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Abstract

Singh and Vives (1984) consider a game where duopolists �rst commit to a strategic variable,
quantity or price, and then compete in selling horizontally di�erentiated products. Here prod-
uct substitutability is endogenized by allowing �rms to undertake R&D investments to increase
di�erentiation. This has important consequences for the determination of the equilibrium type
of competition. Whereas in the original model Cournot competition always ensued in equilib-
rium, horizontal product innovation allows all types of market competition to be an equilibrium,
depending on model parameters. As market size increases, the game of choosing the strategic
variable changes structure. For small market size it is a dominance solvable game with Cournot
competition as unique outcome. For higher market size, the �rms face a Prisoner's Dilemma where
Bertrand competition would be Pareto optimal, but Cournot competition is the non-cooperative
Nash Equilibrium. As market size further increases, the game of choosing market variables be-
comes a Hawk-Dove game where, in pure strategy equilibrium, one �rm sets quantity and the
other sets price. When market size increases even further, setting prices will be the strictly domi-
nant strategy and Bertrand competition is the unique equilibrium outcome for a relatively small
parameter-range. Finally, for su�ciently high market size all equilibria corresponding to di�eren-
tiated duopoly abruptly dissappear and the market separates into two monopolies.

JEL: L13, D43.

Keywords: Price versus quantity competition, horizontal product innovation.

1 Introduction

In their seminal paper, Singh and Vives (1984) show that, when the nature of duopoly competition is
the result of non-cooperative choices made by the �rms, Cournot competition is the only outcome we
can expect to �nd in equilibrium1. Their model considers a sequential two-stage game, where �rms
�rst commit to using one of two strategic variables, price or quantity, and subsequently compete by
optimizing pro�ts over their chosen strategic variable.

In Singh and Vives (1984), when solving the game by backward induction, the �rms will realize that
setting quantities strictly dominates setting prices as long as the goods are (imperfect) substitutes. This
paper quali�es their results by introducing an intermediary stage in the game where the �rms perform
product R&D to increase product di�erentiation. When the substitutability of the two products is

∗I would like to thank my supervisors, Florian Wagener and Jan Tuinstra for their comments, criticism and help.
This paper was also improved by feedback obtained from participants at the Oligo Workshop in Madrid, 2015, where it
was presented. In particular, I would like to thank Raluca Pârvulescu and Attila Tasnádi. On top of that, Cosma Fulga
and Loredana Coscotin provided many insightful comments and keen remarks. All remaining shortcomings and errors
are my own responsibility.
†University of Amsterdam, CeNDEF, Tinbergen Institute.
1From a social planner's point of view, this is a negative result, as Bertrand competition always dominates Cournot

competition in terms of welfare.
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thus endogenized, �rms are no longer bound to end-up in Cournot competition. Instead, depending
on the size of the market, all three possible modes of competition that are available in this setup -
Cournot, Bertrand and PQ2 - can be equilibria.

The results of Singh and Vives (1984) have already been under scrutiny for some time and, on
several occasions, have been shown to be sensitive to speci�c model assumptions. Motta (1993) shows
that in a vertical di�erentiation model with investment in quality, Bertrand competition can lead
to higher equilibrium pro�ts than Cournot competition, as stronger competition in the market stage
creates incentives for the low quality �rm to innovate less and for the high quality �rm to innovate
more, ultimately leading to a higher and mutually more pro�table quality di�erential. Hackner (2000)
extended the horizontally di�erentiated model to an n-�rm oligopoly and introduced exogenous quality
heterogeneity among �rms. With strong heterogeneity, high quality �rms can earn higher pro�ts under
Bertrand competition than under Cournot competition. However, Hackner (2000) and Motta (1993)
do not endogenize the choice of strategic variables (i.e. they do not analyze PQ competition) so it is
impossible to tell what the equilibrium type of competition would be if �rms could choose their strategic
variables before competing in the market. Correa-Lopez and Naylor (2004) extend the duopoly model
by introducing production costs in the form of wages which are set through bargaining between the
�rm and unionized labor. Since wage increases have a higher impact on Cournot than on Bertrand
pro�ts3, when unions are strong enough, Cournot pro�ts can become smaller than Bertrand pro�ts.

