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Abstract

We consider the market for a homogeneous good in which two �rms simultaneously decide on both

the price and the production level of the good. Firms have mean-variance preferences and they hold

probabilistic conjectures about the actions of the other �rm. We show that a pure-strategy equilibrium

may exist in this setup, unlike in the standard version of simultaneous price-quantity competition.

We calculate the symmetric pure-strategy equilibrium numerically and we analyze how it depends

on the degree of risk aversion and the amount of uncertainty in the conjectures. We �nd that the

more risk averse the �rms are, the less they produce and the higher price they ask in equilibrium.

Aggregate production exceeds market demand for low degrees of risk aversion but as �rms become

more risk averse, they will not serve the whole market in equilibrium. Our results show that �rms react

di�erently to price uncertainty than to output uncertainty. When price uncertainty increases, �rms

charge a higher price and they produce less. In contrast, higher output uncertainty leads to a lower

price whereas production levels may increase as well as decrease.

JEL classi�cation: C62, C63, C72, L13

Keywords: price-quantity competition, duopoly, risk aversion, pure-strategy equilibrium

∗I am grateful to Jan Tuinstra for his valuable suggestions that substantially improved the paper. I would also like to

thank Sander Onderstal, Robert Somogyi, the participants of the 24th International Conference on Game Theory at Stony

Brook University, the 19th International Conference Computing in Economics and Finance (Vancouver) and the CeNDEF

PhD seminar (Amsterdam) for their feedback on an earlier version of this paper.
†email: d.kopanyi@uva.nl



1 Introduction

There are two traditional ways of modeling competition between �rms producing homogeneous commodi-

ties. Cournot (1838) introduces quantity competition in which �rms set the quantity of the good and the

price adjusts such that the market clears. In contrast, Bertrand (1883) suggests a model in which price is

the strategic variable and quantities clear the market. These two models serve as the basic framework in

the literature of market competition. However, both models have their drawbacks. Under quantity compe-

tition, a market clearing mechanism is required to reach the price for which the demand equals aggregate

production. In the basic model of price competition, Bertrand assumed that �rms can produce any amount

of the good and the output is realized immediately. Firms, however, might not be able to or might not

want to1 serve the whole market at a given price. One way to address this issue is to introduce capacity

constraints in the model: �rms choose capacity levels �rst and they decide about the price only after

observing the capacity levels. See Edgeworth (1925), Kreps and Scheinkman (1983), Gelman and Salop

(1983) and Davidson and Deneckere (1986), for example. These models, however, do not take into account

that production takes time: �rms typically need to produce the good in advance, without knowing the ex-

act demand they will face. Taking these considerations into account, a reasonable alternative of modeling

competition is to treat both prices and quantities as strategic variables to be set simultaneously.2

An inconvenient characteristic of simultaneous price-quantity competition is that there typically does

not exist a Nash equilibrium in pure strategies under general conditions. In this paper we propose a

variation of the standard price-quantity competition model in which a pure-strategy equilibrium may exist.

We consider the market for a homogeneous good that is produced by two �rms. Firms simultaneously set

both the price and the production level of the good. Firms hold conjectures about the actions of the

other �rm and they choose the optimal actions given the conjectures. When �rms choose their price and

production level, they take into account that their conjectures may not be entirely accurate. This introduces

strategic uncertainty in the model. Firms are risk-averse and they have mean-variance preferences.

In the paper we prove the existence of a unique symmetric pure-strategy equilibrium by numerical

methods. This pure-strategy equilibrium exists only when �rms are su�ciently risk averse and the amount

of uncertainty is su�ciently high. The result of having a pure-strategy equilibrium is important as mixed-

1This can occur with convex cost functions: undercutting the price of other �rms may not be pro�table due to the large

increase in production costs. See Dastidar (1995), for example.
2Judd (1996) provides an additional argument for price-quantity competition. He argues that the theoretical predictions

of simpler models in which �rms set price or quantity only, depend crucially on whether the strategic variables are strategic

substitutes or strategic complements. Therefore, excluding either strategic variable from the analysis can have a substantial

e�ect on the results so it is better to treat them together.
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strategy equilibria seem less relevant in the �eld of industrial organization: it does not seem reasonable

to assume that �rms always choose their actions randomly from a speci�c distribution. Therefore, the

model we propose in this paper makes it possible to apply price-quantity competition more widely as a

framework for analyzing various market phenomena such as mergers or cartels and for policy analysis such

as leniency programs.

We analyze with numerical methods how the equilibrium depends on the degree of risk aversion and

the amount of uncertainty in the model. In the pure-strategy equilibrium, aggregate production exceeds

market demand for low degrees of risk aversion. As �rms become more risk averse, they decrease their

production level in order to reduce the pro�t variance and they typically charge a higher price to o�set

the negative e�ect of lower production on the expected pro�t. For high degrees of risk aversion, �rms will

not satisfy the demand for their good in equilibrium. Our model shows that �rms react di�erently to price

uncertainty than to output uncertainty: the equilibrium price is typically increasing while the production

level is decreasing in the amount of price uncertainty but both the equilibrium price and production level

decrease as the amount of output uncertainty increases. The reason for this di�erence is the following.

Higher price uncertainty does not a�ect the pro�t variance directly but the price becomes a more e�cient

instrument for increasing the expected pro�t. In contrast, higher output uncertainty directly a�ects the

residual demand so �rms have an incentive to reduce their price in order to decrease the chance of operating

on the residual demand function. Our model can explain a seemingly anti-competitive behavior (both �rms

increase their price and decrease their production level) without collusion between �rms: an increase in

the amount of price uncertainty has exactly the aforementioned e�ect in equilibrium.

Our paper builds upon and contributes to the literature of price-quantity competition. It is known from

the literature that there do not exist pure-strategy Nash equilibria when �rms choose prices and production

levels simultaneously. See Levitan and Shubik (1978) and Maskin (1986), for example. Roy Chowdhury

(2008), however, proposes a variation of the model that may lead to a pure-strategy Nash equilibrium.

He analyzes a price-quantity model of a homogeneous good with discrete pricing over a grid and convex

production costs. He shows that for a �xed grid size, there exists a unique Nash equilibrium if the number of

�rms is high enough. On the other hand, for a �xed number of �rms, there is no pure-strategy equilibrium

when the grid size is su�ciently small. In the model we consider, it is not necessary to have a large

number of �rms or discrete pricing for having a pure-strategy equilibrium, therefore the paper extends the

existence of pure-strategy equilibria for smaller number of �rms and continuous action spaces too.

The way we model the conjectures of �rms and the corresponding equilibrium concept are related to

the random belief equilibrium introduced by Friedman and Mezzetti (2005). In their model, players hold

beliefs regarding the other players' actions and there are two equilibrium conditions. The �rst one is that
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players maximize their payo�s subject to their beliefs, and the second one is that beliefs are consistent

with the other players' actions in the sense that the expected choice of every �rm coincides with the center

of the belief distribution (i.e. the mode or the mean of the distribution is correctly speci�ed). The same

conditions characterize the equilibrium in our model. Larue and Yapo (2000) and Andersson et al. (2010)

take a similar approach. Their players hold a subjective belief about the action of the other players and

they maximize their payo� subject to these beliefs. Larue and Yapo (2000) require beliefs to be consistent

with the action of other players in equilibrium: the belief distribution is centered around the equilibrium

action of the other player. Andersson et al. (2010) do not make consistency requirements for beliefs but it

is not necessary as they consider the limiting case when the amount of uncertainty goes to zero.

The paper is organized as follows. Section 2 describes price-quantity competition. We discuss the

main theoretical �ndings in the literature in Section 3. The model with strategic uncertainty and risk

aversion is presented in Section 4. In Section 5 we numerically characterize the symmetric pure-strategy

equilibrium and we analyze which parameter combinations lead to an equilibrium. Section 6 analyzes

how the equilibrium depends on the degree of risk aversion and on the amount of uncertainty. Section 7

concludes. Derivations are presented in the Appendix.

