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Abstract

In this paper we propose an extension of the nonparametric Granger causality test,

originally introduced by Diks and Panchenko [2006. A new statistic and practical guide-

lines for nonparametric Granger causality testing. Journal of Economic Dynamics &

Control 30, 1647-1669]. We show that the basic test statistics lacks consistency in the

multivariate setting. The problem is the result of the kernel density estimator bias, which

does not converge to zero at a sufficiently fast rate when the number of conditioning vari-

ables is larger than one. In order to overcome this difficulty we apply the data-sharpening

method for bias reduction. We then derive the asymptotic properties of the ‘sharpened’

test statistics and we investigate its performance numerically. We conclude with an em-

pirical application to the US grain market.

JEL Codes: C12, C51, E3
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1 Introduction

Since the introduction of Granger causality over four decades ago (Granger, 1969), the body

of literature on this topic has grown substantially, becoming a standard methodology not only
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among economists and econometricians, but also finding the followers in physics or even biology

(Guo et al., 2010). Not surprisingly, it alleviated an ongoing discussion on the nature and

validity of the concept, pointing out its methodological limitations. Although, the spectrum

of arguments against the idea of Granger causality is very broad, the main line of criticism

follows from the very simple nature of the dependence relations in the economy, which Granger

causality originally assumes (Cartwright, 2007). The scope of this paper is to contribute to

the discussion allowing for a more complex structural setting in the nonparametric Granger

causality testing.

Imagine a strictly stationary bivariate process {(Xt, Yt)}. We say that {Xt} is a Granger

cause of {Yt} if past and current values of X contain additional information on future values

of Y that is not contained in past and current Y -values alone. If we denote the information

contained in past observations Xs and Ys, s ≤ t, by FX,t and FY,t, respectively, and let ‘∼’

denote equivalence in distribution, the formal definition is:

Definition 1. For a strictly stationary bivariate time series process {(Xt, Yt)}, t ∈ Z, {Xt}
is a Granger cause of {Yt} if, for some k ≥ 1,

(Yt+1, . . . , Yt+k)|(FX,t,FY,t) 6∼ (Yt+1, . . . , Yt+k)|FY,t.

Clearly, such a definition is very simplistic and seems to be inappropriate to apply in the

complex environments. An obvious shortcoming is the fact that the vectors of interests are

assumed to be univariate, making the whole problem detached from reality. In other words,

this methodology does not allow to control for every possible source of variation of every kind

[...] as argued by (Cartwright, 2007). An advantage of such a general definition is, however,

that it does not assume any parametric relations between the time series and instead it focusses

on the conditional dependence of distributions only1.

The most commonly used nonparametric test for the above hypothesis testing (Def. 1) is

the one proposed by Hiemstra and Jones (1994). Its main advantage lies in a very clear and

intuitive reasoning together with a strong asymptotic theory, derived even for a multivariate

setting2 (Bai et al., 2010). Nevertheless, the test can severely over-reject if the null is satisfied

(Diks and Panchenko, 2005). Therefore, Diks and Panchenko (2006) (hereafter DP) proposed

a new test statistics which corrects for this shortcoming but, as it turns out, because of the

large kernel estimator bias the DP test lacks consistency in the multivariate setting.

The goal of this paper is therefore twofold. First, in order to reduce the kernel estimator bias

we apply the data-sharpening method (Hall and Minnotte, 2002) and we derive the asymptotic

properties for the sharpened DP test in a multivariate setting. Second, we investigate its

1This brings additional modeling flexibility and does not bind us to the linear autoregressive model as
originally proposed by Granger (1969).

2Throughout the paper, we will refer to a multivariate setting by a situation where vector {Xt} is allowed
to be multidimensional, i.e. {Xt} = {X1,t, X2,t..., Xm,t}, m ≥ 1. In principle, the dimensions of {Xt} vector
might describe its corresponding lags, i.e. X1,t = Xt−1, X2,t = Xt−2 etc, so that by the bivariate case we refer
to the situation where {Xt} is univariate.
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performance both numerically and empirically on the US grain market. We chose this specific

market due to its straightforward causal relationship, where the price of each grain is influenced

not only by the other grains, but to a large extent the whole market is driven by weather

forecasts. Therefore, it serves as an almost ideal environment to test our new methodology in

practice.

This paper is organized as follows. Section 2 discusses the asymptotic properties of the

original DP test and shows why it lacks consistency in the multivariate setting. In Section 3

we replace the standard kernel density estimator by its sharpened form and we show that the

new test statistics is asymptotically normally distributed. We confirm the theoretical results

by computer simulations. In Section 4 we apply the new test to the US grain market. Section

5 summarizes and concludes.

2 Asymptotic properties of the DP test

In testing for Granger non-causality, the aim is to detect evidence against the null hypothesis

H0 : {Xt} is not Granger causing {Yt},

with Granger causality defined according to Definition 1. We limit ourselves to tests for

detecting Granger causality for k = 1, which is the case considered most often in practice.

