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Abstract

Economic consequences of critical transitions or regime shifts of ecological

systems are a source of considerable concern. Though the underlying mechan-

isms are well-known, only since the advent of electronic computers the analysis

of economic models exhibiting critical transitions can be attacked systematic-

ally. In particular bifurcation theory allows to present the qualitative e�ects of

parameter changes in a convenient way. This article gives an overview of recent

economic literature dealing with potential environmental regime shifts with a

focus on the lake model.
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1 Introduction

Many systems can exhibit qualitatively di�erent behaviour; which of these is

selected is a function of the history of the system. This phenomenon is common in

economics: we talk of societies languishing in poverty traps; evolutionary game

theory explains why in a given country all cars drive on the same side of the

road, though it does not make predictions about which side this will be; and

archaeologists tell us that 6000 year ago, the Sahara desert was a pleasant place

to stay. All of these are regimes of the system in question.

A regime is a collection of states with similar characteristics. Big external

shocks can transport a system from one regime to another. More usual are ac-

cumulating processes exhibiting positive feedbacks. In economics, early docu-
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mented instances of such a feedback mechanisms are increasing returns to scale,

perspicaciously described by Adam Smith in his discussion of the pin factory.

This mechanism e�ected one of the most far-reaching regime shifts, transporting

western society from the agricultural-manufactural state to the industrial state.

The overriding interest of the problem of the existence of a general equi-

librium, and the related hope that this equilibrium might be stable under some

general conditions, has over time fostered a huge research e�ort in mechanisms

that ensure stability, putting emphasis on static rather than dynamic aspects of

economic systems. The literature on destabilising mechanisms is comparatively

much smaller, but typically in times of actual or impending economic crisis, the

dynamic aspects of economies have a tendency to return to the fore.

In these days, there is ample evidence that the mean temperature of the at-

mosphere and the oceans is rising, and moreover that this is a consequence of

human actions. This temperature rise changes the living conditions of plant and

animal species, and by itself it may have serious consequences for man’s eco-

nomic activities.

Moreover, ecological systems may respond to an incremental increase of en-

vironmental pressure with sudden regime shifts, which have short-term and long-

term economic consequences. A body of important research on the economics of

ecological systems with nonconvexities has been collected in Dasgupta and Mäler

(2004). This article discusses economic set-ups in which regime shifts may occur

that have been developed since, techniques to analyse them, and lessons that can

be learned from them. Special emphasis is put on the so-called lake or shallow

lake model, as it is in a sense the simplest dynamic economic model featuring a

regime shift; this occupies the �rst part of the article. Other approaches treat the

shift to a di�erent dynamics as occurring with a certain probability. For a recent

overview of literature treating the management aspects of regime shifts, we refer

the reader to Crépin et al. (2012).
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2 Deterministic regime shifts: the lakemodel

The ‘lake’ or ‘shallow lake’ model was introduced to analyse the tragedy of the

commons in the situation of a lake polluted by agricultural waste. Its simplicity

makes it a prototypical study object for the rami�cations of optimal management

decisions when dealing with a system that features positive feedback.

Lakes host intricate ecosystems; for the present purposes, an oversimpli�ed

description is su�cient, but the real object is much more complicated (Sche�er,

1998).

The bottom of a lake is formed by the sediment; the root systems of water

plants hold it in place. In a clear, ‘oligotrophic’ state, the sunlight, which these

plants need to live, �lters through the water column above them. If arti�cial fer-

tilisers are used on the �elds around the lake, rainfall washes some of the phos-

phorus they contain into the lake. There it increases phytoplankton biomass in

the water column as well as the periphyton layers on the water plants. Both

deprive the plants of light.

When water plants die, they release the lake sediment, and the phosphorus

contained in the sediment. This initiates a positive feedback loop, as the resuspen-

ded phosphorus increases the phytoplankton biomass in turn: the lake becomes

turbid or ‘eutrophic’. Depending on the characteristics of the lake, a return to

the oligotrophic state, if at all possible, necessitates a large reduction of in�ow of

phosphorus.

Denote byx = x(t) the amount of phosphorus suspended in the water column

of the lake, by u = u(t) the in�ow, per unit time, of phosphorus resulting from

agricultural activities, and by b the sedimentation and out�ow rate of phosphorus

out of the water column. The following di�erential equation provides a model for

the phosphorus concentration x in the lake (Mäler et al., 2003):

ẋ = u− g(x). (1)
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In particular, the natural dynamics g of the lake is often taken to be of the form

g(x) = bx− x2

x2 + 1
. (2)

Figure 1 illustrates the resulting dynamics for constant loadings u and three dif-

ferent values of the sedimentation rate b. The arrows indicate the direction of the

x

u

uc

xc

(a) Fragile lake

x

u

(b) Reversible lake

x

u

(c) Robust lake

Figure 1: The lake dynamics for a fragile lake (b = 0.49), a reversible lake
(b = 0.51) and a robust lake (b = 0.66). The black square indicates the point
of no return of the fragile lake.

dynamics. Taking u for the moment to be a constant system parameter, it appears

from Figure 1 that for some combinations (b, u) the lake dynamics (1) has a single

steady state, whereas for others there are three steady states. Figure 2 indicates

the precise parameter regions. Increasing the value of the parameter u in, for

instance, Figure 1(a) destabilises the oligotrophic (left) steady state at a critical

value uc, and the system shifts to the eutrophic (right) steady state. Decreasing

the value of u slowly, will not shift the system back. A fragile lake cannot be

restored to an oligotrophic situation at all: if the state x(t) reaches the level xc
(see Figure 1(a) for the location of xc) for some time t = t′, it cannot decrease

past xc for any future time t > t′ again: the regime shift is irreversible. But even

if the regime shift is reversible, as in Figure 1(b), the phosphorus in�ow has to be

decreased to much lower levels than uc before the reverse regime shift occurs.

Equation (1), with x as a negative capital and u as a negative investment,

has similar properties to capital dynamics with increasing returns to scale, that

is, with non-concave production functions, which have been considered in the

literature on optimal growth since the late 1960s (see e.g. Dechert and Nishimura,

1983; Krugman, 1991; Majumdar and Mitra, 1982; Romer, 1986; Sethi, 1977; Skiba,
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Figure 2: Bifurcation diagram for the lake dynamics (1). The labels refer
back to the three typical situations depicted in Figure 1: region (a) corresponds
to a fragile lake with three steady states, region (b) to a reversible lake with
three steady states, and region (c) to a robust lake with only a single steady
state. Two saddle-node bifurcation curves (solid), coalescing in a cusp point,
bound the union of the regions (a) and (b) where there are three steady states.
The line b = 1

2 (dashed) divides these two regions.

