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Abstract

In this paper, we introduce the partial symbolic transfer entropy
(PSTE), an extension of the symbolic transfer entropy that accounts
only for the direct causal effects among the components of a multivari-
ate system. It is an information theoretic measure, and as such does
not suffer from model mis-specification bias. The PSTE is defined on
the ranks of vectors that are formed from the reconstructed vectors,
instead of the original time series values. The statistical significance of
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PSTE is assessed by randomization test making use of surrogate time
series. The PSTE is evaluated on multivariate time series of different
types of coupled and uncoupled systems and compared with condi-
tional Granger causality index (CGCI). It is shown that the PSTE
is not affected by the existence of outliers, it is directly applicable to
time series that are non-stationary in mean and in variance, and it is
also not affected by data filtering. As a real application, the causal
effects among three economic indexes are investigated. Computations
of PSTE and CGCI on both the initial returns and the VAR filtered
returns, and only of PSTE on the original indexes, showed consistency
of the PSTE in estimating the causal effect.

1 Introduction

The investigation of interactions among the components of a multivariate
system addresses two major aspects: the detection of the couplings direction
and the quantification of the coupling strength. When evaluating the causal
influence between two time series from a multivariate data set, it is necessary
to take the effects of the remaining variables into account. Multivariate
analysis is required to distinguish between direct and indirect causal effects.

The concept of linear Granger causality is a fundamental tool for the
investigation of dynamic interactions from multivariate time series [12]. Lin-
ear Granger causality is based on the conception that causes always precede
their effects and is implemented by fitting autoregressive models. However,
the selected model should be appropriately matched to the underlying dy-
namics of the examined system, otherwise model mis-specification may lead
to spurious causalities.

For the identification of the causal inter-relationships of time series, in-
formation theoretic approaches have been developed. Their advantage is
that they are sensitive to nonlinear signal properties and they are model-
free. On the other hand, information measures usually require more data
than linear model-based methods, such as linear Granger causality. Infor-
mation measures have also more free parameters and may suffer from their
mis-specification.

In order to implement the linear Granger causality, weak stationarity of
the data is assumed. However, stationarity is difficult to justify for real data.
It emerges from many studies that processes with non constant mean or/ and
variance are a common feature in practice. Pre-processing of the data (e.g.



detrending, differencing, filtering) can be used to deal with non-stationarity
(e.g. see [5, 30]).

Several methods for time series analysis in presence of non constant vari-
ance have been proposed in the literature, e.g. model fitting allowing for a
non constant variance and tests of heteroscedasticity [31, 15]. Causality mea-
sures, such as transfer entropy and linear Granger causality, are theoretically
invariant under a rather broad class of transformations [4]. However, in the
case of real data, these theoretically invariant transformations, may impact
causal inference.

Causality can be subdivided into short-run and long-run causality, e.g.
as modeled using error correction models [22, 7]. A cointegration test can
be viewed as an indirect test of long-run dependence. Cointegration between
two variables implies the existence of long-run causality in at least one di-
rection [8]. In that way, we can separate short and long-run relationships
among variables. Testing for cointegration and causality should be consid-
ered jointly.

In financial applications, most causality tests are not implemented on the
raw data but on the (log) returns. For example, the modified test of non-
linear Granger causality introduced in [13] is usually applied on the residual
series from a VAR model. It is however considered that linear filtering of
the data before the application of a causality test can lead to serious distor-
tions (e.g. see [20, 14]). On the other hand, [10] claims that the calcula-
tion of information-theoretic quantities is typically improved by diminishing
long-range second-order temporal structure using VAR filters, provided that
the interactions between time series are not purely linear. The influence of
filtering on the different causality tests remains an open issue for further
investigation.

A causality measure that can be applied to non-stationary data is essential
for the detection of the causal effects in real data sets. In this work, we extend
the bivariate information causality measure symbolic transfer entropy (STE)
28] to the multivariate case, called partial symbolic transfer entropy (PSTE),
in order to introduce a direct causality measure applicable to non-stationary
time series, while also not affected by the filtering of the data. A corrected
version of the STE and PSTE have been introduced recently [18, 19], but here
we consider the initial definition used in different applications [16, 17, 23].