Under the null hypothesis Yt+1 is conditionally independent of Xt, Xt−1, . . ., given Yt, Yt−1, . . ..

In a nonparametric setting, conditioning on the infinite past is impossible without a model

restriction, such as an assumption that the order of the process is finite. Therefore, in practice

conditional independence is tested using finite lags lX and lY , i.e.

Yt+1|(X lX
t ;Y lYt ) ∼ Yt+1|Y lYt ,

where X lX
t = (Xt−lX+1, . . . , Xt) and Y lYt = (Yt−lY +1, . . . , Yt). For a strictly stationary bivari-

ate time series {(Xt, Yt)} this is a statement about the invariant distribution of the lX + lY +1-

dimensional vector Wt = (X lX
t , Y lYt , Zt), where Zt = Yt+1. To keep the notation simple, and

to bring about the fact that the null hypothesis is a statement about the invariant distribution

of Wt, we often drop the time index and just write W = (X,Y, Z), where the latter is a random

vector with the invariant distribution of (X lX
t , Y lYt , Yt+1).

Let us consider the simplest setting, where lX = lY = 1 so that W = (X,Y, Z) denotes a

three-variate random variable, distributed as Wt = (Xt, Yt, Yt+1). (We investigate the problems

associateds with increased dimensionality in the next section. Throughout we will assume that

W is a continuous random variable.) The DP test restates the null hypothesis in terms of the

joint probability distribution fX,Y,Z(X,Y, Z) and its marginals, i.e.

q ≡ E [fX,Y,Z(X,Y, Z)fY (Y )− fX,Y (X,Y )fY,Z(Y, Z)] = 0. (1)
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Given the standard correlation integral density estimator

f̂W (Wi) =
ε−dW

n− 1

∑
j,j 6=i

I

(
Wi −Wj

ε

)
, (2)

where ε is a bandwidth and I(.) is the indicator function taking values 1 for any argument

within the unit circle, one may readily find a natural estimator of q being given as

Tn(ε) =
(n− 1)

n(n− 2)

∑
i

(f̂X,Y,Z(Xi, Yi, Zi)f̂Y (Yi)− f̂X,Y (Xi, Yi)f̂Y,Z(Yi, Zi)). (3)

The asymptotic behavior of Tn(ε) follows directly from the reasoning originally designed

for the MSE (mean squared error) optimal bandwitdh selection under the shrinking con-

ditions, developed by Powell and Stoker (1996). The test statistics has a corresponding

third order U-statistics representation with a kernel given by K̃(Wi,Wj ,Wk). Let us denote

K̃1(w1) = E[K̃(w1,W2,W3) and K̃2(w1, w2) = E[K̃(w1, w2,W3), and assume that the rates of

convergence of the pointwise bias as well as the second moment kernel expansions depend on

the bandwidth size in the following way (in fact these are the conditions imposed by Powell

and Stoker (1996))

K̃1(wi, ε)− lim
ε→0

K̃1(wi, ε) = s(wi)ε
α + s∗(wi, ε), α > 0, (4)

E
[
(K̃2(W1,W2))2

]
= q2ε

−γ + q∗2(ε), γ > 0, (5)

E
[
(K̃(W1,W2,W3))2

]
= q3ε

−δ + q∗3(ε), δ > 0, (6)

where the remainder terms are negligible, i.e. E‖s∗(Wi, h)‖2 = o(h2α), (q∗2(ε))2 = o(ε−γ) and

(q∗3(ε))2 = o(ε−δ). Parameters α, γ and δ follow directly from the specification of the kernel

function K̃ and might be derived analitically. In fact, it might be verified that α is of the same

magnitude as the local kernel estimator bias and Diks and Panchenko (2006) show that two

remaining parameters depend on the dimensionality of the system as γ = dx + dy + dz and

δ = dx + 2dy + dz.

Having pointed that out, the MSE of the test statistics might be expressed as

MSE[Tn(ε)] = (E[s(Wi)])
2
ε2α+

9

n
C0ε

α+
9

n
Var

[
lim
ε→0

K̃1(Wi, ε)
]

+
18

n2
q2ε
−γ +

6

n3
q3ε
−δ, (7)

where C0 = 2Cov
[
limε→0 K̃1(Wi, ε), s(Wi)

]
. In order to guarantee asymptotic normality of

Tn(ε) all the ε-dependent terms in Eq. (7) have to be o(n−1). Given the bandwith shrinking

condition, i.e. ε = Cn−β , one may find that this implies

√
n
Tn(εn)− q

σ

d−→N(0, 1) iff
1

2α
< β <

1

dx + dy + dz
, (8)
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with σ2 = 9Var[limε→0 K̃1(Wi, ε))].

Clearly, given the standard kernel density esimator with bias of order 2 and the basic model

specification with dx = dy = dz = 1, the test statistic is asymptotically normally distributed

for any positive constant C and β ∈ (1/4, 1/3). Additionally, given that there is no dependence

between vectors Wi and assuming suitable mixing conditions (see Denker and Keller (1983a)),

one may extend the proof by taking into account covariances between local density estimators.