2 Price-Quantity Competition

Consider the market for a homogeneous good that is produced by two �rms. The �rms engage in price-

quantity competition and they both set prices and production levels simultaneously. Production levels

correspond to actual production. That is, they are not simply capacity constraints in the sense that

production must be implemented at the chosen level, �rms may not supply less.

The market demand depends linearly on the price of the good. It is given by

D(p) = max {a− bp, 0} , (1)

where a and b are positive parameters and p is the price.

Since �rms make their decisions simultaneously, a �rm may end up with unsold products. Therefore,

we have to distinguish production levels from sales. Sales depend on prices and production levels of both

�rms. The sales of �rm i are given by

si(pi, qi, pj , qj) =


min {qi, D(pi)} if pi < pj

min
{
qi,

qi
qi+qj

D(pi)
}

if pi = pj

min {qi, ri} if pi > pj

, (2)
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where pi and qi denote the price and production level of �rm i whereas subscript j refers to �rm j. Variable

ri is the residual demand of �rm i: ri = max {D(pi)− sj , 0} . Thus, we apply the e�cient rationing rule3

in the model.

Formula (2) shows that the �rm with the lowest price sells all its products, provided that its production

level does not exceed the market demand at the price the �rm chose. When �rms charge the same price,

they sell all their products if they do not serve the whole market together (i.e. qi + qj ≤ D(p) where p is

the price chosen by both �rms). If, however, aggregate production exceeds the market demand, then the

�rms serve the whole market and we assume that sales are proportional to production levels.4 Finally, the

�rm with the highest price operates on its residual demand. If its residual demand exceeds its production

level, then the �rm will sell all its products. However, the �rm will sell only a part of its products if the

residual demand is smaller. Moreover, when the residual demand is 0, then the �rm will not sell anything.

The pro�t of �rm i is given by

πi = pisi(pi, qi, pj , qj)− cqi, (3)

where c is the marginal cost of production. We focus on symmetric �rms so we assume that the marginal

cost is constant and equal to c for both �rms.

There exists no pure-strategy Nash equilibrium in this setting when �rms maximize their pro�t. To

see this, consider an arbitrary situation where both prices are higher than the marginal cost. The �rm

with the lowest price has an incentive to increase its production level until it serves the whole market

(it may have an incentive to change its price too). Thus, the �rm with the lowest price must serve the

whole market in any equilibrium. If it does so, the other �rm undercuts the price and it serves the whole

market. This undercutting may continue until prices are equal to the marginal cost. However, there exists

no equilibrium with prices equal to the marginal cost. If aggregate production exceeds the market demand,

then both �rms have an incentive to decrease their production level. But if aggregate production is lower

than or equal to the market demand, then both �rms have an incentive to charge a higher price and

operate on their residual demand since they make zero pro�t otherwise.5

The intuition behind the non-existence of a pure-strategy Nash equilibrium is that it is never optimal

for a �rm to choose the same price and production level as the other �rm: either serving the whole market

at a slightly lower price or operating on the residual demand is more pro�table than choosing the same

3See Tirole (1988) for more details about this rationing rule.
4We will see later that this assumption does not a�ect the behavior of �rms as the event that they charge the same price

has probability 0 in our model.
5If one of the �rms does not produce anything when prices are equal to the marginal cost, then the other �rm is better

o� by choosing the monopoly price and production level.

5



price and production level. Thus, the best response functions do not cross each other. The crucial condition

is that �rms can undercut each other (or choose to operate on the residual demand) with certainty. This,

however, may not be the case if we introduce uncertainty in the model. In fact, we will see that there may

exist a pure-strategy equilibrium in this case.

3 Literature on Price-Quantity Competition

Before turning to the model with strategic uncertainty and risk aversion, it is worthwhile to review the

main theoretical �ndings about the standard model.

Simultaneous price-quantity competition was considered by Shubik (1955) �rst. He does not investigate

the equilibria of this model, however. Levitan and Shubik (1978) analyze a duopoly in which �rms produce

a homogeneous good. The demand depends on the price linearly, production is costless but there is a

�xed unit cost for disposing unsold products. The authors show that there exists no pure-strategy Nash

equilibrium and they derive a mixed-strategy Nash equilibrium. Maskin (1986) analyzes the market of a

homogeneous good and he considers two versions of price-quantity competition: production in advance

(i.e. prices and quantities are set at the same time) and production to order (i.e. prices are set �rst and

�rms decide on production only after observing each other's price). He proves the existence of a mixed-

strategy Nash equilibrium under general demand and cost conditions. In his PhD thesis, Gertner (1986)

analyzes a duopoly market of a homogeneous good with symmetric �rms and increasing, constant and

decreasing marginal costs. He shows that there is no pure-strategy Nash equilibrium in any of these cases

but a mixed-strategy Nash equilibrium exists. He derives the unique mixed-strategy Nash equilibrium for

a linear demand function and constant and equal marginal costs. This equilibrium has the feature that

�rms draw a price from a certain distribution and then both �rms choose the production level that equals

to the market demand at the price it drew. Consequently, one �rm will serve the whole market while

the other �rm will not sell anything. Firms have zero expected pro�t in equilibrium. McCulloch (2011)

characterizes the mixed-strategy Nash equilibrium numerically for the case of an asymmetric duopoly with

increasing marginal costs. He uses a �ne grid for both prices and quantities. His �ndings support those of

Gertner (1986): �rms charge a (relatively) high price with a high probability and some lower prices with

low probabilities. This result can be interpreted as �rms often charging a high regular price and a lower

sale price every now and then.

Models with di�erentiated goods are also characterized by the non-existence of pure-strategy Nash

equilibria. With di�erentiated goods, one needs to model the spillover demand among the goods, that is

the additional demand for a good when the supply of another good cannot satisfy the demand. Friedman
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(1988) uses general demand, spillover demand and cost functions and considers three versions of price-

quantity competition. He shows that there exists no pure-strategy Nash equilibrium when prices and

production levels are set simultaneously. However, when production levels are set �rst and �rms decide

on prices only after observing the actual outputs, a pure-strategy Nash equilibrium exists when spillover

e�ects are not too strong. Furthermore, when prices are set �rst, then there always exists a pure-strategy

subgame-perfect Nash equilibrium. For further results on price-quantity competition with di�erentiated

goods see Benassy (1986), Judd (1996) and Khan and Peeters (2011), for example.

Let us now turn to the model with strategic uncertainty and risk aversion.

4 A Model with Strategic Uncertainty and Risk Aversion

We introduce strategic uncertainty in the model through the conjectures of �rms. Suppose that �rms have

a forecast for the actions of the other �rm but they are uncertain about the accuracy of these forecasts and

they take this uncertainty into account when deciding on their own price and production level. Formally,

the conjectures of �rm i about the price and production level of �rm j are given by

pcj = pfj + σpεj,p, (4)

qcj = qfj + σqεj,q, (5)

where pfj and q
f
j denote the forecasts and εj,p and εj,q are random errors. Parameters σp and σq determine

the perceived accuracy of the forecasts. Firm i considers its forecasts perfectly accurate for σp = σq = 0.

The higher the values of σp and σq are, the more inaccurate the forecasts are considered. We refer to σp and

σq as the amount of price and output uncertainty. The random components εj,p and εj,q are independent

and they follow the standard normal distribution. Thus, the conjectures pcj and q
c
j are normally distributed

with mean pfj and qfj and variance σ2p and σ
2
q , respectively.