1978; Treadway, 1969). Pollution models with nonconcavities were studied by

Tahvonen and Salo (1996) and Brock and Starrett (2003).

3 Optimal management

3.1 A�ectors and enjoyers

Equation (1) describes the ecological dynamics of the lake. An economic com-

ponent enters if there are agents that use the lake. This may be direct use, by

�shermen for �shing, by tourists for recreation, by a water company for fresh-

water, or indirect use, by farmers that use arti�cial fertiliser. In the terminology

of Brock and Starrett (2003), the former agents are enjoyers of the lake, while the

latter are a�ectors. The shallow lake literature assumes that the social stream of

bene�ts βs is of the form

βs(x, u) = βa(u) + c βe(x). (3)
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The bene�t stream βa(u) of the a�ectors is increasing and strictly concave in the

use u of phosphorus, whereas the bene�t stream βe(x) of the enjoyers is decreas-

ing and strictly concave in the amount of phosphorus x in the water column of the

lake. The parameter c is a weighting parameter, expressing the relative economic

importance of the enjoyers relative to the a�ectors of the lake.

In Mäler et al. (2003), where the economic lake model was introduced, the

following speci�c choices were made:

βa(u) = log u, βe(x) = −x2. (4)

In the shallow lake optimal control problem, a manager maximises the integral I

of the discounted stream of bene�ts over an in�nite time horizon

I =

∫ ∞
0

e−ρtβs(x, u) dt =

∫ ∞
0

e−ρt (βa(u) + c βe(x)) dt, (5)

subject to the dynamic constraint (1).

3.2 Analysis of long term steady states

The lake problem almost always reduces to a quasi-static problem if future bene-

�ts are not discounted. To make this statement precise, the concept of an optimal

solution of the problem has to be speci�ed, as the integral (5) usually diverges

if ρ = 0. Rather than introducing notions like catching up or overtaking optim-

ality (von Weizsäcker, 1965), the much simpler notion of average bene�t stream

is used here.

De�ne the �nite-horizon average bene�t stream

AT =
1

T

∫ T

0
βs(x, u) dt,

which compares the integrated undiscounted bene�t stream with a constant be-

ne�t stream. The in�nite-horizon average bene�t stream is then

A = lim
T→∞

AT .
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For trajectories tending to a steady state, the value ofA reduces to the value of βs

at the steady state, as the details of the transient dynamics do not in�uence the

value of the limit. Only if there are several steady states with equal values of A,

a more precise optimality criterion, like catching up or overtaking, is relevant. In

the present context, this however constitutes a non-generic ‘hairline’ case.

In the situation without discounting, a manager has to maximise the bene�t

stream

βs(x, u) = βa(u) + βe(x),

subject to the steady state condition

u− g(x) = 0; (6)

(compare Mäler et al., 2003, Section 3). Substitution of the latter equation into the

former yields the bene�t stream as a function of the state

β(x) = βa(g(x)) + βe(x).

If this is maximal, then

β′e(x) + β′a(g(x))g
′(x) = 0.

That is, the sum of the marginal bene�ts which the enjoyers and the a�ectors

derive from the lake is zero.

For the speci�cation (2) of the lake dynamics and (4) of the bene�t streams,

Figure 3 shows the graph of β.

It appears that the function β can have several local maxima. To �nd the

parameter values for which one of these, say the left local maximum, is global, it

su�ces to determine those parameter values which are in the boundary of this

set; these correspond to the bifurcating cases. For the situation that there are two

local maxima, and the left one is global, there are two bifurcations: either the

right local maximum is about to disappear in a degenerate critical point, or the

two local maxima are both global. The numerical condition for the �rst case is
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Figure 3: Total bene�t stream in steady state: b = 0.55, c = 0.35.

that there are two points x1 < x2, such that

β′(x1) = 0, β′′(x1) < 0,

β′(x2) = β′′(x2) = 0, β′′′(x2) 6= 0,

and for the second

β′(x1) = β′(x2) = 0, β′′(x1) < 0, β′′(x2) < 0,

β(x1) = β(x2).

Figure 4 depicts the curves in the (b, c)-parameter plane determined by these con-

ditions, as well as analogous conditions for the case that the right local maximum

is global.
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history dependence

Eutrophic region
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Figure 4: Bifurcation diagram of the quasi-static optimally managed lake.

There is a peculiarity in this �gure, related to the line b = 1
2 . Recall that
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if b ≤ 1
2 , the lake is irreversible, once it has reached an eutrophic state. The region

where the oligotrophic steady state is optimal has therefore to be divided into two

subregions, according to whether the oligotrophic maximum can be realised from

all initial states, or whether it can be realised only from su�ciently unpolluted

initial states.

Note that the interval of eutrophic c-values increases as b increases: this re-

�ects the fact that for robust lakes, the eutrophic states are less damaging than

for fragile lakes, and therefore it is less imperative to avoid them. Optimal man-

agement gives the highest priority to conserve the most fragile ecosystems.

3.3 Analysis of dynamic solutions

For positive discount rates, the details of the transient dynamics are not negligible

any more. Solutions to the optimal management problem are computed using the

Pontryagin maximum principle (see e.g. Seierstad and Sydsaeter, 1987). For this,

introduce the (current-value) Pontryagin function

P (x, y, u) = βa(u) + βe(x) + y(u− g(x));

here y is the shadow cost of pollution. The function P is often called the (current-

value) Hamilton function or the unmaximised Hamilton function. The maximum

principle requires that for given x and y, the action u maximises the value of P .

Let u = u∗(y) = (β′a)
−1(−y) be this maximiser. The current-value Hamilton

function of the problem, also called the maximised current-value Hamilton func-

tion, is then

H(x, y) = βa(u
∗(y)) + βe(x) + y(u∗(y)− g(x)).

The maximum principle then further requires (x, y) = (x(t), y(t)) to satisfy the
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system of di�erential equations

ẋ =
∂H

∂y
(x, y) = u∗(y)− g(x), (7)

ẏ = ρy − ∂H

∂x
(x, y) = ρy − β′e(x) + yg′(x), (8)

together with two additional boundary conditions in the time domain. The �rst

of these

x(0) = x0 (9)

just expresses that at t = 0, the state trajectory is at the initial state x0. The

second is the transversality condition, which requires that

lim
t→∞

e−ρty(t) = 0 (10)

if the state trajectory is eventually bounded away from the state boundary point

x = 0; that is, if there is some δ > 0 and some T > 0 such that x(t) > δ for

all t > T . If the state trajectory is not eventually bounded away from the state

boundary, then the transversality condition requires that

lim sup
t→∞

e−ρty(t) ≤ 0. (11)

Equations (7), (8), (9) and (10) or (11) constitute necessary conditions for any

optimal solution. These conditions take the form of a boundary value problem of

a system of di�erential equations. The typical outcome of the maximum principle

is a diagram as shown in Figure 5.