2.1 The dimensionality problem

Let us now consider what happens if we increase dimensionality by one. For clarity purposes,

imagine that we would like to condition the causal relationship on one more variable, denote

it by Q, so that the hypothesis of conditional independence becomes3

Yt+1|(X lX
t ;Y lYt , Q

lQ
t ) ∼ Yt+1|(Y lYt , Q

lQ
t ).

Let us keep lX = lY = lQ = 1. Following the reasoning from the previous section, one

may find that the asymptotic normality condition requires β to be in range between 1/(2α)

and 1/(dx + dy + dz + dq). Given the same standard kernel density estimator with the local

bias of order 2, one observes that if we increase the dimensionality of the original problem by

any number v ≥ 1, there is no feasible β-region which would endow Tn(ε) with asymptotic

normality.

The associated problem results from a too large expected pointwise kernel estimator bias,

i.e. E[s(Wi)]. By increasing the vector space, we decrease the estimator precision, which seems

to play a crucial role in the MSE of the test statistics.

One may relate this problem to the so-called curse of dimensionality. As suggested by

Scott (1992), in statistics the problem is a consequence of sparsity of data in larger dimensions.

Imagine, for instance, a uniform sample over the [−1, 1]d hypercube, where d is the total number

of dimensions. Given arbitrary small region of radius µ < 1, it might be shown that as d→∞
the number of points within [−µ, µ]d tends to 0. Straightforward implication suggests that in

finite higher dimensional spaces, the smoothing parameter should be larger in order to capture

similar number of points. Nevertheless, by increasing the bandwidth window we decrease the

precision of the estimator, violating the consistency of the test statistics in this case.

There are several methods which could decrease the dimensionality problem. Scott (1992)

suggests principal components method, projection pursuit or informative components analysis.

These solutions, however, put additional boundaries on the underlying structure of the data.

For instance, they might be of a great advantage when dealing with 100-dimensional spaces

where one could assume that the data structure falls into the 20-dimensional manifold. In

our example it is very likely, however, that the minimum number of independent manifolds

3In practice, it is difficult to find an explicit representation of Q variable. However, one may thing of
increased dimensionality problem as conditioning on more than one lag, for instance Qt = Xt−1.
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is larger than 3 so that the dimension reduction does not necessary have to improve the test

performance. Moreover, as argued by Cartwright (2007), we do not want to decrease the

complexity of the environment.

Another solution is precision improvement, or in other words, reduction of the estima-

tor bias. Since it does not assume any particular underlying data structure, it is of greater

advantage in our setting.

3 Data sharpening as a bias reduction method

The intuition behind Data Sharpening (DS) is to slightly perturb the original dataset by a

sharpening function ψp(.) in order to obtain the desirable properties of the estimator (here p is

the order of bias reduction). The idea of the perturbation is to concentrate points where they

were already dense and thin them where they were originally sparse. The explicit form of ψp(.)

depends then on the order of the bias reduction we would like to get but the technique might

be in principle applied to obtain arbitrary low levels of bias reduction (Hall and Minnotte,

2002).

There are several advantages of DS over the standard bias reduction techniques. First, as

mentioned before, it allows for very high levels of bias reduction. Since testing for Granger

causality is widely recognized for its practical purposes, the universality of a method is of a

great importance. Second, as we confirm in our study, it does not affect the kernel function

directly, which leaves the properties of the MSE of the test statistics untouched. Third, it is

easy and straightforward to implement, even in a multivariate setting.

With respect to Eq. (2), let us consider a sharpened form of the estimator

f̂sW (Wi) =
ε−dW

n− 1

∑
j,j 6=i

Kmulti

(
Wi − ψp(Wj)

ε

)
, (9)

where Kmulti(W ) = (2π)−dW /2 exp(−1/2WTW ) is the standard multivariate Gaussian kernel,

as described in Wand and Jones (1995) and Silverman (1998).4

We obtain the sharpened form of the test statistics, T sn(ε), by substituting the sharpened

estimators into Eq. (3). As we show in the Appendix, the pointwise bias is of order o(εp)

with other properties of the kernel K̃ being the same. This in fact makes the bias of T sn(ε)

(from Eq. (4)) being α = p with parameters γ and δ from Eq. (5) and Eq. (6) unchanged.

This reasoning might be summarized in the following corollary, which is a generalization of the

theorem in Diks and Panchenko (2006) and proposition in Hall and Minnotte (2002)

Corollary 1. For any sufficiently smooth, continuous and infinitely differentiable density, there

exist a sharpening function ψp(.), where p is the order of bias reduction, for which one may

4In principle, our reasoning holds for any sufficiently smooth, symmetric and multiplicative probability
density as a kernel function. Correlation integral kernel, as originally applied by Diks and Panchenko (2006),
proves not to be smooth enough which led us to the standard Gaussian kernel.
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find a sequence of bandwidths εn = Cn−β with C > 0 and β ∈ (1/(2p), 1/D), where D <∞ is

the total dimensionality of the problem, which guarantees that for a weakly-dependent process

the sharpened test statistic T sn satisfies:

√
n

(T sn(εn)− q)
Sn

d−→N(0, 1),

where Sn is the autocorrelation consistent estimator for σ2.

