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Abstract

Different resampling methods for the null hypothesis of non-causality
are assessed. As test statistic the partial transfer entropy (PTE), an
information and model-free measure, is used. Two resampling tech-
niques, 1) the time shifted surrogates and 2) the stationary bootstrap,
are combined with the following three independence settings (giving
in total six resampling schemes), all consistent to the null hypothesis
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of non-causality: A) only the driving variable is resampled, B) both
the driving and response variable are independently resampled, and
C) both the driving and response variable are resampled while also
the dependence of the future of the response variable and the vector
of its past values is destroyed. The empirical null distribution of the
PTE as the surrogate and bootstrapped time series become more in-
dependent is examined along with the size and power of the respective
tests. Further, we consider the resampling method of contemporane-
ously resampling the the driving and the response time series using
the stationary bootstrap. Although this resampling method does not
comply with the non-causality hypothesis, one can obtain an accurate
sampling distribution of the mean of the test statistic since the mean
value of the test statistic is zero under Hy. This resampling scheme
performs well in terms of size and power, provided that the null dis-
tribution of the bootstrap values of the test statistic is shifted to have
mean zero.

1 Introduction

The investigation of the direction of the causal relationships between the vari-
ables of a multivariate system allows us to better understand its structure
and improve the predictions of the variables that comprise it. When evalu-
ating the causal influence between two variables from a multivariate system,
it is necessary to take the effects of the remaining variables into account in
order to distinguish between direct and indirect causal effects.

Theoretically, the causality measures should be zero if there are no causal
interactions, otherwise give positive values. However, there is usually bias,
which may be due to the estimation method of the test statistic, the selection
of the parameters, the finite sample size, the level of the noise, etc. To
determine the extent to which a positive value of a measure indicates a weak
coupling or not, it is necessary to determine the statistical significance of a
test statistic.

When the asymptotic distribution of a test statistic cannot be established,
resampling techniques are employed for the construction of its empirical null
distribution. The resampled time series should satisfy the corresponding null
hypothesis, i.e. Hy: no causal effects, however they also have to capture the
statistical properties of the original time series. The statistical significance
of the causality tests can be assessed by resampling methods, which include



bootstraps or surrogates.

Bootstrapping is a statistical technique that has been introduced by [1],
that aims to estimate the properties of a test statistic when sampling from
an approximating distribution. Bootstrapping is utilized when the theoret-
ical distribution of a test statistic is not known. It provides a method to
assess the properties of an estimator, such as the variance or the sampling
distribution, by resampling the data from an empirical distribution. For time
series, bootstraps must be carried out in a way that they suitably capture
the dependence structure of the data generation process consistent to the Hy,
and be otherwise random e.g. [5, 10, 9].

Surrogate statistical tests utilize surrogate data, which are modified sam-
ples of the original data, to empirically estimate the expected probability
distribution of the estimator. These randomization methods preserve the de-
pendence structure consistent to Hy when randomly shuffling the time series
(13, 11, 3].

In this paper, we perform a comparative study of different resampling
methods for assessing the statistical significance of the information causal-
ity measure, partial transfer entropy. The transfer entropy (TE) is a non-
parametric measure that quantifies the amount of directed transfer of in-
formation between two random processes [12]. The partial transfer entropy
(PTE) is the multivariate extension of the TE [14, 7]. Since the asymptotic
distribution of the PTE is not known, resampling methods are required.

The appropriateness of seven resampling methods for the null hypothesis
Hy of non-causality is examined. Specifically, we combine two resampling
methods: 1) the time shifted surrogates [11] and 2) the stationary bootstrap
9], with three independence settings of the time series adapted for the non-
causality test (giving six resampling methods): A) resampling only the time
series of the driving variable, B) resampling independently the driving and
the response time series, and C) resampling separately the driving and the
response time series, while destroying the dependence of the future and past
of the response variable. Further, we also consider the following resampling
method: resampling contemporaneously the driving and the response time
series. For the last resampling method, we only employ the method of the
stationary bootstrap. In this case, the bootstrap PTE values are centered to
zero since the Hy of no causal effects is not satisfied. The properties of the
PTE for the seven in total resampling methods, i.e. the empirical distribution
of PTE, the size and power of the test, are assessed in a simulation study.

