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Abstract

The standard linear Granger non-causality test is effective only
when time series are stationary. In case of non-stationary data, a
vector autoregressive model (VAR) in first differences should be used
instead. However, if the examined time series are co-integrated, a
VAR in first differences will also fail to capture the long-run relation-
ships. The vector error-correction model (VECM) has been introduced
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to correct a disequilibrium that may shock the whole system. The
VECM accounts for both short run and long run relationships, since
it is fit to the first differences of the non-stationary variables, and a
lagged error-correction term is also included. An alternative approach
of estimating causality when time series are non-stationary, is to use
a non-parametric information-based measure, such as the transfer en-
tropy on rank vectors (TERV) and its multivariate extension partial
TERV (PTERV). The two approaches, namely the VECM and the
TERV / PTERV, are evaluated on simulated and real data. The ad-
vantage of the TERV / PTERV is that it can be applied directly to
the non-stationary data, whereas no integration / co-integration test is
required in advance. On the other hand, the VECM can discriminate
between short run and long run causality.

1 Introduction

The concept of Granger causality [10] has been widely utilized for the in-
vestigation of the directed interactions, mainly in economics, e.g. [9], but
also in various other fields, e.g. neuroscience [29, 6], climatology [19]. The
basic principle of Granger causality analysis is to test whether past values of
a variable X (the driving variable) help to explain current values of another
variable Y (the response variable). The linear Granger causality test is imple-
mented by fitting autoregressive models, whereas one tests if the prediction
of Y could be improved by incorporating information of X (compared to the
prediction of Y using only past values of Y ). However, one should first exam-
ine the basic properties of the variables. If the variables are non-stationary
or / and co-integrated, then the test will be misspecified [11].

Stationarity is a common assumption in many time series techniques. A
stationary process is a stochastic process whose joint probability distribution
does not change when shifted in time (strict stationarity). Weak stationarity
(or covariance stationarity) is usually sufficient for most techniques, requiring
only the first and second moment not vary with respect to time. The order of
integration, denoted as I(d), of a time series states the minimum number of
differences required to obtain a covariance stationary series. Various tests for
stationarity or equivalently unit root tests have been developed in order to
the test the stationarity of a time series, e.g. the (augmented) Dickey-Fuller
test [5] and the Phillips-Perron test [22].

Co-integration is a concept that stems from the economic theory which
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often suggests that certain pairs of economic or financial variables are linked
by a long-run relationship [7]. Two or more time series are co-integrated if
they share a common stochastic drift, i.e. a certain linear combination of
the variables is I(0). There are three main co-integration tests, namely the
EngleGranger two-step method [7], the Johansen test [14] and the Phillip-
sOuliaris test [21].

The cointegration technique made a significant contribution towards test-
ing Granger causality. Although co-integration does not provide any infor-
mation about the direction of causality, if two variables are cointegrated,
there should be causality in at least one direction [11]. To this respect, a
cointegration test can be viewed as an indirect test of long-run dependence
[7]. Causality in non-stationary time series (in mean) is typically investigated
through vector error correction models (VECM) in econometrics, and it is
subdivided into short-run and long-run causality. As reported in [12], the
regression results with non-stationary variables will be spurious. Further, if
the variables are non-stationary and cointegrated, running a regression with
first differenced variables will not capture the long run information as the
first differenced regression results are for short run relationship. A compari-
son of the prediction performance of VAR models and VECMs can be found
in [17].

The developments in the area of nonlinear dynamics led to the contribu-
tion of other fields, such as statistics and physics on econometrics and vice
versa. Linear and nonlinear extensions of the Granger causality concept (e.g.
[13, 24]) have been utilized in different scientific fields such as the analysis of
brain dynamics, while causality measures originally defined for the analysis
of biological signals have been applied in financial data, e.g. partial directed
coherence [4] has been used to detect the information flow among financial
markets in [2].

Information theory is essential for the analysis of information flow among
variables of complex systems. Measures from information theory, such as
Shannon entropy, (conditional) mutual information [27], mutual coarse-grained
information rate [20] and transfer entropy [25], have been extensively used
for the detection of the general statistical dependence and the information
flow among variables. Their main advantage is that they are model free and
make no assumption for the distribution of the data, while are able to detect
the overall dependencies and not only the linear ones. The transfer entropy
is the most commonly used information causality measure and has been ap-
plied also to financial data, e.g. see [18]. Information theory has also been
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employed for the investigation of non-linear co-integration, e.g. [3].
The transfer entropy on rank vectors (TERV) is an information bivariate

causality measure that has recently been introduced for the detection of di-
rected interrelationships [15]. The partial TERV (PTERV) is the extension
of TERV in the multivariate case, in order to account only for the direct
couplings [16]. The TERV / PTERV is applicable to any type of data (sta-
tionary or not) and makes no assumptions prior to the distribution of the
data.

In this work, we demonstrate the performance of the TERV / PTERV
on bivariate and multivariate time series of known coupled and uncoupled
systems and on stationary and non-stationary time series in mean. Further,
we compare the performance of TERV / PTERV with the ECM / VECM
using different bivariate and multivariate simulation systems, with I(1) co-
integrated variables. From the simulation study, the advantages and disad-
vantages of each method are indicated. As a real application, the TERV /
PTERV and the VECMs are applied on financial variables in order to explore
the causal affects.