The �gure shows two curves in the (x, u)-plane that have the property that

the graph of the optimal policy function, denoted by a thick line in the �gure, is

necessarily a part of the union of these curves. The two curves are the union of the

orbits that approach the saddle equilibria of the state-costate system, indicated by

dots in the �gure, as t tends to in�nity. The curves do not fully specify the optimal

policy function, as there is a region, roughly between x = 0.6 and x = 1.1, where

the graph of the optimal policy function could coincide with either of the curves.
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Figure 5: Candidate solutions found with the maximum principle. Paramet-
ers: b = 0.51, c = 0.5, ρ = 0.03.

To resolve this ambiguity, the value of the integral I has to be computed on

all points of the two curves in the overlapping interval; this is usually done using

numerical methods. It can be shown (Wagener, 2003) that there is exactly one

point xi in the ambiguous interval such that for all x ≤ xi, the curve through the

left saddle point coincides with the graph of the optimal policy function, while

for x ≥ xi, the same holds for the curve through the right saddle point. At xi,

the policy maker is indi�erent between the two branches of the policy function;

the point is therefore called an indi�erence threshold. The reader should note that

there are many names used in the literature for this concept: e.g. tie point, shock

point, Maxwell point, Skiba point, Dechert-Nishimura(-Sethi)-Skiba point.

The result of the analysis is the optimal policy function, illustrated in Figure 6.

In the �gure the dashed line indicates the locus of the stabilising levels of u;

those are the levels of u which stabilise x at the given value. For the left steady

state xo, the optimal pollution policy is above the stabilising level if 0 ≤ x < xo,

while it is below that level if xo < x ≤ xi. This pushes the system towards xo for

all initial states below the indi�erence threshold – arrows on the horizontal axis

indicate the dynamics under the optimal policy. Analogously, for all initial states

above xi, the optimal policy pushes the state to the right steady state xe.

Note also the gradient of the optimal policy function: at the oligotrophic

steady state, it is strongly negative, implementing a strong negative feedback
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Figure 6: Optimal policy function and optimal dynamics. Intersections of the
graph of the optimal policy function (solid) and the ẋ = 0 isocline (dashed)
give the steady states under optimal management (black circles). The resulting
dynamics under optimal policy is indicated on the horizontal axis: the circles
indicate the stable steady states, whereas the square indicates the indi�erence
threshold. Same parameters as in Figure 5.

that stabilises the lake at the tipping point, whereas at the eutrophic steady state

the policy function is almost constant and the natural dynamics of the lake e�ect

its stabilisation.

The shallow lake problem depends on two additional parameters, the weight

parameter c introduced above, and the discount rate ρ, which determines the

relative weight of future bene�ts relative to present bene�ts. Depending on the

values of the parameters b, c and ρ, there are three structurally stable qualitatively

di�erent types of the dynamics of the lake under optimal policy.

In this context, structural stability of a type means that by slightly changing

the problem, the type of the dynamics under optimal management of the changed

problem is the same as of the original problem. In a parameter diagram, a struc-

turally stable type corresponds therefore to an open set of parameter values, as

small parameter changes cannot change the type of the dynamics. The structur-

ally stable types are the ‘typical’ con�gurations of the system dynamics.

Figure 6 shows a typical con�guration: two attracting long-term steady states,

separated by an indi�erence point. Figure 7 gives the other two: a single, globally

attracting steady state, and two attracting steady states separated by a repelling

steady state. In the latter con�guration, the optimal values of u are close to the
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stabilising values of u, for which ẋ = 0; this implies that for that con�guration,

the state x(t) is changing only slowly over time.

x

u

(a) Single steady state

x

u

(b) Repelling threshold (detail)

Figure 7: Two types of typical state dynamics under optimal management.
Left: globally asymptotically stable attracting steady state. Parameters: b =
0.6, c = 0.6, ρ = 0.03. Right: two attracting steady states, separated by a
repelling steady state. Parameters: b = 0.675, c = 0.92, ρ = 0.16. The open
circle indicates a repeller; other symbols are as in Figure 6.

3.4 Classi�cation of solutions

Systems that are not structurally stable are called bifurcating. Determining para-

meter values of bifurcating systems consequently yields the boundaries of the

parameter regions that correspond to the various structurally stable types. Kisel-

eva and Wagener (2011) give a classi�cation of the possible bifurcating systems

for optimal control problems with one-dimensional state spaces.

The so-called codimension expresses the relative importance of a bifurcation.

The main bifurcations are the bifurcations of codimension one: the parameter

sets corresponding to systems at these bifurcations are composed of unions of

manifolds whose dimensions are one less than the dimension of the parameter

space. Higher codimensions are de�ned similarly. For instance, if the para-

meter space is two-dimensional, codimension one bifurcations trace out one-

dimensional curves, codimension two bifurcations correspond to isolated points,

and codimension three bifurcations do usually not occur in a two-parameter dia-

gram.
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There are three types of codimension one bifurcations for the dynamics un-

der optimal management: a saddle-node (SN) bifurcation, where a repeller and

an attracting steady state are created or destroyed; an indi�erence-attractor (IA)

bifurcation, where an indi�erence threshold and an attracting steady state are

created or destroyed, and an indi�erence-repeller (IR) bifurcation, where an in-

di�erence threshold turns in to a repeller or vice versa. For the shallow lake

model, Figure 8 illustrates the regions of structural stability, as well as the codi-

mension one bifurcation curves, for the (b, c)-parameter plane with ρ = 0.03,

and for the (c, ρ)-parameter plane given by b = 0.65.
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(a) (b, c)-bifurcation diagram
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Figure 8: Bifurcation diagrams. Left the (b, c)-diagram for ρ = 0.03; right
the (c, ρ)-diagram for b = 0.65. Solid curves border regions of structural
stable dynamics under optimal management. Dashed curves correspond to
bifurcations of the state-costate system that do not correspond to bifurcations
of the state dynamics under optimal management. The abbreviations ISN,
DIR, C refer to codimension two bifurcation points not discussed in the text.
After Kiseleva and Wagener (2010).

