ2

ε

(R− ρ)2(1− ρ2)
. (4.6)

Furthermore, the first-order autocovariance and autocorrelation coefficient of the rational

expectation price p∗t are given by, respectively,

E(p∗t − p∗)(p∗t−1 − p∗) =
ρ3σ2

ε

(R− ρ)2(1− ρ2)
,

Corr(p∗t , p
∗
t−1) = ρ. (4.7)

Under the assumption that agents are boundedly rational and believe that the price

pt follows a univariate AR(1) process, the implied actual law of motion for prices is





pt =
1

R

[
α + β2(pt−1 − α) + a + ρyt

]
,

yt = a + ρyt−1 + εt.

(4.8)

Since 0 ≤ β2

R
< 1 and 0 ≤ ρ < 1, the price process (4.8) is stationary and ergodic. It is

easy to see that the mean price is

p̄ =
α(1− β2) + ȳ

R− β2
. (4.9)
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Imposing the first consistency requirement of a SCEE on the mean, i.e. p̄ = α, yields

α =
ȳ

R− 1
=: α∗. (4.10)

The corresponding first-order autocorrelation coefficient F (β) of the ALM satisfies

F (β) =
β2 + Rρ

ρβ2 + R
. (4.11)

Using the results from propositions 2 and 4 (and the discussion thereafter) we have the

following property for the asset pricing model.

Corollary 1 For the asset pricing model (4.8), the first-order SCEE (α∗, β∗) is unique,

α∗ = ȳ
R−1

= p∗ and β∗ > ρ (excess volatility), and it is stable under SAC-learning.

4.1.3 Numerical analysis

Now we illustrate the above results by numerical simulations for empirically plau-

sible parameter values. For example, consider R = 1.05, ρ = 0.9, a = 0.005, εt ∼
i.i.d. U(−0.01, 0.01) (i.e. uniform distribution on [−0.01, 0.01])12. Figures 1a and 1b

illustrate the existence of a unique first-order SCEE, where (α∗, β∗) = (1, 0.997), stable

under SAC-learning. The time series of fundamental prices and market prices along the

first-order SCEE, i.e., with (α, β) = (α∗, β∗), are shown in Figure 1c, illustrating that

the market price fluctuates around the fundamental price but has much more persistence

and exhibits excess volatility. Recall from Corollary 1, that in a SCEE the mean of the

market prices is equal to that of the fundamental prices and the first-order autocorrela-

tion coefficient β∗ of the market prices is greater than that of the fundamental prices ρ,

implying that the market prices have higher persistence. The autocorrelation functions

of the market prices and the fundamental prices are shown in Figure 1d. The autocorre-

lation coefficients of the market prices along a SCEE are much higher than those of the

fundamental prices and hence the market prices have much higher persistence.

We now investigate how the excess volatility of market prices along a SCEE depends on

the autoregressive coefficient of dividends ρ, which is also the first-order autocorrelation of

fundamental prices. Consistent with Corollary 1, Figure 2a illustrates that the first-order

autocorrelation β∗ of market prices is significantly higher than that of fundamental prices,

especially as ρ > 0.4. For ρ ≥ 0.5 we have β∗ > 0.9, implying that asset prices are close

12As shown theoretically above, the numerical results are independent of selection of the parameter

values within plausible ranges, sample paths, initial values and distribution of noise.
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Figure 1: (a) SCEE α∗(= 1) is the intersection point of the mean p̄ = α(1−β2)+ȳ
R−β2 (bold

curve) with the perceived mean α (dotted line); (b) SCEE β∗(= 0.997) is the intersection

point of the first-order autocorrelation coefficient F (β) = β2+Rρ
ρβ2+R

(bold curve) with the

perceived first-order autocorrelation β (dotted line); (c) fundamental prices (dotted curve)

and market prices (bold curve) in the SCEE; (d) autocorrelation functions of fundamental

prices (lower dots) and market prices (higher stars) in the SCEE.
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Figure 2: (a) first-order SCEE β∗ with respect to ρ; (b) ratio of unconditional variances

of market prices and fundamental prices with respect to ρ, where R = 1.05.

to a random walk and therefore quite unpredictable. In fact, based on empirical findings,

e.g. Timmermann (1996) and Branch and Evans (2010), the autoregressive coefficient of

dividends ρ is about 0.9, where the corresponding β∗ ≈ 0.997, very close to a random

walk. In the case ρ > 0.4, the corresponding unconditional variance of market prices

is larger than that of fundamental prices. As illustrated in Figure 2b, the ratio of the

variance of market prices and the variance of fundamental prices is greater than 1 for

0.4 < ρ < 1, with a peak around 3.5 for ρ = 0.7. For ρ = 0.9,
σ2

p

σ2
p∗
≈ 2.5. Given the

variance of fundamental prices (4.6) and the variance of market prices (C.8), with b1 = 1
R
,

b2 = ρ
R

and σu = 0,

σ2
p

σ2
p∗

=
(β2ρ + R)(R− ρ)2

(R2 − β4)(R− ρβ2)

∣∣∣∣
β=β∗(ρ)

.

Corollary 1 demonstrates ρ < β∗(ρ) < 1 for 0 < ρ < 1, and hence β∗(ρ) converges to 1 as

ρ tends to 1. Thus as ρ tends to 1,
σ2

p

σ2
p∗

converges to 1, consistent with Figure 2b. So for

plausible parameter values of ρ, the variance of market prices is significantly greater than

that of fundamental prices, indicating that market prices exhibit excess volatility in the

SCEE.

Figure 3 illustrates that the unique SCEE (α∗, β∗) is stable under SAC-learning. Fig-

ure 3a shows that the mean of the market prices under SAC-learning, αt, tends to the

mean α∗ = 1 in the SCEE, while Figure 3b shows that the first-order autocorrelation coef-

ficient of the market prices under SAC-learning, βt, tends to the first-order autocorrelation

coefficient β∗ = 0.997 in the SCEE. Figure 3c shows the asset price under SAC-learning,
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Figure 3: (a) Time series αt → α∗(1.0); (b) time series βt → β∗(0.997); (c) time series of

market prices under SAC-learning and fundamental prices.

using the same sample path of noise, as the time series of the SCEE in Figure 1c. Since

the times series are almost the same, SAC-learning converges to the SCEE rather quickly.

In summary, the first-order SCEE and SAC-learning offer an explanation of high

persistence, excess volatility and bubbles and crashes in asset prices within a stationary

time series framework. 13

4.2 A New Keynesian Philips curve

Our second application of SCEE and SAC-learning is in macroeconomics. We use the

New Keynesian Philips curve with inflation driven by an exogenous AR(1) process for

the output gap (often measured by detrended real GDP) or the firm’s real marginal cost

(often measured by labor’s share of income), as in Lansing (2009).

4.2.1 The model

We derive the model from microfoundations with monopolistic competition and stag-

gered price setting. There is a continuum of firms indexed by i ∈ [0, 1]. Each firm produces

a differentiated good, but they all use the same technology which uses labor as the only

13We also simulated SAC-learning with a constant gain parameter (not shown here) and, similar to

Branch and Evans (2011), obtained persistent near unit root bubble and crash dynamics. When the

autocorrelation in the driving process is low these unit root bubble and crash dynamics are transitory

and recurrent after a series of shocks; for higher values of ρ ≥ 0.4 persistent near-unit root bubble and

crash dynamics arise, because of the existence of a unique stable high persistence SCEE; cf. Figure 2a,

where the SCEE β∗ is plotted as a function of ρ.
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factor of production. The demand curve for the good produced by firm i is given by

Yt(i) = Yt

(
Pt(i)

Pt

)−ηt

, (4.12)

where Yt is the aggregator function defined as Yt = [
∫ 1

0
Yt(i)

(ηt−1)/ηtdi]ηt/(ηt−1), Pt is the

aggregate price level defined as Pt = [
∫ 1

0
Pt(i)

1−ηtdi]1/(1−ηt), and ηt is the elasticity of

substitution among goods which varies over time according to some stationary stochastic

process.