The proof of Corollary 1 might be found in the Appendix A.1.

In order to illustrate its practical application, let us consider the same dimensionality

problem as described in Section 2.1. The original kernel estimator bias of order o(ε2), which

was effectively blocking the consistency of the test, might be reduced to o(ε4) by applying the

sharpening function of the form

ψ4(W ) = I + ε2
κ2
2

f̂ ′(W )

f̂(W )
, (10)

where I is the identity function and κ2 is the second moment of the kernel.5 For the sake of

clarity, the detailed derivations and expressions might be found in the Appendix A.2. Clearly,

it is possible now to find a range for β-values which would guarantee asymptotic normality; in

this case it is β ∈ (1/8, 1/4).

There are several other methods of kernel bias reduction. The literature distinguishes inter

alia among higher order kernels (Granovsky and Mller, 1991), variable bandwith estimators

(Abramson, 1982), variable location estimators (Samiuddin and El-Sayyad, 1990) or parametric

transformation methods (Abramson, 1984). Under sufficient smoothness of the underlying

density, they all reduce the bias from o(ε2) to o(ε4) as the sample size increases. Although

it is likely that they might be also successfully applied in our setting, their properties do not

guarantee a clear-cut asymptotic theory for the test statistics. Thereof, we leave this exercise

for future consideration.

3.1 Bandwidth selection

The optimal bandwidth, denote it by ε∗, comes at the smallest MSE of the test statistics,

T sn(ε). Following the Diks and Panchenko (2006) methodology, this implies that the sum of

dominating squared terms in Eq. (7) is minimized, so that under the bandwidth shrinking

condition

ε∗ = C∗n
−2

2α+γ . (11)

5We employ the Nadaraya-Watson estimator as a plug-in estimator for sharpening function as suggested by
Choi and Hall (1999).
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with

C∗ =

(
18γq2

2αE[s(W )]2

) 1
2α+γ

. (12)

One may readily observe that the general formula for optimal bandwidth is parallel to the

one derived in the Diks and Panchenko (2006). DS changes the pointwise bias of the estimator

density estimator, intuitively affecting both the rate of convergence, i.e. α parameter, and the

leading bias term, i.e. s(wi).

In order to get more insight on the effects of DS on the optimal bandwidth selection in

the DP setting, it is worthwhile to test it in a similar environment to the one proposed by

Diks and Panchenko (2006). Thereof, we consider here the interdependent ARCH process,

however for the sake of presentational purposes, extended to the 3-variate setting, representing

the dimensionality problem from the previous section. Imagine the ARCH process without

instantaneous dependence

Qt ∼ N
(
0, c+ aQ2

t−1
)

Xt ∼ N
(
0, c+ aY 2

t−1
)

Yt ∼ N
(
0, c+ aQ2

t−1
)
.

(13)

It is clear that the process satisfies the null that {Xt} is not Granger causing {Yt}, corrected

for the presence of {Qt}. Parameters c and a are chosen in order to guarantee stationarity and

ergodicity, i.e. c > 0 and 0 < a < 1.

Because of the complexity of the problem, in order to get more insight on the magnitude of

the optimal constant C∗, and optimal bandwidth value ε∗ thereof, we rely on the Monte Carlo

methods. We perform 1000 simulations of process (13) with a = 0.4 and c = 1 for different

sample sizes. We extract values for q2 and E[s(W )] using standard kernel methods for density

and derivative estimation, described in Wand and Jones (1995) and Silverman (1998). The

results are presented in Table 1.

Table 1: Optimal constants and bandwidth values for the T sn(ε) test of the 3-variate process
(13) for different sample sizes under the bandwidth shrinking condition. The values represent
the mean over 1000 simulations.

sample size (n) 50 100 200 500 1000
C∗ 0.83 0.89 0.94 0.97 0.98
ε∗ 0.43 0.41 0.39 0.34 0.31

Intuitively, reported optimal bandwidths are smaller than those from Diks and Panchenko

(2006). This is a straightforward result of the DS method. Given that the sharpened estimate

has lower bias, the test does not have to include such a wide range of points in order to yield

similar properties. This in fact guarantees asymptotic normality of the sharpened test statistics

under smaller bandwidth values.
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Figure 1: Size-size and power-size plots of the T sn(ε) test of 3-variate process (13) for different
sample sizes under the bandwidth shrinking condition aggregated over 1000 simulations.

3.2 Performance of the DS in Granger causality setting

Given the optimal bandwidth values, we may turn to the assessment of the performance of the

DS-augmented DP test. Again we rely here on the Monte Carlo methods. Since process (13)

matches the basic properties of the observed financial time series (like conditional heteroscedas-

ticity), we use it as an underlying behavior for the simulations for our test size assessment. For

the test power assessment we use the same process, however, we switch the causality between

{Xt} and {Yt} so that, even conditioning on {Qt}, the null hypothesis of no Granger causality

is violated.