In the lake model, the parameter b is like a technology parameter: it is a typical

physical feature of a given lake. In contrast to this, the parameters c and ρ describe

economic preferences. Figure 8(b) is interesting, as it shows the dependency of

the lake dynamics on the preferences of the decision maker. In particular, note

that increasing ρ always eventually leads to the lake eutrophicating.
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4 Game

Mäler et al. (2003) also considered a noncooperative game associated to the shal-

low lake system. In this game, a number of decision makers, say n, where n ≥ 2,

use the lake. An example would be communes or states bordering the lake. De-

cision maker, or player i derives bene�ts from agricultural activities, causing a

phosphorus in�ow ui = ui(t) into the lake. The amount of phosphorus in the

lake is then described by

ẋ =
n∑
i=1

ui − g(x). (12)

All players su�er from the pollution in the lake; that is, the bene�ts of player i

are given by the integral

Ii =

∫ ∞
0

e−ρtβs,i(x, ui) dt =

∫ ∞
0

e−ρt (βa,i(ui) + βe,i(x)) dt.

An action schedule that determines at each point in the game the pollution amountui
of player i is called the strategy of player i. Strategies that consist of actions that

are only conditioned on time, that is, for which ui = ui(t), are said to be of

‘open-loop’ type. Other types of strategies are considered below.

The optimal pollution rate of player i will depend, through the lake dynam-

ics (12), on the choices of

u−i = u−i(t) = (u1(t), · · · , ui−1(t), ui+1(t), · · · , un(t))

of the other players. The strategies uj , j = 1, . . . , n form a Nash equilibrium if

player i’s strategy is optimal given the strategies of the other players.

For the speci�cations (4), Mäler et al. (2003) have investigated symmetric

open-loop Nash equilibrium strategies in a game withn players; that is, in equilib-

rium, each player uses the same strategy ui(t) = unc(t) (‘nc’ for noncooperative).
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4.1 Steady state analysis

As for the optimal management case, a steady state analysis can be performed.

Again this corresponds, except for hairline cases, to the dynamic analysis of the

situation for ρ = 0, that is, for vanishing discount rates. For the sake of simplicity,

only the two-player situation n = 2 is considered.

Given that player 2 plays the time-constant strategy u2, player 1 maximises

β1(u1) = βa,1(u1) + βe,1(x),

subject to the condition

u1 + u2 − g(x) = 0.

Eliminating u1, the bene�t stream β1 as function of the steady state x takes the

form

β1(x) = βa,1(g(x)− u2) + βe,1(x).

The condition for a maximising steady state reads as

0 = β′a,1(g(x)− u2)g′(x) + β′e,1(x),

and it has the same interpretation as before.

The symmetry condition requires that u1 = u2; if the lake is to be in steady

state, then

u1 = u2 =
1

2
g(x),

leading to the eventual condition that

0 = β′a,1 (g(x)/2) g
′(x) + β′e,1(x). (13)

As usual, this condition is necessary for a Nash equilibrium, but not su�cient.

For, let x = x∗ be a state that satis�es (13); the implied actions of the players are

then

u∗1 = u∗2 =
1

2
g(x∗).
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The pair (u1, u2) = (u∗1, u
∗
2) only de�nes a Nash strategy equilibrium if x = x∗ is

a maximiser of the bene�t stream of player 1 with u2 = u∗2. There are situations

where that is not true.

Identifying the bifurcations in an analogous manner as in the optimal man-

agement problem, Figure 9 shows the regions corresponding to typical situations.

eutrophic NE

oligotrophic NE

ðNE = 2

Voligo>Veutr

ðNE = 1 or 2,

dependent on

initial state

0.5
b

0.5

1

c

Figure 9: Steady state Nash equilibria of the lake pollution game.

The dashed curve on the right bounds the region for which there is a unique

solution of equation (13), which gives the Nash equilibrium steady state, from

the region for which there are three solutions, two of which, corresponding to

local maxima of βi(x), are candidate Nash equilibria. Both correspond to a Nash

equilibrium in the regions marked ‘#NE = 2’ and ‘#NE = 1 or = 2’; in the latter

region, the oligotrophic Nash equilibrium may not be reachable due to irrevers-

ibility of the lake dynamics, if the initial steady state of the lake is too far in the

eutrophic region. In the regions marked ‘oligotrophic NE’ and ‘eutrophic NE’,

only one of the two local maxima of βi(x) corresponds to a Nash equilibrium,

the other being not stable under non-symmetric deviations.

Computing the payo�s Voligo and Veutr at the candidate Nash equilibria, it

turns out that these are higher in the oligotrophic candidate whenever (b, c) is

above the dotted curve in the region marked ‘eutrophic NE’. That means that

in the intersection of the region where Voligo > Veutr with the ‘eutrophic NE’

region, the game has the structure of the prisoner’s dilemma, whereas in the

region ‘#NE = 2’, it is a stag-hunt game.
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4.2 Dynamics: open-loop Nash

Mäler et al. (2003) show that symmetric open-loop Nash equilibrium strategies

ui(t) = unc(t), i = 1, . . . , n of the n-player game with parameters (b, c, ρ) also

are maximisers of the optimal management problem with parameters (b, c/n, ρ).

It follows that if n is su�ciently large, the lake is always allowed to eutroph-

icate. In contrast to this, the symmetric cooperative strategies ui(t) = uc(t),

i = 1, . . . , n, have the property that nuc(t) is a maximiser of the optimal man-

agement problem with parameters (b, c, ρ). That is, if there are too many players,

the lake eutrophicates, while the optimal cooperative solution would be to con-

serve the lake in an oligotrophic state. Put di�erently, the lake problem is another

instance of Hardin’s tragedy of the commons (Hardin, 1968).

It does however not necessarily follow that the bifurcation diagram in Fig-

ure 8(a), with c replaced by c/n, gives the structure of the open-loop Nash equi-

libria. As showed in Subsection 4.1, for ρ = 0 some candidate Nash equilibrium

strategies may be unstable under non-symmetric deviations. A bifurcation dia-

gram for ρ > 0 where the possibility of unsymmetric deviations is taken into

account has not yet been given in the literature.

4.3 Dynamics: closed-loop Nash

In contrast to open-loop strategies, closed-loop strategies condition actions on

time as well as on the state of the system. That is ui = ui(t, x). A subclass

of closed-loop strategies are the feedback strategies, where the actions are ex-

clusively conditioned on the state: ui = ui(x). In in�nite horizon games with

exponential discounting, the optimisation problem is essentially time-invariant,

and closed-loop strategies reduce to feedback strategies.

