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A system that is at a steady state responds most of the time gradually to external
changes. But in exceptional circumstances, it can exhibit a sudden ‘catastrophic’ shift
to a different regime. It is of great practical interest to develop early warning indicators
that signal the imminence of such a shift. A promising class of such indicators uses the
universal fact that the average return time to a stable steady state after a small disturb-
ance increases sharply close to a catastrophic shift. It is however important to realise
that there are classes of dynamic regime shifts that cannot be predicted in this way.
After reviewing the mathematical ideas behind these indicators, this article discusses
their scope and their limitations.

Glossary

autocorrelation coefficient The first (second, third, ...) order autocorrelation coeffi-
cient is the correlation of the time series {x;} with the series where all elements
are one (two, three, ...) step shifted {z; 1} {z112}, {2113}, ..0).

complex unit circle See eigenvalue.

eigenvalue A matrix can be fully described by its actions on characteristic directions.
Barring exceptional cases, these are either invariant lines or invariant planes. In
the first situation, the action of the matrix either contracts or expands the line
by a fixed factor A, the so-called eigenvalue of the characteristic direction. In
the second situation, the action of the matrix is first a uniform contraction or
expansion of all lines through the origin by a fixed factor r, and then a rotation
around an angle ¥ of all these lines around the origin.

It is mathematically convenient to describe the second situation in terms of com-
plex numbers, as the invariant plane then becomes an invariant complex line,
with an associated complex eigenvalue 7e'’. The statement that an eigenvalue
is inside the complex unit circle is then equivalent to the fact that the action on
the corresponding characteristic direction is a contraction, possibly, for complex
eigenvalues that are not real, followed by a rotation. If an eigenvalue is outside
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the unit circle indicates that the action is an expansion, possibly followed by a
rotation.

Jacobian matrix For real-valued functions of one variable, the Jacobian matrix is just
the derivative. For a vector-valued function F' = F'(z), where the vector F' has
components [; and where = has components z;, the Jacobian matrix DF’ is the
appropriate generalisation of the derivative. Its elements are of the form (D F');; =
OF;/0z;, that is, the partial derivatives of the components of F.

smooth dependence The dependence y = f(x) of the quantity y on the quantity z is
smooth, if f is a differentiable function of x for all x.

stochastic process A stochastic process is a series of random variables, indexed by a
time variable.

Taylor’s theorem This is a mathematical statement about the approximation of a func-
tion around a given point. In the article only a very simple version is needed. If all
partial derivatives of a map F'(z) exist at a point Z and are continuous functions
there, then there is a function N (x) such that

F(z) = F(z) + DF(z)(z — ©) + N(2),

and which is such that N (z)/||x — z|| — 0 as x — Z; here ||z — Z|| is the distance
from x to z. The mathematics express the fact that the difference NV between the
function F'(z) and its ‘linear approximation’ F'(z) + DF(Z)(x — &) is more and
more negligible as x comes closer to 7.

1 Evolution equations

Systems that evolve in time are thought of and modelled as dynamical systems. The
state of the system at a given point ¢ in time is described by a state vector x;, which is
an ordered list of numbers that contains all information needed in order to describe the
system at that particular instance in time. The length of the list is the dimension of the
vector, and in practical applications the dimension of a state vector can be high. For
instance, in a climate model, this would include the value of temperature, wind speed
and pressure at many altitudes over many points on the earth surface.

Mathematically, a dynamical system consists of a set of state vectors, consti-
tuting the state space, and an evolution law, which determines how the state vector
xy evolves as time changes. In a model, the evolution law describes the effect of short
term interactions of the components of the state vector. The general aim of dynam-
ical system theory is to derive from these short time interactions the long run system
behaviour.

There are two classes of evolution equations, describing the time evolution
either as a continuous flow or as a succession of discrete time steps. As the distinction



has no significant implications to the following discussion, this article only considers
discrete time systems. For these systems, the short time system interactions give rise
to an evolution map F'. The associated evolution equation

Tip1 = F(x) (1)

governs the time path of the state. The map F is often called ‘the dynamical system’.
The initial state xy and the evolution law [’ determine the evolution of a dynamical
system of the form (1): such systems are called deterministic.

In analogy to the situation in mechanics, the quantity f(z) = F(x) —x is called
the force acting on the system. In terms of the force, the evolution equation takes the
form

Tep1 = 2 + f20). (2)
If no force is acting on the system, then the state of the system will not change: that
is, if f(x;) = 0, then 2,1 = z; for all t. The system is said to be at a steady state.

Practical systems are subject to external disturbances. These could be intern-
alised by considering a bigger system that also models the disturbance, but it is more
common to model the disturbances as random shocks to the system. This leads to con-
sidering evolution equations of the form

Ti41 = F(mtv 77t)> (3)

where {7} is a sequence of stochastic variables that model random shocks. A system
of the form (3) is called a stochastic dynamical system.

Typically, the evolution of a system confines itself for long periods of time to
a small part of the whole state space of the system, a ‘regime’: states in a given re-
gime have similar characteristics. Occasionally the system can switch to a different
regime. For instance, the earth’s climate system has shifted between ‘glaciation’ and
‘greenhouse’ regimes in the past.