The structure of the paper is as follows. In Sec. 2, the PTE is briefly



discussed. In Sec. 3 the seven resampling methods are presented. In Sec. 4,
the resampling methods are evaluated on a simulation study using different
coupled and uncoupled multivariate systems. Finally, the conclusions are
drawn in Sec. 5.

2 Partial Transfer Entropy

The TE quantifies the amount of information explained in a response vari-
able Y at h time steps ahead from the state of a driving variable X ac-
counting for the concurrent state of Y. Let {zy,y:}, t = 1,...,n be the
observed time series of two variables. We define the reconstructed vec-
tors of the state space of the variables as x; = (x4, 24—, . . . ,xt,(m,m)’ and
Ve = (Yt Ye—rs - - s Yi—(m—1)r) , Where m is the embedding dimension and 7 is
the time delay. The TE from X to Y is the conditional mutual information

I(ypen; x¢|y,) given as

p(yt+h|xt, Yt> (1>
P(Z/t+hb’t)
= H(xt,y,) — HWesn Xt,¥y) + H(Yesn, y,) — H(y,),

TExy = [(yt+h;xt|Yt>:Zp<yt+haxtayt)log

where TE is expressed either based on the probability distributions, p(-),
or based on entropy terms, H(-), where H(x) = — [ f(x)log f(x)dx is the
differential entropy of the vector variable x with probability density function
).

The partial transfer entropy (PTE) has been introduced as the multivari-
ate extension of of transfer entropy (TE) [12] in [14, 7]. The PTE accounts
for the direct coupling of X to Y conditioning on the remaining variables of
a multivariate system, collectively denoted Z. It is defined as

PTEx vz = I(Yesn: Xelye, 2¢) (2)
= H(Xtayta Zt) - H(yt+haxt7Yt7 Zt) + H(yt-i-hvyta Zt) - H(Yt, Zt)'

Different types of estimators for the TE exist, and thus for the PTE, such as
histogram-based (e.g. by discretizing the state space to equidistant intervals
at each axis), kernel-based and using correlation sums. Here, we use the near-
est neighbor estimator [4], which is specifically effective for high-dimensional
data [15].



Theoretically, the causality measures and namely the PTE should be zero
in the case of no causal effects. However, a bias can be present due to various
reasons, e.g. the estimation method for the entropies and subsequently den-
sities, the selection of the embedding parameters, the finite sample size and
the noise level as well [6]. In order to determine whether a PTE value indi-
cates a weak coupling or whether it is not statistically significant, resampling
methods are employed to assess its statistical significance.

3 Resampling Methods

We first present the two resampling methods that have been used here, i.e. 1)
the time shifted surrogates and 2) the stationary bootstrap. Then, we discuss
the three independence settings that we examine in combination with the two
resampling methods. Finally, we discuss the seven resampling method, based
on the stationary bootstrap, which is however the only method here that does
not comply with the null hypothesis of no causal effects.

Let us consider two variables X and Y and their corresponding time series
{z1,...,2,} and {y1,...,yn}. The time shifted surrogates are generated so
that they preserve the dynamics of the original time series, i.e. {x1,...,2,},
while the couplings between X and Y are destroyed [11]. They are formed
by cyclically time shifting the components of the time series. To formulate
them from the time series {zi,...,z,}, an integer d is randomly chosen
(with d < n) and the d first values of the time series are moved to the end:
{27} = {xas1, ..., xp,x1,...,24}. For testing the causality relation X — Y
in a bivariate time series, the pair {x},y;} is consistent with the Hy of non-
causality.

The stationary bootstrap has been introduced in [9] for correlated data.
The block bootstrap has been used mainly with data correlated in time (i.e.
time series) but can also be used with data correlated in space, or among
groups (so-called cluster data). By construction, the stationary bootstrap
does not destroy the time dependence of the data. This method tries to
replicate the correlations by resampling blocks of data.

The bootstrap series are generated by resampling blocks of random size,
where the length of each block has a geometric distribution. For a fixed
probability p, block lengths L; are generated with probability p(L; = k) =
(1 —p)*=Y for k = 1,2,.... The starting time points of the blocks I; are
drawn from the discrete uniform distribution on {1,...,n—k}. A bootstrap



time series {x}} is formed by first starting with a random block as defined
above B, 1, = {®n,%n+1,---,%n+L5,-1}, and blocks are added until length
n is reached.