When there is also exogenous quality asymmetry, Correa-Lopez (2007) shows that either PQ or
Cournot competition can be equilibria when strategic variables are endogenously selected. Matsumura
and Ogawa (2012) �nd that in a mixed duopoly where one �rm is pro�t maximizing and the other is
a welfare maximizing state-owned �rm, setting prices is a dominant strategy. Pal (2014) analyzes the
choice of strategic variables in duopolies for network goods and �nds that for strong network e�ects
�rms face a Prisoner's Dilemma ending up in Pareto sub-optimal Cournot competition. However, in
his model, Bertrand and PQ competition cannot be equilibria.

In contrast to most of the previous reversal results cited above4, the results presented here do not
require any exogenous asymmetry. At the same time, despite its simplicity, the model accommodates
all types of competition. A corollary result is that equilibrium product di�erentiation is not a smooth
function of market size, exhibiting abrupt jumps at the points where the equilibrium type of compe-
tition changes. Furthermore, close to the threshold where the duopoly splits into two monopolies, the
set of pure-strategy subgame perfect equilibria of the game su�ers multiple qualitative transformations
where the number of solutions changes. The following section introduces a formal model the results of
which are presented in Section 3. A �nal section sums up the results and concludes.

2 Model

The model follows Singh and Vives (1984) in assuming there are two �rms who compete in a market
for di�erentiated products. Demand and inverse demand result from the utility maximization problem
of a representative consumer with a taste for product diversity, as captured by the parameter, δ. The
consumer solves:

q = arg maxq α
∑2
i=1 qi −

1
2

∑2
i=1

(
q2
i + δqiq−i

)
+m

s.t. p · q +m = y
.

The �rst order conditions yield:

pi (qi, q−i) = α− qi − δq−i. (1)

Direct demand can be computed as:

2PQ refers here to the asymmetric case where one �rm sets price and the other sets quantity
3Intuitively, this follows from the fact that Cournot competitors sell relatively smaller quantities for higher prices.
4The exceptions are Correa-Lopez and Naylor (2004) and Pal (2014)
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Figure 1: The game in extensive form

qi (pi, p−i) =
α (1− δ)− pi + δp−i

1− δ2
. (2)

For the asymmetric scenario where �rm i sets quantity and the other �rm sets price, we can readily
derive from the above equations that:

pi (qi, p−i) =α (1− δ)− qi
(
1− δ2

)
+ δp−i

q−i (qi, p−i) =α− p−i − δqi.
(3)

The two �rms play the extensive form three-stage noncooperative game represented in Figure 1. At
each stage, the �rms act simultaneously but, when the stage is over, they observe the action taken by
the other player.

In the �rst stage they simultaneously choose their strategic variable vi ∈ {p, q} which can be either
price, p, or quantity, q.

During the second stage, each �rm can reduce product substitutability, δ, by making costly R&D
e�orts. Denoting by gi the R&D e�ort level of a �rm during the second stage, we assume that given
the e�orts of both �rms, product substitutability during the third and last stage of the game will be:

δ = 1− b (g1 + g2). (4)

A reduction in product substitutability of b gi will cost �rm i a monetary amount of G (gi) =
g2i
2 .

The action space at this stage is restricted to gi ∈
[
0, 1

2b

]
. This means that, as in Lin and Saggi

(2002), �rms are allowed to contribute symmetrically to the total amount of product di�erentiation
by setting a positive R&D e�ort gi at quadratic investment cost, but cannot singlehandedly decrease
substitutability below 1

2 . When both �rms make no R&D e�ort, the products are perfect substitutes
whereas, when e�orts are at the upper bound, fully di�erentiated products are sold by two monopolists.

In the last stage of the game, �rms compete on the market by setting their respective strategic
variables (chosen in the �rst stage) such as to simultaneusly and competitively maximize their pro�ts
for a given the level of product substitutability, δ, that was achieved during the second stage. Formally,
they will simultaneously solve:
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max
vi

πi (vi, v−i) =


maxqi pi (qi, q−i) qi, vi = v−i = q

maxpi piqi (pi, p−i) , vi = v−i = p

maxpi piqi (q−i, pi) , vi = p, v−i = q

maxqi pi (qi, p−i) qi vi = q, v−i = p,

3 Results

The game is solved by backward induction and we focus on pure-strategy subgame perfect equilibria,
therefore we proceed by describing optimal �rm behavior from the last to the �rst stage.

3.1 Third stage: Market competition

In the third stage, �rms take as given an observable realization of δ from the second stage and maximize
their pro�ts with respect to the strategic variables chosen in the �rst stage. As R&D investments are
sunk costs at this stage we can disregard them.