In Sec. 2, some introductory concepts are discussed, i.e. the stationarity
of a process and the augmented Dickey-Fuller test for unit root, the Granger
causality test for stationary processes, and the notion of co-integration along
with the Johansen co-integration test. The causality test based on the (vec-
tor) error correction models (ECM / VECM) and the (partial) transfer en-
tropy on rank vectors (TERV / PTERV) are presented in Sec. 3. In Sec. 4,
the two causality methods are evaluated on a simulation study. The perfor-
mance of the causality test is assessed in a real application from financial
time series in Sec. 5. Finally, the conclusions of this study are discussed in
Sec. 6.

2 Materials and methods

The concepts of stationarity and co-integration are discussed here, along with
the corresponding tests in order to investigate these properties for a given
time series.
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2.1 Stationarity

A process is stationary if its statistical properties are constant over time.
Weak stationarity implies that the first and second moment of the process
is constant over time, i.e. the mean, variance and autocovariance. The
stationarity is an important feature of the time series since it is required in
order to apply certain statistical tests. If two time series x and y are non-
stationary (or equivalently integrated or have a unit root), then modelling
the x and y relationship as a simple ordinary least square relationship of the
form yt = α + βxt + et will only generate a spurious regression.

If a series is stationary without any differencing it is designated as I(0)
(integrated of order 0). The most common technique to transform a non-
stationary time series to a stationary one is by differencing, e.g. the first-
differenced values of a time series xt are given by the ∆xt = xt−xt−1, where
∆ is the differencing operator. We discuss here one of the most popular unit
root test, the augmented Dickey-Fuller test [5].

Augmented Dickey-Fuller test for unit root The Augmented Dickey-
Fuller test for a unit root assesses tests the null hypothesis of a unit root,
H0 : ϕ = 1 (i.e. the data needs to be differenced to make it stationary),
under the alternative hypothesis, H1 : ϕ < 1. To implement the test, the
following model is considered

xt = c+ δt+ ϕxt−1 + A1∆xt−1 + . . .+ Ap∆xt−p + ϵt (1)

where ∆ is the differencing operator, c is the drift coefficient, δ is the deter-
ministic trend coefficient, p is the number of lagged difference terms used in
the model and ϵt is a mean zero innovation process. The number of lags can
be determined using the Schwartz Bayesian information criterion [26] or the
Akaike information criterion [1].

To infer about H0, the t-statistic is used on the ϕ coefficient. The test
statistic is given by the expression

tDF =
ϕ̂− 1

SE(ϕ̂)
, (2)

where ϕ̂ is the estimated ϕ from the fitting and SE is the standard error.
The Dickey-Fuller statistics follow nonstandard distributions under the

null hypothesis (even asymptotically). Critical values for a range of sample
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sizes and significance levels can be calculated using Monte Carlo simulations
of the null model with Gaussian innovations. The null hypothesis H0 is
rejected if the test statistic is smaller than the corresponding critical value.

2.2 Granger causality

The Granger causality has been developed in order to quantify the causal
effects among time series [10] and it is based on the concept that the cause
occurs prior to its effect. The application of Granger causality assumes that
the analyzed time series are covariance stationary. Formally, if a future value
of a time series X1 that one would like to predict is improved by using the
values of X2 (instead of using only past values of X1), then we say that X2

Granger causes X1 or equivalently that X2 is driving X1.
To estimate the linear Granger causality (in the bivariate case), a vector

autoregressive model (VAR) in two variables and of order P is fitted to the
time series {x1,t} (unrestricted model)

x1,t+1 =
P−1∑
j=0

a1,jx1,t−j +
P−1∑
j=0

b1,jx2,t−j + ϵ1,t+1, (3)

where a1,j, b1,j are the coefficients of the model and ϵ1 the residuals from
fitting the model with variance s21U . We also consider the VAR model based
on Eq. 3 obtained by omitting the terms regarding the driving variable (re-
stricted model). The variable X2 Granger causes X1 if the residuals s21R
of the restricted model are significantly larger than the residuals s21U of the
unrestricted model, i.e. if s21R > s21U .

To infer about the causal effects, a parametric significance test can be
conducted for the null hypothesis that variable X2 is not driving X1 making
use of the F -significance test for all P coefficients b2,j [?]. The Granger
causality can be easily extended to the multivariate case by fitting all the
available data to the VAR models.

2.3 Co-integration

Consider an K-dimensional time series yt, with components that have a unit
root. This process is co-integrated if a linear combination β1y1t+ . . .+βKyKt

of the components of the process is stationary (co-integrating relation). The
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vector β = (β1 + . . . + βK)
′ is called the co-integrating vector. The co-

integration should be distinguished from the short-term relations.
The extension of the VAR model to include co-integrated variables bal-

ances the short-term dynamics of a process with the long-term tendencies.
The vector error correction model (VECM) expresses the long run dynamics
of the process including error correction terms i.e. the term αβ′yt−1 measures
the deviation from the stationary mean at time t− 1:

∆yt = c+Πyt−1 +

p−1∑
i=1

Γi∆yt−i + ϵt (4)

where Π = αβ′ and c is the drift coefficient. Considering Eq. 1, it holds that
Π =

∑p
i=1 Ai − I and Γi = −

∑p
j=i+1Aj. If the variables in yt are I(1), the

terms involving differences are stationary, while the error-correction term in
the VEC model introduces long-term stochastic trends.