It is of interest to be able to predict these regime shifts before they actually occur,
based on observations of the system. If the evolution map F' is known, this is a question
of identifying the present state z; and to compute its future evolution. Often, however,
the evolution map is known imperfectly or not at all and the only information available
are a series of observations {z;} of the state, a so-called time series. General dynamical
system theory can be used to develop early warning indicators for impending regime
shifts even for this situation.

2 Regime shifts in deterministic systems
This section introduces some basic notions from general dynamical systems theory.

2.1 Steady states

As mentioned above, if at a given state Z no force acts on the system, then the system
will not leave this state, and 7 is a steady state. However, a steady state is only dy-



namically relevant if it is stable. This means the following: if all state vectors that are
initially close to the steady state give rise to time evolutions of the system that tend
to the steady state as time increases, the steady state is called stable, or in technical
language ‘locally asymptotically stable’. Unstable steady states will almost never be
observed, as in practice there are always small perturbations pushing a system out of
the state and the system is not necessarily pushed back towards it.

To analyse the dynamics close to a steady state z, it is convenient to write the
state x; of the system as a deviation y; from the steady state, that is

Ty =T+ Y. (4)

In terms of deviations, the evolution equation (1) takes the form

Y1 = F(T +y) — 7. (5)

This system has a steady state at y; = 0.
Invoking Taylor’s theorem, and using the fact that F'(z) = 7 at steady state,
this can be written as

Y1 = Ay + N(y1), (6)

where A = DF(Z) is the Jacobian matrix of F' at Z, and where the term N(y;) is
typically much smaller than the linear term Ay; when the deviation ¥, is close to the
steady state y = 0. Put differently, often the dynamics of the system is already well
described by the ‘linear approximation’

Y1 = Ay (7)

A sufficient condition for the local stability of the steady state y = 0 of the system (6)
is that all eigenvalues of the matrix A are inside the complex unit circle. In the simplest
situation, where the state space is one-dimensional, this implies that close to the steady
state, the system is equivalent to the simple linear system

Yer1 = Yt (8)

with |A| < 1. Equivalence means here that the evolutions of the linear system close
to the steady state § = 0 are a faithful image of the evolutions close to the steady
state = of the original system; this implies that it is sufficient to consider the linear
dynamics (8). Those dynamics have the structure of a negative feedback loop: the
quantity y; measures the displacement of the system from the steady state, and the
new displacement y; will be smaller in absolute value than y;. As y;.1 feeds back into
the right hand side of equation (8) when ¢ is replaced by ¢ + 1, it follows that the
sequence of disturbances ¥, Y11, Y12, - . . decays towards zero.

The characteristic time 7' of this decay is inversely related to the magnitude
of [\| L. More precisely, defining the characteristic time as the time needed for a dis-
turbance to decay towards e ™! & (.37 times the original level, then the characteristic
decay time reads as

1

T———
log [\ (©)



For a stable steady state in a high-dimensional system, the characteristic time is also
given by equation (9), but with A replaced by the eigenvalue that is largest in absolute
value.

If however only a single eigenvalue of the Jacobian matrix is outside the unit
circle, then the steady state is unstable. Again equation (8), with |\| > 1, can explain
this: as now the absolute value of y, is amplified at each time step by the factor |A|, the
system constitutes a positive feedback loop which will in time drive the system from
the steady state.

2.2 Parameters

Dynamical systems often depend on parameters: think of these as state variables that
do not change. Parameters are additional variables, separate from state variables, that
determine the characteristics of the system; each value of the vector of parameters then
corresponds to a different dynamical system. The totality of the systems obtained in
this way is called a (parametrised) family F), of systems:

L1 = F(xy, p) = Fu(x). (10)

For instance, climate models operating on historical time scales assume the
earth’s axial tilt, which is the inclination of the rotation axis of the earth relative to
its orbital plane, to be constant. In reality the axial tilt changes periodically over a time
period of approximately 41 000 years. Other examples are the terrestrial albedo or the
output of greenhouse gases in different locations around the globe. In general, as long
as the value of a quantity changes sufficiently slowly it is admissible to treat it as a
parameter. In a further analysis, it can and should be treated as a slowly varying state
variable.

2.3 Generic properties

When discussing dynamical systems without any information given about the specific
structure of the map F/, it is helpful to restrict the discourse to generic properties of
systems. Loosely speaking, these are the properties of ‘typical’ dynamical systems, or
of typical families of systems.

Genericity of a property means the following two things: any system £, whether
it possesses the property or not, can be arbitrarily well approximated by systems having
the property: the property is said to be pervasive or dense in the space of all systems.
And secondly, if a system F' possesses the property, then it is not possible to make
a modification to F' that destroys the property, at least as long as the modification is
sufficiently small: the property is said to be stable or open in the space of systems. Of
course, the notions ‘arbitrarily well approximated’ and ‘sufficiently small’ have to be
made more precise before this definition is operational, but this is the basic idea.