6

The conjectures about the price and production level of �rm j generate pro�t conjectures in the

following way: πci = pisi(pi, qi, p
c
j , q

c
j)−cqi.We introduce risk aversion in the model by assuming that �rms

have mean-variance preferences. That is, they simultaneously solve the following constrained optimization

6With normally distributed errors, the conjectures involve negative as well as unreasonably high values. In order to analyze

the importance of these extreme cases, we ran simulations with errors having truncated normal distribution. This way we

could make sure that pcj takes values from the interval [c, a
b
] and qcj from the interval [0, a− bc]. There was no visible change

in the equilibria, thus extreme realizations do not have substantial e�ect.
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problem:

max
pi,qi

E(πci )− αV ar(πci ) (6)

s.t. qi ≤ D(pi),

where α ≥ 0 measures the degree of risk aversion. For α = 0 the �rms are risk neutral and they maximize

their expected pro�t only. The higher α is, the more disutility the variance gives, thus the more risk averse

the �rms are.7 Note that if qi > D(pi), then �rm i will have some unsold products with certainty. Thus, the

�rm is always better-o� by producing qi = D(pi). Therefore, we can disregard the constraint qi ≤ D(pi)

as it will always be satis�ed.

Having discussed the model, we now turn to analyzing its equilibria. Variables p∗1, q
∗
1, p

∗
2 and q∗2

constitute an equilibrium if the following two conditions are satis�ed:

1. (p∗i , q
∗
i ) ∈ arg maxpi,qi E(πci )− αV ar(πci ) for i = 1, 2.

2. pfi = p∗i and q
f
i = q∗i for i = 1, 2.

The �rst condition means that actions are optimal given the conjectures. The second condition is a

consistency requirement for the conjectures: it implies that conjectures are centered around the true

values in equilibrium. Thus, in equilibrium the actions of the �rms are optimal and their forecasts are

correct.

This equilibrium concept is related to the random belief equilibrium (RBE), introduced by Friedman

and Mezzetti (2005). They �nd empirical support for this concept in experimental data. Moreover, they

compare RBE with the quantal response equilibrium (QRE) but the results are mixed: in some games

RBE �ts the subjects' behavior better while QRE performs better in others. The authors conjecture that

RBE �ts the data better in non-zero sum games that have a unique completely mixed equilibrium. These

conditions hold for the simultaneous price-quantity competition with linear demand function and constant

and equal marginal costs.

In the remaining part of the paper we focus on the symmetric equilibria of the model. In the next

section we will see that there exists a unique symmetric pure-strategy equilibrium in this market, provided

that �rms are su�ciently risk averse and/or the amount of uncertainty is su�ciently high.

7Note that risk aversion in itself cannot lead to a pure-strategy Nash equilibrium since �rms can still undercut each other's

price or operate on the residual demand with certainty.
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5 Symmetric Pure-strategy Equilibria

The conditions that characterize the symmetric pure-strategy equilibria of the model are derived in sections

A1 and A2 of the Appendix. As these conditions are quite long and complex, we report them only in the

Appendix, see equations (A.13)-(A.20) in section A2. For simplifying the notation, let the �rst-order

conditions with respect to pi and qi, evaluated at the �xed point (p, q), be given by

Fp(p, q) = 0, (7)

Fq(p, q) = 0. (8)

This system of equations cannot be solved analytically: functions of p and q appear in the argument

of the cumulative distribution function and the probability density function of the standard normal distri-

bution in both equations. Therefore, we use numerical methods to �nd a solution and then we investigate

whether it corresponds to the global maximum of the objective function of the �rms. If it does, we can

conclude to have found an equilibrium in pure strategies.

First we illustrate the existence of a symmetric pure-strategy equilibrium for a certain parameter

speci�cation and then we will analyze the set of parameters for which an equilibrium in pure strategies

exists. We use the following parameter values in the calculations: a = 10, b = 1, c = 2, α = 1 and

σp = σq = 0.5. We numerically solve (7) and (8) by minimizing F 2
p + F 2

q with respect to p and q.8 The

resulting values are p∗ ≈ 3.87 and q∗ ≈ 2.94. The minimized value of the objective function is 1.36 · 10−17.

This value is very close to zero, which suggests that we have found a solution.

We cannot determine with this method whether there exist other points that satisfy the �rst order

conditions. In order to answer this question, we numerically calculate the (p, q) pairs that solve (7) and

(8) separately and we study the number of (p, q) combinations that satisfy both �rst-order conditions at

the same time. We consider values for p from a �ne grid in the interval
[
c, ab
]
and for each value of p we

numerically calculate the value of q that satis�es (7) and (8), respectively. The upper left panel of Figure

1 shows the curves that consist of the points that satisfy the given �rst-order condition.9

The �gure shows that these curves cross each other at exactly one point. This point corresponds to the

previously calculated (p∗, q∗). Thus, there exist a unique pair (p, q) that may constitute an equilibrium

in pure strategies. In order to conclude that this point is indeed an equilibrium, we need to examine if it

corresponds to the global maximum of the objective function of a �rm, keeping the price and production

8We use the fminsearch function in MATLAB for the minimization.
9The curve for Fp does not look smooth for the following reason. It can be shown that Fp = 0 for any price when q = 0;

and for some values of p the numerical procedure �nds q = 0 instead of the positive solution for q.
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Figure 1: The (p, q) pairs that satisfy the two �rst-order conditions separately (upper left panel) and the objective

function of �rm i with the price and production level of �rm j �xed at (p∗, q∗) (other panels). Parameter values:

a = 10, b = 1, c = 2, α = 1 and σp = σq = 0.5.

level of the other �rm �xed at (p∗, q∗). In other words, we need to check if choosing the same price and

production level as the other �rm is a best response. The upper right panel and the lower panels of Figure

1 depict the objective function of �rm i for pj = p∗ and qj = q∗ . We can observe that (p∗, q∗) corresponds

to the global maximum. The above analysis con�rms that there exists a unique symmetric equilibrium in

pure strategies for the parameter speci�cation we considered.

We cannot conclude from the previous analysis that a pair (p, q) that satis�es the �rst-order conditions,

will always be an equilibrium. In fact, for certain combinations of α, σp and σq, the solution of the �rst-

order conditions does not correspond to the global maximum of the objective function of a �rm, keeping

the price and production level of the other �rm �xed at the value in the solution. For some parameter

combinations the solution is a local but not the global maximum while it can be a saddle point for other

parameters. Therefore, it is essential to investigate which parameter combinations lead to an equilibrium
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Figure 2: The parameter regions in the σp − σq plane for which pure-strategy equilibria exist. Left panel: α = 1.

Right panel: α = 0.25, 0.5, 1 and 1.5. There exists a symmetric equilibrium in pure strategies for the (σp, σq)

combinations that lie to the right from a certain curve. Other parameters: a = 10, b = 1 and c = 2.

in pure strategies. The left panel of Figure 2 shows the (σp, σq) combinations that lead to a symmetric

equilibrium in pure strategies for α = 1. The curve gives the boundary of the region of existence in

the (σp, σq) plane: the solution of the �rst-order conditions constitutes an equilibrium for the (σp, σq)

combinations that lie to the right of the curve. The right panel of Figure 2 illustrates how the existence

region changes as α varies. For obtaining this �gure, we consider a grid for σp and σq for a given value

of α, and for each parameter combination (α, σp, σq) we calculate the point that solves the �rst-order

conditions (7)-(8). Then we compare the value of the objective function of a �rm at this point with the

global maximum (with the price and production level of the other �rm �xed at the values in the solution).

When these two values coincide, the solution corresponds to an equilibrium.10 Finally, for each (σp, α) pair

we consider the minimal value of σq for which the equilibrium exists.11 This leads to the curves depicted

in Figure 2.

The �gure shows that there exists no pure-strategy equilibrium when both the price and the output

uncertainty are small.12 This result is in line with the standard model with risk neutrality and no uncer-

tainty: there exists no equilibrium in pure strategies in the standard model and the model we consider is

10For �nding the global maximum, we evaluate the objective function on a grid with pi ∈ (c, a
b
) and qi ∈ (0, a− bpi]. This

way we can get an approximate value of the global optimum. Then we conclude that the solution is an equilibrium if the

value of the objective function at that point is larger than or equal to the approximate value of the global optimum.
11Preliminary simulations showed that an equilibrium may exist when σq is large enough, given σp and α. The analysis in

Section 6 also con�rms this.
12There might exist an equilibrium when α is su�ciently high. However, it might not be reasonable to assume very high

values of α since they correspond to extreme degrees of risk aversion.
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close to the standard model with very small values of σp and σq. The �gure also shows that the existence

region expands in the degree of risk aversion and in the amount of price and output uncertainty. That is,

the more risk averse the �rms are or the more uncertainty they face, the more parameter combinations will

lead to an equilibrium in pure strategies. Also note that price uncertainty is essential for having a pure-

strategy equilibrium: the equilibrium region does not contain points for which σp = 0. On the other hand,

numerical calculations show that neither production uncertainty nor risk aversion is crucial for existence.