The results from 1000 simulations for various time series lengths are summarized by the

size-size and power-size plots in Fig. 1. One may readily observe that the test demonstrates

larger power on larger samples. For 5% significance level, it ranges from 0.05 for n = 50 (no

power) to 0.82 for n = 500 (high power). A simple rule of thumb may suggest that the test

yields satisfactory results for samples of length 500 and larger. Interestingly, for the same

significance levels and sample sizes, the sharpened DP test offers better power than its original

counterpart. In fact, the standard DP test yields power of 0.8 for samples of 1000-2000 length.

At the same time test tends to be rather conservative for larger nominal p-values, i.e. it

under-rejects when the null is satisfied. However, for relatively smaller significance levels the

size-size plot suggests that the larger the sample size, the closer it is to the ideal rejection

probability.

One may view DS as an almost ideal tool for bias reduction. We observe, however, a price
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for increased precision of the pointwise estimators. For each point in the distribution the

algorithm calculates its sharpened form. This in fact shows up as an additional loop in the

procedure, increasing the computational time from O(n2) to O(n3). For relatively short time

series it may not seem as a problem but for n larger than a couple of thousands, computational

time might be a bottle neck of the analysis. Therefore, for larger datasets, we recommend

using DS together with multicore or cloud computing.

4 Nonlinear Granger causality in the US grain market

In order to show the practical application of the sharpened DP test, we choose the US grain

market as it offers an intuitive and straightforward environment for our hypothesis testing.

There is a common agreement among professionals that any causal relation between prices of

different crops has to be corrected for the weather conditions at that particular moment (see

for instance Popp et al. (2003) and Carreck and Christian (1997)). This conditioning variable

suits as a perfect representation of Q variable, from the 3-variate example in previous sections.

We consider corn, beans and wheat as being most representative of the US grain market.

We consider prices of the 1-month ahead rolling future contracts, traded in USD at the Chicago

Board of Trade (CBoT). The weather variable is approximated by the rolling monthly futures

on Heating Degree Days (HDD), averaged over Philadelphia, New York, Portland, Chicago

and Cincinati. Daily time series comprise the period from 09/01/2010 till 03/06/2013 building

together 633 observations. All the data come from Bloomberg.

We take all variables in logs and evaluate their statistical properties to make sure that the

time series are stationary. The results are presented in Table 2.

Looking at the raw data, only prices of corn proves to be stationary at the 5% significance

level. Therefore, in order to assess Granger causality in the market we consider first differences

of all the variables, i.e. log returns.

In the analysis we consider pairwise relations and complete system separately. In the former

we take into account the direct relations between two grains only and in the latter we look at

the model with all grains included. Since in the system setting, Q variable is two dimensional,

by Q1 we refer to the conditioning on grain and Q2 to conditioning on weather.

In order to underpin the results, we relate them with the standard linear Granger causality

setting, as proposed by Granger (1969). We also investigate the causality on the VAR-filtered

residuals, making sure that discovered causality effects are the results of nonlinearities. We

study the explicit role of the weather variable by comparing our results with the original DP

test, i.e. without conditioning variable. In the analysis we assume the lag of each conditioning

variable to be 1, as suggested by the Bayesian Information Criterion from the VAR specification.

Optimal bandwidth values for the original DP test is 1.27 and for the sharpened test 0.33.

Before running the tests, we standardize the data by either normal or uniform transformation.

The results for the pairwise relations are presented in Tables 3 and 4 and for the complete

10



Table 2: Unit root tests of the log prices on US grain market in period 09/01/2010 till
03/06/2013 for raw data and for first differences. Test types comprise the Augmented Dickey-
Fuller test (ADF) and Phillips-Perron test (PP) as described in Fuller (1995) and Phillips and
Perron (1988), respectively. In both tests the null assumes non-stationarity. CV denotes the
critical value for a given test specification.

Raw data First diff.
Variable Test type Trend 5% CV Test stat. Unit root Test stat. Unit root

Corn ADF no -2.86 -3.585 no -24.574 no
PP no -2.86 -3.591 no -24.568 no

ADF yes -3.41 -3.469 no -24.611 no
PP yes -3.41 -3.493 no -24.605 no

Bean ADF no -2.86 -2.666 yes -24.504 no
PP no -2.86 -2.668 yes -24.496 no

ADF yes -3.41 -2.564 yes -24.523 no
PP yes -3.41 -2.575 yes -24.516 no

Wheat ADF no -2.86 -2.299 yes -24.905 no
PP no -2.86 -2.288 yes -24.913 no

ADF yes -3.41 -2.272 yes -24.890 no
PP yes -3.41 -2.261 yes -24.898 no

HDD ADF no -2.86 -1.247 yes -21.707 no
PP no -2.86 -1.547 yes -22.048 no

ADF yes -3.41 -1.409 yes -21.690 no
PP yes -3.41 -1.739 yes -22.032 no

system in Tables 5 and 6.
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One may readily observe that the US grain market does not show much of the linear Granger

causality. The only exception is the possible impact of beans on corn prices in all the settings.