Three independence settings are considered in combination with the afore-
mentioned resampling methods, all consistent with the Hy of non-causality
from X to Y conditioned on Z. The first setting, denoted A, is to resample
only the time series of the driving variable X. This is the standard approach
for surrogate test for the significance of causality measures [11, 2, 15, 8]. The
intrinsic dynamics of the variable X is preserved in the resampled time series
{z;} but the coupling between X* and Y is destroyed, so that Hy is fulfilled
and PTEx-_y|z = 0. The variables X and Y as well as X and Z are inde-
pendent, however the pair of variables (Y, Z) preserves its interdependence.

The second setting, denoted B, suggests to randomize both the driving
variable X and the response Y, i.e. the resampled time series {z}} and
{yf} are generated. Again, the intrinsic dynamics of both X and Y are
preserved but the coupling between them is destroyed, Hj is fulfilled and
PTEx«_y+z = 0. In this case, independence holds for all variable pairs
(X,Y), (Y, Z) and (X, Z). However, there is still no complete independence
between all arguments in the definition of PTE, as y;.j preserves by con-
struction of {y;} its dependence on y,.

The third setting we consider, regards complete independence of all vari-
ables involved in the definition of PTE, denoted C, i.e. in addition to the
resampling of X and Y, also y;, is resampled separately. Thus all terms in
PTE, i.e. ysip, X¢, y; and z; are independent, and Hy is again fulfilled.

Combining the two resampling methods, i.e. 1) the time shifted surro-
gates and 2) the stationary bootstraps) and the three independence settings
(A, B and C), six resampling methods are formulated that are utilized to test
the null hypothesis of no causal effects among the variables of multivariate
Systems.

Last but not least, the stationary bootstrap is again utilized in a different
scheme in order to test the non-causality hypothesis (case 3). We formulate
the null distribution of the test statistic by contemporaneously resampling
the driving and the response time series. Although this resampling method
does not comply with Hy, one can obtain an accurate sampling distribution
of the mean of the test statistic since the mean value of the test statistic
is zero under Hy. The idea is that /n(PTE - E(PTE)) can be distributed
similar for series that comply to Hy (F(PTE) = 0) as for series that do not
comply to Hy (E(PTE) > 0). By centering distribution of the bootstrap PTE
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values around zero, we get an approximation of the null distribution of PTE.
Thus, this resampling method can be employed to test Hy, provided that the
null distribution of the bootstrap values of the test statistic is shifted to have
mean zero.

Considering also the last resampling method where the driving and the
response time series are contemporaneously resampled, we end up with seven
resampling methods in total that are examined here.

4 Simulation study

We apply the significance test for the PTE with the seven different resampling
schemes to multiple realizations of different simulation systems. Specifically,
we estimate the PTE from 1000 realizations per simulation system. For each
realization and each resampling scheme, M = 100 resampled time series
are generated. Let us denote gy the PTE value from one realization of a
system and ¢, qo,...,qy the PTE values from the resampled time series
for this particular realization and for a specific resampling scheme. The
rejection of Hy of no causal effects is decided by the rank ordering of the
PTE values computed on the original time series, qg, and the resampled time
series, ¢i,qa,...,qy. For the one-sided test, if ry is the rank of gy when
ranking the list qo, q1,...,qn in ascending order, the p-value of the test is
1 —(ro —0.326)/(M + 1 + 0.348), by applying the correction in [17].
The simulation systems we considered in this study are the following:

1. Three coupled Hénon maps, with nonlinear couplings (X; — X5, X5 —

X3)
2
Tt = 1.4 — xl,tfl + 0.3.%1715_2
2
Tot = 1.4 — CT1t—1T2t—1 — (1 - C)L’L‘Zt_l + 0.31'27,5_2
2
1‘3’15 = 14— C$27t,1x37t,1 — (1 — 0)1'3715_1 =+ 0.3.1'3’,5,2,

with equal coupling strengths ¢ for X; — X, and Xy — X3. We set
¢ = 0 (uncoupled case), ¢ = 0.3 and ¢ = 0.5 (strong coupling). We note
that the time series of this system become completely synchronized for
coupling strengths ¢ > 0.7.