Using (1) we obtain Cournot equilibrium quantities, prices and pro�ts:

qCi =pCi =
α

2 + δ

πCi =
(
qCi
)2
.

(5)

Using (2) we obtain Bertrand equilibrium quantities, prices and pro�ts:

qBi =
α

2 + δ − δ2

pBi =
(1− δ)α

2− δ
πBi =

(
1− δ2

) (
qBi
)2
.

(6)

Using (3) we obtain PQ equilibrium quantities, prices and pro�ts:

qQ = α(2−δ)
4−3δ2 qP =

(2−δ2−δ)α
4−3δ2

pQ =
(
1− δ2

) α(2−δ)
4−3δ2 pP =

(2−δ2−δ)α
4−3δ2

πQ =
(
1− δ2

) (
qQ
)2

πP =
(
qP
)2
.

(7)

Note that for any given amount of product substitutability, δ > 0, the results above imply the
following ranking of equilibrium prices, quantities and pro�ts:

πC > πQ > πB > πP

qQ > qB > qC > qP

pC > pP > pQ > pB .

When products are fully di�erentiated, δ = 0, all pro�ts, quantities and prices are equal as the two
�rms behave as monopolies serving two distinct markets.

3.2 Second stage: R&D investment

In the second stage of the game, �rms simultaneously solve:

maxgi π
T
i (δ)−G (gi)

s.t.δ = 1− bgi − bgj
0 ≤ gi ≤ 1

2b

(8)
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where πT , T ∈ {C,B, P,Q} stands for the pro�ts obtained in the three distinct scenarios for the third
stage determined in (5), (6), and (7).

Notice that the program in (8) depends only on two parameters, α and b. In Appendix A, I show
that normalizing b = 1 is without loss of generality. The �rst order conditions5 of the program in (8)
do not always have analytical solutions6. By �xing parameter b = 1 and swiping over parameter α,
commonly interpreted as market size, we can solve numerically for R&D e�orts and it is possible to
compute the corresponding optimal quantities, prices and pro�ts as depicted in Figures 4 through 8.

The best-response functions corresponding to the three market scenarios can be computed numer-
ically and are depicted in Figures 2 and 3. Inspecting the best-response functions we notice that
equilibrium R&D e�orts, as a function of market size, behave in qualitatively the same way. For small
markets, α <

√
2, the best response functions have a unique intersection, which I will call main and

denote by
(
gmi , g

m
j

)
. However, at α =

√
2, a second interesection of the best-response functions appears

in the upper right corner of the economically relevant range for R&D e�orts, (gi, gj) ∈
[
0, 1

2

]2
. This

happens simultaneusly for all three types of competition, Bertrand, PQ and Cournot7 and in economic
terms this second crossing represents full di�erentiation where the two �rms are monopolies on two
independent markets. These secondary solutions

(
gsi , g

s
j

)
are paired to the main solutions in the sense

that when α becomes large enough they become complex conjugates. Before the secondary and main

solutions to the �rst order conditions merge and become complex, they gradually approach each other,
the main one increasing and the secondary one decreasing for higher values of α. All the while, R&D
e�orts at the upper bound,

(
1
2 ,

1
2

)
remain a third intersection for the best response functions and are

denoted by
(
gMi , g

M
j

)
. When the main and secondary become complex, the upper bound solutions,

corresponding to two monopolies, remain the unique Nash equilibrium for the subgames starting at
the second stage. The main and secondary solutions dissappear into the complex plane at α = 1.433
for Bertrand competition, α = 1.441 for PQ competition and at α = 1.462 for Cournot competition.

The �rst order conditions are high order polinomial equations with cross terms and have multiple
solutions in all three market scenarios. Under Cournot competition, the �rst order conditions have
four symmetric solutions, two of which are always complex (for positive α). The other two solutions
are the main and secondary solutions described above. Interestingly the secondary solution does not
satisfy second order condition for pro�t maximization for most values of α, the second order derivatives

becoming negative right before the solution enters
[
0, 1

2

]2
.8 Under Bertrand competition, the �rst order

conditions have six symmetric solutions. As side from our main and secondary solutions, there are
two solutions which are always complex. Two more are real and, although they satisfy second order
conditions for joint pro�t maximization, they lead to negative pro�ts and investment far outside the
boundaries we imposed on R&D e�orts gi ∈

[
0, 1

2

]
. Under PQ competition, there are �ve solutions

to the �rst order conditions. Again we have two solutions that are always complex. There is also one
solution that is always real, but has no economic meaning as it involves the price-setter minimizing
pro�ts by making negative investments in product di�erentiation; even-though the quantity setter is
maximizing own pro�ts, making a positive investment, both �rms obtain negative pro�t.