Johansen co-integration test The Johansen co-integration test is one
of the most methods for the identification of the existence of co-integration.
Its main advantage is that provides comprehensive testing in the presence of
multiple co-integrating relations.

The Johansen method is based on the relationship between the rank of
the matrix Π and the size of its eigenvalues. The rank of the matrix Π
determines the long-term dynamics. If Π has full rank, the process yt is
stationary in mean. If the rank of Π is zero, then the error-correction term
disappears, and the system is stationary in differences (the VAR model in
differences can be used). If the rank of Π is r (within (0, K)), then there
are r independent co-integrating relations among the variables in yt. For a
given r, the maximum likelihood estimator of β defines the combination of
yt−1 that yields the r largest canonical correlations of ∆yt with yt−1.

Assuming that the VECM errors are independent and Gaussian dis-
tributed, and given the co-integrating restrictions on the trend or the pa-
rameters of the model, the maximum likelihood Lmax(r) is a function of the
co-integration rank r. In the Johansen testing there are two test statistics;
the trace statistics and the maximum eigenvalue statistic. The trace statistic
tests the null hypothesis that there are at most r co-integrating relationships
against the alternative of K co-integrating relations. The test statistics is
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given as

Jtrace = −n
K∑

i=r+1

ln(1− λ̂i), (5)

where λ̂i is the i-largest canonical correlation and n is the sample size. The
maximum eigenvalue test considers the null hypothesis that r co-integrating
vectors exist, with the alternative that r+1 co-integrating vectors exist. The
test statistics is given as

Jmax = −n ln(1− λ̂r+1). (6)

Both tests have non-standard asymptotic null distributions, there simulations
are used for their critical values.

3 Causality

The linear Granger causality on VAR can be applied to time series that
are stationary. If data are not stationary and not co-integrated, then the
VAR can fitted to the differenced time series. If data are non-stationary
and co-integrated, then the VAR model will give miscellaneous results. If
co-integration is detected among the examined time series, then a long-term
equilibrium relationships among them exists and one should apply the VECM
in order to evaluate the short run properties of the co-integrated time series.

3.1 Causality test based on VECM

The VECMs incorporate information about the short run and long-run re-
lationships of the variables. The assumptions to use the VECM are that
the variables are integrated of the same order and a co-integration relation-
ship exists. The regression equation form for the VECM has been given in
Eq. 4. An interaction is significant in the long-run, if the coefficient Π of the
model is negative and significant. An interaction is Granger significant in the
short-run, if the corresponding coefficients Γi of the model are significant.

The VECM is efficiently specified when the residuals are normally dis-
tributed, exhibit no serial correlation and no heteroscedasticity. The exam-
ined null hypothesis is that the residuals are normally distributed. For this,
the Jarque-Bera statistic is used

JB =
n

6
(S2 +

(k − 3)2

4
) ∼ χ2(2), (7)
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where n is the sample size, S is the skewness and k is the kurtosis of the
residuals. If H0 is satisfied, JB follows asymptotically a X2 distribution with
2 degrees of freedom. H0 is rejected for large values of JB, i.e. for small
p-values of the test.

The Ljung-Box Q-test for residual autocorrelation tests the null hypoth-
esis that the residuals exhibit no autocorrelations for a fixed number of lags
L. The test statistic is defined as

Q = n(n+ 2)
L∑

τ=1

ρ(τ)2

n− τ
) ∼ χ2(L), (8)

where ρ(τ) is the sample autocorrelation at lag τ .
Finally, we test the hypothesis that there are no auto regressive condi-

tional heteroskedasticity (ARCH) effects in the residuals, using the Engle
test. The ARCH(h) model is fitted to the residuals

r2t = α0 + α1r
2
t−1 + . . .+ αhr

2
t−h + ϵt. (9)

The Lagrange multiplier statistic is employed

LM = nR2 ∼ X2(L), (10)

where R2 is the coefficient of determination, to test the hypothesis that the
coefficients of the ARCH model are all equal α0 = α1 = . . . = αh.

3.2 Transfer entropy on rank vectors

Information theory has provided many efficient and effective correlation and
causality measures that have been tested in different applications. Their ad-
vantage is that they are model free and make no assumptions on the distribu-
tion of the data. Further, the causality measures symbolic transfer entropy
(STE) [28] and (partial) transfer entropy on rank vectors (TERV) [15, 16],
have been recently developed, so that they do not require stationarity and
therefre are applicable to any type of data.