2. A vector autoregressive process of 4 variables and order 5, VAR(5),
with linear couplings (X; — X3, Xo — X, Xo — X3, Xy — X»)

T = 0.81'17,5_1 + 0.65ZE27¢_4 + €1t
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oy = 0.6x9; 1+ 0.624; 5+ €2
X3¢ = 0.51'3715_3 — 0.6%1’15_1 -+ 0.4372’13_4 + €3t

Tar = 1.21’47,5,1 — 0.75E47t72 + €44,

where €, i = 1,...,4, are independent to each other Gaussian white
noise processes with unit standard deviation (Eq.(12) in [16]).

3. Five coupled Hénon maps, with nonlinear couplings (X; — X5, Xy —
X3, X35 — Xy, X4y — X;) defined similarly to system 1. We consider
again equal coupling strengths ¢, and set ¢ = 0 (uncoupled case), ¢ =
0.2 and ¢ = 0.4 (strong coupling).

We consider the time series lengths n = 512 and 2048. To estimate
the PTE, we set the embedding dimension m to appropriate values for each
system, i.e. m = 2 for system 1 and 3, m = 5 for system 2, the delay time
7 = 1 and the time step ahead h = 1 (as defined in [12]). The number of
nearest neighbors for the estimation of the probability distributions is 10.

In terms of presentation, we focus on the sensitivity of the PTE, i.e the
percentage of rejection of Hy when there is true direct causality, as well as
the specificity of the PTE, i.e. the percentage of no rejection of Hy when
there is no direct causality, at the significance level & = 0.05. The notation
Xy — X1|Z denotes the Granger causality from X, to X, accounting for
the presence of confounding variables Z = Xj,.... For brevity, we use the
notation Xy — X instead of Xy — X7|Z, implying the conditioning on the
confounding variables. The notation of Granger causality for other pairs of
variables is analogous.

System 1. The mean PTE values are negatively biased in the uncoupled
case (¢ = 0) (see Table 1). For ¢ = 0.3 and ¢ = 0.5, they are much larger
when direct couplings exist (X; — X,, Xo — X3) than the rest of the
directions, and increase with n. Regarding the indirect coupling X; — X3,
the PTE slightly increases with n as the coupling strength increases, reaching
the highest mean value for ¢ = 0.5 (mean PTEx, ,x, = 0.0004 for n = 512
and PTEx, ,x, = 0.0071 for n = 2048).

We evaluate how the null distribution of the PTE from the seven resam-
pling schemes differs with respect to the original PTE values. For ¢ = 0, all
the resampling schemes correctly indicate the absence of couplings (see Ta-
ble 2). Considering ¢ = 0.3, the couplings are denoted by all cases, however
also spurious and indirect ones are also indicated for the settings A and B.



Table 1: Mean PTE values from 1000 realizations of system 1 for n = 512 /
2048. A single number is displayed when the same percentage corresponds
to both n. The mean PTE values at the directions of the true couplings are

highlighted.
n =512 X1i—2Xo Xo—=X1 Xo—=X3 Xz3—Xo Xi1—2X3 X3—2X,
c=0 -0.0059 -0.0062 -0.0062 -0.0061 -0.0058 -0.0056
c=0.3 0.0802 -0.0042 0.0885 -0.0064 -0.0045 -0.0074
c=0.5 0.2324 -0.0071 0.1557 -0.0044 0.0004 -0.0079
n = 2048 Xl‘)XQ X2*>X1 XQ*)X:), X3*>X2 X1*>X3 X34)X1
c=0 -0.0086 -0.0088 -0.0087 -0.0085 -0.0087 -0.0088
c=0.3 0.1736 -0.0024 0.1725 -0.0059 -0.0039 -0.0094
c=10.5 0.3649 -0.0026 0.2601 -0.0049 0.0071 -0.0078

Similar performance is observed also in the case of strong coupling strength
(¢ = 0.5). In this case, large percentages are obtained for the indirect cou-
pllIlg X1 — Xs.

Concerning the first six resampling methods, the percentage of erro-
neously rejected Hy for non-existing or indirect couplings tends to increase
with ¢ and the time series length for all resampling schemes, the most robust
being 1C and 2C. It turns out that when the resampled time series become
more independent (case A to case C), the percentage of spurious couplings
decreases. The most independent resampling schemes 1C and 2C give small-
est rejection rate since the null distribution for the test is more spread and
displaced to the right as the resampling changes from the least independent
scheme (scheme A) to the most independent one (C) (e.g. see Fig. 1). Case
3 seems to be the most effective one. It does not require large time series
length to give high percentage of rejection of Hy at the directions of the
true couplings, while the lowest percentages of significant PTE values are
estimated at the uncoupled directions.