For instance, for the system given in equation (1), let  be a locally asymptotic-
ally stable steady state of F'. In the space of all systems that have a stable steady state,



the property that the eigenvalues of the Jacobian matrix D F'(Z) are inside the complex
unit circle is a generic property.

2.4 Loss of stability

Consider now a family F), of systems that depends on a real-valued parameter p: each
particular value of 1 singles out a member of the family. Assume that F},) has a stable
steady state 7 such that all eigenvalues of DF), (Z) are inside the complex unit circle.

Then locally around the parameter value 1, the steady state x = Z(j) varies
smoothly with the parameter p. This rather abstract result has a concrete interpreta-
tion: generically, a stable steady state responds gradually to external changes in the
surrounding conditions.

As the eigenvalues of the Jacobian matrix D F), evaluated at the steady state Z (1)
depend smoothly on p, the steady state can only lose its stability when one of the
eigenvalues crosses the complex unit circle. What happens in that situation depends
on the local structure of the dynamical system at the steady state. As the structure of
the resulting dynamics changes at a stability loss, the dynamical system is said to go
through a qualitative change of dynamics or, more succinctly, a bifurcation.

There are two kinds of stability loss: soft and hard. After a soft loss of stability,
the system settles down to a time evolution that is still in the vicinity of the steady state.
After a hard loss of stability, the system may evolve towards an entirely different part
of the state space and an entirely different dynamical behaviour, both unpredictable
from the previous steady state dynamics. It is clear that only a hard loss of stability
can induce a regime shift.

It is here that the concept of genericity turns out to be useful: whereas for arbit-
rary families of systems the dynamics might change in a multitude of different ways, for
generic families that depend on a single scalar parameter there are precisely three dif-
ferent bifurcation scenarios through which a hard loss of stability can take place. These
are, respectively, the saddle-node, the subcritical period-doubling and the subcritical
Hopf bifurcation. Moreover, there are suitable descriptions of the state space such that
these bifurcations take place on a low-dimensional subspace, a so-called centre mani-
fold, and the dynamics of the whole system is entirely determined by its restriction to
these centre manifolds: below, these dynamics will be called the ‘essential’ dynamics
of the system.

There are three scenarios of hard stability loss that are universal to all dynamical
systems: though the consequences are different for every system, the mathematical
mechanisms are equal. Choosing variables appropriately reduces a system at a hard
loss of stability to one of three normal forms that describe the bifurcation mechanisms.

Almost all of the literature on early warning signals considers only the saddle-
node bifurcation, though often without mentioning it explicitly. The next subsection
will treat this bifurcation in some detail. Afterwards, the distinctive features of the
other two bifurcations will be touched upon briefly.



2.5 The saddle-node bifurcation
2.5.1 Mechanics of the bifurcation

A saddle-node bifurcation occurs if by varying a parameter y, the biggest eigenvalue )\,
in absolute value, of the Jacobian matrix DF),(Z) of a steady state exits the complex
unit circle at the point A = 1. In this case, the essential part of the system dynamics
is one-dimensional. Choosing variables in a certain suitable way, close to the steady
state and for parameter values p close to the bifurcation value f., the system takes the
normal form

Yir1 = Yp + fle — 1 — Y; - (11)

That is, locally around the steady state the essential part G : R — R of the evolution
map has the form G(y) = y + g(y), with restoring force g(y) = p. — p — y?. For values
of 1 smaller than ., there are two steady states

U1 = e — 1 and Yo = —+/fi. — [, (12)

while for 1 > p. there is no steady state. It is already apparent from the change
in the number of steady states that the dynamics bifurcate at the critical parameter
value p = pe.

The Jacobian matrix of G reduces to the derivative GG’, taking the values

)\1 = G/(gl) =1- 2\/,&6 — U and )\2 = Gl<§2) =1+ 2\/}10 — U. (13)

When p is such that pi. — p is positive but close to 0, the value of \; is inside the complex
unit circle, while )\, is outside. Moreover A\, as well as Ay, equals 1 at bifurcation.
Consequently, the steady state ¢, is stable, while 75 is unstable, and as y approaches ..
from below, the ‘attractiveness’ of 7/; decreases successively.

For ;1 > p. there is no steady state left, and the normal form only indicates that
the system will leave the neighbourhood of ¥ = 0 eventually, moving to a different part
in state space. Figure 1 gives the corresponding bifurcation diagram of the saddle-node
bifurcation. The set of equilibria forms a surface in the product of parameter and state
space. At a saddle-node bifurcation this surface folds back unto itself, as in Figure 2
at 4t = pi.. On increasing the value of y starting from low values, the stable and the
unstable steady state merge and disappear in a saddle-node bifurcation.

Figure 1 also shows the normal form dynamics (11) for a range of parameter
values. Initial states in the vicinity of the stable state lead to evolutions that move
towards the steady state, whereas evolutions starting close to the unstable state move
away from that point. In fact, it is apparent that the basin of attraction of the stable
state 7, that is the set of initial states which eventually will tend towards this state, is
bounded by the unstable state ¢,. This basin of attraction is a regime of the system, as
all systems whose initial state are in the basin will eventually display the same dynamic
behaviour.