The transfer entropy (TE) quantifies the amount of information explained
in a variable X1 at h time steps ahead from the state of a variable X2

accounting for the concurrent state of X1. Let us consider first two si-
multaneously observed time series {x1,t}, {x2,t}, t = 1, . . . , n derived from
the dynamical systems X1 and X2, respectively. The reconstructed vec-
tors for X1 and X2 are defined as x1,t = (x1,t, x1,t−τ1 , . . . , x1,t−(m1−1)τ1)

′,
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x2,t = (x2,t, x2,t−τ2 , . . . , x2,t−(m2−1)τ2)
′, where t = 1, . . . , n′, n′ = n − h −

max{(m1 − 1)τ1, (m2 − 1)τ2}, m1 and m2 are the embedding dimensions,
τ1 and τ2 are the time delays and h is the step ahead to address for the
interaction. The TE is expressed as a conditional mutual information

TEX2→X1 = I(x1,t+h;x2,t|x1,t)

=
∑

p(x1,t+h,x2,t,x1,t) log
p(x1,t+h|x2,t,x1,t)

p(x1,t+h|x1,t)
, (11)

where p(x1,t+h,x2,t,x1,t), p(x1,t+h|x2,t,x1,t) and p(x1,t+h|x1,t) are the joint and
conditional probability distributions.

The symbolic transfer entropy (STE) is an extension of TE defined on
rank points. For each reconstructed vector, e.g. x1t, we form the correspond-
ing rank-points x̂1t = (r1, . . . , rm)

′, where rj ∈ {1, . . . ,m} and j = 1, . . . ,m,
by arranging the amplitude values of x1t in an ascending order. The STE
is defined similarly to TE, however the rank points are used in its definition
instead of using the reconstructed vectors.

The transfer entropy on rank vectors (TERV) is a correction of the STE,
so that the future of the response is defined for more than one time steps and
therefore capture the information flow from the driving system over a longer
time horizon. For its definition, assume the vector x̂h

1,t = (x1,t+1, . . . , x1,t+h)
′

instead of using x̂1,t+h. In [15], the results show that TERV improves the
performance of STE and at some cases performs better than TE, e.g. in the
presence of noise. The partial TERV (PTERV) is the extension of TERV
in the multivariate case, in order to account for the presence of confounding
variables Z = {Z1, . . . , ZK}

PTERVX2→X1|Z =
∑

p(x̂h
1,t, x̂2,t, x̂1,t, ẑt) log

p(x̂h
1,t|x̂2,t, x̂1,t, ẑt)

p(p(x̂h
1,t|x̂1,t, ẑt)

. (12)

The PTERV has also been tested in case of non-stationary data and proved
to be robust in the presence of drifts in the time series [16].

Statistical significance of TERV / PTERV In [16], the parametric ap-
proximation of the null distributionH0 of no coupling for PTERV is discussed
and it is concluded that resampling methods are required to sufficiently ap-
proximate it. The statistical significance of the PTERV is assessed by a
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randomization test making use of time-shifted surrogates [23]. The surro-
gate time series are formed by time-shifting the time series of the driving
variable, while the other time series are intact.

Considering the driving time series {x1,1, . . . , x1,n} and a random integer
d (d < n), the first d values of the time series are moved to the end, so that
the time-shifted time series is {x1,d+1, . . . , x1,n, x1,1, . . . , x1,d}. If the original
TERV / PTERV value (q0) lies at the tail of the distribution of the TERV /
PTERV values (q1, . . . , qM) using the time-shifted time series, then the null
hypothesis of no causal effects is rejected. If r0 is the rank of q0 when ranking
in ascending order the list q0, q1, . . . , qM , then the p-value of the one sided
test is p−value = 1−(r0−0.326)

M+1+0.348
[30].

4 Simulations and Results

The effectiveness of the two causality methods, i.e. ECM / VECM and TERV
/ PTERV, in detecting direct causal effects is assessed based on a simulation
study. First, the TERV / PTERV is applied on different types of time series,
bivariate and multivariate, stationary or non-stationary, with with linear
and/or nonlinear couplings. Results from TERV / PTERV are compared
with those from the linear Granger causality test. Then, non-stationary and
co-integrated time series are generated, so that ECM / VECMs can be also
applied. Results from both methods are compared.

We consider 100 realizations of different simulation systems for time series
lengths n = 256, 512, 1024, 2048. For the TERV / PTERV, the time lag τ for
all variables is set to one and at cases to τ = m. The embedding dimension
m is set to be the same for all variables and for each simulation system is set
equal the true model order from the equations of each system. The number
of time steps ahead h is set to 1. The order P of the VAR model or the ECM
/ VECM is equal to m.

The performance of the causality methods is quantified by the percentage
of statistically significant couplings in the 100 realizations. For all methods,
the couplings are always regarded to be conditioned on the remaining vari-
ables, if the system is multivariate.

System 1. A stationary, linear, uncoupled, bivariate model

x1,t = 0.1x1,t−1 − 0.3x1,t−2 + ϵ1,t
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x2,t = 0.7x2,t−1 + ϵ2,t

where ϵi,t is Gaussian white noise (the same stands for all the systems).
The TERV successfully indicates that no couplings exists for h = 1,

m = 2, τ = 1, giving low percentages of rejection of H0 (Table 1). Since
the assumptions for the ECM are not satisfied, the standard linear Granger
causality (GC) is used for system 1. Both methods give similar results (Ta-
ble 1).