System 2. The mean PTE values from 1000 realizations of the second
system for the directions of the true couplings are larger than for the other
directions and increase with n, with the exception of Xy — X3 that is at
a lower level and does not significantly increase with n (see Table 4). Con-
cerning the uncoupled directions, the mean PTE values vary from 0.0014 to
0.0097 for both n, while they decrease with n.

The true couplings X — X, X; — X3, X4y — X, are well established by
the significance test (see Table 4). No spurious causalities are identified by



Table 2: Percentage of significant PTE values for system 1 for n = 512 /
2048, for all resampling schemes.

c=0 Xl—)XQ X2—>X1 X2—>X3 X3—)X2 X1—>X3 X3—>X1

1A 57/ 42 56/ 52 47/ 49 53/ 56 58/ 55 55/ 52
1B 52/ 48 46/ 56 4 /52 43/ 66 46/ 5 58/ 5.5
1C 07/0 08/ 0 04/ 0 0.7/ 0 03/ 0 05/ 0

2A 44/ 38 31/39 34/ 41 45/ 45 45/ 43 41/ 51
2B 1.9/ 04 1.9/ 0.7 1.8/ 0.6 21/ 0.3 1.9/ 0.5 24/ 1

20 06/ 0 06/ 0 03/ 0 05/ 0 04 /0 01/ 0

3 06/ 0 07/0 03/ 0 0.7/ 0 02 /0 02/ 0

c=10.3 Xl‘)X2 XQ*)Xl X2*>X3 X34)X2 X14)X3 Xg*)Xl
1A 100 11.8/ 40.1 100 95/ 172 12.8/ 34 6.1 /55
1B 100 9 / 372 100 27/ 18 54/ 67 5 /43
1C 100 09/ 0.5 86.3 /100 0 02/ 0 0.4 /0.1
2A 100 8.7/ 32.8 100 69/ 135 89/ 28 4.7/4.1
2B 100 2.9/ 13.7 100 09/ 03 1.2/ 1.7 12/05
2C 100 08/ 0.6 99.9 /100 O 0 / 01 0.3/0.1
3 100 1.2/ 0.9 100 01/0 02/0.3 04 /0.1
c=0.5 X1—>X2 Xo = X X2—>X3 X3 — Xo X1 — X5 X3 = X4
1A 100 8.1/ 33.8 100 102 /215 31 /963 62/83
1B 100 43/ 304 100 1.7 /14 91 /673 45 /48
1C 100 07/ 04 100 0 1.9 /254 0.1

2A 100 51/ 29.2 100 7o) 17 241 /947 4 /71
2B 100 2 /11 100 0.8 /0.2 52 /533 13/08
20 100 0 /02 100 0 1.2 /243 0 /0.1
3 100 02/ 0.6 100 0 /01 14 /116 0.1

Table 3: Mean PTE values from 1000 realizations of system 2.
X1—>X2 X2—>X1 X1—>X3 X3—>X1 X1—>X4 X4—>X1

n=>512  0.0044 0.0914 0.0757 0.0032 0.0057 0.0038

n = 2048 0.0026 0.1232 0.0960 0.0014 0.0038 0.0021
X24)X3 X3*>X2 X24>X4 X4*>X2 X34)X4 X44)X3

n =512 0.0056 0.0052 0.0097 0.1002 0.0069 0.0033

n = 2048 0.0058 0.0029 0.0064 0.1348 0.0045 0.0014

the first six resampling methods (percentage of significant PTE vary from 0%
to 6% at the uncoupled directions), however case 3 indicates the couplings
Xy — Xy and X3 — X4, giving much higher percentage than the nominal
size 5%. The weak coupling X, — X3 is detected only by the scheme A (1A
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Figure 1: Boxplots of surrogate / bootstrap PTE values and original PTE
value from one realization of system 1 for ¢ = 0.3 and n = 2048, for the
directions (a) X; — Xy (direct coupling), (b) X — X; (no coupling) and
(¢) X1 — Xj (indirect coupling).

and 2A), with a power of the test increasing with n.