Aggregate price dynamics

Following Calvo (1983) we assume that in every period only a fraction (1−ω) of firms

are able to reset their prices, while a fraction ω keep their price unchanged. In such an

environment the aggregate price dynamics are described by

Pt = (ωP 1−ηt

t−1 + (1− ω)(P ∗
t )1−ηt)

1
1−ηt , (4.13)

where P ∗
t is the price set in period t by firms reoptimizing their price in that period.

Notice that, as shown below, all firms will set the same price since they face an identical

problem.

Optimal price setting

We assume that firms have the same subjective beliefs, denoted by Ẽt, and that each

firm hires labor from the same integrated economy-wide labor market. Therefore, all firms

face the same optimization problem and they will set the same price when reoptimizing.

A firm reoptimizing in period t will choose the price P ∗
t to maximize expected dis-

counted profits, which are given by

max
P ∗t

Ẽt

∞∑
s=0

ωsΛt,t+s

(
P ∗

t

Pt+s

− Φt+s

)(
P ∗

t

Pt+s

)−ηt+s

Yt+s,

where Λt,t+s is the stochastic discount factor and Φt are real marginal costs of production.

The stochastic discount factor is defined as Λt,t+s = δs(Yt+s/Yt)
−σ, where δ is the time

discount factor.

The first-order condition associated with the problem above is given by

P ∗
t

Pt

=
Ẽt

∑∞
s=0 ωsΛt,t+sΦt+sηt+s

(
Pt+s

Pt

)ηt+s

Ẽt

∑∞
s=0 ωsΛt,t+s(ηt+s − 1)

(
Pt+s

Pt

)ηt+s−1 . (4.14)
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Define Q∗
t = P ∗

t /Pt and log-linearize Eq. (4.14) around a zero inflation steady state to get

q̂∗t = Ẽt

∞∑
s=0

(ωδ)s

(
(1− ωδ)ϕ̂t+s +

1− ωδ

1− η
η̂t+s + ωδπ̂t+s+1

)
, (4.15)

where “hatted” lower case letters denote log-deviations from steady state, η is the mean

of the stochastic process {ηt}, and π̂t is the inflation rate.

Log-linearizing Eq. (4.13) around the zero inflation steady state we get

q̂∗t =
ω

1− ω
π̂t. (4.16)

Combining Eqs. (4.15) and (4.16), and dropping hats for notational convenience, we

get

πt = Ẽt

∞∑
s=0

(ωδ)s(γϕt+s + ληt+s + δ(1− ω)πt+s+1),

where γ = (1−ωδ)(1−ω)
ω

and λ = γ
1−η

are functions of the structural parameters, which can

be rewritten as

πt = δẼtπt+1 + γϕt + ut, (4.17)

where ut = ληt. Note that in deriving Eq. (4.17) we used the law of iterated expectations

at the individual level. Even in the presence of bounded rationality, this is a reasonable

and intuitive assumption which is standard in the learning literature; see, e.g., Evans and

Honkapohja (2001) and Branch and McGough (2009). In order to rewrite (4.17) in terms

of the output gap we can use the relationship ϕt = kyt.

In the New Keynesian Philips curve (NKPC) with inflation driven by an exogenous

AR(1) process yt for the firm’s real marginal cost or the output gap, inflation and the

output gap (real marginal cost) evolve according to





πt = δπe
t+1 + γyt + ut,

yt = a + ρyt−1 + εt,
(4.18)

where πt is the inflation at time t, πe
t+1 is the subjective expected inflation at date t + 1

and yt is the output gap or real marginal cost, δ ∈ [0, 1) is the representative agent’s

subjective time discount factor, γ > 0 is related to the degree of price stickiness in the

economy and ρ ∈ [0, 1) describes the persistence of the AR(1) driving process. ut and

εt are i.i.d. stochastic disturbances with zero mean and finite absolute moments with

variances σ2
u and σ2

ε , respectively. The most important difference with the asset pricing

model in Subsection 4.1 is that (4.18) includes two stochastic disturbances, not only the
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noise εt of the AR(1) driving variable, but also an additional noise term ut in the New

Keynesian Philips curve. We refer to ut as a markup shock, which is often motivated

by the presence of an uncertain, variable tax rate and to εt as a demand shock, that is

uncorrelated with the markup shock. Compared with our general framework (3.1), the

corresponding parameters are b0 = 0, b1 = δ and b2 = γ.

4.2.2 Theoretical results

Following the general results in Section 3, the rational expectations equilibrium

π∗t =
γδa

(1− δ)(1− δρ)
+

γ

1− δρ
yt + ut. (4.19)

The corresponding unconditional mean and the unconditional variance of the rational

expectations equilibrium π∗t are given by, respectively,

π∗ := E(π∗t ) =
γa

(1− δ)(1− ρ)
, (4.20)

V ar(π∗t ) = E(π∗t − π∗)2 =
γ2σ2

ε

(1− δρ)2(1− ρ2)
+ σ2

u. (4.21)

Furthermore, the first-order autocovariance and autocorrelation of rational expectations

equilibrium π∗t are, respectively,

E(π∗t − π∗)(π∗t−1 − π∗) =
γ2ρσ2

ε

(1− δρ)2(1− ρ2)
,

Corr(π∗t , π
∗
t−1) =

ργ2

γ2 + (1− δρ)2(1− ρ2)σ2
u

σ2
ε

.

Note that, the larger the noise level σ2
u in the markup shock, the smaller the first-order

autocorrelation in the fundamental rational equilibrium inflation.

Under the assumption that agents are boundedly rational and believe that inflation

πt follows a univariate AR(1) process, the implied actual law of motion becomes





πt = δ[α + β2(πt−1 − α)] + γyt + ut,

yt = a + ρyt−1 + εt.
(4.22)

Since 0 ≤ δβ2 < 1 and 0 ≤ ρ < 1, the inflation process (4.22) is stationary and ergodic.

The implied sample mean is given by

π̄ =
δα(1− β2) + γa/(1− ρ)

1− δβ2
. (4.23)
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Imposing the consistency requirement, π̄ = α, yields the SCEE sample mean

α∗ =
γȳ

1− δ
=

γa

(1− δ)(1− ρ)
. (4.24)

The corresponding first-order autocorrelation coefficient F (β) of the implied ALM is

F (β) = δβ2 +
γ2ρ(1− δ2β4)

γ2(δβ2ρ + 1) + (1− ρ2)(1− δβ2ρ) · σ2
u

σ2
ε

. (4.25)

Applying Proposition 1 in Section 3.2 we obtain

Corollary 2 In the case that 0 < ρ < 1 and 0 ≤ δ < 1, there exists at least one

nonzero first-order stochastic consistent expectations equilibrium (SCEE) (α∗, β∗) for the

New Keynesian Philips curve (4.22) with α∗ = γa
(1−δ)(1−ρ)

= π∗.

For the New Keyensian Philips curve (4.18), however, multiple SCEE may coexist.