In the previous analysis we used an arbitrary parameter speci�cation for the demand function. In order

to check the robustness of our results, we considered other parameter values as well, including higher and

lower slopes for the market demand function. The results are robust: there exists a unique pair (p, q)

that solves the two �rst-order conditions and the structure of the region of existence is the same. Having

established the existence of a symmetric equilibrium in pure strategies, we now turn to the properties of

this equilibrium.

6 Comparative Statics

The equilibrium depends on several parameters. Among these parameters, the degree of risk aversion α

and the amount of uncertainty σp and σq are of particular interest. In this section we discuss how these

parameters a�ect the equilibrium.

6.1 The e�ect of prices and production levels on the objective function

Before investigating the e�ect of a parameter change on the equilibrium, it is worthwhile to analyze how

a marginal increase in a price or a production level (keeping everything else �xed) a�ects the objective

function of �rms in equilibrium. This will be useful for understanding the intuition behind the results of

the comparative statics analyses. Table 1 summarizes the marginal e�ect of the variables on the expected

pro�t and the pro�t variance of �rm i in equilibrium. A + (−) sign means that a marginal increase in the

variable in the �rst row has a positive (negative) e�ect on the variable in the �rst column. For example, a

marginal increase in pj increases E(πci ) and decreases V ar(πci ) in equilibrium. We derive these e�ects in

the Appendix, see section A3.

To understand the intuition behind these e�ects, note that there are four possibilities concerning the

sales of �rm i. If �rm i has a lower price than the conjectured price of �rm j, then �rm i can sell all

its products. If �rm i has a larger price, then there are three cases. When the conjectured production

level of �rm j is low enough, such that the residual demand of �rm i exceeds qi, �rm i can sell its whole

production. For intermediate values of qcj , �rm i operates on its positive residual demand and sells strictly

12



pi qi pj qj

E(πci ) + + + −

V ar(πci ) + + − +

Table 1: The marginal e�ect of prices and production levels on the expected pro�t and pro�t variance of �rm i in

equilibrium.

less than its production level. Finally, �rm i does not sell anything when the conjectured production level

of �rm j is high enough, such that the residual demand of �rm i becomes 0. For simplicity, we refer to

the cases when �rm i sells all its products as good cases and we call a case bad when the �rm has unsold

products.

When pi increases marginally, the price of �rm i will be larger than the conjectured price of �rm j with

a higher probability. This has an increasing e�ect on the pro�t variance since there is more uncertainty

about the sales and thus about the pro�t of �rm i when the �rm operates on its residual demand: the

uncertain production level of �rm j matters only if �rm i has the higher price. Another e�ect of an increase

in pi is that the pro�t of �rm i increases when it has positive sales. Note that the pro�t increases by qi

in the good cases while it increases less in the bad cases (by ri or 0). Thus, the pro�t di�erence between

good and bad cases increases and this also has an increasing e�ect on the pro�t variance.

Since �rms try to �nd the balance between the expected pro�t and the pro�t variance, in equilibrium

it must hold that an increase in one of the decision variables of �rm i has the same marginal e�ect on its

expected pro�t and pro�t variance (up to a factor α). Consequently, the expected pro�t of �rm i should

increase when pi increases.

Keeping everything else �xed, a marginal increase in the production level of �rm i increases the pro�t

in the good cases. In contrast, the pro�t of �rm i decreases in the bad cases since the �rm will have more

unsold products. Therefore, the pro�t di�erence between good and bad states increases, resulting in a

larger variance. Furthermore, when qi increases, the bad cases will occur with a higher chance since �rm

i is less likely to sell all its products. Since the bad cases lead to more uncertainty, this further increases

the variance. Similar arguments as for pi show that the expected pro�t of �rm i should increase.

An increase in pj is favorable for �rm i since it will have a lower price with a higher chance. This

leads to a higher expected pro�t since the case with the highest pro�t occurs more often. Furthermore,

the pro�t variance decreases since the most uncertain case (when the �rm operates on its positive residual

demand) occurs with a lower chance.

When �rm j increases its production level, then the residual demand of �rm i will decrease. Thus, �rm

13



i can sell less products in the bad cases, leading to a lower expected pro�t. Moreover, the most uncertain

case occurs with a higher chance since �rm i is less likely to sell all its products when it has the higher

price. This increases the pro�t variance.

Having discussed the e�ect of prices and production levels, we can now turn to analyzing the e�ects

of the model parameters on the equilibrium.

6.2 The e�ect of risk aversion

When �rms become more risk averse, that is as α increases, they have an extra incentive for reducing the

variance. As Table 1 shows, this can be achieved by decreasing the price or the production level. Figure 3

shows the equilibrium price (upper panel), production level (horizontal middle panel) and production to

demand ratio PD = 2q∗

a−bp∗ (lower panel) as a function of α, for di�erent values of σp and σq. The vertical

panels correspond to di�erent values of σq and the lines on each plot correspond to di�erent values of

σp.
13 The �gure shows that an increase in α has typically a positive e�ect on the equilibrium price. Only

when both σp and σq are high, we can observe a slight decrease in the equilibrium price for higher values

of α.14 The equilibrium production level monotonically decreases in α. Thus, as �rms become more risk

averse, they decrease their production level to reduce the pro�t variance and they charge a higher price to

compensate for the lower expected pro�t. However, when both the price and output uncertainty are high

and the �rms are su�ciently risk averse, they use also their price to decrease the variance.

The production to demand ratio PD = 2q∗

a−bp∗ compares the aggregate production level (2q∗) to the

demand (a− bp∗) in equilibrium. When PD < 100%, demand exceeds aggregate production, so �rms do

not serve the whole market. For PD = 100%, aggregate production equals the demand: �rms sell all their

products and the demand is satis�ed. For PD > 100% there is overproduction: the demand is satis�ed but

�rms end up with some unsold products. The PD ratio shows a decreasing pattern: aggregate production

decreases more than the market demand as �rms become more risk averse. Note that the PD ratio is

always less than 200%, thus individual production levels are always strictly less than the market demand

in equilibrium. For lower degrees of risk aversion there is overproduction but as �rms become more risk

averse, there is underproduction. The �gure shows that for any amount of uncertainty, there exists a degree

of risk aversion for which aggregate production equals the market demand in equilibrium.

Thus, as �rm become more risk-averse, they typically increase their price and decrease their production

13Note that the di�erent lines start at di�erent values of α. This is due to the fact that for a given (σp, σq) combination

the pure-strategy equilibrium exists only if α is su�ciently high, as Figure 2 shows.
14Note that the �gure also shows that an increase in σp has a positive e�ect while an increase in σq has a negative e�ect

on p∗. We will investigate these e�ects separately later in this section.
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Figure 3: The equilibrium price p∗ (upper panel), production level q∗ (horizontal middle panel) and production to

demand ratio PD = 2q∗

a−bp∗ (lower panel) as a function of α, for σp = 0.5, 0.75 and 1. The left panel corresponds to

σq = 0.25, the vertical middle panel to σq = 0.5 and the right panel to σq = 1. Other parameter values: a = 10,

b = 1 and c = 2.

level. Note, however, that they could also decrease their pro�t variance by decreasing the price and

increasing their production level. It is intuitively clear why we observe higher price and lower production

level in equilibrium and not the other way around. Increasing the price and decreasing the production level

re�ects a less competitive behavior, while charging a lower price and producing more is more competitive.

And when �rms become more risk averse, they should prefer a less competitive outcome.