Figure 1: Bifurcation diagram of the saddle-node bifurcation. The solid line indicates stable
steady states, the broken line indicates unstable steady states. The arrows show the direction of the
dynamics.

2.5.2 Resilience of the steady state

Holling (1973) puts the difference between resilience and stability of a regime of a sys-
tem as follows:

Resilience determines the persistence of relationships within a system and
is a measure of the ability of these systems to absorb changes of state vari-
ables, driving variables, and parameters, and still persist. In this definition
resilience is the property of the system and persistence or probability of
extinction is the result. Stability, on the other hand, is the ability of a sys-
tem to return to an equilibrium state after a temporary disturbance. The
more rapidly it returns, and with the least fluctuation, the more stable it is.
In this definition stability is the property of the system and the degree of
fluctuation around specific states the result.

More precisely, resilience R of a stable steady state is defined as the minimal size of a
perturbation that will shift the system into a different basin of attraction, whereas sta-
bility S is the speed by which a system returns to the steady state after a perturbation.
The inverse of the characteristic time T, see (9), quantifies this: S = 1/7". It turns out
that close to stability loss, both notions are closely related.

From the expressions for the stable and unstable equilibrium, it appears readily

Rzzvﬂc—u- (14)

In Figure 1 this quantity is the distance of the unstable steady state, which bounds the
basin of attraction of the stable steady state, to the stable steady state itself. Using
expression (13) of the eigenvalue \; of the stable steady state, also the characteristic

that



decay time can be expressed in terms of the difference between the actual and the
critical value of the parameter:

1
T=- : (15)
10g<1 - 2\/ He — ﬂ)
This leads to the following relation between resilience and stability at a saddle-node
bifurcation

1 1
Rzl—e_T%rT:S, (16)

where the approximation is better as 7" takes larger values. We see that the resilience is
inversely related to the characteristic decay time; put differently, close to a saddle-node
bifurcation the measures for resilience and stability are approximately equal.

Mechanical engineers have known this relation between resilience and stabil-
ity of steady states for a long time. For mechanical systems, characteristic frequencies
replace characteristic times; in their 1978 book, Catastrophe Theory, Poston and Stew-
art describe this in the case of a strut: “Thus unloaded it will go ‘ting’, moderately
loaded ‘bong’, and near buckling point ‘boiinnggggg’. (This is eminently familiar to
the practical engineer, but should warn the general reader to prefer soprano structures
to bass.)”

2.5.3 Slowly varying parameters

To summarise: knowing that a family of system £, is at bifurcation if the system para-
meter takes some critical value ¢ = p. gives information about all the systems that
are close to the bifurcating one. It is a statement about the structure of the family of
systems F),, rather than about single members of this family.

A common fallacy in the interpretation of bifurcation theory is to think of the
parameter p as slowly changing in time, and not to realise that then there will be a
dynamic interplay between the system dynamics and the parameter dynamics. This
is the province of a different theory, the field of slow-fast systems. Though closely
related to bifurcation theory, it studies different phenomena, like solution trajectories
that remain close to unstable steady states for long stretches of time.

A slow-fast system is a family F}, of systems where the parameter ;1 depends
on a slow time parameter 7. The slow time is related to the fast time ¢ by

T = et (17)

The requirement that 0 < ¢ < 1 is a small positive number expresses that 7 is much
slower than ¢: one unit of ¢-time corresponds to € units of 7-time. The parameter then
evolves as

= p(1),. (18)
A steady state Z(1) of the system with constant parameters, where ¢ = 0, is usually

not a steady state of the slow-fast system where ¢ > 0; it will called a ‘quasi-static’
steady state in the following. The location of a quasi-static stable state evolves as x =



Z(pu(7)). In fact, the substitution (18) replaces the multi-dimensional parameter y by
the single-dimensional parameter 7. Equivalently, we can think of the parameter p
being one-dimensional, and that it moves sufficiently slowly that the state has time to
decay towards the quasi-static steady state, at least, if y is far from bifurcation. Close
to bifurcation this tracking of the quasi-static state by the actual state will break down.
For it has already been seen that approaching the bifurcation, the characteristic decay
time will tend to infinity, and will therefore at a certain point be slower than the change
in the system parameter. See also Figure 2 below.

2.5.4 Catastrophic regime shifts

Consider now the system (11) with a slowly varying parameter ((7) = pi.+7 = po+et:
the parametrisation is chosen such that at ¢ = 0 the parameter ;1 equals the critical
value fi.. The system then takes the form

Yer1 =t + Yy — 7. (19)

For t < 0, the state v, remains close to the quasi-static steady state
yi(p) = Ve — p = vV —¢t. (20)

Att = 0, the system is close to y = 0, and for ¢ > 0, the system drifts away from y = 0
at a rate that is linearly increasing in ¢. Figure 2 illustrates this, indicating the regime
shift for an infinitely slow changing parameter by a dashed line, and the shift for a
more rapidly changing parameter by connected dots. In the second case, the system is
still close to the region where the steady state used to be, while the steady state itself,
and its basin of attraction, have already disappeared. This is as far as the local analysis
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Figure 2: As i1 increases, the upper steady state disappears in a saddle-node bifurcation at i = [i..
It then shifts catastrophically towards a new regime.

of the saddle-node bifurcation will take us: if g > p., the system shifts to a different
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part in state space, possibly far away. This is commonly expressed by saying that the
system readjusts to a new stable regime by going through a catastrophic regime shifi.