Table 1: Percentages of rejecting the non-causality hypothesis based on
TERV (m = 2) and on GC (P=2), for the simulation system 1.

TERV (m = 2) GC (P = 2)
n 256 512 1024 2048 256 512 1024 2048

X1 → X2 6 8 6 6 7 4 2 5
X2 → X1 3 3 8 3 5 3 5 4

In order to further check the performance of the TERV in case of non-
stationarity, we generate the corresponding non-stationary time series from
system 1 by integrating the original time series. The TERV gives similar
results as for the stationary case, indicating low percentages of rejections of
the non-causality hypothesis (varying from 2% to 7% for the different n).

System 2. A non-stationary, linear, bivariate model with bidirectional cou-
plings X1 ↔ X2, generated by integrating the variables from the following
system

x1,t = −0.7 + 0.7x1,t−1 + 0.2x2,t−1 + ϵ1,t

x2,t = 1.3 + 0.2x1,t−1 + 0.2x2,t−1 + ϵ2,t

We are considering system 2 for two reasons; first, in order to evaluate the
performance of TERV when bidirectional coupling is present, and secondly
to investigate the effect of mis-specifying the embedding dimension m. From
the definition of TERV, we can only set m ≥ 2, however the true order model
of system 2 is one. The TERV (for m = 2) seems to be effective only for
large time series lengths (see Table 2).

The GC is applied to the original stationary time series from system 2. It
effectively denotes the true couplings for all time series lengths, giving similar
results for P = 1 and P = 2 (Table 2).
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Table 2: As Table 1 but for system 2.
TERV (m = 2) GC (P = 2)

n 256 512 1024 2048 4096 256 512 1024 2048
X1 → X2 13 16 31 58 86 97 99 100 100
X2 → X1 0 3 9 14 41 99 100 100 100

System 3. A non-stationary, linear, bivariate model with unidirectional
coupling X2 ↔ X1, generated by integrating the variables of the system

x1,t = 0.6x1,t−1 + 0.3x2,t−2 + ϵ1,t

x2,t = 0.1x2,t−2 + ϵ2,t

For System 3, the embedding dimension is set equal to the true order of
the model, i.e. m = 2. Although the TERV fails to detect the coupling for
h = 1 (percentages of rejection of H0 vary from 3 to 8% for all n), it correctly
detects the coupling X2 → X1 for h = 2 (see Table 3). The sensitivity of
TERV on the free parameter h is displayed in this example.

Table 3: As Table 1 but for system 3.
TERV (h = 2, m = 2) GC (P = 2)

n 256 512 1024 2048 256 512 1024 2048
X1 → X2 5 3 10 3 5 2 6 5
X2 → X1 29 54 92 100 100 100 100 100

On the other hand, the GC correctly indicates the true coupling even for
small time series lengths, when the original stationary system is considered
(Table 3). However, if P is mis-specified and is set to 1, then the GC fails to
come up with the correct coupling and specifically no couplings are denoted.

System 4. A non-stationary, nonlinear, multivariate system, with unidi-
rectional couplings X1 → X2 and X2 → X3, generated by integrating the
variables from three coupled Hénon maps, with coupling strength c = 0.2

x1,t = 1.4− x2
1,t−1 + 0.3x1,t−2

x2,t = 1.4− (cx1,t−1x2,t−1 + (1− c)x2
2,t−1) + 0.3x2,t−2

x3,t = 1.4− (cx2,t−1x3,t−1 + (1− c)x2
3,t−1) + 0.3x3,t−2

13



The PTERV (m = 2) correctly indicates the true direct couplings for system
4, even for small time series lengths, while the percent of significant values
are low for the uncoupled directions (see Table 4).

Table 4: As Table 1 but for system 4. All the indicated couplings are condi-
tioned on the third variable of the system.

TERV (m = 2) GC (P = 2)
n 256 512 1024 2048 256 512 1024 2048

X1 → X2 54 81 99 100 46 91 100 100
X2 → X1 6 5 4 9 7 5 8 32
X2 → X3 54 91 99 100 22 60 93 100
X3 → X2 10 7 9 16 20 10 16 18
X1 → X3 9 11 10 9 6 8 9 7
X3 → X1 5 10 3 9 10 12 4 6

The GC is again applied to the corresponding stationary time series of
system 4. The GC (P = 2) correctly indicates the couplings, however also
spurious couplings are observed, e.g. X2 → X1 for n = 2048 (32%) and
X3 → X2 for n = 256 (20%) (see Table 4).

System 5. A non-stationary, linear, multivariate system, with unidirec-
tional couplings X1 → X3, X2 → X1, X2 → X3, X4 → X2, generated by
integrating the variables of a VAR(5) model

x1,t = 0.8x1,t−1 + 0.65x2,t−4 + ϵ1,t

x2,t = 0.6x2,t−1 + 0.6x4,t−5 + ϵ2,t

x3,t = 0.5x3,t−3 − 0.6x1,t−1 + 0.4x2,t−4 + ϵ3,t

x4,t = 1.2x4,t−1 − 0.7x4,t−2 + ϵ4,t

The PTERV (m = 5) correctly indicates only the true coupling X1 → X3,
however fails to detect the other ones. No spurious couplings are detected
(see Table 5). The PTERV seems to be ineffective for large embedding
dimensions probably due to the high dimensionality of the vectors, i.e. m*K
+ 1, where K is the number of variables.