The PSTE is evaluated on multivariate time series of known coupled and
uncoupled systems, on stationary and non-stationary time series in mean and
in variance, on time series with outliers, and on VAR filtered time series. For



comparison, the conditional Granger causality index (CGCI) is also consid-
ered. As a real application, the causal effects among three economic time
series are investigated.

In Sec. 2, the multivariate causality measures partial symbolic transfer
entropy and conditional Granger causality index are presented, and their
statistical significance is discussed. In Sec. 3, the two causality measures are
evaluated in a simulation study. The performance of the measures in a real
application with three financial time series is presented in Sec. 4. Finally,
the conclusions of this study are discussed in Sec. 5.

2 Materials and Methods

2.1 Partial symbolic transfer entropy

The symbolic transfer entropy (STE) is an extension of transfer entropy
defined on rank-points formed by the reconstructed vectors of the variables
[28]. As it is estimated based on the ranks of the reconstructed vectors of
the time series instead of the time series values, the PSTE is applicable to
time series that are non-stationary in the level (mean), since slow drifts do
not have a direct effect on the ranks.

Let us consider two simultaneously observed time series {xi;}, {%2:},
t =1,...,n derived from the dynamical systems X; and Xs, respectively.
The embedding parameters in order to form the reconstructed vector of the
time series X; are the embedding dimension my, the time delay 7 and let A be
the number of time steps ahead to address the interaction. The reconstructed
vectors of X, are defined as x1; = (Z1,4, 1,07, - - T14—(mi—1)r ), Where t =
1,...,n and n’ = n—max{(my —1)71, (my—1)72}. The reconstructed vector
for X is defined accordingly, with parameters ms, and 7. For each vector x; 4,
the ranks of its components assign a rank-point Xi; = [r14, 72, .-, Ty t)s
where 7, € {1,2,...,my} for j =1,...,my, and X, is defined accordingly.
The STE is defined as

) L P(X1e4n|X1t, X,
STEX2HX1 ZZP(XLHh,Xl,t,Xz,t)lOg ( 1f+h| lf’ Qt)a <1>
P(X1t4n|X1t)

where p(X1 t4n, X1t Xo2.t), P(X1,045|X1¢, X2) and p(Xy ++4|X1,+) are the joint and
conditional distributions defined on the rank vectors. STE can also be ex-



pressed in entropy terms as
STEx,-x, = H(Xo, X1,0)—H (Xa,048, X6, X1,0) HH (Xa4n, X10) —H (X1,), (2)

where H(-) is the Shannon entropy defined on the rank-points.

The partial symbolic transfer entropy (PSTE) is the extension of the STE
that accounts only for direct causal effects in multivariate systems. It is de-
fined conditioning on the set of the remaining variables 7 = { X3, Xy, ..., X}
of a multivariate system of K observed variables

~ Y

: c % b P(X1n|X1 e, Xot, 2
PSTEX?*}XHZ:Zp(xl,t-i-hyxl,t;XQ,t,Zt)log ( 1t+h| 1157 2157 t) (3)
P(Xl,t+h\x1,t, Zt)

where the rank vector z; is defined as the concatenation of the rank vectors
for each of the embedding vectors of the variables in Z. For the estimation
of the PSTE, the joint and conditional distributions are estimated from the
sample probabilities.

The PSTE is a measure based on nonparametric estimators from infor-
mation theoretic arguments. Its definition is built on the probability distri-
butions or equivalently on conditional entropies and quantifies the reduction
in conditional uncertainty of X;,., when conditioning changes from X, z,
to Xoy,X14, 2. Causality is defined in terms of predictive power using an
information theoretic statistic rather than linear modeling tools. Given this
general criterion of predictive power, this approach is less sensitive to the
presence of non-stationarity and accounts for nonlinearity in the data.

2.2 Conditional Granger Causality Index

For comparison reasons, the Conditional Granger Causality Index (CGCI) is
also considered in this study [9]. Granger causality by definition states that
an observed time series Xy Granger causes another series X if the knowledge
of past values of the X, significantly improves the prediction of X;. Granger
causality provides a measure of the strength of the interaction between time
series.