By taking the pro�t ranking that obtains in the absence of product innovation, πC > πQ+πP

2 > πB ,
as a proxy for the intensity of competition9, we can make some observations regarding the relation
between the intensity of market competition and innovation e�orts as depicted in Figure 4 and 5,
connecting our results with the two Schumpeterian, Mark I and Mark II, conjectures regarding the
relation between competition and innovation10. Comparing investments between either Cournot and

5See Appendix B.
6Analytical solutions, although not necessarily tractable, can be obtained for Bertrand and Cournot competition. For

PQ competition no closed form solutions exist.
7By plugging gi =

1
2
into the �rst order derivatives of the pro�t function, net of innovation costs, for any of the three

market scenarios, Cournot, Bertrand or PQ we obtain α2

4
− 1

2
. Which means that when �rst order conditions on R&D

e�ort are satis�ed with equality at the boundary, we have α =
√
2, see also Appendix B.

8This is also the case under the other two types of competition, Bertrand and PQ.
9This interpretation follows Bonanno and Haworth (1998).

10Schumpeter's �rst conjecture, Schumpeter (1934), referred to in the literature as Mark I, argues that higher intensity
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Figure 2: Best response functions in the R&D stage of the game for Bertrand, PQ and Cournot competition for R&D

e�orts (gi, gj) ∈
[
0, 1

2

]2
. Each row corresponds to di�erent values for α : (a) α = 0.3; (b) α = 0.7; (c) α = 1.2; (d)

α =
√
2. At α =

√
2, for all three market types, the secondary solutions,

(
gsi , g

s
j

)
, cross into the economically relevant

plane segment,
[
0, 1

2

]2
and coincide with the upper boundary solution that corresponds to fully di�erentiated products

sold by two monopolists,
(
gMi , gMj

)
.
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Figure 3: Best response functions in the R&D stage of the game for Bertrand, PQ and Cournot competition for R&D

e�orts (gi, gj) ∈
[
0, 1

2

]2
. Each row corresponds to di�erent values for α : (e) α = 1.433; (f) α = 1.441; (g) α = 1.462.

At α = 1.433 the main and secondary solutions for Bertrand competition coincide, while for higher α the two solutions

become complex and the best response functions only cross at the upper bound for R&D e�orts. At α = 1.441 the main

and secondary solutions for PQ competition coincide, while for higher α the two solutions become complex and the best

response functions only cross at the upper bound for R&D e�orts. At α = 1.462 the main and secondary solutions for

Cournot competition coincide, while for higher α the two solutions become complex and the best response functions only

cross at the upper bound for R&D e�orts.
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Figure 4: R&D e�ort, b = 1, α ∈ [0, 1.5]

Bertrand competitors or Cournot and PQ competition we �nd support for Schumpeter's Mark 1
conjecture; more intense competition leads to more innovation. Comparing Bertrand and PQ (joint)
levels of investment we �nd support for both conjectures with Mark II applying for small α and Mark I
for larger α. Remarkably, this goes against the common interpretation that the �rst conjecture applies
to small markets and the second conjecture to large markets.

Turning to Figures 6 and 7, we see that the relation between both quantities and prices of the
two PQ competitors are robust to the introduction of horizontal product di�erentiation. So is the
relation between Cournot at Bertrand quantities, but not for prices; as market size increases, Bertrand
�rms eventually are able to reach such high levels of product di�erentiation that they can optimally
set higher prices than Cournot competitors, see also Figure 5. When comparing Cournot (Bertrand)
market outcomes with those resulting from PQ competition we see that the only relation that is robust
to the introduction of the innovation stage is that between qC and qQ (qB and qP ). All other market
variables start o� in the same relation as in the model without innovation for small markets, but, as
α increases, the relation is reversed.

Finally, turning to pro�ts, represented in Figure 8, we see that there are - not surprisingly in view
of our previous remarks regarding prices and quantities - many intersections. Based on the relation
between the size of pro�ts for di�erent values of α we can establish the equilibrium strategies for the
�rst stage of the game. This is treated in detail in the following subsection.