After VAR filtering this relation disappears, however, as expected.

Interestingly, our results suggest that the relations between US grain prices exhibit lot of

nonlinearities. Looking at the basic pairwise setting, there are strong causal linkages between

corn and wheat. If we, however, condition on weather forecasts, some of the relations vanish, in

particular in the uniform transformation setting. Moreover, we observe that after conditioning,

some new causal relations emerge between corn and beans, which additionally are purely

nonlinear in nature. It suggests that weather forecasts have a dual role in the grain market.

They do not only drive many of the causal relations themselves but they also mask some of the

others. From our pairwise results it is clear that weather is masking the corn-beans whereas is

driving wheat-corn Granger causality.

In the basic system setting the corn-wheat causal relation is preserved, being significant

also after linear filtering. The corn-beans influence is also visible in the uniform transformation

setting, confirming the pairwise results. After conditioning on weather forecasts, however, we

observe the emergence of the Granger causal relation in the beans-wheat market. Interestingly,

the system setting exhibits a lot of regularities from the pairwise study, nevertheless, because

of the complexity of the environment, we see new nonlinear relations between all the grains.

Prices of corn are Granger causing those of wheat and beans, whereas prices of beans are also

influencing those of wheat, conditioning on the weather forecasts.

A straightforward explanation of our results suggests that the nonlinear causal relation

emerge from bigger to smaller markets. Corn is most heavily traded grain on the CBoT,

followed by beans and wheat. Intuitively, bigger markets should affect those of smaller size

as they are deeper and more liquid (Sari et al., 2012). This reasoning is fact in line with our

previous finding on the dual role of the weather forecasts in grain market. Since the majority

of shocks in the grain market are weather-related, they serve as a common factor and are

displayed in all the markets, mitigating the effects of the grain-specific shocks. Correcting for

the weather stance allows, therefore, to reveal causal relations between grain-specific shocks,

which spread from bigger to smaller markets.

5 Conclusions and discussion

This study contributes to the ongoing discussion on the validity of the Granger causality

concept, allowing it to be applied in more complex environments. We show that the Granger

causality test proposed by Diks and Panchenko (2006) lacks consistency in a multivariate

setting. The problems arise as a consequence of a too large pointwise estimator bias, which

decreases the precision of the tests statistics and affects its asymptotic properties thereafter. In

order to bring back its desirable properties we propose a sharpened form of the test statistics,

which under mild regularity conditions is again asymptotically normal. In fact, we confirm that
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the sharpening function reduces the original bias of the estimator without any consequences

for its further properties, as originally suggested by Hall and Minnotte (2002). We assess

properties of the sharpened test numerically, demonstrating that its power is larger than in

the basic DP test.

In order to show practical side of our study, we apply the test to the US grain market

as, because of its weather-dependent structure, it serves as an ideal environment to assess our

methodology. We consider Granger causality between corn, beans and wheat, conditioning on

the weather forecasts, approximated by the future contracts on Heating Degree Days. Our

results suggests that the US grain market exhibits lot of nonlinear relations. We discover a

dual role of the weather forecasts. Firstly, they seem to drive the causal relation from wheat to

corn, in the pairwise setting as they serve as a common factor. Secondly, they are masking the

causal relations from corn to beans and from beans to wheat in the complete system setting.

Correcting for the common factor, we reveal the true nonlinear Granger casual relations in

the US grain market, suggesting that the causality spreads from bigger, i.e. deeper and more

liquid, to smaller markets.

Our results might have important further implications for the food market analysis. As

suggested by Gilbert (2010), future contracts are the major transition channel through which

macro variables affect food prices. Understanding possible nonlinear economic dynamics in

these markets is therefore of a great significance, as it may prevent possible bubbles and

instant food price rises, as the ones observed between 2007 and 2008.

A Appendix

A.1 Asymptotic properties of sharpened test statistics (Corollary 1)

We closely follow here the reasoning developed in Diks and Panchenko (2006), however, for

the Gaussian kernel and sharpened estimator, as proposed in Hall and Minnotte (2002). We

analyze here the case of a random sample as the dependency results follow from the reasoning

in Denker and Keller (1983b) and Diks and Panchenko (2006).