4.2.3 Numerical analysis

In this subsection we investigate how the multiplicity of SCEE and their stability

under learning depends upon parameters. Based on empirical findings, e.g., in Lansing

(2009), Gali et al. (2001) and Fuhrer (2006, 2009), we examine a range of empirically

plausible parametervalues.14 First, fix the parameters δ = 0.99, γ = 0.075, a = 0.0004,

ρ = 0.9, σε = 0.01 [εt ∼ N(0, σ2
ε)], and σu = 0.003162 [ut ∼ N(0, σ2

u)], so that σ2
u

σ2
ε

= 0.1.

Figure 4a illustrates the existence of a unique (stable) sample mean α∗, where α∗ =

0.03. Figure 4b shows that F (β) has three fixed points β∗1 ≈ 0.3066, β∗2 ≈ 0.7417 and

β∗3 ≈ 0.9961. Hence, we have coexistence of three first-order SCEE. Figures 4c and

4d illustrate the time series of inflation along the coexisting SCEE. Inflation has low

persistence along the SCEE (α∗, β∗1), but very high persistence along the SCEE (α∗, β∗3).

The time series of inflation along the high persistence SCEE in Figure 4d has in fact

similar persistence characteristics and amplitude of fluctuation as in empirical inflation

data, e.g., in Tallman (2003). Furthermore, Figure 4d illustrates that inflation in the high

persistence SCEE has much stronger persistence than REE inflation, where the first-order

autocorrelation coefficient of REE inflation is 0.865, significantly less than β∗3 = 0.9961.

14As shown in Lansing (2009), based on regressions using either the output gap or labor’s share of

income over the period 1949.Q1 to 2004.Q4, ρ = 0.9, σε = 0.01. Estimates of the NKPC parameters

δ, γ, σu are sensitive to the choice of the driving variable, the sample period, and the econometric model,

etc., but our choices are within a plausible range. Furthermore, based on the above theoretical results,

the constant a only affects the mean of inflation π̄, and not its autocorrelation coefficient F (β). Moreover,

F (β) only depends on the ratio σu/σε, but not on their absolute values.
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Figure 4: (a) The mean α∗ of the SCEE is the unique intersection point of mean inflation

π̄ in (4.23) (bold curve) with the perceived mean α (dotted line); (b) the first-order

autocorrelation β∗ of the SCEE correspond to the three intersection points of F (β) in

(4.25) (bold curve) with the perceived first-order autocorrelation β (dotted line); (c) time

series of inflation in low-persistence SCEE (α∗, β∗1) = (0.03, 0.3066); (d) times series of

inflation in high-persistence SCEE (α∗, β∗3) = (0.03, 0.9961) (bold curve) and time series

of REE inflation (dotted curve).
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Figure 5: Time series of αt and βt under SAC-learning for different initial values. (a-

b) For (π0, y0) = (0.028, 0.01) SAC-learning converges to the low persistence SCEE

(α∗, β∗1) = (0.03, 0.3066); (c-d) For (π0, y0) = (0.1, 0.15) SAC-learning converges to the

high persistence SCEE (α∗, β∗1) = (0.03, 0.9961).
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If multiple SCEE coexist, the convergence under SAC-learning depends on the initial

state of the system, as illustrated in Figure 5. Since 0 < F ′(β∗j ) < 1, for j = 1 and

j = 3, while F ′(β∗2) > 1, (see Figure 4b), Proposition 4 implies that the first-order SCEE

(α∗, β∗1) and (α∗, β∗3) are (locally) stable under SAC-learning, while (α∗, β∗2) is unstable.

For initial state (π0, y0) = (0.028, 0.01) (Figures 5a and 5b), the SAC-learning dynamics

(αt, βt) converges to the stable low-persistence SCEE (α∗, β∗1) = (0.03, 0.3066). Figure 5b

also illustrates that the convergence of the first-order autocorrelation coefficient βt to

the low-persistence first-order autocorrelation coefficient β∗1 = 0.3066 is very slow. For

a different initial state, (π0, y0) = (0.1, 0.15), our numerical simulation shows that the

sample mean αt still tends to α∗ = 0.03, but only slowly15 (see Figure 5c), while βt tends

to the high persistence SCEE β∗3 ≈ 0.996116 (see Figure 5d).

Numerous simulations (not shown) show that for initial values π0 of inflation higher

than the mean α∗ = 0.03, the SAC-learning βt generally enters the high-persistence

region. In particular, a large shock to inflation may easily cause a jump of the SAC-

learning process into the high-persistence region. 17 In the following we further indicate

how high and low persistence SCEE depend on different parameters.

4.2.4 Multiple equilibria and parameter dependence

Figure 6 illustrates how the number of SCEE depends on the parameter γ. For suffi-

ciently small γ(< 0.05), there exists only one, low persistence SCEE β∗ (Figure 6a). This

is similar to the case γ = 0, where correspondingly F (β) = δβ2 and hence the unique

SCEE β∗ = 0. Moreover, since

∂F

∂γ
=

2ρ(1− δ2β4)(1− ρ2)(1− δβ2ρ)σ2
u

σ2
ε

γ3
[
(δβ2ρ + 1) + (1− ρ2)(1− δβ2ρ) 1

γ2

σ2
u

σ2
ε

]2 > 0,

the graph of F (β) in (4.25) shifts upward as γ increases. At γ ≈ 0.05, a new SCEE,

β∗ ≈ 0.975, is created in a tangent bifurcation, where F (β) is tangent to the diagonal

(Figure 6b). Immediately thereafter, there exist three SCEE, β∗1 , β∗2 and β∗3 (see Figures 6c

and 6d). The low persistence SCEE β∗1 and the high persistence SCEE β∗3 are stable under

15The slow convergence is caused by the slope coefficient δ−δβ2

1−δβ2 for α in the expression π in (4.23),

which is very close to 1 for δ = 0.99 ≈ 1, as illustrated in Figure 4a.
16As shown in Figure 4b, F ′(β∗3) is close to 1 and, hence, the convergence of SAC-learning is very slow.
17We also simulated the NKPC under SAC-learning with a constant gain parameter (not shown here)

and, similar to Branch and Evans (2010), obtained irregular regime switching between phases of very low

persistence and phases of high persistence with near unit root behavior.
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SAC-learning, since 0 < F ′(β∗j ) < 1, j = 1 and j = 3, and separated by an unstable SCEE

β∗2 , with F ′(β∗2) > 1. As γ further increases, at γ ≈ 0.084, another tangent bifurcation

occurs, where the low and intermediate persistence SCEE β∗1 and β∗2 coincide (Figure 6e).

For γ > 0.084, the low persistence SCEE disappears and a unique high persistence SCEE

exists, which is stable under SAC-learning (Figure 6f).

The dependence of the number of SCEE and their persistence upon the parameter

γ are quite intuitive. Recall that γ in (4.18) measures the relative strength of the driv-

ing variable, the output gap or marginal costs, to inflation.18 When the driving force is

relatively weak, a unique, stable low persistence SCEE prevails, with much weaker au-

tocorrelation than in the driving variable. At the other extreme, when the driving force

is sufficiently strong, a unique, stable high persistence SCEE prevails, with significantly

stronger autocorrelation and higher persistence than in the driving variable. In the inter-

mediate case, multiple SCEE coexist and the system exhibits path dependence, where,

depending on initial conditions, inflation converges to a low or a high persistence SCEE.

In a similar way, the dependence of the SCEE upon the noise ratio σ2
u

σ2
ε

can be analyzed.

F (β) in (4.25) can be rewritten as

F (β) = δβ2 +
ρ(1− δ2β4)

(δβ2ρ + 1) + (1− ρ2)(1− δβ2ρ) · σ2
u

σ2
ε

1
γ2

.