In this case, the GC (P = 5) outperforms the PTERV, indicating the
true couplings for all n, while no spurious couplings are observed (Table 5).
Again, the stationary time series are considered for the GC.
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Table 5: As Table 4 but for system 5.
TERV (m = 5) GC (P = 5)

n 256 512 1024 2048 256 512 1024 2048
X1 → X2 0 0 0 0 5 4 8 8
X2 → X1 5 10 12 7 100 100 100 100
X1 → X3 21 53 97 100 100 100 100 100
X3 → X1 2 1 0 0 4 4 6 4
X1 → X4 0 0 0 0 7 3 3 2
X4 → X1 8 6 4 1 5 3 4 7
X2 → X3 2 3 1 0 100 100 100 100
X3 → X2 0 0 0 0 4 3 4 6
X2 → X4 1 2 0 0 7 8 7 8
X4 → X2 1 10 5 12 100 100 100 100
X3 → X4 0 0 0 0 3 8 4 4
X4 → X3 6 3 0 1 4 5 6 7

The following systems are generated in order to be non-stationary (I(1))
and co-integrated, in order to apply the ECM / VECM methodology.

System 6. A non-stationary, linear, bivariate system, with unidirectional
coupling X2 → X1, with co-integrated variables

x1,t = 0.7x2,t−1 + ϵ1,t

x2,t = x2,t−1 + ϵ2,t

System 6 is co-integrated since variable X2 is non-stationary (X2 ∼ I(1)) and
therefore X1 ∼ I(1) as well, and there is a linear combination of them which
is stationary: x1,t − 0.7x2,t = x1,t − 0.7(x2,t−1 + e2,t) = e1,t − 0.7e2,t ∼ I(0).

The TERV (m = 2) is effectively applied to system 6 (see Table 6). The
coupling X2 → X1 is denoted even for small time series lengths, even though
the embedding dimension is mis-specified (we set m = 2, however based on
the equations of the system, one should set m equal to 1).

The assumptions for using the ECM are satisfied for system 6, i.e. the
variables are I(1) and co-integrated. Short run causality is searched based on
the coefficients Γi of Eq. 4, while long-run causality is addressed regarding the
coefficient Π. Based on the ECM (P = 1), only long-run causality is detected
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Table 6: Percentages of rejection of the non-causality hypothesis based on
TERV (m = 2) and of short-run causality based on ECM (P = 1), for the
simulation system 6.

TERV (m = 2) short-run causality
n 256 512 1024 2048 256 512 1024 2048

X1 → X2 2 4 6 6 7 4 5 7
X2 → X1 100 100 100 100 1 8 7 3

(see Table 7), for the correct coupling X2 → X1, while no short-run dynam-
ics are noted (Table 6). The ECM model is effectively specified, since the
residuals of the ECM are normally distributed, do not have autocorrelations
or ARCH effects.

Table 7: Long-run causality based on ECM (P = 1), for the simulation sys-
tem 6. For each equation, we consider the corresponding depending variable,
e.g. in Eq.1 the dependent variable is X1.

long-run causality
n 256 512 1024 2048

Eq.1 6 2 4 2
Eq.2 100 100 100 100

System 7. A non-stationary, linear, multivariate system, with unidirec-
tional couplings X2 → X1 and X3 → X1, with co-integrated variables, de-
fined as

x1,t = 0.4x1,t−1 + 0.4x2,t−1 + 0.5x3,t−1 + 0.2x1,t−2

−0.2x2,t−2 − 0.2x1,t−3 + 0.15x2,t−3 + 0.1x3,t−3 + ϵ1,t

x2,t = 0.6x2,t−1 + 0.2x2,t−2 + 0.2x2,t−3 + ϵ2,t

x3,t = 0.4x3,t−1 + 0.3x3,t−2 + 0.3x3,t−3 + ϵ3,t.

The variables of system 7 are I(1) and co-integrated with one co-integration
relationship (see [8], Model 8, p.78).

The PTERV (m = 3) detects the direct couplings for the time series
lengths n = 1024 and 2048, while the corresponding percentages of significant
PTERV values increase with n (see Table 8).

16



Table 8: As Table 6 but for system 7.
TERV (m = 2) short-run causality

n 256 512 1024 2048 256 512 1024 2048
X1 → X2 1 1 1 3 0 0 0 0
X2 → X1 3 5 34 85 95 100 100 100
X2 → X3 3 2 2 2 0 0 0 0
X3 → X2 2 2 2 2 0 0 0 0
X1 → X3 1 0 1 0 0 0 0 0
X3 → X1 3 6 44 99 13 8 11 10

Based on the VECM (P = 3), only the coupling X2 → X1 is detected
in the short-run (see Table 8), while long-run relationships are present only
when variable X1 is the dependent variable, however small percentages are
obtained for all n (Table 9). The ECM model is effectively specified.