We note that the surrogate / bootstrap PTE values increase as the re-
sampled time series become more independent (see Figure 2 and Figure 3).
The bootstrap PTE values are centered around zero by construction, while
on the other hand for the six first resampling methods, the surrogate / boot-
strap PTE values are positively biased. The distribution of the the surrogate
/ bootstrap PTE values becomes wider as the resampling method gets more
independent (case A to case C), with case 3 having the the wider one. The
failure of the resampling methods B and C to detect the coupling Xy — X3
is due to the fact that both the original PTE value and the surrogate /
bootstrap PTE values are positively biased. Case 3 performs poorly because
the distribution of the bootstrap PTE values is much wider compared to the
other cases and the original PTE value falls within the tail of this distribution
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Table 4: Percentage of significant PTE values from 1000 realizations of sys-
tem 2 for n = 512 / 2048.

X1—>X2 X2—>X1 X1—>X3 X3—>X1 X1—>X4 X4—>X1
1A 04/0 100 100 0.6 /0.3 01/0 46 /3.2
1B 0 100 99.4 /100 O 0 0
1C 0 100 100 0 0 0
2A 04/0 100 100 0.5 01/0 2.8 /3.7
2B 0 100 100 0 02/0 0 /0
2C 0 100 99.7 /100 0 0 0
3 2.3 /3.8 100 100 0.8 /0.5 8.2 /15.7 1.9/18
X2*>X3 X3*>X2 X24)X4 X4*>X2 X3*>X4 X44)X3
1A 18.8/624 11/02 35/2 100 0.8 /0 6 /4.2
IB 0 /01 0 21/13  99.9/100 04/0 0
1C 3.7 /10.1 O 0 100 0 09/0
2A 11.7/60.1 06/01 26/32 100 04/0 3.1
2B 0 / 0.2 0 3.1 100 08 /0.1 0
2C 34 /185 0 0 100 0 02/0
3 2.7 /24 4.7 /6.7 21.6 / 37.8 100 15.7 /242 0.8/0.6

(see Figure 3g).

System 3. No couplings are noted in the uncoupled case (¢ = 0) for
system 3 (see Table 5); the percentage of significant PTE values range from
0% to 5.6% for all the resampling schemes and both time series lengths. The
PTE is also effective when couplings are present. For ¢ = 0.2, the sensitivity
of PTE increases with n. When strong couplings exist, the percentage of
significant PTE values is not that sensitive to the time series length as for
c=0.2.

As resampled time series become more independent, a loss in the power
of the test is observed for n = 512, especially when couplings are not very
strong. On the other hand, when ¢ = 0.4, indirect and spurious couplings
are observed, especially for n = 2048 and mainly for the resampling scheme.
For example, we obtain for scheme 1A and n = 2048: 50.5% for X; —
X3 (indirect coupling), 22.2% for Xy, — X; (spurious coupling), 56.8% for
X5 — X, (indirect coupling), 19.7% for X3 — X, (spurious coupling), 62.2%
for X3 — X5 (indirect coupling), 22.9% for X, — X3 (spurious coupling)
and 14.1% for X5 — X, (spurious coupling). Similar results are indicated
by scheme 2A. Considering more independent resampled time series, the
corresponding percentages of indirect and spurious couplings decrease, e.g.
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Figure 2: Distribution of surrogate / bootstrap PTE values and original PTE
value (vertical dotted line) from one realization of system 2 with n = 2048,
for the direction Xy — X;.

for scheme 1B and n = 2048: 27.5% for X; — X3, 20% for X, — X1, 21.4%
for XQ — X4, 3.7% for X3 — XQ, 28% for X3 — X5, 4.1% for X4 — X3 and
4.7% for X5 — X,. Similar results are observed for scheme 2A. Only the true
couplings are indicated using the resampling methods C; the percentages of
the significant PTE values for the uncoupled cases vary from 0% to 4.7% for
both schemes 1C and 2C and both n.

The PTE performs equivalently to case C when considering the resam-
pling scheme 3. All the true couplings are denoted, while the percentages of
rejecting Hy in the uncoupled directions range from 0% to 15.4% for both n;
the three highest percentages of significant PTE values in case of the uncou-
pled directions are obtained for n = 2048 and X; — X3 (5.8%), Xy — X,
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Figure 3: As Fig. 2 but for the direction Xy — Xj.