6.3 The e�ect of price uncertainty

A change in σp a�ects the variance of price conjectures. However, this variance itself is not relevant for

the �rm in equilibrium. To see this, note that the exact value of the price of the other �rm is irrelevant for
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the pro�t of �rm i, the only thing that matters is whether this price is smaller or larger than the price of

�rm i. Since �rms charge the same price in equilibrium, the probability of having the lower price is always

50%, it does not change as σp varies. Using the �rst-order conditions of the �rms' problem, it can easily be

shown that a change in σp does not a�ect either the expected pro�t or the pro�t variance in equilibrium.

The importance of σp is that it determines the marginal e�ect of pi on the expected pro�t and the

pro�t variance of �rm i in equilibrium. To see this, consider the equilibrium for a �xed σp. It follows from

the optimization problem (6) of �rm i that
∂E(πci )
∂pi

= α
∂V ar(πci )

∂pi
in equilibrium, thus the gain from a higher

expected pro�t (for an increase in pi) is exactly o�set by the increase in the variance. Now suppose that

�rms are in equilibrium and σp has increased marginally. Note that the probability density function of εj,p

becomes lower around 0. Consequently, when pi increases marginally, the probability of �rm i having the

lower price will decrease less compared to the situation with the lower value of σp. This means that as σp

increases, less probability mass is shifted towards the region that gives a lower pro�t and a higher variance

when pi increases. Thus, for a marginal increase in pi, the expected pro�t will increase more whereas the

variance will increase less compared to the original situation with the lower σp. This essentially means that

pi becomes a more e�cient instrument for increasing the expected pro�t and �rm i has extra incentives

to increase its price.

Figure 4 depicts the equilibrium price, production level and production to demand ratio as a function

of σp, for di�erent values of α and σq. The di�erent lines on the plots correspond to di�erent values

of α whereas the vertical panels show the results for di�erent values of σq. The �gure shows that the

equilibrium price increases, the production level decreases while the production to demand ratio remains

constant essentially as σp becomes larger. Thus, �rms charge a higher price to increase their expected pro�t

while they reduce their production level to o�set the increase in the pro�t variance (and also because of

the lower demand).

Note that prices and quantities move in the same direction as for an increase in α. The PD ratio,

however, changes di�erently. This can be explained by the di�erent objectives in the two cases. When

�rms become more risk averse, they have more incentives to reduce the variance, and they aim to serve a

smaller share of the demand at a higher price as α increases. In contrast, �rms focus more on increasing

the expected pro�t in the current situation, and they want to serve a constant share of the demand at a

higher price as σp increases.

Based on a price increase accompanied by reduced production levels, one might think that �rms engage

in some sort of an anti-competitive behavior. A remarkable feature of our model is that this need not be

the case: higher price uncertainty leads to higher prices and lower production levels in our model.
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Figure 4: The equilibrium price p∗ (upper panel), production level q∗ (horizontal middle panel) and production to

demand ratio PD = 2q∗

a−bp∗ as a function of σp, for α = 0.1, 0.25, 0.5 and 1. The left panel corresponds to σq = 0.25,

the vertical middle panel to σq = 0.5 and the right panel to σq = 1. Other parameter values: a = 10, b = 1 and

c = 2.

6.4 The e�ect of output uncertainty

In contrast to price uncertainty, higher output uncertainty leads to a higher pro�t variance. This is due

to the fact that the conjectured production level of �rm j directly a�ects the pro�t of �rm i through the

residual demand. And as the uncertainty regarding the residual demand increases, the pro�t variance also

increases. A change in σq a�ects the expected pro�t too but it is not clear by intuition whether it has a

positive or a negative e�ect on it.15 We numerically evaluated the marginal e�ect of σq on the expected

pro�t and pro�t variance for all the parameter combinations we considered in this paper. We found that

15As σq increases, extreme realizations of the production level of �rm j occur with higher probability. While extremely low

realizations are favorable for �rm i, extremely high realizations lead to low residual demands and low pro�ts. It is ambiguous

whether the total e�ect on the expected pro�t is positive or negative.
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Figure 5: The equilibrium price p∗ (upper panel), production level q∗ (horizontal middle panel) and production to

demand ratio PD = 2q∗

a−bp∗ as a function of σq, for α = 0.1, 0.25, 0.5 and 1. The left panel corresponds to σp = 0.4,

the vertical middle panel to σp = 0.5 and the right panel to σp = 1. Other parameter values: a = 10, b = 1 and

c = 2.

the expected pro�t always decreases and that the marginal e�ect on the pro�t variance is larger in absolute

values than the marginal e�ect on the expected pro�t. Since the marginal e�ect on the pro�t variance

dominates, �rms face too much risk compared to the equilibrium before the parameter change. Therefore,

their main objective should be to reduce the variance (and possibly o�set the corresponding negative e�ect

on the expected pro�t).

Figure 5 shows the equilibrium price, production level and production to demand ratio as a function

of σq, for di�erent values of α and σp. The di�erent lines correspond to di�erent values of α while the

vertical panels correspond to di�erent values of σp. Output uncertainty has a clear negative e�ect on the

equilibrium price. The e�ect on the production level is, however, ambiguous. For low values of σq the

production level increases, whereas it decreases for high values of σq. The PD ratio typically decreases,
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except for the case σp is high and α is low.

The results show that �rms charge a lower price for reducing the variance. This is intuitive since �rms

have an incentive to avoid ending up on the residual demand because the residual demand becomes more

uncertain than for a lower value of σq. When σq is low, the pro�t variance is lower, and �rms increase their

production levels to o�set the decrease in the expected pro�t, caused by the lower price. However, when

σq is large, �rms face a higher pro�t variance and therefore they decrease their production level to reduce

the variance. Thus, as output uncertainty increases, �rms use mainly their price to reduce the variance.

The use of production level depends on the relation between expected pro�t and pro�t variance. When

the variance is higher and thus relatively more important than the expected pro�t, then �rms decrease

their production levels to further reduce the variance. Otherwise they use their production level to increase

their expected pro�t.

7 Discussion and concluding remarks

In this paper we introduced strategic uncertainty and risk aversion in the standard model of price-quantity

competition and we showed that there exists a symmetric equilibrium in pure strategies when uncertainty is

su�ciently high or �rms are su�ciently risk-averse. The importance of having a pure-strategy equilibrium

is that there does not exist a Nash equilibrium in pure strategies in the standard model with risk neutral,

pro�t-maximizing �rms. Therefore, this modi�ed version of price-quantity competition can be used more

widely as a market structure for analyzing various market phenomena and for policy analysis.

Strategic uncertainty is introduced through the conjectures of �rms: �rms have a forecast for the

actions of the other �rm but they are uncertain about the accuracy of these forecasts. Risk aversion is

incorporated in the model with �rms having mean-variance preferences. First we derived the �rst-order

conditions of the optimization problem of �rms, and then we numerically found a symmetric solution.

There exists a unique solution, however, it does not necessarily lead to the global maximum of the objective

function of �rms. Additional analysis shows that when �rms are su�ciently risk-averse or the amount of

uncertainty is su�ciently high, then the solution to the �rst-order conditions is the global maximum,

consequently, it gives a symmetric equilibrium. We numerically characterized the parameter region for

which the equilibrium exists. In equilibrium, each �rm produces strictly less than the market demand at

the equilibrium price. Aggregate production, however, may exceed the market demand, depending on the

parameters. Our analysis shows that aggregate production exceeds the market demand for low degrees of

risk aversion while �rms do not serve together the whole market when they are too risk averse. For any

amount of uncertainty, there exists a degree of risk aversion such that demand equals supply in equilibrium,
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provided that the equilibrium exists.