Kossioris et al. (2008) and Dockner and Wagener (2013) have found symmetric

feedback strategies for the lake game numerically. To sketch the method, assume

that feedback strategies u−i(x) of all players except player i are given. Introduce
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the value function Vi of player i as

Vi(x0) = sup

∫ ∞
0

e−ρt(βa,i(ui) + βe,i(x)) dt,

where the supremum is taken over all pollution schedules ui, subject to the lake

dynamics (12) as well as the initial condition x(0) = x0. The Pontryagin function

of player i reads as

Pi(x, yi, ui) = βa,i(ui) + βe,i(x) + yi

ui +∑
j 6=i

uj(x)− g(x)

 .

Then the value function Vi satis�es the Hamilton-Jacobi-Bellman equation

ρVi(x) = max
ui

P
(
x, V ′i (x), ui;u−i(x)

)
. (14)

It can be shown that Vi is continuous for all x; at points where the value function

is non-di�erentiable, the Hamilton-Jacobi-Bellman equation is satis�ed in the

sense of viscosity solutions. In the present context, points of non-di�erentiability

are generically isolated. The viscosity solution prescribes precisely in which

way V ′i can jump at a point of non-di�erentiability between the values of V ′i
that yield the same value ρVi(x) of the right hand side of (14). In practice, these

are the natural jump conditions.

Analogously to the optimal management case, the maximisation in (14) yields

a relation

ui = u∗i (V
′
i (x)),

where u∗i (yi) =
(
β′a,i

)−1
(−yi). These relations hold for every i = 1, · · · , n.

Substitution back into (14) yields

ρVi = Hi(x, V
′
1(x), · · · , V ′n(x)), (15)
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where

Hi(x, y1, · · · , yn) = βa,i(u
∗
i (yi)) + βe,i(x) + yi

∑
j 6=i

u∗j (yj)− g(x)

 (16)

is the Hamilton function of player i in the game. Taking equation (15) repeatedly

for i = 1, · · · , n yields the system of Hamilton-Jacobi equations for the value

functions of the players in a Nash equilibrium of feedback strategies.

In the symmetric situation, where the bene�t streams are equal for all play-

ers, it is possible that the feedback strategies, the Hamilton functions and the

associated value functions are also the same for all players. Then the system of

Hamilton-Jacobi equations reduces to the single equation

ρV = Hsymm(x, V
′(x)), (17)

with

Hsymm(x, y) = βa(u
∗(y)) + βe(x) + y ((n− 1)u∗(y)− g(x)) .

For the speci�cations (2) and (4) of the lake problem, equation (17) reads as

ρV (x) = − log
(
−V ′(x)

)
− cx2 − V ′(x)g(x)− (n− 1). (18)

Equation (17) is an implicit di�erential equation for V ; there is no initial condi-

tion. To solve the equation, introduce y(x) = V ′(x), di�erentiate both sides once

with respect to x, and rearrange terms to obtain

∂Hsymm

∂y
(x, y(x))y′(x) = ρy(x)−

∂Hsymm

∂x
(x, y(x)). (19)

This is sometimes called the shadow price equation (see Case, 1979; Dockner

and Van Long, 1994; Rincón-Zapatero et al., 1998; Tsutsui and Mino, 1990; Wirl,

1996). Dockner and Wagener analyse this equation by remarking that a curve

(x(s), y(s)) traces out the graph of y = y(x) around a point where y(x) is dif-
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ferentiable, if

x′(s) =
∂Hsymm

∂y
(x(s), y(s)), y′(s) = ρy −

∂Hsymm

∂x
(x(s), y(s)). (20)

Unlike the situation of the optimal management problem, the curve parameter s

has not an interpretation in terms of time; it is a purely auxiliary quantity. For

the lake game, this yields

x′(s) = u− g(x), y′(s) = ρy + 2cx+ yg′(x). (21)

Since there is no initial condition, all integral curves of the system (20) that satisfy

the transversality condition are candidates to generate Nash feedback equilibrium

strategies.

Kossioris et al. (2008) report graphs generated by such families of integral

curves as Nash feedback equilibria. However, these graphs are only de�ned on

subintervals U of the state space X = [0,∞). To be a Nash equilibrium, no

deviation from the equilibrium strategy should generate a higher payo�. But as

it is possible to construct a strategy that takes the state out of the interval U , the

payo� for the players that play a strategy only de�ned in U becomes unde�ned.

To make such strategies admissible, the game has to be changed in such a way that

no player can play an action taking the system out of U . But for the unrestricted

game, these strategies cannot be admitted as solutions. Only those integral curves

can constitute Nash equilibrium strategies that are de�ned on the whole state

space.

For the lake game, the equations (20) coincide with the system (7)–(8); the

optimal policy function given in Figure 6 is therefore also the Nash feedback

strategy of a player in the game. However, as there are now several players, the

resulting steady state will be lower. Figure 10 illustrates two situations.

Consider �rst Figure 10(a), where the lake is reversible, but close to fragile.

Under cooperation, the joint action of the cooperators is equal to optimal man-

agement, as illustrated in Figure 6. As noted before, the oligotrophic steady state

is close to the tipping point of the lake dynamics, and the strong negative feed-
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(a) b = 0.51, c = 0.5
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u

(b) b = 0.58, c = 0.5

Figure 10: Two-player symmetric Nash equilibrium feedback strategies for
the lake game (solid), as well as the associated long-term steady state condi-
tion 2u = g(x) (dashed). The circles indicate long-term steady states under co-
operation (white) and noncooperation (black). Parameters: n = 2, ρ = 0.03.

back provided by the optimal policy function stabilises it. Under cooperation,

each of the players are allowed half of the pollution level of the optimal pollution

level; in Figure 10(a) this level is equal to the value of the vertical coordinate of

the white circles.

The cooperative level is much lower than the pollution level of the noncooper-

ative feedback strategy at the tipping point. On the other hand, noncooperation

results in an oligotrophic steady state that is past the tipping point, the left black

circle in Figure 10(a), where both the pollution level in the lake is higher, and

the pollution stream allowance of the players is lower, than in the cooperative

steady state. Moreover, the stabilising feedback is much weaker: the graph of the

feedback strategy runs close to that of the steady state condition u = g(x)/2 of

the lake, indicating that time-relaxation towards the steady state will be slow.

The relative locations of the eutrophic steady state under cooperation and

noncooperation show a trade-o�: under noncooperation, a worse environment

sets o� higher production.