Catastrophic system changes of this sort have been studied extensively from
the 1970s onward. The mathematicians René Thom and Christopher Zeeman pointed
out that since the underlying mechanisms are universal for all dynamical systems, they
are expected to be relevant for a wide range of vastly different kinds of systems. Since
then, many instances of such changes have been documented.

Actually, the saddle-node bifurcation described above is associated to the fold
catastrophe, which is the simplest, and therefore the most prevalent, of Thom’s classi-
fication of elementary catastrophes.

2.6 The subcritical bifurcations

There are two other scenarios for a hard loss of stability, the subcritical period-doubling
and the subcritical Neimark-Sacker bifurcation. In both bifurcations the steady state
loses stability through the onset of oscillations, and in both cases, a regime shift ensues.
The corresponding supercritical bifurcations are soft and do not give rise to a shift.

2.6.1 Subcritical period-doubling

The normal form dynamics of the subcritical period-doubling bifurcation read as

Y1 = Gly) = —(1+ )y — vy, (21)

which is valid for values of y; and 1 both close to 0. There is only a single steady
state y = 0. For small negative values of x this state is stable, while for positive values
of p it is unstable. There is consequently a qualitative change at ;. = 0. Foregoing a
full analysis of the dynamics, Figure 3 displays the summarising bifurcation diagram.
For o < p. there is a stable steady state at ¥ = 0. An unstable periodic trajectory of
period two bounds its basin of attraction.

A period-two trajectory is a state which under the evolution returns to itself
after two time steps, and, consequently, each second time step. Denoting the lower
and upper bounds of the basin by y, and y,, then

Yo =~V lhe = [y Yu =\ le — I, (22)

and G(y;) = y, and G(y,) = G(G(ye)) = ye. If the initial state yq is equal to y,,
then y; is equal to yy, y2 to y,, ys to y, etc. The system is said to exhibit period-
two cyclic behaviour. From the expressions of ¥, and y,, it follows that the relation
between the resilience R of the stable steady state and the parameter p is again given
by equation (14).

The derivative A of G at the stable steady state reads as

A=G"(g) = —1+ (pe — ). (23)

The distinctive feature of the period-doubling bifurcation is that A approaches the
value —1 at bifurcation, and not 1 as in the saddle-node bifurcation.
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Figure 3: Period-doubling bifurcation diagram. For ;v < 1., there is a single stable steady state,
surrounded by an unstable periodic orbit. At ;1 = L., the steady state loses stability and becomes
unstable for 1 > L.

The relation between the resilience of the attracting steady state and the differ-
ence of the actual parameter value to the critical value is in this situation identical to
that of the saddle-node bifurcation scenario, given in equation (14). As however A hasa
different form, the relation between resilience and characteristic decay time takes here

the form
R=\/l—eTa~T 2= (24)

again, the quality of the approximation improves as 7" takes larger values. This relation
expresses that resilience decays much more slowly with the decay time than in the
saddle-node situation. Put differently, the kind of relation between decay time and
resilience depends on the kind of stability loss.

At i = ., the unstable period-two system trajectory merges with the stable
steady state, which then turns into an unstable steady state. As in the case of the
saddle-node bifurcation, the system will then shift towards a different regime.

Figure 4 shows this shift for the model system

T = F(z) = —(1+ p)a; — 2} + 103, (25)

This system has a stable steady state for y < s = 0. Moreover, it goes through a
saddle-node bifurcation of period-two orbits at ;1 = p1 < pe. For py < p < po,
there are therefore two coexisting regimes. The regime associated to the stable steady
state £ = 0 disappears in a subcritical period doubling bifurcation at ;1 = o, after
which the system settles on the stable period-two cycle that remains. Remark that the
jump towards the new regime is not immediate: if p(7) > po, the system remains for
some time in the vicinity of the, now unstable, steady state = 0. Clearly, even though
the system is in the vicinity of a steady state for some time, it does not necessarily
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Figure 4: Dynamics for the system (25) in a (p, x)-diagram, where u(7) = pc + 7 = pic + €t.
For n = g = 0 the system goes through a period doubling bifurcation. The system keeps tracking
the unstable equilibrium for some time, before shifting to a different regime, in this case a stable
periodic orbit.

guarantee that the state is stable. This is another mechanism, again due to a slow-fast
interaction between system dynamics and parameter dynamics, how the stability loss
of a steady state is apparent only after some delay.