In order to estimate the linear Granger causality index, a bivariate au-
toregressive model of order P is fitted to the time series {x,} and {xq,}

P-1 P-1
Tipr1 = E Q; ;11— + E bijTot—j + €11, 1=1,2 (4)
j=0 7=0
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where a; ; and b; ; are the coefficients of the model and ¢;; the residuals from
fitting the model. If the variance s2;; of the residuals of the 'unrestricted’
model in Eq. 4 for X is statistically significantly less than the variance
52, of the 'restricted” model for X; that does not include X, (the second
sum in Eq. 4), then this is statistical evidence that the variable X, Granger
causes X1. The magnitude of the effect of X5 on X; is given by the Granger
Causality Index (GCI) as

GClLy,»x, = hl(S%R/S%U)' (5)

Considering further the variables Z = {Xj3, Xy,..., Xk} in the model of
Eq. 4 (adding additional terms for each of the variables X3, X4, ..., Xk ) and
defining the ’restricted’ and the ’unrestricted’” model in the same way, the
conditional Granger causality index (CGCI) is

CGClx,x, )z = In(sTR/sty)- (6)

The CGCI is a causality measure able to detect the direct causal effects in
multivariate systems with linear causal effects.

2.3 Statistical significance of PSTE and CGCI

The statistical significance of the PSTE is assessed by a randomization test
for the null hypothesis of no causal effects making use of time-shifted sur-
rogates [25]. Time-shifted surrogates are used to form the null distribution
when it is not known analytically, as is the case with PSTE. The surrogate
time series are formed by time-shifting the time series of the driving vari-
able by a random time step, while the other time series are intact. By this,
the driving and the response time series become independent and the causal
effects are destroyed. Explaining further time-shifting, we draw a random
integer d (with d less than the time series length), and the first d values of
the driving time series are moved to the end.

To examine the null hypothesis Hy of no causal effects, the PSTE is
estimated from the original data (let us denote it ¢o) and from M surrogate
data series (let us denote them qi,...,qn). Hy is rejected if ¢o lies at the
tail of the distribution of ¢y,...,qy. The p-values for the two-sided test
are derived by rank ordering. Letting the original value have rank 7 in the
ordered list of M + 1 values, the p-value is 2i/(M + 1) if i < M + 1 and



2(M +1—4)/(M+1)if i > M + 1 (actually the correction of the rank
approximation of the cumulative density function in [32] is applied).

The statistical significance of the CGCI can be given by means of a para-
metric test, i.e. the F-test for the null hypothesis that the coefficients for the
driving variable in the unrestricted model are zero [6]. For example, applying
the F-significance test for each of the P coefficients b; ; in Eq.4, constitutes
the parametric significance test for CGCI to test the null hypothesis that
variable X, is not driving Xj.

3 Simulations and Results

The PSTE and the CGCI are estimated from 100 realizations of the simula-
tion systems, for different coupling strengths and for all directions. In this
section, the simulation systems and the results of the simulation study are
presented.

3.1 Simulation study

The PSTE is evaluated on multivariate time series of different types of cou-
pled and uncoupled systems, which are stationary or non-stationary in mean
(cointegrated or not) or in variance, coupled systems with outliers, with lin-
ear or/ and nonlinear causal effects. In order to evaluate the sensitivity
of the PSTE on filtering, it is also estimated on VAR filtered time series.
Specifically, the following simulation systems are considered:

1. A stationary system in three variables with linear (X; — X3) and
nonlinear causal effects (X; — Xo, X1 — X3) ([11], Model 7)

xl,t = 3.4171,13_1(]. — $17t_1)2 exp <—$it_1) + 0.4617t

Toy = 34wo, (11— $27t_1)2 exp (—:E%}t_l) +0.521 4127241 + 0.4€2¢

)

x5, = 34wsy1(1—x5,-1) exp (—a3,_y) 4+ 0.339,-1 + 0.527 | + 0.4es,

where €4, ¢ = 1,2, 3, are Gaussian white noise terms with unit vari-
ance.