5 Discussion

The importance of assessing the correct statistical significance for the partial
transfer entropy (PTE) has been explored in a simulation study. Concerning
the resampled time series, by definition, the mutual information of X and
Y conditioned on Z should be in theory zero, i.e. I(Y;X|Z) = 0. The for-
mulation of more independent resampled data (schemes B and C) compared
to the standard technique (scheme A) seems to improve the bias of the test
statistic and helps prevent false indications of couplings in the case of the
nonlinear coupled systems. The size and the power of the test are improved,
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Table 5: Percentage of significant PTE values from 1000 realizations of
system 3 for n = 512 / 2048, for the true couplings, an indirect coupling
(Xy — X4) and an uncoupled case (X5 — Xy).

c=0 X1 — Xo X9 — X3 X3 — Xy X4 — X5 Xo — Xy X5 — X4
1A 45 /5.1 5.8 /5.6 5.6 /5.4 54 /4.1 49/46  38/48
1B 45/43  58/5.6 5.9 /5.5 5.2 /4.8 49 /45 3944
1C 19/06 2 /05 2.2 /0.5 2.1/0.5 22/04  1.5/06
2A 44 /43  48/55 51 /4.8 4.9 / 4.2 47 /44 43

2B 3.3/26 3.6 /33 3.7/29 3 /29 29 /23 32/3
2C 1 /07 1.4 /0.3 1.5 /0.5 1.3/0.2 2.1 /0.6 09/04
3 19/08  24/09 2.3 /0.9 1.6 /08 1.7/06  14/07
c=0.2 Xl—)X2 X2~>X3 X3~>X4 X4—)X5 Xg—)X4 X5~>X4
1A 58 /100 51.8 /100 57 /100 52.7 /100 6.5/6.6  81/108
1B 57.5 /100 50.6 /100 54.5 /100 49.2 /100 4.9 56 /7
1C 34.3 /100 17.5/100 18.9 /100 16.6 /100 0.5/0 05/0
2A 57.1 /100 56.9 /100 62.1 /100 57 /100 6.2 /5.3 8.7 /113
2B 49.8 /100 52.1 /100 58.1 /100 52.2/100 49/24  62/4.2
2C 30.6 /100 24.2/99.8 26 /99.9 24.3/99.8 0.5/0 1 /01
3 31.3 /100 34.4/100 38.9 /100 33.5/100 32/08  34/08
c=04 X1—>X2 X2—>X3 X3—>X4 X4—>X5 Xo — Xy X5—>X4
1A 100 99.7 /100 99.8 /100 99.4 /100 14 /568 14.1/23
1B 100 99.8 /100 99.6 /100 99.1 /100 59 /214 5 /47
1C 100 85.2 /100 87.7/100 84 /100 0.4 /06 0.8 /0.2
2A 100 99.9 /100 100 99.8 /100 18.2/59.5 16.9 /25
2B 100 99.9 /100 99.9 /100 99.8 /100 11 /263 9.6 /6.4
2C 99.8 /100 97.1 /100 97.6/100 95.1 /100 15 /27 24 /0.3
3 99.8 /100 99.1 /100 99.1 /100 98.5/100 51 /94 51 /22

especially if strong couplings exist. However, when the couplings are linear,
scheme A seems to be more efficient in identifying weak couplings. Scheme 3
seems to also effective in case of the nonlinear simulation systems, however
does not seem to be effective in case of linear coupled systems as spurious
couplings are denoted.

It turns out that when the PTE is estimated for an increasing level of
randomness in the resampled time series, the estimated PTE values also
increase, while the distribution of PTE from the resampled time series gets
wider and less spurious couplings are thus detected. This higher specificity
comes at the cost of lower sensitivity, and vice versa. Thus, none of the first
six resampling schemes turns out to be optimal, but it becomes clear that
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the significance test for the PTE gets more conservative as resampling is
more random. Regarding case 3, the bootstrap PTE values are centered by
construction around zero. Since the original PTE value is biased, spurious
indications may appear.

The aforementioned resampling schemes can be utilized for any test statis-
tic in order to examine the null hypothesis of no causal effects. Since the
efficiency of a causality measure is determined in terms of the corresponding
resampling technique that is used, the usefulness of each of the examined
resampling schemes will be further investigated for different causality mea-
sures.
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