2.6.2 Subcritical Neimark-Sacker

The last bifurcation that leads to a hard loss of stability is the subcritical Hopf or sub-
critical Neimark-Sacker bifurcation. The normal form map is a map G : R? — R? on
the plane, given as

Zep1 = (1 4+ p) Uyt + Hth Ueuyze + - (26)

where z; = (214, 22¢) € R?, = 2%, + 22,, and where

U, = (C?S ¥ —sin 19) (27)

sind cos?

is the matrix of a rotation through a positive angle ©J. The bifurcation takes place at y. =
0; the constants a( ) and ¢(p.) have to satisfy some technical conditions, which will
not be specified, and the dots indicate terms of higher than third order in |z;| that have
been omitted. Expressing the map in polar coordinates

Z1¢ = 1y COS Py, 2ot = Ty SIN @y, (28)
and taking into account the technical conditions, the map takes the form

rer=rbr (),
Pri1 = @+ alp) + B(u)r? +
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This time, the dots indicate terms of order four or more in 7; and of order two or more
in p, which will be disregarded in the following. In this approximation the evolution
of , is independent of that of ¢,. In particular, there is a steady state 7, = 0 that is
attracting for u < p. and repelling for pt > 1., and a second steady state 7o = /1. — i
that is repelling for all i < p. and which bounds the basin of attraction of the stable
steady state.

In the original two-dimensional dynamics, the unstable steady state r = 75
corresponds to an unstable invariant circle

C={zeR*: |z]| = Vi — p}, (29)

which bounds the basin of attraction of the stable steady state z = 0.
As in the previous situation, the relation between the resilience of the stable
steady state and the characteristic decay time is given by relation (24).

Im(2)

Figure 5: Neimark-Sacker bifurcation diagram. For | < (i, there is a single stable steady state,
surrounded by an unstable invariant circle orbit. At i = p., the steady state loses stability and
becomes unstable for . > jic.

3 Regime shifts in stochastic systems

For a practical system at this point a problem arises. Assuming that the system is in
a stable steady state, we should like to have information about its resilience. Close
to bifurcation, the resilience is inversely related to the characteristic decay time. But
it is not feasible to subject a large system like, for instance, the earth’s climate to a
deliberate perturbation to determine the average return time of the climate system to
steady state.
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3.1 Linear stochastic systems

Fortunately, this is also not necessary as most systems are constantly subjected to small
random perturbations. It is appropriate to approximate a nonlinear system

Ty = Fy(xy) +ony (30)

at a steady state T of F}, by the linear stochastic system

Yey1 = A(p)ye + oy (31)

Here A(p) = D, F,(Z) and y; = x; — &. The components of the vectors 7; of random
variables are assumed to be identically and independently distributed, all of mean 0
and variance 1; the matrix ¢ models then the correlation structure of the noise.

The stochastic properties of the process {y,; } should give information about the
matrix A. Again for a one-dimensional system, this appears most readily. Consider

Y1 = Yy + o,

This generates a linear stationary stochastic process. Its most important characteristic
is the autocovariance function Cov (yt, ys), which, by stationarity, is only dependent
on the difference |t — s|, and which reads as

0% s
C o) = Alel
ov(yi,¥s) = T3
In particular, the variance of y; is
o2
Var(y,) = Cov(ytmyt) —1_ e (32)
Also, the first order autocorrelation coefficient
Cov (Y, Ye+1
p1 = g (33)

Var (yt)

of the process is equal to .

In a saddle-node bifurcation scenario, as the parameter y approaches the critical
value, the value of )\ approaches 1, and all autocorrelations will increase indefinitely.
As these quantities can be readily estimated from time series, this opens an approach
to determine the characteristic decay time and hence the resilience of the steady state
in practical situations.

3.2 Model system: stochastic saddle node

To test whether this indeed leads to a method that can predict regime shifts, we simulate
the nonlinear stochastic system

Tpo1 =4 — e — Ty +om, 0<t<T—1, (34)
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where z; is the state variable, taking values in the real numbers, where 1, is a slowly
moving parameter given as

My = po + €L, (35)

and where the 7, are normally distributed variables with mean 0 and variance 1. The
critical parameter value is ;1. = 0. Figure 6 gives the resulting time series in a (u, x)-
diagram. It tracks the location of the stable steady state closely before shifting towards
a different regime.

Mt

Figure 6: Stochastic fluctuations around a stable steady state in system (34), depicted in
the (uut, xt)-diagram. Parameters are ¢ = 0.0001 and o = 0.01.

To obtain an estimate of the autocorrelation coefficient, first the deviation

Ye = T — T(j1t) (36)

of z; from the steady state Z(u) = /. — 1 is computed. As the dynamics of y; are
expected to be well described by the linear system (31), the linear model

Yea1 = Ay (37)
is fitted to segments of length w of the series {y; }. That is, for a segment

S(t) = {yt7w+1> Yt—w+25 - - - ayt}7 (38)

the ordinary least squares estimator of the first order autocorrelation coefficient A
in (37) is determined, based on the data in S(¢). This yields for each ¢ an estimate S\t
of . As y; changes with time, the S\t will change with time as well. Figure 7 gives the
estimates S\t, together with their 95% confidence intervals.