2. A stationary system in three variables, with only nonlinear causal ef-
fects (X1 — XQ, X — Xg)

Tt = 0.71’1,75_14‘61775
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Toy = 031941+ 0029 0wy 1 + €2
X3¢t = 0.31’3,15_1 + 0.5.%'3715_21‘1715_1 + €3¢
The model of only the two first variables was introduced in [3]. The

term of variable product in the second and third equation causes the
variables X5 and X3 to have marginal distributions with long tails.

. A stationary system of three coupled Hénon maps with nonlinear causal
effects (Xl — XQ, Xy — Xg)

2
iy = 1.4 — ‘Tl,t—l + 0.31‘17,5_2
2
Toy = ld—cripara 1 — (1 —c)ry, | +0.3w9; 9
2
T3t = 1.4 — CT24—1T3,t—1 — (1 — C)$37t71 + O.3Q337t,2

with equal coupling strengths ¢ for X; — X, and Xy — X3, for ¢ =
0, 0.05, 0.3, 0.5. The time series of this system become completely
synchronized for coupling strengths ¢ > 0.7.

. A stationary system with outliers, from the three coupled Hénon maps
(system 3), where outliers have been randomly added to each variable
under the standard uniform distribution. The number of outliers con-
stitute 1% of the total number of data points.

. A non-stationary system in level (mean), from the three coupled Hénon
maps (system 3), where a stochastic trend 1, = 1,1 + ¢ is added to
each variable, where ¢;, is Gaussian white noise with unit variance. The
stochastic trends that are added to each variable are not co-integrated.

. A non-stationary system in level (mean), from the three coupled Hénon
maps (system 3) where a deterministic trend 7, = a -t is added to each
variable, and a is a constant. The value of a is randomly set for each
realization of the system, whereas a values are from a normal distri-
bution with mean 0.01 and standard deviation 0.02. The deterministic
trends are co-integrated.

. A non-stationary system in variance, from system 2, where a ’stan-
dardized’ time series from the GARCH(1,1) (to have zero mean and st.
deviation 1) is added to each variable:

Ty = Op*xé&g

2 2 2
of = oo+ agi_ + fropq,
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where ¢; is Gaussian white noise with unit variance, ag = 0.2, ay = 0.9

and f; = 0.1.

8. The VAR filtered residuals for system 1. The order of the VAR filter is
selected based on Schwarz’s Bayesian Information Criterion (BIC) [27],
for each realization.

The time series lengths n = 512 and 2048 are considered in the simulation
study, in order to test the effectiveness of the measure on small and large
time series lengths. The same embedding parameters are considered for each
variable of a coupled system. The embedding dimension m for the estimation
of PSTE is set based on the complexity of each coupled system, the time delay
7 is set to 1 and the time step ahead h is set to 1. For the estimation of CGCI,
the Akaike Information Criterion (AIC) [1] and the Bayesian Information
Criterion (BIC) [27] are considered to determine the optimal model order P
of the VAR model.

3.2 Results from simulation study

The performance of each causality measure is quantified by the percentages of
significant causality values in the 100 realizations for all the ordered couples of
variables in the system, i.e. the percentage of rejections of the null hypothesis
of no causal effects. For both measures, the causal effects are always regarded
conditioned on the remaining variable (i.e. on the third variable).

System 1 For the first simulation system, the optimal choice for the em-
bedding dimension m would be 1, since the maximum delay in the equations
of the system is 1. By definition, however, we can only set m > 2 to estimate
the PSTE. For m = 2, the PSTE correctly detects the direct linear causal ef-
fect Xy — X3 for n = 2048 and the nonlinear causal effect X; — X5 for both
time series lengths. For these directions, the power of the test increases with
n. However, the PSTE fails to detect the nonlinear causal effect X; — X3
(see Table 1). The percentages of significant PSTE values at the direction of
no causal effects are low (between 1 and 8%). The failure of PSTE to detect
the relationship X; — X3, is probably due to the fact that the effect of X,
on X3 is much greater than the effect of X; on X3. The weak causal effect
of X7 on X3 might be arising from the small values of the variable X7, that
get even smaller by squaring (z? is included in the equation of the system).