If the lake is more robust, as in Figure 10(b), the eventual outcome of the eco-

nomic interactions deteriorates: under noncooperation, the oligotrophic steady

state disappears, and instead there is a discontinuity in the strategies of the play-

ers at a critical state x = xc. The low values of the pollution stream for state

values lower than but close to the critical state imply that the lake will remain for
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a long time still at low pollution levels; then, when the critical state is crossed,

the lake deteriorates rapidly towards the eutrophic steady state.

Apparently, if the lake is robust and therefore can sustain more pollution, the

danger of an environmental regime shift is not su�ciently pressing for it to be

prevented; it is the fragile lake that more easily survives, also because ending up

in the eutrophic domain is much more costly in the long run.

5 Taxes

A possible way to alleviate the e�ects of the prisoner’s dilemma in the shallow

lake problem, or more generally in problems where di�erent agents use a com-

mon pool resource, is to impose taxes that correct the shadow value of the stock.

Mäler et al. (2003) and Kossioris et al. (2011) consider such tax schemes for the

lake problem sketched above; Heijnen and Wagener (2013) model the pollution

stream as an output of a capital intensive industry and they consider taxes for

this situation. Heijdra and Heijnen (2013) show that in presence of hysteresis, a

policy of �nite duration can have lasting bene�cial e�ects.

5.1 Time-dependent tax rates in the lake problem

A proportional tax τ = τ(t) on the pollution stream, imposed on players using

open-loop strategies, changes the total bene�ts of player i to

Ii =

∫ ∞
0

e−ρt (βa(ui) + βe(x) + τui) dt.

Given the pollution streams of the other players, the dynamic optimisation prob-

lem of player i then requires maximising the Pontryagin function

P = βa(ui) + βe(x) + τui + yi

 n∑
j=1

uj − g(x)

 ,

which leads to

β′a(ui) + τ + yi = 0.
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Let uc(t) = 1
nuo(t) be the optimal pollution stream allowance for each player

under cooperation, which is the n’th fraction of the optimal pollution stream uo

of a single player. For ui = uc, the corresponding shadow value of the lake for

player i equals

yc,i = −βa(uc).

In order that the optimal choice of ui in an open-loop Nash equilibrium coincides

with uc, it is necessary that

τ = yc,i − yi.

“The tax bridges the gap between the social shadow cost of the accumulated phos-

phorus [...] and the private shadow cost of the accumulated phosphorus” (quoted

from Mäler et al., 2003, p. 615). However, a time-varying tax rate is in prac-

tice di�cult to implement. In Mäler et al. (2003), the authors therefore turn to a

constant tax rate that changes the dynamics in such a way that the oligotrophic

steady state coincides with the steady state under cooperation.

5.2 State-dependent taxes in the lake problem

Kossioris et al. (2011), in the situation that players use feedback strategies ui =

ui(x), investigate the e�ect of state-dependent tax rates τ = τ(x) given by low

order polynomials: a constant rate is the simplest example in this class. Using a

numerical algorithm to choose the tax rate optimally, they show that for a given

initial value, a cubic state dependent tax rule can bridge almost two thirds of the

gap between the payo�s per player in the noncooperative and the cooperative

cases.

5.3 Time-dependent taxes in a global warming model

Models where an industry a�ects a natural resource, and which can sustain mul-

tiple equilibria, have been studied by Greiner and Semmler (2005), Greiner et al.

(2010) and Janmaat (2012). The latter author considers the �sh stock in a lake as

productive capital; naturally, the state of the lake a�ects the capital stock.
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Greiner et al., slightly modifying the model of Greiner and Semmler, study

global warming caused by the emission of greenhouse gases: mean atmospheric

temperature T and the concentration of greenhouse gasesM , expressed as a mul-

tiple of the pre-industrial level, evolve according to

Ṫ = g(T ) + logM,

Ṁ = E − µM ;

here g is a nonlinear relation deriving from the earth’s radiative energy balance,

and E are industry emissions, taken to be proportional to the ratio of capital K

to abatement activities A, or per capita capital k to per capita abatement a:

E ∝ K

A
=
k

a
.

The labour supply L is assumed to grow at a rate n. Expressing everything in per

capita units, per capita output takes the form

y = bkαD(T );

the damage function D is decreasing, taking the value 1 for the pre-industrial

mean temperature T0. Output is spent on consumption c, abatement a, replace-

ment of old capital, and income tax and emission tax, at rates τ and τE respect-

ively:

k̇ = (1− τ)y − c− a− τE
E

L
− (δ + n)k.

Optimising total welfare

I =

∫ ∞
0

e−ρtL log cdt,

they �nd, for a certain parameter combination, a surface of indi�erence threshold

points in the three-dimensional state space (see Figure 11). There are two at-

tracting steady states under optimal management, ‘warm’, denoted in red, and

‘cool’, denoted in blue: the warm steady state has both higher values of the mean
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Figure 11: Indi�erence surface in the state space of the Greiner-Grüne-
Semmler model (after Greiner et al. (2010)).

temperature and of the steady state level of capital. For given values of K , the

indi�erence thresholds are almost independent of T , except for a small interval

around Tc ≈ 293, where they decrease from M ≈ 2.1 to M ≈ 1.8.

Note the shape of the trajectories: for most initial points, �rst temperature is

steered towards values around T ≈ 290, that is about 17◦C, in the cool regime, or

around T ≈ 296, about 23◦C, in the warm regime. Only then signi�cant changes

to the capital and the pollution levels are e�ected by the optimal policy. In both

situations, the asymptotic value of M is about 2, that is, twice the pre-industrial

level of greenhous gases.

Greiner and Semmler (2005) discuss also a competitive economy, where the

impact of the decisions of indiviual agents on the state of the environment is neg-

ligible. As in the situation of the lake problem, imposing the tax τE on emissions

to correct the shadow value of the environment makes the agents internalises the

negative externality.

5.4 Constant tax rates in an extended lake problem

Heijnen and Wagener (2013) extend the lake model by adding a capital-intensive

industry with a �xed amount of labour and a variable amount of capital k; in the

model, the state of the lake has no impact on the industry. As time-dependent

taxes, as considered above Greiner and Semmler (2005); Mäler et al. (2003) are
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hard to implement in practice, they investigate how well constant tax rates can

reduce the pollution externality.