Consequently, the effect of the noise ratio σ2
u

σ2
ε

is inversely related to the effect of γ. Hence,

when the ratio σ2
u

σ2
ε

is high, that is, when the markup shocks to inflation are high compared

to the noise of the driving variable, a unique, stable low persistence SCEE prevails. If

on the other hand, the markup shocks to inflation are low compared to the noise of the

driving variable, a unique, stable high persistence SCEE prevails.

Furthermore, Figure 7 illustrates how the SCEE β∗, together with the first-order

autocorrelation coefficient of REE inflation, depends upon the parameter ρ, measuring

the persistence in the driving variable. For intermediate values of ρ(∈ [0.84, 0.918]), two

stable SCEE β∗ coexist separated by an unstable SCEE. In the high persistence SCEE,

β∗ is larger than the first-order autocorrelation coefficient of REE inflation, while in the

low persistence SCEE β∗ is smaller than the first-order autocorrelation coefficient of REE

inflation. For small values of ρ, ρ < 0.84, a unique, stable low persistence SCEE prevails,

while for large values of ρ, ρ > 0.918, a unique, stable high persistence SCEE prevails.

18Note that γ corresponds to the parameter b2 in the general linear specification (3.1-3.2). See Propo-

sition 2 and the discussion in Subsection 3.2 on how the low respectively high persistence SCEE depends

on b2.
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Figure 6: The figure illustrates how the (co-)existence of low and high persistence SCEE

β∗ depends upon the parameter γ, measuring the relative strength of inflation upon the

driving variable, the output gap. (a) γ = 0.01; (b) γ = 0.05; (c) γ = 0.065; (d) γ = 0.075;

(e) γ = 0.084, and (f) γ = 0.1. Other parameters: σ2
u

σ2
ε

= 0.1, ρ = 0.9 and δ = 0.99.
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stable SCEE β∗ with respect to ρ (bold curves), unstable SCEE β∗ (dotted curve), where

γ = 0.075, σu = 0.003162, σε = 0.01, δ = 0.99.

Simulations show that, for plausible values of ρ around 0.9, for a large range of initial

values of inflation, the SAC-learning converges to the stable, high persistence SCEE β∗

with very strong persistence in inflation (see e.g. Figure 5d). This result is consistent

with the empirical finding in Adam (2007) that the Restricted Receptions Equilibrium

(RPE) describes subjects’ inflation expectations surprisingly well and provides a better

explanation for the observed persistence of inflation than REE.

In summary, the dependence of the number of equilibria and whether their persistence

is high or low are quite intuitive. This intuition essentially follows from the signs of the

partial derivatives of the first-order autocorrelation coefficient F (β) of the implied ALM

(4.25) satisfying (see Appendix G):

∂F

∂γ
> 0

∂F

∂(σ2
u

σ2
ε
)

< 0
∂F

∂ρ
> 0

∂F

∂δ
> 0. (4.26)

Hence, as in Figure 6, the graph of F (β) shifts upwards when γ increases, σ2
u

σ2
ε

decreases, ρ

increases or δ increases, and consequently, the equilibria shift from low persistence to high

persistence equilibria. Depending on the shape of F (β) there are then two possibilities.

When F is only weakly nonlinear, e.g., as in Figure 1b for the asset pricing model,

the equilibrium is unique and only a shift from a low to a high persistence equilibrium

arises. When the nonlinearity is stronger and F is S-shaped, e.g., as in Figure 6 for

empirically relevant parameter values in the NKPC, both the persistence and the number

of equilibria shift, and a transition from a unique stable low persistence SCEE, through

coexisting stable low and high persistence equilibria, to a unique stable high persistence
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equilibrium occurs. Such a transition from a unique low persistence SCEE, through

coexisting low and high persistence SCEE, toward a unique high persistence SCEE occurs

when the strength of the AR(1) driving force (the parameter γ) increases, when the ratio

of the model noise compared to the noise of the driving force (i.e. σ2
u

σ2
ε
) decreases, when

the autocorrelation (i.e., the parameter ρ) in the driving force increases, and when the

strength of the expectations feedback (i.e., the parameter δ) increases.

5 Concluding remarks

In this paper we have introduced the concept of behavioral learning equilibrium, a

very simple type of misspecification equilibrium together with an intuitive behavioral

interpretation and learning process. Boundedly rational agents use a univariate linear

forecasting rule and in equilibrium correctly forecast the unconditional sample mean and

first-order sample autocorrelation. Hence, to a first order approximation the simple linear

forecasting rule is consistent with observed market realizations. Sample autocorrelation

learning simply means that agents are slowly updating the two coefficients –sample mean

and first-order autocorrelation– of their linear rule. In the long run, agents thus learn

the best univariate linear forecasting rule, without fully recognizing the structure of the

economy.

We have applied our behavioral learning equilibrium concept to a standard asset pric-

ing model with AR(1) dividends and a New Keynesian Philips curve driven by an AR(1)

process for the output gap or marginal costs. In both applications, the law of motion of

the economy is linear, but it is driven by an exogenous stochastic AR(1) process. Agents

however are not fully aware of the exact linear structure of the economy, but use a simple

univariate forecasting rule, to predict asset prices or inflation. In the asset pricing model

a unique SCEE exists and it is stable under SAC-learning. An important feature of the

SCEE is that it is characterized by high-persistence and excess volatility in asset prices,

significantly higher than under rational expectations. In the New Keynesian model, mul-

tiple SCEE arise and a low and a high-persistence misspecification equilibrium coexist.

The SAC-learning exhibits path dependence and it depends on the initial states whether

the system converges to the low-persistence or the high-persistence inflation regime. In

particular, when there are shocks– e.g. oil shocks– temporarily causing high inflation,

SAC-learning may lock into the high-persistence inflation regime.

Are these behavioral learning equilibria empirically relevant or would smart agents
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recognize their (second order) mistakes and learn to be perfectly rational? This empirical

question should be addressed in more detail in future work, but we provide some argu-

ments for the empirical relevance of our equilibrium concept. Firstly, in our applications

the SCEE already explain some important stylized facts: (i) high persistence (close to

unit root) and excess volatility in asset prices, (ii) high persistence in inflation and (iii)

regime switching in inflation dynamics, which could explain a long phase of high US in-

flation in the 1970s and early 1980s as well as a long phase of low inflation in the 1990s

and 2000s. Secondly, we stress the simplicity and behavioral interpretation of our learning

equilibrium concept. The univariate AR(1) rule and the SAC-learning process are exam-

ples of simple forecasting heuristics that can be used without any knowledge of statistical

techniques, simply by observing a time series and roughly ”guestimating” its sample av-

erage and its first-order persistence coefficient. Coordination on a behavioral forecasting

heuristic that performs reasonably well to a first-order approximation seems more likely

than coordination on more complicated learning or sunspot equilibria as, for example, in

Woodford (1990). Even though some smart individual agents might be able to improve

upon the best linear, univariate forecasting rule, a majority of agents might still stick to

their simple univariate rule. It therefore seems relevant to describe aggregate phenomena

by simple misspecification equilibria and behavioral learning processes. Our behavioral

learning equilibrium concept also relates to the “natural expectations” in Fuster et al.