Table 1: Percentages of statistically significant PSTE (m = 2) and CGCI

(P = 2) values for the simulation system 1.
PSTE X=X | Xo— X4 X2—>X3 XgﬁXg X4 —>X3 X3—>X1
n =512 13 5 66 5 2 5
n = 2048 68 5 100 6 6 8
CGCI X=X | Xo—->X1 | Xo—-oX3 | XK5—-0Xo | X1 —>X3| X5—2X4
n =512 12 2 100 7 7 4
n = 2048 7 7 100 4 7 5

The CGCI also fails to detect all the causal effects of the first coupled
system, for order models P = 1, 2 and 3 (BIC suggested to set P = 1
and AIC P = 1, 2 and 3 for the different realizations). It captures only
the linear causal effect X5 — X3, while fails to take into consideration the
nonlinear connectivity X; — Xy and X; — X3 (see Table 1 for P = 2).
The percentages of significant CGCI values at the direction of no causal
effects are again low (e.g. between 4 and 7% for P = 2). The CGCI is a
linear measure and therefore it is expected to present low power in the case
of nonlinear couplings. One requirement for linear Granger causality is the
separability, i.e. the information about a causative factor should be unique
to that variable, which may not hold for nonlinear systems [29].

System 2 The second simulation system is a stationary system with only
nonlinear causal effects (X; — X, and X; — X3), whereas the variables X5
and X3 come from distributions with long tails. The maximum delay in the
equations of this system is 2, and therefore we set m = 2. One realization of
system 2, for n = 512 is displayed in Fig. 1a.

The PSTE correctly detects the nonlinear direct causality for system 2 for
m = 2, giving though low percentages of significant PSTE values for n = 512
(see Table 2). Again, the power of the test increases with the time series
length n. The percentages of significant PSTE values at the direction of no
causal effects are between 1 and 6%.

The CGCI is not able to detect the two nonlinear interactions (see Ta-
ble 2). On the other hand, it indicates the spurious causal effects Xy — X
(almost 40%), X2 — X3 (almost 70%), X35 — X, (almost 68%) and X5 — X,
(almost 43%). The estimated BIC and AIC values vary from 1 to 10 for the
different realization of this coupled systems. The CGCI is estimated for P
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Figure 1: (a) One realization of system 2, (b) one realization of system 7.

Table 2: Percentages of statistically significant PSTE (m = 2) and CGCI

(P = 2) values for the simulation system 2.
PSTE X1 — X2 X2 — X1 X2 — X3 X3 — X2 X1 — X3 X3 — X1
n =512 20 2 6 3 19 1
n = 2048 86 4 2 6 86 5
CGCI Xi—oXo | Xo—=2X1 | Xo=2X3 | X5 X | X1 —2X5 | X5—2X;
n =512 3 41 61 55 3 40
n = 2048 1 41 78 81 5 45

orders from 1 to 10, however the results are similar for all P values.

System 3 For the third coupled system (Hénon maps), the PSTE is esti-
mated for m = 2. For the uncoupled case (¢ = 0), the PSTE indicates no
causal effects, while for weakly coupled system (¢ = 0.05), gives very low
percentages. For coupling strength ¢ = 0.3 and for strongly coupled sys-
tems (¢ = 0.5), it correctly detects the causal effects. The power of the test
increases with n. For ¢ = 0.5 and n = 2048, along with 100% significant
PSTE for the true couplings, there is high percentage of significant PSTE
also for false couplings, approximately 30% for Xy — X7 and X3 — X, (see
Table 3), while for X; — X3 and X3 — X; the percentage varies from 1%
to 9%. For m = 3, the PSTE indicates the indirect causal effects X; — X3
and the spurious causal effects Xy — X7, X35 — Xy, but only for ¢ = 0.5 and
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n = 2048.