The data indicates that )\, is increasing with ¢. But the final value is still far
away from 1. Moreover, compared to the quasi-static value

At =1=2vpe — it (39)

of )\, the estimated value is far off.

Of course, the problem is that the length of the segments used to estimate )\,
has been taken too long. On taking shorter segments, the error bounds increase, but
on the other hand they contain the true value of ); in the great majority of cases: see
Figure 8. There the estimated value of ) increases towards A = 1.
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Figure 7: Estimates At of the first order autocorrelation coefficient \, with 95% confidence intervals.
The dashed curve indicates \y = 1 — 2\/—p. Parameters: € = 0.0001, o = 0.01 and w = 2500.
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Figure 8: As in figure 7, but with w = 250.

3.3 The end of the last glaciation period

Using the same techniques, we examine a temperature time series obtained from ana-
lysing the Vostok ice core data. Figure 9 shows a segment of this time series. The
sudden warming of the earth climate that started around 17,000 years ago is clearly
visible.

A problem here is that the steady state Z(x) is unknown. But this can be re-
solved by filtering out the high frequency oscillations to obtain a low-frequency com-
ponent Z; of the time series, and then subtracting out the low-frequency component to
obtain

Y = Xy — Ty (40)

Again a linear model (37) is estimated over segments S(t) of length w. Figure 10 depicts
the resulting estimates A

This seems to result in a sequence that is increasing, and a rank correlation test
does amply confirm that. However, the subsequent estimates \; are highly dependent
on each other. Moreover, the vertical scale in figure 10 is distorted. Figure 11(a) gives
a version with larger scale and error bounds. There the increase in A is far less pro-
nounced. What is true, however, is that the value of 5\,5 is uniformly near the value 1.
Together, this suggests that towards the end of the last glaciation period the earth cli-
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Figure 9: Temperature dynamics at the end of the last glaciation period. Time is given in years to
present, temperature as temperature difference to present day mean temperature. From Petit et al.
(2001).
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Figure 10: Estimates At of the first order autocorrelation coefficient \. Parameters: T = 911
and w = 455.
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mate system was in a steady state whose resilience was small. However, the evidence
of Figure 11(a) points against the hypothesis that the transition mechanism that led to
the present state was a catastrophic shift.

Estimates performed with a smaller time window seem to confirm this, as the
increase over time of \; is replaced by oscillatory behaviour, as in Figure 11(b).

3.4 Noise-induced regime shifts

Recall that the resilience of a steady state is the smallest distance of the steady state
to a point on the boundary of its basin of attraction. If this quantity is of the same
order of magnitude as o, then there is a sizable probability that a single large shock,
or a succession of medium-sized ones, may push the system outside the basin. This
is a different mechanism how a system can change regimes; it is commonly called a
noise-induced regime shift.

Figure 12(a) illustrates such a transition for the model system (34). Figure 12(b)
gives the corresponding estimates of ), for times just prior to the shift. Though the
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Figure 11: Estimates At of the first order autocorrelation coefficient \, together with 95% confidence
intervals, forw <t < 911. Left: w = 455, right: w = 250.
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Figure 12: Left: stochastic fluctuations around a stable steady state in system (34), depicted in
the (t, x;)-diagram. A broken curve denotes the location of the unstable steady state that bounds
the regime. At the noise-induced transition, the system leaves the regime. Parameters are ¢ =
0.0001 and o = 0.1. Right: autocorrelations with 95% confidence intervals, computed on segments
of length w = 250.

values of )\, increase, fitting and extrapolating a functional relationship of the form

A=Cv e — (po + €t) (41)

would result in a prediction for the catastrophic regime shift for values of ¢ about 2500,
whereas the noise-induced shift already occurred for ¢t ~ 2150.

Comparing Figures 8 and 12(b) to Figures 11(a) and 11(b), it seems probable that
the end of the last glaciation period was brought about by a noise-induce transition.

3.5 Global bifurcations

All of the above argumentation presupposes that the system is at or near a steady state.
There are however other types of dynamic system behaviour. For instance, a system
can oscillate regularly with one ore more frequencies: the evolution of the system then
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converges to a set in state space, an attractor, which is equivalent to a circle or a torus,
that is, a Cartesian product of circles. Another possibility is that a system oscillates
chaotically: the attracting set is then a strange attractor, an intricate fractal set carrying
complex dynamics. In this context, chaotic refers to the phenomenon that trajectories
which have very similar initial conditions almost always diverge from each other and
eventually generate wildly different time series: chaotic systems are unpredictable in
the long run.

The resilience of these attractors can be defined as before as the smallest per-
turbation that can push some point on the attractor out of the attractors basin of at-
traction. As in the case of attracting steady states, the resilience drops down to zero
when the attractor touches the boundary of its basin of attraction: the system is then
said to go through a basin-boundary collision or a global bifurcation.