(2010), emphasizing parsimonious forecasting rules giving much weight to recent changes

to explain the long-run persistence of economic shocks. Our simple univariate AR(1)

rule may be seen as the most parsimonious forecasting rule leading to long-run persis-

tence. There is already some experimental evidence for the relevance of misspecification

equilibria in Adam (2007). More recently Assenza et al. (2011) and Pfajfar and Zakelj

(2010) ran learning to forecasting experiments with human subjects in a New Keynesian

framework with expectations feedback from individual inflation and output gap forecasts.

Coordination on simple linear univariate models explain a substantial part of individual

inflation and output gap forecasting behavior.

In future work we plan to consider more general economic settings to study behav-

ioral learning equilibria. An obvious next step is to apply our SCEE and SAC-learning

framework to higher dimensional linear economic systems, with agents forecasting by uni-

variate linear rules. In particular, the fully specified New Keynesian model of inflation

and output dynamics would be an interesting (two-dimensional) application. Including

asset prices in a New Keynesian model, as in Bernanke and Gertler (1999, 2001), provides
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another interesting (three-dimensional) application. It is also interesting and challeng-

ing to study SCEE and misspecification under heterogeneous expectations and allow for

switching between different rules. Branch (2004) and Hommes (2011) provide some em-

pirical and experimental evidence on heterogeneous expectations, while Berardi (2007)

and Branch and Evans (2006, 2007) have made some related studies on heterogeneous

expectations and learning in similar settings. Future work should focus on the robust-

ness and survival of behavioral forecasting rules, such as AR(1) and SAC-learning, in a

heterogeneous expectations environment. In addition to theoretical work, it would be of

interest to study coordination and learning of BLE in laboratory settings with multiple

restricted perception and/or sunspot equilibria.
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Appendix

A Recursive dynamics of SAC-learning

The sample average is

αt =
1

t + 1
[x0 + x1 + · · ·+ xt]

=
1

t + 1
[tαt−1 + xt]

=
1

t + 1
[(t + 1)αt−1 + xt − αt−1]

= αt−1 +
1

t + 1
[xt − αt−1].

Let

zt := (x0 − αt)(x1 − αt) + · · ·+ (xt−1 − αt)(xt − αt)

= (x0 − αt−1 − 1

t + 1
(xt − αt−1))(x1 − αt−1 − 1

t + 1
(xt − αt−1)) +

· · ·+ (xt−1 − αt−1 − 1

t + 1
(xt − αt−1))(xt − αt−1 − 1

t + 1
(xt − αt−1))

= (x0 − αt−1)(x1 − αt−1) + · · ·+ (xt−2 − αt−1)(xt−1 − αt−1)

+
xt − αt−1

t + 1
(2αt−1 − x0 − x1 + · · ·+ 2αt−1 − xt−2 − xt−1) +

t− 1

(t + 1)2
(xt − αt−1)

2

+
t

t + 1
(xt−1 − αt−1)(xt − αt−1)− t

(t + 1)2
(xt − αt−1)

2

= zt−1 +
1

t + 1
(xt − αt−1)[2(t− 1)αt−1 − x0 − 2x1 − · · · − 2xt−2 − xt−1 + t(xt−1 − αt−1)]

− 1

(t + 1)2
(xt − αt−1)

2,

= zt−1 +
1

t + 1
(xt − αt−1)[x0 + (t + 1)xt−1 − (t + 2)αt−1]− 1

(t + 1)2
(xt − αt−1)

2

= zt−1 + (xt − αt−1)
[
xt−1 +

x0

t + 1
− t + 2

t + 1
αt−1 +

1

(t + 1)2
αt−1 − 1

(t + 1)2
xt

]

= zt−1 + (xt − αt−1)Φ4,
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where Φ4 = xt−1 + x0

t+1
− t2+3t+1

(t+1)2
αt−1 − 1

(t+1)2
xt.

Write

nt := (x0 − αt)
2 + (x1 − αt)

2 + · · ·+ (xt − αt)
2

= (x0 − αt−1 − 1

t + 1
(xt − αt−1))

2 + · · ·+ (xt − αt−1 − 1

t + 1
(xt − αt−1))

2

= (x0 − αt−1)
2 + (x1 − αt−1)

2 + · · ·+ (xt−1 − αt−1)
2 +

t + t2

(t + 1)2
(xt − αt−1)

2

= nt−1 +
t

t + 1
(xt − αt−1)

2.

All these results are consistent with those in Appendix 1 of Hommes, Sorger & Wagener

(2004). Note that in our paper Rt is different from nt in Hommes et al. (2004). In fact,

Rt =
1

t + 1
nt

=
1

t + 1
[nt−1 +

t

t + 1
(xt − αt−1)

2]

=
t

t + 1

nt−1

t
+

t

(t + 1)2
(xt − αt−1)

2

=
t

t + 1
Rt−1 +

t

(t + 1)2
(xt − αt−1)

2

= Rt−1 +
1

t + 1

[ t

t + 1
(xt − αt−1)

2 −Rt−1

]
.

Furthermore,

βt =
zt

nt

= βt−1 +
[ zt

nt

− zt−1

nt−1

]

= βt−1 +
1

ntnt−1

[ztnt−1 − zt−1nt]

= βt−1 +
1

ntnt−1

[(
zt−1 + (xt − αt−1)Φ4

)
nt−1 − zt−1

(
nt−1 +

t

t + 1
(xt − αt−1)

2
)]

= βt−1 +
1

ntnt−1

[
(xt − αt−1)Φ4nt−1 − zt−1

t

t + 1
(xt − αt−1)

2
]

= βt−1 +
1

nt

[
(xt − αt−1)Φ4 − βt−1

t

t + 1
(xt − αt−1)

2
]

= βt−1 +
R−1

t

t + 1

[
(xt − αt−1)

(
xt−1 +

x0

t + 1
− t2 + 3t + 1

(t + 1)2
αt−1 − xt

(t + 1)2

)− t

t + 1
βt−1(xt − αt−1)

2
]
.

37



B Rational expectations equilibrium of x

Under the assumption that the transversality condition lim
k→∞

bk
1Et(x

∗
t+k) = 0 holds, the

REE x∗t can be computed as

x∗t = b0 + b1Etx
∗
t+1 + b2yt + ut

= b0 + b1Et[b0 + b1Et+1x
∗
t+2 + b2yt+1 + ut+1] + b2yt + ut

= b0(1 + b1) + b2
1Etx

∗
t+2 + b1b2Etyt+1 + b2yt + ut

= b0(1 + b1) + b2
1Etx

∗
t+2 + b1b2(a + ρyt) + b2yt + ut

= b0(1 + b1 + · · ·+ bn−1
1 ) + bn

1Etx
∗
t+n +

n−1∑

k=1

[bk
1b2(a + ρa + ρk−1a + ρkyt)] + b2yt + ut

= b0

n−1∑

k=0

bk
1 + bn

1Etx
∗
t+n +

n−1∑

k=1

b2a

ρ− 1
bk
1(ρ

k − 1) + b2yt

n−1∑

k=0

bk
1ρ

k + ut

= · · ·
=

b0

1− b1

+
ab1b2

(1− b1ρ)(1− b1)
+

b2

1− b1ρ
yt + ut. (B.1)

C First-order autocorrelation coefficient of x

We rewrite model (3.12) as





xt − x̄ = b1β
2(xt−1 − x̄) + b2(yt − ȳ) + ut,

yt − ȳ = ρ(yt−1 − ȳ) + εt.
(C.1)

That is,





xt − x̄ = b1β
2(xt−1 − x̄) + b2ρ(yt−1 − ȳ) + b2εt + ut,

yt − ȳ = ρ(yt−1 − ȳ) + εt.
(C.2)

E[(xt − x̄)(xt−1 − x̄)]