Table 3: Percentages of statistically significant PSTE (m = 2) values for the
simulation system 3.

n=>512 | Xi—-X | Xo=>X1 | Xo=>X3 | X5 Xo | X1 —>X5| X5 X,
c=10 6 9 6 4 3 8
c=0.05 9 2 7 1 ) 9
c=0.3 19 7 18 8 4 5)
c=0.5 67 16 79 7 3 7
n=2048 | X; —> X5 | Xo — X3 X2—>X3 XgﬁXg X, —>X3 X3—>X1
c=0 3 2 3 3 1 1
c=0.05 6 ) 3 4 2 3
c=0.3 88 6 98 8 7 4
c=0.5 100 31 100 31 7 0

The CGCI has a poor performance for the coupled Hénon maps for P = 2.
It correctly detects the direct causal effects for ¢ = 0.3 and 0.5, however also
falsely detects with high confidence the indirect causality X; — X3 and the
spurious causal effects Xo — X; and X5 — X, for n = 2048 and ¢ = 0.5
(only X3 — X, for ¢ = 0.3) (see Table 4). Results for P = 3 seem to
improve the performance of the CGCI, since it correctly indicates the causal
relationship for ¢ = 0.3 and ¢ = 0.5, and indicates only the indirect causal
effect X7 — X3 for ¢ = 0.5 and n = 2048 (52%).

Table 4: Percentages of statistically significant CGCI (P = 2) values for the
simulation system 3.

n=>512 | X; —> Xy | Xo = X3 X2—>X3 Xg—)XQ X1—>X3 X3—>X1
c=0 19 13 13 7 10 10
c=0.05 13 12 8 8 14 10
c=0.3 99 9 96 31 7 10
c=0.5 100 9 100 21 ) 6
n=2048 | X1 X0 | Xo—>X1 | Xo0=2>X3 | X5 Xo | X1 > X5 | X35> X,
c=0 11 12 10 11 10 14
c=0.05 29 20 20 10 11 10
c=0.3 100 14 100 43 9 8
c=0.5 100 65 100 D2 8 7
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System 4 For the coupled Hénon map system with the addition of outliers
(1% of n), the PSTE performs similarly as without outliers. Indicative results
are displayed in Table 5, for ¢ = 0.3 and ¢ = 0.5. We notice that the
percentages of significant PSTE values at the directions X; — X3 and X3 —
X, are between 3% and 10%.

Table 5: Percentages of statistically significant PSTE (m = 2) values for the

simulation system 4.

n = 9512 Xl—)XQ X2—>X1 X2—>X3 Xg—)XQ X1—>X3 X3—>X1
c=0.3 16 D 17 7 6 7
c=10.5 69 15 67 6 3 8
n=2048 | X; — X5 | Xo — X3 X2—>X3 X3%X2 X4 —>X3 X3—>X1
c=0.3 88 9 98 9 4 3
c=0.5 100 37 100 35 8 10

On the other hand, the CGCI is significantly affected by the existence
of outliers, performing poorly for P = 2 and 3. The direct causal effects
X; — Xy and Xy — X3 are detected only for P = 2, ¢ = 0.5 and n = 2048.
The significance test with CGCI identifies the spurious causalities Xy — X
and X3 — X, for the coupling strengths ¢ = 0.3 and 0.5.

System 5 The simulations systems 5, 6 and 7 are non-stationary, therefore
only the PSTE is estimated. The first non-stationary system considered is the
coupled Hénon map system with the addition of non-cointegrated stochastic
trend. One realization of system 5, for n = 512 and ¢ = 0 is displayed in the
Fig. 2a.

The PSTE performs worse in the case of system 5, compared to the results
from system 3. The percentages of statistically significant PSTE values for
the coupled Hénon maps with addition of not co-integrated stochastic trends
for m = 2 are lower at the directions of direct causal effects compared with
those from system 3. Representative results are displayed in Table 6, for
¢ = 0.3 and 0.5. However, these percentages at the directions of direct causal
effects seem to increase with n, indicating that PSTE requires larger time
series lengths to effectively recognize causalities. Regarding X; — X3 and
X3 — X, the obtained results vary between 2% and 10%.

13
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Figure 2: (a) One realization of system 5 (three coupled Hénon maps with
addition of non-cointegrated stochastic trends), (b) one realization of system
6 (three coupled Hénon maps with addition of cointegrated deterministic
trends), for n = 512.