We analyzed how the equilibrium depends on important parameters of the model such as the degree of

risk aversion and the amount of price and output uncertainty. The results show that as �rms become more

risk averse, they produce less to decrease the pro�t variance and they sell their products at a higher price

to o�set the negative e�ect on the expected pro�t. The e�ect of price uncertainty is similar: the equilibrium

price increases and the production level decreases as price uncertainty increases. The reason for this is

that price uncertainty a�ects the marginal e�ect of price: price becomes a more e�cient instrument for

increasing the expected pro�t. Firms react di�erently to output uncertainty than to price uncertainty: the

equilibrium price always decreases, while the production level typically decreases as output uncertainty

increases. The reason behind this di�erence is that price uncertainty is favorable for �rms (the expected

pro�t can be increased more e�ciently with the price) while output uncertainty is not: it directly increases

the pro�t variance through the residual demand function so �rms try to avoid operating on the residual

demand by charging a lower price. For investigating the robustness of our results, we performed the

previous analysis for di�erent demand parameters as well. We observed qualitatively the same e�ects as

before.

Some of our results are in line with experimental �ndings. Cracau and Franz (2012) conduct an

experiment on simultaneous price-quantity setting with linear demand and constant and equal marginal

costs. They found that subjects did not play according to the mixed-strategy Nash equilibrium: the

average price was higher while the average production was lower than the equilibrium prediction. Moreover,

subjects did not always choose the production level that corresponds to the market demand at the chosen

price. This latter �nding holds for our model as well since the PD ratio is always smaller than 200%.

Another similarity is that Cracau and Franz (2012) found typically overproduction on the market: this

occurs in our model for low degrees of risk aversion. An important di�erence, however, is that subjects

typically did not converge to a �xed point whereas our model leads to a unique equilibrium. We expect

that a dynamic version of our model can give price dispersion when the equilibrium does not exist or it is

locally unstable.

Our analysis can be extended in several ways. The predictions of the model about the e�ects of a

change in price or production uncertainty could be tested experimentally. The method outlined in this

paper can be used to analyze asymmetric models too. Firms could have di�erent marginal costs or di�erent

degree of risk aversion, for example. They may also face di�erent amount of uncertainty. The analysis of

asymmetric situations is left for future work. Another important extension is to turn the model into a

dynamic one. This can be done by specifying how forecasts for the price and production level of the other

�rm are formed. Firms could use adaptive updating or estimations using observed data, for example. We
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intend to study the dynamic model in a separate paper.
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A Appendix

A.1 The �rst-order conditions of optimization problem (6)

The objective function

The expected pro�t of �rm i can be expressed as

E(πci ) = piE(si)− cqi. (A.1)

The variance of the pro�t is V ar(πci ) = V ar (pisi − cqi) = p2iV ar(si), which leads to

V ar(πci ) = p2i
[
E(s2i )− E(si)

2
]
. (A.2)

Then the objective function of �rm i can be written as

piE(si) [1 + αpiE(si)]− cqi − αp2iE(s2i ). (A.3)

Note that both E(si) and E(s2i ) depend on pi, qi, pj and qj .

First-order conditions

Firm i maximizes (A.3) with respect to pi and qi. The �rst-order condition with respect to pi reads as

E(si) + pi
∂E(si)

∂pi
+ 2αpiE(si)

2 + 2αp2iE(si)
∂E(si)

∂pi
− 2αpiE(s2i )− αp2i

∂E(s2i )

∂pi
= 0.

This expression simpli�es to

(1 + 2αpiE(si))

(
E(si) + pi

∂E(si)

∂pi

)
− αpi

(
2E(s2i ) + pi

∂E(s2i )

∂pi

)
= 0. (A.4)

The �rst-order condition with respect to qi is given by

pi
∂E(si)

∂qi
+ 2αp2iE(si)

∂E(si)

∂qi
− c− αp2i

∂E(s2i )

∂qi
= 0,

which simpli�es to

pi
∂E(si)

∂qi
(1 + 2αpiE(si))− c− αp2i

∂E(s2i )

∂qi
= 0. (A.5)

For further characterizing the solution, we need to give the formula for E(si), E(s2i ) and for the partial

derivatives of these terms with respect to pi and qi. We derive these expressions in the next paragraphs.

Expected sales E(si)

There are three possible cases concerning the value of si.
16

16In the classi�cation below we do not consider the case when both �rms charge the same price as it has a measure 0 and

thus does not a�ect the optimization problem of the �rms.
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• si = qi : Firm i sells up to his production level qi either if it has the lower price
17 or if it has the

higher price and its residual demand exceeds its production level. The �rst condition is that pi < pcj ,

or equivalently
pi−pj
σp

< εj,p. The second condition is that pi > pcj and a−bpi−qcj ≥ qi, or equivalently
pi−pj
σp

> εj,p and
a−bpi−qi−qj

σq
≥ εj,q. For simplifying notation, let A = 1

σq
(a− bpi − qi − qj) such that

the latter condition reads as A ≥ εj,q.

• si = a− bpi− qcj : Firm i sells up to his (positive) residual demand if it charges the higher price and

its residual demand is positive. This leads to the conditions pi > pcj and 0 ≤ a − bpi − qcj < qi, or

equivalently εj,p <
pi−pj
σp

and B ≥ εj,q ≥ A, where B = 1
σq

(a− bpi − qj) .

• si = 0 : Firm i does not sell anything when it has the higher price and its residual demand at price

pi is negative. This gives pi > pcj and a− bpi < qcj , or equivalently εj,p <
pi−pj
σp

and B < εj,q.

Therefore, expected sales can be calculated as

E(si) =

∞∫
−∞

∞∫
−∞

siφ(xq)φ(xp) dxq dxp =

∞∫
pi−pj
σp

∞∫
−∞

qiφ(xq)φ(xp) dxq dxp

+

pi−pj
σp∫
−∞

A∫
−∞

qiφ(xq)φ(xp) dxq dxp +

pi−pj
σp∫
−∞

B∫
A

(a− bpi − qj − σqxq)φ(xq)φ(xp) dxq dxp

= qi

[
1− Φ

(
pi − pj
σp

)]
+ qiΦ

(
pi − pj
σp

)
Φ(A)

+ Φ

(
pi − pj
σp

)
{(a− bpi − qj) [Φ(B)− Φ(A)] + σq [φ(B)− φ(A)]}

= qi − qiΦ
(
pi − pj
σp

)
[1− Φ(A)] + Φ

(
pi − pj
σp

)
σq {B [Φ(B)− Φ(A)] + φ(B)− φ(A)} . (A.6)

For deriving the third term with the integral, we used the property that φ′(x) = −xφ(x) :

B∫
A

xqφ(xq) dxq =

B∫
A

(
−φ′(xq)

)
dxq = [−φ(xq)]

B
A = φ(A)− φ(B).

Expected squared sales E(s2i )

For deriving E(s2i ) we can use the same steps as for deriving E(si). We just need to replace si with s
2
i in

the integral. Thus,

E(s2i ) = q2i − q2i Φ
(
pi − pj
σp

)
[1− Φ(A)] + Φ

(
pi − pj
σp

)
M, (A.7)

17Here we implicitly assume that qi ≤ D(pi).
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where

M =

B∫
A

(a− bpi − qj − σqxq)2 φ(xq) dxq

=

B∫
A

(a− bpi − qj)2 φ(xq) dxq −
B∫
A

2(a− bpi − qj)σqxqφ(xq) dxq +

B∫
A

σ2qx
2
qφ(xq) dxq

= (a− bpi − qj)2 [Φ(B)− Φ(A)] + 2σq(a− bpi − qj) [φ(B)− φ(A)]

+ σ2q [Aφ(A)−Bφ(B) + Φ(B)− Φ(A)] ,

which simpli�es to

M = σ2q

{
(B2 + 1) [Φ(B)− Φ(A)] +B [φ(B)− φ(A)]− qi

σq
φ(A)

}
. (A.8)

We used integration by parts for deriving the formula for M :

B∫
A

x2qφ(xq) dxq = −
B∫
A

xq (−xqφ(xq)) dxq = −
B∫
A

xqφ
′(xq) dxq = −

[xqφ(xq)]
B
A −

B∫
A

φ(xq) dxq


= Aφ(A)−Bφ(B) + Φ(B)− Φ(A).