The point relevant for the present discussion is the following: contrary to steady
states, general dynamic attractors have non-trivial internal dynamics. A system at
steady state is at rest, and only changes its state if it is perturbed from its steady state:
the autocorrelations of the associated time series give information about the charac-
teristic return time. A system that is on a dynamic attractor is perpetually in motion,
even if not perturbed, and it is a hard filtering problem to decompose the time series
of such a system in a component corresponding to the internal dynamics and a com-
ponent that is generated by perturbations away from the attractor; only the latter will
give information about the characteristic return time and the resilience of the system.
In order to perform this decomposition, the strange attractor and its internal dynam-
ics have to be estimated from the data. To obtain significant estimates in this manner,
usually long time series of observations are needed.

A failure to take the possibility of global bifurcations into account can result
in unexpected behaviour, treating for instance a time series coming from a strange
attractor as if it were generated by a noisy system at a steady state. In the follow-
ing example, a time series with vanishing first order autocorrelations is generated by
the internal dynamics of an attractor in a deterministic, but chaotic, one-dimensional
dynamical system. An observer assuming that a noisy system at a steady state gen-
erated the series and estimating the autocorrelations will conclude that the system is
far from bifurcation. The dynamics is however critical: changing the parameter by a
small amount, the chaotic dynamics loses the property of being attracting, and it es-
capes to a different region. In this case there is no warning signal given by increasing
autocorrelations.

The example considers a deterministic evolution

Tip1 = Fp(l’t) (42)

on a one-dimensional state space given as

px(l —z), x>0,
Fu(z) = e (43)
— —1, x <0
e?re 41
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Figure 13 represents the evolution law graphically. Recall that intersections of the
graph z;11 = F},(z;) and the line x;,, = x; yield steady states of the system. The cru-

Xt+1
1.0+

Figure 13: Evolution law (42) for p = 4. White dots indicate unstable steady states, black dots
stable steady states. If 0 < xg <1, then0 <z <1 forallt > 0.

cial property is that for 0 < ;1 < 4 the local maximum of F), at the critical point ¢ = 1/2
is smaller than or equal to 1. This implies that if 0 < x7 < 1, then the inequalit-
ies 0 < x; < 1 will also hold for all future states z;. If however p > 4, there is a small
interval I around c such that if x;, € I for some ¢, then x,11 > 1, 4,42 < 0 and z;
tends to the stable steady state + = —1.

This is another kind of catastrophic shift. Figure 14 illustrates the correspond-
ing time series: as for y = 4 the dynamics cannot escape from the interval [0, 1] the
oscillations will go on indefinitely in that case. For ;¢ > 4, the dynamics escapes for
almost all initial values from the interval [0, 1], sooner or later, and ends up at the stable
steady state that is close to x = —1.

1000

-05

-1 -1

Figure 14: Time series of the deterministic system (42) for yu = 4 (left) and p = 4.00001 (right).
To the casual observer, these time series may seem to be stochastic.

However, estimates of the first order autocorrelation coefficient yield a value

of almost zero in both cases, and the series that exhibits a catastrophic shift has no
increase in the autocorrelations before the shift. See Figure 15.
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Figure 15: Autocorrelations estimated on the time series of the deterministic system (42) for u = 4
(left) and p = 4.00001 (right). Window length w = 250.

4 Conclusion

Imminent catastrophic regime shifts may be predicted from the rise of characteristic
decay times, or, equivalently, from the increase of first order autocorrelation coeffi-
cients towards 1. This indicator by itself is crude: a rise gives a strong indication of
an impending regime shift, but it may overestimate the time to the regime change if
the parameter changes quickly (Figures 2 and 4), if the estimation windows are large
(Figure 7), or if the stochastic perturbations are large (Figures 11 and 12). Moreover,
if the indicator is far from the critical value, the system may still be close to a regime
shift (Figure 14).

This should not give the impression that this method is impractical. On the con-
trary, the hallmark of a scientific theory is that it gives strong and testable implications.
If estimated autocorrelations exhibit the square-root type of growth of equation (41),
this strongly points to a catastrophic regime shift at

Me — Mo

te = ——. (44)
9

The counterexamples given emphasise that there are other types of regime shifts that
are not picked up by the indicator. The glaciation example suggests that other mechan-
isms may be better explanations for a given shift. Moreover, the absence of a trend in
the first order autocorrelation coefficient, or even their vanishing, does not necessarily
imply a large resilience of the system.

Considering the possibility of a regime shift in, for instance, the climate system
of the earth, it is perhaps worthwhile to point out that there we know that a system
parameter — the amount of greenhouse gases in the earth’s atmosphere - is increasing,
and that we have data on this increase. This gives more information to a statistical
procedure, as the parameter ¢, the speed of increase of the system parameters, can be
estimated much more precisely. Moreover, the increase is presumably rapid compared
to the natural climate dynamics, which makes the probability of a catastrophic regime
shift, as opposed to a noise-induced shift, much larger. Based on the techniques presen-
ted, a statistical theory of early warning signals for such a shift can be built. However,
for shifts that are associated to global bifurcations of more complex attractors than
steady states, more sophisticated methods have to be developed.
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