= E
[
b1β

2(xt−1 − x̄)2 + b2ρ(xt−1 − x̄)(yt−1 − ȳ) + b2(xt−1 − x̄)εt + (xt−1 − x̄)ut

]

= b1β
2V ar(xt) + b2ρE[(xt−1 − x̄)(yt−1 − ȳ)] + b2E[(xt−1 − x̄)εt] + (xt−1 − x̄)ut

= b1β
2V ar(xt) + b2ρE[(xt−1 − x̄)(yt−1 − ȳ)]

= b1β
2V ar(xt) + b2ρE[(xt − x̄)(yt − ȳ)]. (C.3)
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V ar(xt)

= E(xt − x̄)2

= E
[
b1β

2(xt − x̄)(xt−1 − x̄) + b2ρ(xt − x̄)(yt−1 − ȳ) + b2(xt − x̄)εt + (xt − x̄)ut

]

= b1β
2E[(xt − x̄)(xt−1 − x̄)] + b2ρE[(xt − x̄)(yt−1 − ȳ)] + b2(xt − x̄)εt + (xt − x̄)ut]

= b1β
2E[(xt − x̄)(xt−1 − x̄)] + b2ρE[(xt − x̄)(yt−1 − ȳ)] + b2

2σ
2
ε + σ2

u, (C.4)

where the last equation is based on the fact that E[(xt − x̄)εt] = E
[
b1β

2(xt−1 − x̄)εt +

b2ρ(yt−1− ȳ)εt + b2ε
2
t + utεt

]
= b2σ

2
ε and E[(xt− x̄)ut] = E

[
b1β

2(xt−1− x̄)ut + b2ρ(yt−1−
ȳ)ut + b2εtut + u2

t

]
= σ2

u.

Based on (C.3) and (C.4),

V ar(xt) = b1β
2E[(xt − x̄)(xt−1 − x̄)] + b2ρE[(xt − x̄)(yt−1 − ȳ)] + b2

2σ
2
ε + σ2

u

= b1β
2
[
b1β

2V ar(xt) + b2ρE[(xt − x̄)(yt − ȳ)]
]

+ b2ρE[(xt − x̄)(yt−1 − ȳ)] + b2
2σ

2
ε + σ2

u

= b2
1β

4V ar(xt) + b1β
2b2ρE[(xt − x̄)(yt − ȳ)] + b2ρE[(xt − x̄)(yt−1 − ȳ)] + b2

2σ
2
ε + σ2

u.

That is,

V ar(xt) =
b1β

2b2ρE[(xt − x̄)(yt − ȳ)] + b2ρE[(xt − x̄)(yt−1 − ȳ)] + b2
2σ

2
ε + σ2

u

1− b2
1β

4
. (C.5)

Thus, in order to obtain E[(xt − x̄)(xt−1 − x̄)] and V ar(xt), we need calculate E[(xt −
x̄)(yt − ȳ)] and E[(xt − x̄)(yt−1 − ȳ)].

E[(xt − x̄)(yt − ȳ)] = E
[
b1β

2(xt−1 − x̄)(yt − ȳ) + b2ρ(yt−1 − ȳ)(yt − ȳ) + b2εt(yt − ȳ) + ut(yt − ȳ)
]

= b1β
2E{(xt−1 − x̄)[ρ(yt−1 − ȳ) + εt]}+ b2ρE[(yt−1 − ȳ)(yt − ȳ)]

+b2E{εt[ρ(yt−1 − ȳ) + εt]}+ E[ut(yt − ȳ)]

= b1β
2ρE[(xt−1 − x̄)(yt−1 − ȳ)] + 0 +

b2ρ
2σ2

ε

(1− ρ2)
+ b2σ

2
ε + 0.

Thus

E[(xt − x̄)(yt − ȳ)] =
b2σ

2
ε

(1− ρ2)(1− b1β2ρ)
. (C.6)
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Hence based on (C.6),

E[(xt − x̄)(yt−1 − ȳ)]

= E
[
b1β

2(xt−1 − x̄)(yt−1 − ȳ) + b2ρ(yt−1 − ȳ)2 + b2εt(yt−1 − ȳ) + ut(yt−1 − ȳ)
]

= b1β
2E[(xt−1 − x̄)(yt−1 − ȳ)] + b2ρE(yt−1 − ȳ)2 + 0 + 0

= b1β
2 · b2σ

2
ε

(1− ρ2)(1− b1β2ρ)
+ b2ρ · σ2

ε

1− ρ2

=
b2σ

2
ε

(1− ρ2)

[
b1β

2

1− b1β2ρ
+ ρ

]

=
b2σ

2
ε

(1− ρ2)
· b1β

2(1− ρ2) + ρ

1− b1β2ρ

=
b2σ

2
ε

(1− b1β2ρ)

[
b1β

2 +
ρ

1− ρ2

]
. (C.7)

Therefore, based on (C.5), (C.6) and (C.7),

V ar(xt) =
1

1− b2
1β

4

{
b1β

2b2ρE[(xt − x̄)(yt − ȳ)] + b2ρE[(xt − x̄)(yt−1 − ȳ)] + b2
2σ

2
ε + σ2

u

}

=
1

1− b2
1β

4

{ b1β
2b2

2ρσ2
ε

(1− ρ2)(1− b1β2ρ)
+

b2
2ρσ2

ε

(1− b1β2ρ)

[
b1β

2 +
ρ

1− ρ2

]
+ b2

2σ
2
ε + σ2

u

}

=
σ2

ε

1− b2
1β

4

{b2
2ρ

[
b1β

2(2− ρ2) + ρ
]

(1− ρ2)(1− b1β2ρ)
+ b2

2 +
σ2

u

σ2
ε

}

=
σ2

ε

1− b2
1β

4

{ b2
2(b1β

2ρ + 1)

(1− ρ2)(1− b1β2ρ)
+

σ2
u

σ2
ε

}
. (C.8)

According to (C.3),

E[(xt − x̄)(xt−1 − x̄)] = b1β
2V ar(xt) + b2ρE[(xt − x̄)(yt − ȳ)]

= b1β
2V ar(xt) +

b2
2ρσ2

ε

(1− ρ2)(1− b1β2ρ)
. (C.9)

Thus, the correlation coefficient Corr(xt, xt−1) satisfies

Corr(xt, xt−1) = E[(xt − x̄)(xt−1 − x̄)]/V ar(xt)

= b1β
2 +

b22ρσ2
ε

(1−ρ2)(1−b1β2ρ)

σ2
ε

1−b21β4

{
b22(b1β2ρ+1)

(1−ρ2)(1−b1β2ρ)
+ σ2

u

σ2
ε

}

= b1β
2 +

b2
2ρ(1− b2

1β
4)

b2
2(b1β2ρ + 1) + (1− ρ2)(1− b1β2ρ)σ2

u

σ2
ε

=
b2
2(b1β

2 + ρ) + b1β
2(1− ρ2)(1− b1β

2ρ)σ2
u

σ2
ε

b2
2(b1β2ρ + 1) + (1− ρ2)(1− b1β2ρ)σ2

u

σ2
ε

.
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D Proof of uniqueness of β∗ (Proposition 2)

Using the first-order autocorrelation F (β) in (3.9), it can be calculated that

F ′′(β) =
2b1(1− ρ2)

(ρb1β2 + 1)2
− 8ρb2

1β
2(1− ρ2)

(ρb1β2 + 1)3
=

2b1(1− ρ2)(1− 3ρb1β
2)

(ρb1β2 + 1)3
.