3.3 First stage: market variable selection

Going through Figure 8 from left to right (see also Figure 9 for a zoom-in), one can see that for
su�ciently small markets, α < αQC , the relation between pro�ts, πC > πQ > πB > πP , established
by Singh and Vives (1984) is robust to the introduction of product innovation. At αQC the pro�t of
the quantity setter in PQ competition becomes higher than the Cournot pro�t. This has no impact in
determining the unique subgame-perfect equilibrium of the game, nor does the crossing at αBC where
Bertrand pro�ts become higher than Cournot pro�ts, turning the �rst stage game into a Prisoner's
dilemma with price-setting playing the role of cooperation and quantity-setting standing in for defec-
tion. At αPC the pro�t obtained by the price setter in PQ competition becomes higher than Cournot
pro�t, turning the problem of choosing market variables into a Hawk-Dove game with quantity-setting
playing the role of the more aggressive Hawk strategy. Finally, at αBQ, Bertrand pro�t becomes larger
than the pro�t obtained by a PQ quantity-setter. The game is again again dominance solvable, but

of market competition between �rms spurs innovation. His second conjecture, Schumpeter (1942), dubbed Mark II, was
that less acute competition gives �rms the slack they need in order to divert resources to innovation.
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Figure 5: Product Substitutability, b = 1, α = [0, 1.5]

Figure 6: Quantities, b = 1, α ∈ [0, 1.5]
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Figure 7: Prices, b = 1, α ∈ [0, 1.5]

this time it will play out as Bertrand competition. While the reversals occurring at αQC and αBC
may be of less interest11, For α ∈ [αPC , αBQ] the game has more than one subgame perfect equilib-
rium, of which two asymmetric equilibria in pure strategies result in PQ competition12. For α > αBQ
Bertrand becomes the unique equilibrium type of competition until market size reaches the critical
value of αs. The patterns used in the background of Figure 8 are meant to give the reader a direct
graphical appreciation of the size of the parameter space where all the reversals take place. All in all,
the parameter space where non-Cournot equilibrium types of duopoly can be observed is 5.09% of the
total parameters space that supports duopoly competition.

When market size becomes higher than αs, there are again multiple equilibria, but this time they
spawn from the player's actions during the last two stages of the game, see Figure 9. This happens
as the boundary solution, gi = 1

2b , where the duopoly separates into two monopolies, becomes an
equilibrium R&D e�ort given any type of competition. Remarkably, this takes place at once for
all four subgames that start with an R&D stage, under Bertrand, Cournot and PQ competition13.
Perhaps another remarkable coincidence is that the initial pro�t ranking found by Singh and Vives
(1984) applies to the pro�ts from the secondary solutions as long as they exist together as interior
solutions, that is, for α ∈ [αs, αcB ]. In Figure 9 we can also notice that all secondary pro�ts are larger
than all the main pro�ts14 but smaller than monopoly pro�ts. These considerations allow us to fully
characterize the model's solutions for the remaining region of the parameter space, α ≥ αs.

For α ∈ [αs, αcB ] all types of competition can be subgame perfect outcomes. More precisely we
have the following types of subgame perfect equilibria, categorized by their outcome:

• Monopoly: There are 4×33 subgame perfect equilibria which consist of at least one of the market
types (Cournot, Bertrand or the any of the two PQ subgames) deploying maximum R&D e�orts

11The equilibrium type of competition remains Cournot for all α < αPC .
12The symmetric equilibrium in mixed strategies will realize into all three types of competition
13This happens because all types of competition become monopolies at the maximum bound e�ort and pro�ts are

identical in price-setting and quantity-setting monopolies.
14The exception is πPs which is surpassed by πQm right before the solutions from PQ competition turn complex.
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Figure 8: Pro�ts, b = 0.05, α = [0, 1.5]
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Figure 9: Pro�ts in the multiple equilibria region (secondary solution - upper branch, main solution -
lower branch), b = 1, α = [1.35, 1.47]

while o� the equilibrium path, any of the pairs of e�orts below is undertaken.

[(gi, gj) , (gi, gj) , (gi, gj)] ∈
{[(

gC,mi , gC,mj

)
,
(
gQ,mi , gP,mj

)
,
(
gP,mi , gQ,mj

)
,
(
gB,mi , gB,mj

)]
×

×
[(
gC,si , gC,sj

)
,
(
gQ,si , gP,sj

)
,
(
gP,si , gQ,sj

)
,
(
gB,si , gB,sj

)]
×

×
[(
gC,Mi , gC,Mj

)
,
(
gQ,Mi , gP,Mj

)
,
(
gP,Mi , gQ,Mj

)
,
(
gB,Mi , gB,Mj

)]}
• Bertrand Competition (with main e�orts). This speci�c equilibrium is the one that begins its
existence at α > αPC . When, on the equilibrium path, �rms both choose to compete in prices

and then invest
(
gB,mi , gB,mj

)
, there is just one pattern of subgame-perfect o�-equilibrium path

play that is consistent with it: in all other subgames the �rms will have to choose the e�ort levels
given by the main solution.