System 6 The sixth simulation system is the coupled Hénon map with
the addition of co-integrated deterministic trend, which is a non-stationary
system in mean. One realization of the system for n = 512 for the uncoupled
case (¢ = 0) is displayed in the Fig. 2b. The addition of the co-integrated
deterministic trend does not affect the performance of PSTE, and the results
are very similar to these for system 5.

System 7 The simulation system 7 is a non-stationary system in variance,
with only nonlinear causal effects (X; — X5 and X; — X3). One realization
of system 7, for n = 512 is displayed in Fig. 1b. The PSTE seems to be
effective only for large time series lengths for m = 2. The percentages of
significant PSTE values at the directions X; — X5 and X; — X3 increase
with n (see Table 7). At the directions of no causal effects low percentages are
obtained (between 2% - 5%). The performance of the PSTE improved when
we increased the data size to n = 4096, e.g. the percentage of significant
PSTE increased to 38% for X; — X5 and 54% for X; — Xj5.

Having the variance of input noise in the GARCH term at the same
amplitude as the original system, the effect of the non-stationarity in variance
turns out to be very strong. Therefore, we also examined the following cases:

14



Table 6: Percentages of statistically significant PSTE (m = 2) values for the
simulation system 5.

n =512 X=Xy | Xo— X4 X2—>X3 X3—)X2 X1—>X3 X3—>X1
c=10.3 4 4 9 7 4 4
c=0.5 22 10 30 10 10 2
n=2048 | X1 - X0 | Xo—> X1 | X0 > X3 | X5 Xo | X1 = X5 | X5 X,
c=10.3 8 ) 16 4 6 2
c=0.5 7 28 93 22 3 5)

adding to system 2, standardized realizations of the GARCH(1,1) system
multiplied by ¢ = 0.2 and by 0.5. In these cases, the PSTE indicates much
higher percentages at the directions of direct causality. The percentages
remain low at the directions of no causal effects, at all three cases.

Table 7: Percentages of statistically significant PSTE (m = 2) values for the
simulation system 7 (standardized realizations of GARCH(1,1) multiplied by
c are added to each variable of system 2).

n=>512 | X; > X, X1—>X3 n=2048 | X; — X5 | X3 —>X3
c=1 ) 9 c=1 24 17
c=10.5 ) 11 c=0.5 46 61
c=0.2 14 16 c=10.2 83 73

System 8 It is a common practise in financial applications, to estimate
causality measures or apply causality tests to the VAR residuals of the data
in order to specify the underlying nature of the causal effects. However,
the influence of the filtering on the different causality measures/ tests has
not been fully investigated so far. For this reason, we consider the VAR
filtered residuals of the simulation system 1 (system 8), and estimate the
PSTE and the CGCI. The PSTE has similar performance for systems 8 and
1, revealing the nonlinear causal effect X; — X,. However, it fails to pick
up the nonlinear causal effect X; — X3 (as for system 1). Additionally, the
PSTE seems to require large time series lengths in order to be effective (see
Table 8). The percentages remain low at the directions of no causal effects at
all cases. As expected, the CGCI finds no causal phenomena when estimated
on the VAR filtered data.
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Table 8: Percentages of statistically significant PSTE (m = 2) values for the
simulation system 8.

X =X | X1 > X X2—>X3 Xg—)XQ X1—>X3 X3—>X1
n =512 11 3 3 8 6 1
n = 2048 33 2 9 3 7 3
n = 4096 73 6 11 6 ) 4

4 Application

In this section, we aim to study the direct causal relationships among three
main financial variables. Specifically, the data consist of the following time
series: the 3-Month Treasury Bill of Secondary Market Rate (denoted as X ),
the 10-Year Treasury Constant Maturity Rate (X3) and the Chicago Board
Options Exchange (CBOE) Volatility Index or VIX (X3). Data are daily
measurements from 05/01/2004 up to 18/5/2012 (see Fig. 3). The mone-
tary policy is well represented by the 3-month Treasury Bill, the financial
uncertainty by the well-known fear index, the VIX (option-implied expected
volatility on the S&P500 index with horizon of 30 calendar days) and the
long-term rate by the 10 year Treasury Note.
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: : : : 0.1 : : : :
4 1% o
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2t ‘ ‘ ‘ 02 ‘ ‘ ‘ ‘
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S0F ; ; ; —3 o4
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3401 1 0
20k {1 -02
: . . . -0.4 . . . .
0 500 1000 1500 2000 0 500 1000 1500 2000
t t

Figure 3: Time series of (a) original prices and (b) the returns of the economic
variables.