In their model, industry per capita output y = f(k) is spent on investment

in new capital, consumption κ, or taxes, which in the model take the form of

mandatory contributions to pollution abatement. Capital dynamics then take the

form

k̇ = f(k)− κ− (δ + τπη)k; (22)

here δ is the rate of depreciation of capital; η the amount of pollutant per unit

time generated by the use of a single unit of capital; π the price of removing a

unit of pollutant per unit time; and �nally τ the imposed abatement level. The

pollutant dynamics in the lake takes the form

ẋ = (1− τη)k − g(x). (23)

Two situations are compared: in the �rst, a social planner tries to maximise

I =

∫ ∞
0

(
log κ− cx2

)
e−ρt dt

by choosing the consumption level κ optimally. The maximum principle then

yields the following set of equations, after eliminating the shadow price of capital

in terms of consumption:

κ̇ =
(
f ′(k)− (ρ+ δ + τπη)

)
κ+ (1− τ)ηqκ2, (24)

q̇ = (ρ+ g′(x)) + 2cx; (25)

here q is the shadow value of the lake.

In the second ‘competitive’ situation, there is a continuum of identical con-

sumers, supplying their labour to the industry at the prevailing wage rate w =

w(t). Wages are either spent on consumption or put in a bank account at an in-

terest rate r = r(t), which, in turn, is determined by the marginal productivity
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of capital:

f ′(k) = r(t) + δ + τπη.

The bank balances evolve as

ḃ = rb− κ+ w,

subject to the condition that their discounted value is bounded away from −∞;

this is a ‘No Ponzi’ condition. As actions of each individual consumer have neg-

ligible e�ects on the total amount of pollution, every consumer maximises just

discounted utility from individual consumption∫ ∞
0

log(κ)e−ρt dt.

Applying the maximum principle to this dynamic optimisation problem, and ex-

pressing the costate variable in terms of the consumption yields eventually that

κ̇ = (r(t)− ρ)κ.

As the industry is perfectly competitive, the marginal productivity of capital

equals the price of capital, that is

r(t) = f ′(k)− δ − τπη.

This yields eventually

κ̇ =
(
f ′(k)− (ρ+ δ + τπη)

)
κ. (26)

Comparing this with (24) shows that here the consumers do not take the state of

the lake into account in their consumption decisions.

Heijnen and Wagener investigate a parameter con�guration where, without

abatement, the social planner keeps the lake in the oligotrophic state by the social

planner, whereas it �ips to the eutrophic state under competition. This is driven
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by consumption: while the social planner imposes low pollution streams, and im-

plicitly low consumption levels, in the competitive case there is overconsumption

and overpollution.

Increasing the abatement rate τ improves the social planner case somewhat:

pollution abatement actually allows the industrial production to increase, as pol-

lution e�ects are compensated for, which leads to higher consumption levels.

When the abatement tax increases past a certain level, abatement becomes so

costly that consumption starts to decrease again. However, the e�ects on the

total welfare level are modest.

This is in sharp contrast to the competitive case: here the total welfare level

increases quickly, though consumption decreases somewhat, until the lake no

longer enters the eutrophic region. When that is the case, the welfare level of

the competitive case is almost equal to that of the social planner case, and it fol-

lows the same pattern. Put di�erently, the external pollution costs can be largely

avoided by imposing a tax whose proceeds are earmarked for abatement.

6 Uncertain regime shifts

The shallow lake system models a system that can exhibit a regime shift for which

the dynamics are deterministic and fully known. This section will discuss a num-

ber of articles where a regime shift may occur with a given probability that may

or may not depend on the actions of the agents. In the 1980s, Reed has considered

regime shifts occurring with a natural hazard rate for resource extraction prob-

lems, more precisely for forests in the presence of �re risk (Reed, 1984) and the

catastrophic collapse of �sheries (Reed, 1988). Clarke and Reed (1994) (see also

Tsur and Zemel, 1998) extended this to hazard rates that depended on pollution

concentration, and thus indirectly on the actions of the agents in the problem.

They found that if the hazard rate of a regime shift increased su�ciently quickly

with pollution, optimal pollution levels and consumption levels are lower than in

the case where there is no possibility of a regime shift. If this kind of precaution-

ary behaviour on the part of the agents is optimal, a ‘precautionary principle’
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is said to hold. What is puzzling about these results, however, is that in some

situations, the optimal behaviour of agents is ambiguous. That is, even in the

presence of pollution-induced risk of regime shifts, it may be optimal to consume

more, rather than less, than in the situation without risk.

To understand the underlying mechanisms, consider the following optimal

harvesting problem discussed by Polasky et al. (2011). A manager is to maximise

discounted revenues from harvesting

I =

∫ ∞
0

e−ρtpudt, (27)

with p the unit price of the harvested good, subject to stock dynamics

ẋ = G(x)− u, (28)

as well as the requirements that x ≥ 0, u ≥ 0 for all t. There is a (stochastic)

time τ such that for 0 ≤ t ≤ τ , stock growth is given byG(x) = G1(x), whereas

for t > τ , the stock dynamics satisfy G(x) = G2(x). It is possible that the

regime shift fromG1 toG2 takes never place. Both functions are strictly concave,

take a maximum for some positive stock value, and satisfy Gi(0) = 0 (i = 1, 2).

Deterioration of the system after the regime shift is expressed by the assumptions

that G1(x) ≥ G2(x) and G′1(x) ≥ G′2(x) for all x ≥ 0.

The optimisation problem is most conveniently stated and solved in terms of

two Hamilton-Jacobi-Bellman equations: the �rst for the value V1 of the stock

before the shift, and the second for the value V2 after the shift. The solution is

sketched for the, simpler, second case, after which the Hamilton-Jacobi-Bellman

equation and the result for the �rst case are stated.

After the regime shift, the natural growth function of the stock isG2(x). The

Hamilton-Jacobi-Bellman equation for V2 reads as

ρV2(x) = max
u≥0

{
pu+ V ′2(x) (G2(x)− u)

}
. (29)

As the integrand of the revenue I is linear in the harvest rate u, maximising over u
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results in a so-called bang-bang harvesting policy:

u =


0 if V ′2(x) > p,

indeterminate if V ′2(x) = p,

∞ if V ′2(x) < p.

(30)

That is, the stock grows at the natural rate as long as its shadow value is above

the market price for the harvest; if it is below the market price, it is harvested at

the maximal rate.