By symmetrization with respect to three different indices i, j, k, for given ε the sharpened

test statistics (Eq. 3 with sharpened estimators) might be rewritten in the form of the third

order U-statistic as

T sn(ε) =
1

n(n− 1)(n− 2)

∑
i 6=j 6=k 6=i

K̃s(Wi,Wj ,Wk)

15



with Wi = (X lX
i , Y lYi , Zi), i = 1, . . . , n and sharpened form of the kernel being

K̃s(Wi,Wj ,Wk) =
ε−dX−2dY −dZ

6

[(
GXY Zik GYij −GXYik GY Zij

)
+
(
GXY Zij GYik −GXYij GY Zik

)
+
(
GXY Zjk GYji −GXYjk GY Zji

)
+
(
GXY Zji GYjk −GXYji GY Zjk

)
+
(
GXY Zki GYkj −GXYki GY Zkj

)
+
(
GXY Zkj GYki −GXYkj GY Zki

)]
.

where GWi,j is the sharpened form of the multivariate kernel density, i.e.

GWi,j = Kmulti

(
Wi − ψp(Wj)

ε

)
.

We assume that the density is smooth enough and infinitely differentiable so that it is

possible to find any sharpening function which would guarantee bias reduction of order p, i.e.

EWj
[GWi ]−GWi = εpRp(Wi) + o(εp),

where Rp(Wi) is the leading bias term associated with εp evaluated at point Wi.

Let us define K̃s
1 and K̃s

2 as in Conditions in Eq. 4-6. The bias of products of estimated

densities, i.e. s(wi), follows from the properties of the local estimator bias (see the previous

section) and identities such as E[f̂V f̂W ] = E[(fV + (f̂V − fV ))(fW + (f̂W − fW ))] = fV fW +

fV E[f̂W−fW ]+fWE[f̂V −fV ]+o(εp). Therefore, the local bias of the T sn(ε) might be rewritten

as proportional to

K̃s
1(wi, ε)− lim

ε→0
K̃s

1(wi, ε) = εp (fY (yi)Rp(xi, yi, zi)− fX,Y (xi, yi)Rp(yi, zi)

+ fX,Y,Z(xi, yi, zi)Rp(yi)− fY,Z(yi, zi)Rp(xi, yi)) + o(εp).

Taking into account Condition in Eq. 4, one may find that it holds with α = p and s(wi)

being equal the term in the brackets.

Looking at the Condition in Eq. 5, taking the expectations over Wk for each of the con-

tributions to the kernel function K̃s, one finds that the dominant terms are proportional to

ε−dX−2dY −dZGXY Zij GYik and ε−dX−2dY −dZGXY Zji GYjk, for which we have

EWk

[
ε−dX−2dY −dZGXY Zij GYik

]
= ε−dX−dY −dZGXY Zij fY (Yi) + o(ε−dX−dY −dZ ),

and

EWk

[
ε−dX−2dY −dZGXY Zji GYjk

]
= ε−dX−dY −dZGXY Zji fY (Yj) + o(ε−dX−dY −dZ ).
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Since all the terms are vanishing ε slower, we can rewrite that E

[(
K̃s

2(wi, wj)
)2]

is equal

1

36
E
[(

2ε−dX−dY −dZEWk

[
GXY Zij GYik

])2]
+ o(ε−dX−dY −dZ )

=
4ε−2dX−2dY −2dZ

36
E
[(
GXY Zij fY (Yi)

)2]
+ o(ε−dX−dY −dZ )

=
4ε−dX−dY −dZ

36
E
[
(fX,Y,Z(Xi, Yi, Zi)) fY (Yi)

2
]

+ o(ε−dX−dY −dZ ),

where we exploited the fact that GXY Zij GYik G
XY Z
ji GYjk are asymptotically perfectly correlated as

ε tends to 0 sufficiently slowly as n→∞. This confirms that the γ parameter from the original

Diks and Panchenko (2006) methodology is unaffected by the DS, being equal dX + dY + dZ

with

q2 =
4

36
E
[
(fX,Y,Z(Xi, Yi, Zi)) fY (Yi)

2
]
.

Since the variance of K̃s is limited by εdX+2dY +dZ as the sample size increases, condition

from Eq. 6 holds for δ = dX + 2dY + dZ , again being the same as in Diks and Panchenko

(2006). This brings us to the conclusion that DS decreased the local bias of T sn(ε) only, leaving

the further properties of the test statistics unchanged.

A.2 Application of bias reduction

For practical purposes, let us assume that the H = diag(ε, ε, ..., ε) is a dW × dW bandwidth

matrix so that the local density estimator of dW -variate random vector from Eq. (2) becomes

f̂W (Wi) =
ε−dW

n− 1

∑
j,j 6=i

KH(Wi −Wj), (14)

where KH(Wi −Wj) = K(H−1(Wi −Wj)) = Kmulti((Wi −Wj)/ε).

Assume also that the density function is infinitely differentiable and let f ′ be the vector

of first-order partial derivatives of f , f ′′ be the matrix of second-order partial derivatives of

f , f (3) be the cube of third-order partial derivatives of f , f (4) be the 4 dimensional matrix of

fourth-order partial derivatives of f etc, with all the entries being piecewise continuous and

square integrable. For presentational purposes, let us also use
∫

as a shorthand for
∫
· · ·
∫
RdW

and dW as a shorthand for dW1 · · · dWdW . By IdW we denote also the dW × dW indentity

matrix.