In the case b1 > 0, if ρ ≤ 1
3b1

, then 1 − 3ρb1β
2 ≥ 1 − β2 > 0. Thus G′′(β) = F ′′(β) > 0.

Note that G(0) > 0, G′(0) = −1 < 0 and G(1) < 0, G′(1) = 2b1(1−ρ2)
(b1ρ+1)2

− 1. Hence if

G′(1) ≤ 0, then G′(β∗) < 0. If G′(1) > 0, then there exists a minimal point β1 such that

G′(β1) = 0. Moreover, since G(1) < 0, then G(β1) < 0 (otherwise, G(1) ≥ G(β1) ≥ 0,

which is contradictory to G(1) < 0). Hence β∗(∈ (0, β1)) is unique and G′(β∗) < 0, hence

0 < F ′(β∗) < 1.

If ρ > 1
3b1

, then G′′(β)
∣∣
β=
√

1/(3b1ρ)
= F ′′(β)

∣∣
β=
√

1/(3b1ρ)
= 0 and G′(β)

∣∣
β=
√

1/(3b1ρ)
is

maximal. Thus in the case that ρ > 1
3b1

,

G′(β) = F ′(β)− 1

=
2b1β(1− ρ2)

(ρb1β2 + 1)2
− 1

≤
2b1

1√
3b1ρ

(1− ρ2)

(b1ρ
1

3b1ρ
+ 1)2

− 1

=
3
√

3
√

b1(1− ρ2)

8
√

ρ
− 1

<
3
√

3
√

b1(1− 1
9b21

)

8 1√
3b1

− 1

=
−(1− b1)(1 + 9b1)

8b1

< 0.

Furthermore, it is easy to see that F (β) only depends on β2 and F (β) > 0. Hence

G(β) = F (β) − β > 0 for β ∈ [−1, 0] . So for b1 > 0 there is a unique β∗ satisfying

0 < F ′(β∗) < 1.

In the case b1 ≤ 0, since F ′(β) = 2b1β(1−ρ2)
(ρb1β2+1)2

≤ 0 for β ∈ [0, 1], then G′(β) = F ′(β)−1 <

0. Thus G(β) is monotonically decreasing and hence β∗ is unique within the interval (0, 1)

satisfying F ′(β∗) < 1. Moreover, for β ∈ [−1, 0), G′′(β) = F ′′(β) ≤ 0. It is easy to see

further G(−1) = F (−1) + 1 > 0, G(0) > 0 and G′(0) = −1. For β ∈ [−1, 0), G(β) is

decreasing or first increasing and then decreasing. In any case there is no solution for

G(β) = 0 within the interval [−1.0]. So for b1 ≤ 0 β∗ is unique satisfying β∗ ∈ (0, 1) and

F ′(β∗) < 1.

Therefore β∗ is unique, which is within the interval (0, 1) and satisfies F ′(β∗) < 1.
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E Proof of Proposition 3

A straightforward computation yields G(β) = F (β)− β =

=
b2
2(b1β

2 + ρ) + b1β
2(1− ρ2)(1− b1β

2ρ)Rv

b2
2(b1β2ρ + 1) + (1− ρ2)(1− b1β2ρ)Rv

− β

=
−b2

1ρ(1− ρ2)Rvβ
4 − b1ρ[b2

2 − (1− ρ2)Rv]β
3 + b1[b

2
2 + (1− ρ2)Rv]β

2 − [b2
2 + (1− ρ2)Rv]β + b2

2ρ

b1ρ[b2
2 − (1− ρ2)Rv]β2 + [b2

2 + (1− ρ2)Rv]
,

where Rv = σ2
u

σ2
ε
.

If b1ρ[b2
2 − (1 − ρ2)Rv] ≥ 0, then b1ρ[b2

2 − (1 − ρ2)Rv]β
2 + [b2

2 + (1 − ρ2)Rv] > 0

for any β. Thus G(β) = 0 is equivalent to the 4-th order polynomial equation G(β) =

−b2
1ρ(1−ρ2)Rvβ

4−b1ρ[b2
2−(1−ρ2)Rv]β

3+b1[b
2
2+(1−ρ2)Rv]β

2−[b2
2+(1−ρ2)Rv]β+b2

2ρ = 0.

Hence, there are at most four real solutions. Since G(−1) = b2
2(1+b1)(1+ρ)+(1+b1)(1−

b1ρ)(1− ρ2)Rv > 0 and G(β) → −∞ as β → −∞ due to negative coefficient of β4, there

exists one solution within the interval (−∞,−1). So there are at most three solutions for

G(β) = 0, i.e. G(β) = 0, within the interval [−1, 1].

If b1ρ[b2
2− (1− ρ2)Rv] < 0, then there are two singularities of G(β), i.e., two solutions

for b1ρ[b2
2− (1− ρ2)Rv]β

2 + [b2
2 + (1− ρ2)Rv] = 0, given by β1,2 = ±

√
b22+(1−ρ2)Rv

b1ρ[(1−ρ2)Rv−b22]
. It is

easy to see that |β1,2| > 1. For β ∈ (β2, β1), if β → β2, then G(β) → b2
2ρ(1− b2

1β
4
2). Note

that b2
2ρ(1−b2

1β
4
2) < 0. Thus G(β) → −∞ as β → β2 for β ∈ (β2, β1). As discussed above,

G(−1) > 0. Hence there exists one solution for G(β) = 0 within (β2,−1). Furthermore,

in the interval (β2, β1) ⊃ [−1, 1], G(β) = 0 is equivalent to G(β) = 0. So there are at

most three solutions for G(β) = 0 within the interval [−1, 1].

Therefore there are at most three zeros for G(β) = F (β)−β within the interval [−1, 1].

That is, at most three first-order stochastic consistent expectations equilibrium (SCEE)

(α∗, β∗) coexist.

F Proof of Proposition 4

Set γt = (1 + t)−1. For the state dynamics equations in (3.12) and (2.8)19, since all

functions are smooth, the SAC-learning rule satisfies the conditions (A.1-A.3) of Section

6.2.1 in Evans and Honkapohja (2001, p.124).

In order to check the conditions (B.1-B.2) of Section 6.2.1 in Evans and Honkapohja

19For convenience of theoretical analysis, one can set St−1 = Rt.
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(2001, p.125), we rewrite the system in matrix form by

Xt = A(θt−1)Xt−1 + B(θt−1)Wt,

where θ′t = (αt, βt, Rt), X
′
t = (1, xt, xt−1, yt) and W ′

t = (1, ut, εt),

A(θ) =




0 0 0 0

b0 + b1α(1− β2) + b2a b1β
2 0 b2ρ

0 1 0 0

a 0 0 ρ




,

B(θ) =




1 0 0

0 1 b2

0 0 0

0 0 1




.

As shown in Evans and Honkapohja (2001, p.186), A(θ) and B(θ) clearly satisfy the

Lipschitz conditions and B is bounded. Since ut and εt are assumed to have bounded

moments, condition (B.1) is satisfied. Furthermore, the eigenvalues of matrix A(θ) are

0 (double), ρ and b1β
2. According to the assumption |β| ≤ 1, |b1| < 1 and 0 < ρ < 1,

all eigenvalues of A(θ) are less than 1 in absolute value. Then it follows that there is a

compact neighborhood including the SCEE solution (α∗, β∗) on which the condition that

|A(θ)| is bounded strictly below 1 is satisfied.