Table 9: As Table 7 but for system 7.
long-run causality

n 256 512 1024 2048
Eq.1 15 14 25 21
Eq.2 4 3 2 4
Eq.3 1 3 2 4

System 8. Finally, we consider three co-integrated random walks

r1,t = wt + ϵ1,t

r2,t = 0.3wt + ϵ2,t

r3,t = 0.6wt + ϵ3,t

with a common stochastic drift wt = wt−1 + ϵt, where a coupled system with
linear (X2 → X3) and non-linear couplings (X1 → X2 and X1 → X3) is
superimposed

x1,t = 3.4x1,t−1(1− x2
1,t−1) exp−x2

1,t−1 + 0.4δ1,t

x2,t = 3.4x2,t−1(1− x2
2,t−1) exp−x2

2,t−1 + 0.5x1,t−1x2,t−1 + 0.4δ2,t

x3,t = 3.4x3,t−1(1− x2
3,t−1) exp−x2

3,t−1 + 0.5x2,t−1 + 0.5x2
1,t−1 + 0.4δ3,t
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where ϵt, ϵi,t and δi,t are Gaussian innovations with zero mean and variance
one. System 8 is non-stationary and co-integrated by construction.

The PTERV (m = 2) is effective only for large time series lengths, while
the corresponding percentages of significant PTERV values increase with n
(see Table 10). For large n = 2048, the spurious coupling X3 → X1 is also
indicated.

Table 10: As Table 6 but for system 8.
TERV (m = 2) short-run causality

n 256 512 1024 2048 256 512 1024 2048
X1 → X2 10 6 14 35 0 0 0 0
X2 → X1 5 9 14 6 31 40 66 93
X2 → X3 6 18 25 64 0 0 0 0
X3 → X2 1 9 6 8 0 0 0 0
X1 → X3 7 11 22 39 0 0 0 0
X3 → X1 8 19 11 37 21 38 43 63

The VECM (P = 2) fails to detect the true couplings, while the spurious
couplings X2 → X1 and X3 → X1 are obtained in the short run (Table 10).
For this system, the residuals from the VECM seem to have sifnificant au-
tocorrelations, especially for large n. Regarding the long run causality, high
percentages of rejection of the non-causality hypothesis are obtained when
variable X3 is the dependent one, while lower percentages are denoted when
X1 is the dependent variable (see Table 11).

Table 11: As Table 7 but for system 8.
long-run causality

n 256 512 1024 2048
Eq.1 34 33 20 20
Eq.2 10 11 11 13
Eq.3 61 68 80 80

5 Application

The causality test are considered in two applications, where the directed rela-
tionships among financial time series are investigated. The TERV / PTERV
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is estimated on the original financial time series (prices) in both applications,
whereas the ECM / VECM is applied on the logarithmic time series in order
to avoid spurious couplings due to the variability of the data.

In the first application, we study the direct and indirect relationships in
international stock markets. We consider the Morgan Capital International’s
market capitalization weighted index data of three Stanley developed mar-
kets. The data consist of daily measurements from 5/3/2004-5/3/2009 from
Germany (denoted as X1), Greece (X2) and USA (X3) (see Fig. 2). The
logarithmic time series are denoted by Y1, Y2 and Y3, respectively.
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Figure 1: Time series of (a) original prices of developed markets and (b) after
taking the natural logarithm of them.

The Augmented Dickey-Fuller test indicated that both the original and
the logarithmic time series are non-stationary (I(1)). The results of the test
for both data sets are displayed in Table 12.

Table 12: Results from Augmented Dickey-Fuller test for application 1.
var. p-val. stat. crit. value var. p-val. stat. crit. value
X1 0.990 1.055 -3.414 Y1 0.990 1.749 -3.414
X2 0.990 1.052 -3.414 Y2 0.990 2.052 -3.414
X3 0.990 1.362 -3.414 Y3 0.990 2.066 -3.414

The Johansen co-integration test is also applied to the data for lag equal to
2 (based on BIC). One co-integrating relationship is indicated for the original
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Table 13: Results from Johansen co-integration test for application 1.
original prices

null trace stat. crit 90% crit 95% eigen. stat crit 90% crit 95%
r ≤ 0 38.892 32.065 35.012 24.696 21.873 24.252
r ≤ 1 14.195 16.162 18.398 13.173 15.001 17.148
r ≤ 2 1.023 2.705 3.841 1.023 2.705 3.841

logarithmic prices
null trace stat. crit 90% crit 95% eigen. stat crit 90% crit 95%
r ≤ 0 51.391 32.065 35.012 29.325 21.873 24.252
r ≤ 1 22.066 16.162 18.398 15.933 15.001 17.148
r ≤ 2 6.133 2.705 3.841 6.133 2.705 3.841

prices, however no co-integration is present when applied to the logarithmic
prices. The results from the co-integration tests are presented in Table 13.