We highlight here, that the linear Granger causality test is a preliminary
step in order to ensure that VAR filtering will not destroy structure in case
that no linear causality is present. Therefore, the CGCI is estimated on the
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returns and the VAR residuals, since it cannot be directly applied to the
original data (prices) because of the stationarity condition. The time series
of returns and the filtered returns are stationary in level. For the estimation
of the CGCI, the BIC suggests the order models P = 1 and 2, while the AIC
gives much larger order models varying from P = 7 to 14 for the different
data sets. Since the AIC usually overestimates the order models and the
CGCI is not robust for large order models, we set P =1 up to 5.

As expected, the CGCI indicates no causal effects after the VAR filtering.
Based on the returns, it recognises the couplings X; — X5, X7 — Xj,
Xy — X for different P values (see Table 9). For larger P values, fewer
couplings are emerged, e.g. for P = 6 to 10, only the causal effect X; — X3
is found for the return series.

Table 9: Direct causal effects based on the CGCI values for the financial
application.

CGCI returns

P=1 X1—>X3,X2—>X1

P = X1—>X2,X1—>X3,XQ—>X1
P=3 X1—>X2,X1—>X3,X2—>X1
P=4 X1—>X2,X1—>X3
P=5 X, — X

The PSTE is estimated on the original prices of the economic variables,
the returns, as well as the VAR filtered returns for m = 2 and 3. It consis-
tently indicates the direct causal effect Xy — X, for all data sets for m = 2.
Only for the VAR residuals, the additional coupling X3 — X is obtained.
For m = 3, except Xy — X7 and X3 — Xj, for the VAR filtered returns, no
causal effects are detected for the rest of data sets (see Table 10).

Table 10: Direct causal effects based on the PSTE values for the financial

application.
PSTE m =2 m=3
prices X9 — X4 -
returns Xo — X, -
VAR filtered returns | Xo — X7, X5 = X7 | Xo = X1, X3 = X,
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5 Conclusions

The PSTE is a nonlinear measure designed to detect only direct causal effects.
It has been shown to be effective for identifying causality when nonlinear
interrelations are present, for both stationary and non-stationary systems in
mean and variance. It is also not affected by the presence of outliers, since it
uses ranks from the reconstructed vectors of the data and not the time series
values. On the other hand, the PSTE requires large time series lengths in
order to attain high power. Therefore, the stability of the results based on
the PSTE is expected to be lost by increasing m, unless large data sets are
considered (see [24]).

In contrast, the CGCI has a poor performance in case of nonlinear causal
couplings as expected. The present study showed the inadequacy of CGCI
also in the presence of long tails and outliers.

When real time series are used, the PSTE indicates that the 10-year
Treasury bond drives the short-term interest rate (X — X;). This domi-
nant relationship is not affected by the non-stationarity of data (in the case
of using original prices). Besides, the PSTE does not indicate any loss of
information by taking their first logarithmic differences. The suggested rela-
tionship Xy — X, that the PSTE highlights, is nonlinear since it is achieved
on VAR residual series. The consistency of the empirical finding over the
short and long-term via the use of both returns and prices emphasizes the
direct impact of expectations in the design of monetary policy.

It is well documented that financial time series are prone to present styl-
ized facts such as non-stationarity in mean or in variance, heteroscedasticity,
nonlinearity and outliers [2, 21]. When stationarity condition does not hold,
data are treated before estimating Granger causality measures. However, in
line with [26, 4] it has been shown that filtering can lead to spurious results
when applying Granger causality measures. It turns out that the PSTE is
a measure performing well with either non-stationary or stationary data in
mean and variance. As such, it constitutes a powerful tool when real data
with complex underlying properties are studied.
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