Thus the technical conditions for Section 6.2.1 of Chapter 6 in Evans and Honkapohja

(2001) are satisfied. Moreover, since xt is stationary under the condition |β| ≤ 1, |b1| < 1

and 0 < ρ < 1, then the limits

σ2 := lim
t→∞

E(xt − α)2, σ2
xx−1

:= lim
t→∞

E(xt − α)(xt−1 − α)

exist and are finite. Hence according to Section 6.2.1 of Chapter 6 in Evans and Honkapo-

hja (2001, p.126), the associated ODE is





dα

dτ
= x̄(α, β)− α,

dβ

dτ
= R−1[σ2

xx−1
− βσ2],

dR

dτ
= σ2 −R.
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That is,





dα

dτ
=

b0 + b1α(1− β2) + b2ȳ

1− b1β2
− α =

b0 + α(b1 − 1) + b2ȳ

1− b1β2
,

dβ

dτ
= F (β)− β =

b2
2(b1β

2 + ρ) + b1β
2(1− ρ2)(1− b1β

2ρ)σ2
u

σ2
ε

b2
2(b1β2ρ + 1) + (1− ρ2)(1− b1β2ρ)σ2

u

σ2
ε

− β.

(F.1)

Furthermore,

JG(α∗, β∗) =




−(1−b1)
1−b1β2 0

0 F ′(β∗)− 1


 .

Hence a SCEE corresponds to a fixed point of the ODE (F.1). Furthermore, the SAC-

learning (αt, βt) converges to the stable SCEE (α∗, β∗) as time t tends to∞. In the special

case σu = 0 or b2 → ∞, based on Proposition 2 and Appendix D, the SCEE (α∗, β∗) is

unique and stable with F ′(β∗) − 1 < 0. Thus the SAC-learning (αt, βt) converges to the

unique (locally) stable SCEE (α∗, β∗) as time t tends to ∞.

G Dependence of F on parameters

In this appendix we show that the partial derivatives of the first-order autocorrelation

coefficient F (β) of the implied ALM (4.25) satisfy (4.26).

Based on (4.25), F (β) = δβ2 + ρ(1−δ2β4)

(δβ2ρ+1)+(1−ρ2)(1−δβ2ρ) 1
γ2

σ2
u

σ2
ε

> 0. As shown in the first

paragraph in the Subsection 4.2.4,

∂F

∂γ
=

2ρ(1− δ2β4)(1− ρ2)(1− δβ2ρ)σ2
u

σ2
ε

γ3
[
(δβ2ρ + 1) + (1− ρ2)(1− δβ2ρ) 1

γ2

σ2
u

σ2
ε

]2 > 0.

Denote σ2
u

σ2
ε

by ξ.

∂F

∂ξ
=

−ρ(1− δ2β4)(1− ρ2)(1− δβ2ρ) 1
γ2[

(δβ2ρ + 1) + (1− ρ2)(1− δβ2ρ) 1
γ2

σ2
u

σ2
ε

]2 < 0.

Now consider the parameter ρ. It can be calculated that

∂F

∂ρ
=

(1− δ2β4)
[
1 + (1 + ρ2 − 2δβ2ρ3) 1

γ2

σ2
u

σ2
ε

]

[
(δβ2ρ + 1) + (1− ρ2)(1− δβ2ρ) 1

γ2

σ2
u

σ2
ε

]2 .

In the following we will show that

1 + ρ2 − 2δβ2ρ3 > 0
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for any given δ ∈ (0, 1), ρ ∈ [0, 1) and β ∈ [−1, 1]. Thus ∂F
∂ρ

> 0.

Let h(ρ) denote the 3rd order polynomial −2δβ2ρ3 + ρ2 + 1. It is easy to see that

h(0) = 1 > 0, h(−∞) → +∞, h(+∞) → −∞. Moreover h′(ρ) = 2ρ(1− 3δβ2ρ). That is,

there are two values ρ = 0, 1
3δβ2 such that h′(0) = 0 and h′( 1

3δβ2 ) = 0. Moreover, h′′(0) =

2 > 0 and h′′( 1
3δβ2 ) = −2 < 0. Hence within the interval [0, 1], h(ρ) is monotonically

increasing or first increasing and then decreasing. In any case since h(0) = 1 > 0 and

h(1) = 2(1− δβ2) > 0, then h(ρ) > 0 for any ρ ∈ [0, 1]. Hence ∂F
∂ρ

> 0.

Finally, for δ, it can be calculated that

∂F

∂δ
=

β2
[
η(η − 1)ρ2δ2β4 − 2η(1 + η)ρδβ2 + (1 + η)2 + ρ2(η − 1)

]
[
(δβ2ρ + 1) + η(1− δβ2ρ)

]2 ,

where η = (1−ρ2) 1
γ2

σ2
u

σ2
ε
≥ 0. If η = 0, it is easy to get ∂F

∂δ
= β2[1−ρ2]

(δβ2ρ+1)2
> 0 for β ∈ (0, 1) and

ρ ∈ [0, 1). In the following we assume η > 0. Let g(δ) denote the 2nd order polynomial

η(η − 1)ρ2δ2β4 − 2η(1 + η)ρδβ2 + (1 + η)2 + ρ2(η − 1). We will show g(δ) > 0 for any

δ ∈ [0, 1). If η = 1, then g(δ) = 4(1 − δβ2ρ) > 0 for ρ ∈ [0, 1), β ∈ (0, 1) and δ ∈ [0, 1).

If η > 1, then the symmetric axis of the 2nd order polynomial g(δ) is δ = η+1
(η−1)ρβ2 > 1

and the coefficient η(η − 1)ρ2β4 > 0. If η < 1, then the symmetric axis of the 2nd order

polynomial g(δ) is δ = η+1
(η−1)ρβ2 < 0 and the coefficient η(η−1)ρ2β4 < 0. Hence no matter

if η > 1 or η < 1, g(δ) decreases within the interval [0, 1). That is, if g(1) ≥ 0, then

g(δ) > 0 for any δ ∈ [0, 1).

Note that g(1) = η(η − 1)ρ2β4 − 2η(1 + η)ρβ2 + (1 + η)2 + ρ2(η − 1) := g̃(β2). This is

a 2nd order polynomial with respect to β2. Similarly since the symmetric axis of the 2nd

order polynomial g̃(β2) is β2 = η+1
(η−1)ρ

> 1 for η > 1 and β2 = η+1
(η−1)ρ

< 0 for η < 1, then

g̃(β2) decreases within the interval [0, 1] no matter if η > 1 or η < 1. Thus we just need

to prove g̃(1) ≥ 0. Note that g̃(1) = η(η − 1)ρ2 − 2η(1 + η)ρ + (1 + η)2 + ρ2(η − 1) =

(η2 − 1)ρ2 − 2η(1 + η)ρ + (1 + η)2 := ĝ(ρ). Similarly since the symmetric axis of the 2nd

order polynomial ĝ(ρ) is ρ = η+1
η−1

> 1 for η > 1 and ρ = η+1
η−1

< 0 for η < 1. Hence ĝ(ρ)

decreases within the interval [0, 1) no matter if η > 1 or η < 1. That is, if g̃(1) ≥ 0,

then g̃(ρ) > 0 for any ρ ∈ [0, 1). In fact, g̃(1) = (η2 − 1) − 2η(1 + η) + (1 + η)2 = 0.

Thus based on the above analysis, for any ρ ∈ [0, 1), we have g̃(1) = ĝ(ρ) > 0, and hence

g(1) = g̃(β2) > g̃(1) > 0 for any β2 ∈ (0, 1). That is, for any δ ∈ [0, 1), g(δ) > 0.

Therefore ∂F
∂δ

> 0.
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