Marginal e�ect of own price on expected sales:
∂E(si)
∂pi

∂E(si)

∂pi
= − qi

σp
φ

(
pi − pj
σp

)
[1− Φ(A)]− qiΦ

(
pi − pj
σp

)
φ(A)

b

σq

+
σq
σp
φ

(
pi − pj
σp

)
{B [Φ(B)− Φ(A)] + φ(B)− φ(A)}

+ σqΦ

(
pi − pj
σp

){(
− b

σq

)
[Φ(B)− Φ(A)] +B

[
−φ(B)

b

σq
+ φ(A)

b

σq

]
+Bφ(B)

b

σq
−Aφ(A)

b

σq

}
,

which simpli�es to

∂E(si)

∂pi
= − qi

σp
φ

(
pi − pj
σp

)
[1− Φ(A)] +

σq
σp
φ

(
pi − pj
σp

)
{B [Φ(B)− Φ(A)] + φ(B)− φ(A)} (A.9)

− bΦ
(
pi − pj
σp

)
[Φ(B)− Φ(A)] .
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Marginal e�ect of own production on expected sales:
∂E(si)
∂qi

∂E(si)

∂qi
= 1− Φ

(
pi − pj
σp

)
[1− Φ(A)]− 1

σq
qiΦ

(
pi − pj
σp

)
φ(A)

+ Φ

(
pi − pj
σp

)
σq

{
Bφ(A)

1

σq
−Aφ(A)

1

σq

}
,

which simpli�es to
∂E(si)

∂qi
= 1− Φ

(
pi − pj
σp

)
[1− Φ(A)] . (A.10)

Marginal e�ect of own price on expected squared sales:
∂E(s2i )
∂pi

∂E(s2i )

∂pi
= − q

2
i

σp
φ

(
pi − pj
σp

)
[1− Φ(A)]− q2i Φ

(
pi − pj
σp

)
φ(A)

b

σq

+
σ2q
σp
φ

(
pi − pj
σp

){
(B2 + 1) [Φ(B)− Φ(A)] +B [φ(B)− φ(A)]− qi

σq
φ(A)

}
+ σ2qΦ

(
pi − pj
σp

){
−2B

b

σq
[Φ(B)− Φ(A)] + (B2 + 1)

[
−φ(B)

b

σq
+ φ(A)

b

σq

]
− b

σq
[φ(B)− φ(A)] +B

[
Bφ(B)

b

σq
−Aφ(A)

b

σq

]
− qi
σq
Aφ(A)

b

σq

}
,

which simpli�es to

∂E(s2i )

∂pi
= − q

2
i

σp
φ

(
pi − pj
σp

)
[1− Φ(A)]

+
σ2q
σp
φ

(
pi − pj
σp

){
(B2 + 1) [Φ(B)− Φ(A)] +B [φ(B)− φ(A)]− qi

σq
φ(A)

}
− 2σqΦ

(
pi − pj
σp

)
b {B [Φ(B)− Φ(A)] + φ(B)− φ(A)} . (A.11)

Marginal e�ect of own production on expected squared sales:
∂E(s2i )
∂qi

∂E(s2i )

∂qi
= 2qi − 2qiΦ

(
pi − pj
σp

)
[1− Φ(A)]− q2i Φ

(
pi − pj
σp

)
φ(A)

1

σq

+ σ2qΦ

(
pi − pj
σp

){
(B2 + 1)φ(A)

1

σq
− 1

σq
ABφ(A)− 1

σq
φ(A)− qi

σq
Aφ(A)

1

σq

}
,
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which simpli�es to
∂E(s2i )

∂qi
= 2qi − 2qiΦ

(
pi − pj
σp

)
[1− Φ(A)] . (A.12)

Thus, the �rst-order conditions of optimization problem (6) are characterized by equations (A.4)-(A.12).

A.2 Symmetric pure-strategy equilibria

For deriving the conditions that characterize the symmetric pure-strategy equilibria, we need to substitute

pi = pj = p and qi = qj = q in equations (A.4)-(A.12). This yields the following equations:

(
1 + 2αp E(si)|(p,q)

)(
E(si)|(p,q) + p

∂E(si)

∂pi

∣∣∣∣
(p,q)

)
− αp

(
2 E(s2i )

∣∣
(p,q)

+ p
∂E(s2i )

∂pi

∣∣∣∣
(p,q)

)
= 0, (A.13)

p
∂E(si)

∂qi

∣∣∣∣
(p,q)

(
1 + 2αp E(si)|(p,q)

)
− c− αp2 ∂E(s2i )

∂qi

∣∣∣∣
(p,q)

= 0, (A.14)

E(si)|(p,q) = 0.5q [1 + Φ(A)] + 0.5σq {B [Φ(B)− Φ(A)] + φ(B)− φ(A)} , (A.15)

E(s2i )
∣∣
(p,q)

= 0.5q2 [1 + Φ(A)] (A.16)

+ 0.5σ2q

{
(B2 + 1) [Φ(B)− Φ(A)] +B [φ(B)− φ(A)]− q

σq
φ(A)

}
,

∂E(si)

∂pi

∣∣∣∣
(p,q)

= − 1√
2π

q

σp
[1− Φ(A)] +

1√
2π

σq
σp
{B [Φ(B)− Φ(A)] + φ(B)− φ(A)} (A.17)

− 0.5b [Φ(B)− Φ(A)] ,

∂E(si)

∂qi

∣∣∣∣
(p,q)

= 0.5 [1 + Φ(A)] , (A.18)

∂E(s2i )

∂pi

∣∣∣∣
(p,q)

= − 1√
2π

q2

σp
[1− Φ(A)] (A.19)

+
1√
2π

σ2q
σp

{
(B2 + 1) [Φ(B)− Φ(A)] +B [φ(B)− φ(A)]− q

σq
φ(A)

}
− bσq {B [Φ(B)− Φ(A)] + φ(B)− φ(A)} ,
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∂E(s2i )

∂qi

∣∣∣∣
(p,q)

= q [1 + Φ(A)] , (A.20)

where A = 1
σq

(a− bp− 2q) and B = 1
σq

(a− bp− q).

A.3 The marginal e�ect of prices and production levels in equilibrium

Marginal e�ect of own production level on expected pro�t:
∂E(πci )
∂qi

Using (A.1), the marginal e�ect of qi on the expected pro�t is pi
∂E(si)
∂qi

− c. From (A.14) we know that

p
∂E(si)

∂qi

∣∣∣∣
(p,q)

− c = −2αp2 E(si)|(p,q)
∂E(si)

∂qi

∣∣∣∣
(p,q)

+ αp2
∂E(s2i )

∂qi

∣∣∣∣
(p,q)

in equilibrium, so

∂E(πci )

∂qi

∣∣∣∣
(p,q)

= αp2

(
∂E(s2i )

∂qi

∣∣∣∣
(p,q)

− 2 E(si)|(p,q)
∂E(si)

∂qi

∣∣∣∣
(p,q)

)
.

Comparing (A.18) and (A.20), it can be seen that
∂E(s2i )
∂qi

∣∣∣
(p,q)

= 2q ∂E(si)
∂qi

∣∣∣
(p,q)

, so the marginal e�ect of qi

on E(πci ) reduces to
∂E(πci )

∂qi

∣∣∣∣
(p,q)

= 2αp2
∂E(si)

∂qi

∣∣∣∣
(p,q)

(
q − E(si)|(p,q)

)
.

It is easy to see from (A.18) that ∂E(si)
∂qi

∣∣∣
(p,q)

> 0. The term q − E(si)|(p,q) is obviously positive since qi is

the maximal value of si, therefore qi > E(si). Consequently,

∂E(πci )

∂qi

∣∣∣∣
(p,q)

> 0.

Marginal e�ect of own production level on pro�t variance:
∂V ar(πci )

∂qi

It follows from the �rst-order conditions of optimization problem (6) that
∂E(πci )
∂qi

= α
∂V ar(πci )

∂qi
in equilib-

rium. We have shown that
∂E(πci )
∂qi

> 0 in equilibrium, thus
∂V ar(πci )

∂qi

∣∣∣
(p,q)

> 0 must also hold.