The solution of equation (29) is

V2(x) =

e−ρθ(x) pG2(x2)
ρ for 0 ≤ x ≤ x2,

p(x− x2) + pG2(x2)
ρ for x > x2;

here x2 is the unique solution of the ‘golden rule’

G′2(x2) = ρ, (31)

and θ(x) is the time needed by the stock to reach the equilibrium level x2, starting

from the initial level x. That is, when starting below x2, the optimal harvesting

policy does not harvest until the stock level reaches x2, after which it harvests at

the equilibrium rate G2(x2). When the initial stock is larger than x2, the excess

stock x − x2 is harvested and sold instantly, after which harvest proceeds as

before at the equilibrium rate.

Consider now the situation before the regime shift. Recall that τ denotes the

stochastic time at which the shift occurs. The probability that the shift occurs in

a time interval [t, t+h), conditional on the fact that it did not occur before time t,

satis�es

lim
h→0

P (τ ∈ [t, t+ h)|τ ≥ t)
h

= λ(x(t)),

where the limit λ(x) is the ‘hazard rate’ at state x. The Hamilton-Jacobi-Bellman
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equation for the stock value in the �rst regime is then of the form

ρV1(x) = max
u≥0

{
pu+ V ′1(G1(x)− u) + λ(x)(V2(x)− V1(x))

}
.

If the rate of stock growth deteriorates after the shift, it follows that V2(x) ≤

V1(x); the last term in the equation then models the penalty incurred if the regime

shift occurs.

The golden rule for the situation before the shift, which is analogous to con-

dition (31) for the steady state after the shift, states that a steady state x1 under

optimal harvesting satis�es

G′1(x1) = ρ+ λ(x1)

(
1− V ′2(x1)

p

)
+

λ′(x1)

ρ+ λ(x1)

(
G1(x1)−

ρV2(x1)

p

)
. (32)

This equation furnishes information both if the shift probability is independent

of the stock level (exogenous shift) or dependent (endogenous shift), and both

if the stock collapses after the shift (V2(x) = 0 for all x), or if only the growth

dynamics changes. There are four combinations in total.

First, consider the exogenous shifts, for which λ is constant. With stock col-

lapse, equation (32) reads as

G′1(x1) = ρ+ λ.

AsG′1 is a decreasing function, it follows that the steady state x1 decreases relat-

ive to the situation without the possibility of a regime shift: the optimal harvest

rate increases, as the expected time interval over which harvesting is possible

decreases: the planner is more impatient.

If however only the growth dynamics deteriorates, the steady state x2 after

the shift is lower than x1, and the excess stock is harvested immediately. This

implies that the second term on the right hand side of equation (32) vanishes.

The third term vanishes as λ′(x) = 0 for a constant hazard rate, and the equation

takes the form

G′1(x1) = ρ.
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In this situation, the steady state under optimal harvesting is independent on the

natural hazard rate.

Endogenous shifts with total stock collapse lead to

G′1(x1) = ρ+ λ(x1) +
λ′(x1)

ρ+ λ(x1)
G1(x1). (33)

Viewing the stock level as environmental quality, the hazard rate is expected to

decrease as the stock level increases. If the decrease is su�ciently rapid, the result

of Clarke and Reed is recovered that the right hand side of (33) is smaller than ρ,

and the steady state value x1 is larger than in the case without risk of collapse.

On the other hand, for marginal hazard rates that are small in absolute value,

impatience of the planner leads to a decrease of the steady state stock, much like

in the case of exogenous risk of stock collapse.

Finally, for endogenous shifts with deteriorating growth dynamics, and for

decreasing hazard rates, the last term on the right hand side of (32) is negative;

this involves some reasoning. As the second term in the expression is again equal

to 0, it follows that here the steady state stock is always greater than in the situ-

ation without regime shifts. Put di�erently: if the hazard rate decreases with the

stock, and if the planner does not lose stock at the moment of collapse, the op-

timal harvesting rate is precautionary compared with the situation without risk

of collapse.

7 Conclusion

Negative feedbacks stabilise regimes; positive feedbacks di�erentiate between re-

gimes. Natural systems under stress can have several regimes; if the stresses are

too large, a regime may lose stability and the system shifts to a di�erent regime

(Figure 1). Management improves the robustness of systems by strengthening the

negative feedback: the oligotrophic steady state of Figure 6 and the steady state

of Figure 7(a), both marginally stable under constant loading, are robustly stable

under optimal management.
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If the use of the natural system is shared between agents, the situation de-

teriorates, as is usual with common pool problems. There are generally various

situations, depending on the precise speci�cations of the system, classi�ed for

the quasi-static situation in the bifurcation diagram of Figure 9. In the prototyp-

ical lake system, there is a large parameter region for which there are either two

candidate steady state outcomes. Though for most of this region, the oligotrophic

steady state maximises the player’s welfare, only for a small subregion this steady

state is the unique outcome of a Nash equilibrium in loading strategies. The other

possibilities are that it is a welfare-preferred outcome of two Nash equilibria, or

that it is dominated by a Nash equilibrium resulting in the eutrophic steady state.

A �nal possibility, which is uncommon and which derives from the fact that this

game is dependent on initial states, is that the welfare-preferred steady state is

not reachable if the initial state is outside a certain region.

In the situation with discounted future bene�t streams, the whole time evolu-

tion determines the resulting outcome, not only the steady states. Modelling the

behaviour of the agents in terms of strategies, taken from certain strategy classes,

tax rules can be devised that sustain the cooperative outcome. This may result in

vastly better long-term economic performance of the system (Figure 10(b)).

All this analysis presupposes knowledge of the response of the natural sys-

tem. If the occurrence of a regime shift is uncertain, but the actions of the agents

in�uence the probability of the shift occurring, one strand of thought advises

to increase consumption, implicitly stressing the environment, in order to make

optimal use of the time before the collapse - “Après nous, le déluge”. The precau-

tionary principle, which advises to reduce stress on the environment in order to

retard the moment of collapse, embodies the opposite stance. It turns out that,

depending on particulars, both situations may be optimal if the collapse of the en-

vironmental system also entails the collapse of the natural resources sustained by

the system. If there is however only a regime shift of the system, but no instantan-

eous deterioration of the stock, then precautionary behaviour is unambiguously

to be preferred.

The analysis of uncertain regime shifts suggests that it may be of interest to
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consider learning models in the future: as the system moves to – ‘explores’ –

regions of the state space not visited previously, the agents learn about the dy-

namics there, and modify their behaviour accordingly. Also, the assumptions of

fully rational behaviour of agents might have to be relaxed. Finally, the institu-

tional problem remains challenging: how to decentralise the decision problem

such that the negative externalities from environmental degradation are, at least

partly, internalised (cf. Starrett, 1972), and how to do this in a practicable way.
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