Let us consider the case study example from the paper, where we extend the basic analysis

to the 3-variate causality testing, i.e. Yt+1|(X lX
t ;Y lYt , Q

lQ
t ) ∼ Yt+1|(Y lYt , Q

lQ
t ). As it is shown

in the text, the standard DP test lacks consistency because of the too large pointwise estimator

bias. The original bias of the standard kernel density estimator at point Wi might be computed
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from the second order Taylor expansion around the estimation point (Wand and Jones, 1995)

E
[
f̂W (Wi)

]
=
ε−dW

n− 1

∑
j,j 6=i

E [KH(Wi −Wj)] =
ε−dW

n− 1

∑
j,j 6=i

∫ ∞
−∞

KH(Wi −W )f(W )dW

= ε−dW
∫ ∞
−∞

KH(Wi −W )f(W )dW =

∫ ∞
−∞

Kmulti(s)f(W − εs)ds

=

∫ ∞
−∞

Kmulti(s)

{
f(Wi)− εsT f ′(Wi) +

ε2

2
sT f ′′(Wi)s+ o(ε4)

}
ds

= f(Wi) +
ε2

2
κ2tr {f ′′(Wi)}+ o(ε4) = f(Wi) + o

(
ε2
)
,

(15)

where we exploited the fact that
∫
sKmulti(s)ds = 0dW and

∫
ssTKmulti(s)ds = κ2IdW .

The dominant term in the local estimator bias (R2) is driven by 1/2κ2tr {f ′′(Wi)}, which

is of order o(ε2). The idea of DS is to eliminate this term by applying appropriate sharpening

function. It can be best illustrated by calculating the expected value of the sharpened estimator

with the DS function given by Eq. 10

E
[
f̂sW (Wi)

]
=
ε−dW

n− 1

∑
j,j 6=i

E [KH(Wi − ψ4(Wj))] =
ε−dW

n− 1

∑
j,j 6=i

∫ ∞
−∞

KH(Wi − ψ4(Wj))dF (W )

= ε−dWn

∫ ∞
−∞

KH (Wi − ψ4(W )) dF (W ) = ε−dWn

∫ ∞
−∞

KH (Wi − V ) dF (ψ−14 (V ))

= ε−dWn

∫ ∞
−∞

KH (Wi − V ) f(ψ−14 (V ))

∣∣∣∣∂ψ−14 (V )

∂V

∣∣∣∣ dV
= ε−dWn

∫ ∞
−∞

KH (Wi − V )

{
f(V )− ε2

2
κ2tr{f ′′(V )}+

ε4

4
k22U(V ) + o(ε6)

}
dV

=

∫ ∞
−∞

Kmulti(s)

{
f(Wi)− εsT f ′(Wi) +

ε2

2
sT f ′′(Wi)s−

ε2

2
κ2tr{f ′′(Wi)}

+
ε3

2
κ2tr{sT f (3)(Wi)} −

ε4

4
κ2tr{sT f (4)(Wi)s}+

ε4

4
k22U(Wi)

}
ds+ o(ε6)

= f(Wi) + ε4R4(Wi) + o(ε6),

(16)

where

U(V ) =
f ′(V )T f ′(V )f ′(V )T f ′(V )

f(V )3
− 5f ′(V )T f ′′(V )f ′(V )

2f(V )2

− 2f ′(V )T (B1(f ′′(V ))− f ′′(V )) f ′(V )

2f(V )2
+
tr{f ′′(V )T f ′′(V )} −

∑
|B2(f ′′(V ))|

f(V )

+
tr{f ′(V )T f (3)(V )}

f(V )
,

(17)

18



and

R4(Wi) =
1

4

(
κ22U(Wi)− κ4tr{f (4)(Wi)}

)
. (18)

Matrix transformation B1(.) puts the trace of the argument on each of the diagonal entries

and B2(.) takes 2x2 submatrix around the diagonal of the argument.

Clearly, the original bias of order o(ε2) has decreased to the order o(ε4) without any effect

on the kernel function Kmulti, leaving the further properties of Eq. (3) the same as in the

original reasoning from Diks and Panchenko (2006). Therefore one may calculate optimal

bandwidth values, which endow the test statistics with asymptotic normality, for the 3-variate

setting from Eq. 11 by plugging in the estimates for s(wi) and q2,

s(wi) = fY , Q(yi, Qi)R4(xi, yi, zi, qi)− fX,Y,Q(xi, yi, qi)R4(yi, zi, qi)

+ fX,Y,Z,Q(xi, yi, zi, qi)R4(yi, qi)− fY,Z,Q(yi, zi, qi)R4(xi, yi, qi),

and

q2 =
4

36
E
[
(fX,Y,Z,Q(Xi, Yi, Zi, Qi)) fY,Q(Yi, Qi)

2
]
.

In fact, bias reduction from o(ε2) to o(ε4) allows to include up to 4 additional variables. Any

additional conditioning variable would again violate the consistency of the test, requiring more

appropriate sharpening function.
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