Marginal e�ect of other production level on expected pro�t:
∂E(πci )
∂qj

It follows from (A.6) that

∂E(si)

∂qj
= qiΦ

(
pi − pj
σp

)
φ(A)

(
− 1

σq

)
+ Φ

(
pi − pj
σp

)
σq

{(
− 1

σq

)
[Φ(B)− Φ(A)] +B

[
φ(B)

(
− 1

σq

)
− φ(A)

(
− 1

σq

)]
−Bφ(B)

(
− 1

σq

)
+Aφ(A)

(
− 1

σq

)}
,
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which simpli�es to ∂E(si)
∂qj

= −Φ
(
pi−pj
σp

)
[Φ(B)− Φ(A)] . Since A < B and Φ(x) is an increasing function,

∂E(si)
∂qj

< 0. Thus, the marginal e�ect of qj on E(πci ) is also negative:
∂E(πci )
∂qj

= pi
∂E(si)
∂qj

< 0 since pi > 0.

Marginal e�ect of other production level on pro�t variance:
∂V ar(πci )

∂qj

Using (A.7) and (A.8), the marginal e�ect of qj on E(s2i ) is

∂E(s2i )

∂qj
= q2i Φ

(
pi − pj
σp

)
φ(A)

(
− 1

σq

)
+ Φ

(
pi − pj
σp

)
σ2q

{
2B

(
− 1

σq

)
[Φ(B)− Φ(A)] + (B2 + 1)

[
φ(B)

(
− 1

σq

)
− φ(A)

(
− 1

σq

)]
+

(
− 1

σq

)
[φ(B)− φ(A)] +B

[
−Bφ(B)

(
− 1

σq

)
+Aφ(A)

(
− 1

σq

)]
+

qi
σq
Aφ(A)

(
− 1

σq

)}
,

from which

∂E(s2i )

∂qj
= − q

2
i

σq
Φ

(
pi − pj
σp

)
φ(A)− Φ

(
pi − pj
σp

)
σq
{

2B [Φ(B)− Φ(A)] + (B2 + 1) [φ(B)− φ(A)]
}

− Φ

(
pi − pj
σp

)
σq

{
φ(B)− φ(A)−B2φ(B) +ABφ(A) +

qi
σq
Aφ(A)

}
,

which simpli�es to

∂E(s2i )

∂qj
= −2Φ

(
pi − pj
σp

)
σq {B [Φ(B)− Φ(A)] + φ(B)− φ(A)}

This expression is negative since Φ
(
pi−pj
σp

)
σq {B [Φ(B)− Φ(A)] + φ(B)− φ(A)} is the contribution to

the expected sales of the case 0 < ri < qi (see formula (A.6)), which must be positive.

Using (A.2), the marginal e�ect of qj on V ar(π
c
i ) is given by

∂V ar(πci )
∂qj

= p2i

[
∂E(s2i )
∂qj

− 2E(si)
∂E(si)
∂qj

]
. The

sign of this term is ambiguous since both derivatives are negative and E(si) > 0. In order to determine the

sign of this expression, we need to know the exact value of p∗ and q∗. Therefore we evaluated
∂V ar(πci )

∂qj

∣∣∣
(p,q)

numerically for all parameter combinations that we considered in this paper. All calculations show that

∂V ar(πci )
∂qj

∣∣∣
(p,q)

is positive, that is an increase in qj increases the pro�t variance of �rm i in equilibrium.

Marginal e�ect of other price on expected pro�t:
∂E(πci )
∂pj

Using (A.6), the expected sales of �rm i can be expressed in the following form: E(si) = qi+Φ
(
pi−pj
σp

)
X1,

where

X1 = −qi [1− Φ(A)] + σq {B [Φ(B)− Φ(A)] + φ(B)− φ(A)} . (A.21)
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The expected sales is smaller than qi (since qi is the maximal value of si), thus X1 < 0 must hold.

Furthermore, X1 is independent of pj . It is easy to see that Φ
(
pi−pj
σp

)
is decreasing in pj , therefore

∂E(si)
∂pj

> 0. This implies that the marginal e�ect of pj on E(πci ) is positive:
∂E(πci )
∂pj

= pi
∂E(si)
∂pj

> 0 since

pi > 0.

Marginal e�ect of other price on pro�t variance:
∂V ar(πci )

∂pj

Using (A.7) and (A.8), the expected squared sales of �rm i can be expressed as E(s2i ) = q2i +Φ
(
pi−pj
σp

)
X2

with

X2 = −q2i [1− Φ(A)] + σ2q

{
(B2 + 1) [Φ(B)− Φ(A)] +B [Φ(B)− Φ(A)]− q

σq
φ(A)

}
. (A.22)

Since q2i is the maximal value of s2i , E(s2i ) must be smaller than q2i and consequently X2 < 0. Therefore,

∂E(s2i )
∂pj

> 0 since X2 is independent of pj and Φ
(
pi−pj
σp

)
is decreasing in pj .

From (A.2) the marginal e�ect of pj on V ar(π
c
i ) is given by

∂V ar(πci )
∂pj

= p2i

[
∂E(s2i )
∂pj

− 2E(si)
∂E(si)
∂pj

]
. The

sign of this term is ambiguous since both derivatives are positive and E(si) > 0. In order to determine the

sign of this expression, we need to know the exact value of p∗ and q∗. Therefore we evaluated
∂V ar(πci )

∂pj

∣∣∣
(p,q)

numerically for all parameter combinations that we considered in this paper. All calculations show that

∂V ar(πci )
∂pj

∣∣∣
(p,q)

is negative, that is an increase in pj decreases the pro�t variance of �rm i in equilibrium.

Marginal e�ect of own price on expected pro�t:
∂E(πci )
∂pi

Combining (A.17) with (A.21), it can be seen that ∂E(si)
∂pi

∣∣∣
(p,q)

= 1√
2πσp

X1 − 0.5b [Φ(B)− Φ(A)] . This

expression is negative since X1 < 0 and Φ(B) > Φ(A).

Using (A.1), the marginal e�ect of pi on E(πci ) in equilibrium is given by
∂E(πci )
∂pi

∣∣∣
(p,q)

= E(si)|(p,q) +

p ∂E(si)
∂pi

∣∣∣
(p,q)

. The sign of this expression is ambiguous since the �rst term is positive while the second one

is negative.

We evaluated
∂E(πci )
∂pi

∣∣∣
(p,q)

numerically for all parameter combinations that we considered in this paper.

All calculations show that
∂E(πci )
∂pi

∣∣∣
(p,q)

is positive, that is an increase in pi increases the expected pro�t of

�rm i in equilibrium.

Marginal e�ect of own price on pro�t variance:
∂V ar(πci )

∂pi

We can show that
∂E(s2i )
∂pi

∣∣∣
(p,q)

is negative. The sum of the �rst two terms in (A.19) equals 1√
2πσp

X2 and

this is negative since X2 < 0. The last term is also negative since {B [Φ(B)− Φ(A)] + φ(B)− φ(A)} is
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positive: this is the contribution to the expected sales of the case 0 < ri < qi (see formula (A.6)), which

must be positive.

The marginal e�ect of pi on V ar(π
c
i ) is given by

∂V ar(πci )

∂pi
= 2pi

[
E(s2i )− (E(si))

2
]

+ p2i

[
∂E(s2i )

∂pi
− 2E(si)

∂E(si)

∂pi

]
.

Note that the �rst term is positive since the term in the brackets is the variance of si. The sign of the

second term is, however, ambiguous:
∂E(s2i )
∂pi

< 0 while −2E(si)
∂E(si)
∂pi

> 0 since ∂E(si)
∂pi

∣∣∣
(p,q)

< 0.

We evaluated
∂V ar(πci )

∂pi

∣∣∣
(p,q)

numerically for all parameter combinations that we considered in this

paper. All calculations show that
∂V ar(πci )

∂pi

∣∣∣
(p,q)

is positive, that is an increase in pi increases the pro�t

variance of �rm i in equilibrium.
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