The PTERV is estimated for h = 1,m = 2 and τ = 1. Results indicate the
driving of USA on Greece (p-value from surrogate test is 0.007) and of USA
on Germany (p-value= 0.007), while a bidirectional coupling is found between
Germany and Greece (p-value = 0.007). Since no co-integration is detected
for the logarithmic prices, the CG is applied on the logarithmic prices after
differencing in order to have stationary time series. Results suggest the
driving of USA on Greece (p-value from F-test = 0), the driving of USA
on Germany (p-value= 0) and the driving of Germany on Greece (p-value=
0.025).

We note that the PTERV gives similar results for embedding dimension
m = 3, while for larger m, no couplings are indicated. Equivalent results are
displayed when applied to the logarithmic time series.

++ comment on the results
In the second application, we consider weekly measurements of inter-

est rates (in percent, not seasonally adjusted) for the period 5/1/1962 -
22/11/2013: the 3-Month Treasury Bill of the Secondary Market Rate (3MTB),
the effective Federal Funds Rate (FF) and the 10-Year Treasury Constant
Maturity Rate (10YTN). The logarithmic time series are denoted by Z1, Z2

and Z3, respectively.
The Augmented Dickey-Fuller test indicated that both the original and

the logarithmic time series are non-stationary (I(1)). The results of the test
for both data sets are displayed in Table 14.
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Figure 2: Time series of (a) interest rates and (b) after taking the natural
logarithm of them.

Table 14: Results from Augmented Dickey-Fuller test for application 2.
var. p-val. stat. crit. value var. p-val. stat. crit. value
X1 0.256 -2.679 -3.414 Z1 0.528 -2.131 -3.414
X2 0.253 -2.686 -3.414 Z2 0.945 -0.976 -3.414
X3 0.605 -1.976 -3.414 Z3 0.523 -2.142 -3.414

The Johansen co-integration test is applied to the original prices for lag
equal to 2 (based on BIC), and no co-integration is found. On the other
hand, when applied to the logarithmic prices (BIC indicates here to use lag
equal to 6), one co-integrating relationship is indicated. The results from the
co-integration tests are presented in Table 15.

The PTERV is estimated for h = 1, m = 2 and τ = 1. Results indi-
cate the driving of 3MTB on FF (p-value from surrogate test is 0.007) and
of 10YTN on FF (p-value= 0.007), while a bidirectional coupling is found
between 3MTB and 10YTN (p-value = 0.007). The VECM is applied on
the logarithmic prices for order model P = 6. All the couplings are found
to be bidirectional, while long run causality is also detected when FF is the
dependent variable.

We note here that the PTERV gives the same results for embedding
dimension m = 3, while for larger m, no couplings are indicated. Equivalent
results are displayed when applied to the logarithmic time series. On the
other hand, based on VECM, the number of couplings increases with the P .
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Table 15: Results from Johansen co-integration test for application 2.
original prices

null trace stat. crit 90% crit 95% eigen. stat crit 90% crit 95%
r ≤ 0 188.729 32.065 35.012 157.908 21.873 24.252
r ≤ 1 30.821 16.162 18.398 26.325 15.001 17.148
r ≤ 2 4.496 2.705 3.841 4.496 2.705 3.841

logarithmic prices
null trace stat. crit 90% crit 95% eigen. stat crit 90% crit 95%
r ≤ 0 114.692 32.065 35.012 103.470 21.873 24.252
r ≤ 1 11.221 16.162 18.398 9.601 15.001 17.148
r ≤ 2 1.620 2.705 3.841 1.620 2.705 3.841

++ comment on the results

6 Conclusions

The TERV / PTERV is applicable to any type of data and no assumptions
should be made prior to its estimation. It can effectively detect the direction
of both linear and non-linear couplings. It is sensitive to its free parame-
ters (step ahead h, the embedding dimension m and the time delay τ). Its
performance improves with the time series length and does not discriminate
between long and short run causality. Based on the simulation study, its
performance improves with the time series length, while it is not efficient for
large embedding dimensions.

The Granger causality test has proved to be effective in different applica-
tions, however it cannot be applied when co-integration exists. The ECM /
VECMs is effective for the detection of directional interactions in bivariate /
multivariate systems when data are non-stationary (with the same degree of
integration) and co-integrated. It can discriminate between long- and short-
run causality. It is efficient even for small time series lengths. However, it
seems to be ineffective when only non-linear couplings are present.

++ comment on results from application

22



Acknowledgements

The research project is implemented within the framework of the Action
’Supporting Postdoctoral Researchers’ of the Operational Program ’Educa-
tion and Lifelong Learning’ (Action’s Beneficiary: General Secretariat for
Research and Technology), and is co-financed by the European Social Fund
(ESF) and the Greek State.

References

[1] H. Akaike. A new look at the statistical model identification. IEEE
Transactions on Automatic Control, 19(6):716723, 1974.

[2] A. Allali, A. Oueslati, and A. Trabelsi. Detection of information flow in
major international financial markets by interactivity network analysis.
Asia-Pacific Financial Markets, 18(3):319–344, 2011.

[3] F.M. Aparicio and A. Escribano. Information-theoretic analysis of se-
rial dependence and cointegration. Studies in Nonlinear Dynamics and
Econometrics, 3(3):119–140, 1998.
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