• Bertrand Competition (with secondary e�orts). This new equilibrium is very similar to the one
above, in that it relies on the exact same o�-equilibrium path play.

• PQ competition (with secondary e�orts). There are 23 such equilibria where in at least one of
the two PQ subgames secondary e�orts are played on the equilibrium path. Sub-game perfect
o�-equilibrium path play that is consistent with these equilibria requires that in the other PQ
subgame either main or secondary e�orts are played. The same restriction also applies to the
Bertrand subgame. For the Cournot subgame equilibrium strategies are still con�ned to the
main e�orts.

• Cournot Competition (with secondary e�orts). There are 23 equilibria where where �rms both
compete in quantities and invest according to the secondary solution along the equilibrium path,
while, in the o�-equilibrium path subgames, either main or secondary e�orts are deployed.

When α > αcB , as interior solutions turn complex, there is a unique (monopoly) equilibrium in the
Bertrand subgame which will be also the unique outcome of the game. Since any of the three e�ort
levels are equilibria in the o�-equilibrium subgames, there are 33 such equilibria for the full game. As
α further increases, the number of such equilibria drops to 3 when α > αcBQ. This happens as 2×3PQ
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Figure 10: δNE , b = 1, α = [1.35, 1.5]

monopoly equilibria appear. Finally, when α > αcC , all interior solutions have disappeared and there
are just 4 subgame perfect Nash equilibria, one for each of the four subgames that start at the R&D
stage, where upper boundary R&D e�orts are exerted in all subgames and product competition takes
place in all of four combinations of the strategic variables.

Notice that employing a further equilibrium re�nement on the basis of forward induction we could
reduce the number of equilibria between αs and αcB , eliminating the equilibria that support other
outcomes than price-setting monopoly.

The analysis above also implies that, for the whole game, the Nash-Equilibrium outcome in terms
product substitutability, δNE , is not a smooth function of market size, α, exhibiting jumps at three
critical points, αPC , αBQ and αs, as shown in Figure 10. This points towards a straightforward
empirically testable prediction of the model: as markets increase in size one should observe discrete
increases in the amount of di�erentiation between products, in particular when products are only weak
substitutes.

4 Discussion and conclusion

The work presented here shows that introducing horizontal product innovation to the two stage game
proposed by Singh and Vives (1984) can systematically change the strategic structure of the �rst stage
of the game where market variables are chosen. The possibility to alter the intensity of competition
through costly e�ort results in multiple reversals in the ranking of the pro�ts obtained in each of the
four possible market-subgames. Under more intense types of competition �rms have stronger incentives
to di�erentiate their products. When �rms sell to larger markets (or are more e�cient in their R&D
e�orts) they can a�ord larger R&D e�orts that become more economically e�cient in reducing the
intensity of competition compared to the choice of market variables. The results highlight a tradeo�
between these two means to reduce the intensity of competition: committing to a decision variable
that reduces the intensity of competition (i.e. quantity setting) or altering the product in order to
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target a niche in market demand where the �rm has more market power. Market size increases lead
the �rms to prefer the latter method of reducing competitiveness to the former. The result is not
counter intuitive if we keep in mind that, with exogenous product substitutability, as δ approaches
0 (i.e. the duopolists become two monopolies) the pro�t di�erences between Cournot, Bertrand and
PQ competition gradually vanish. As market size increases, the between market type di�erence in the
amount of resources that �rms can devote to costly specialization diminishes.

As far as the robustness of the results presented here, it is important to mention that the sequential-
ity of the decision making, observability and commitment to past choices (i.e. of the market variable)
play a crucial role. Without these features we can expect the model to behave in a considerably di�er-
ent manner. Already at the basic level of the problem, without any investment, Klemperer and Meyer
(1986) show that when quantities or prices are simultaneously chosen without any precommitment to
a speci�c market variable the �rms are indi�erent between being price-setters or quantity setters15. In
the model presented here commitment to the strategic variable chosen in stage one is likewise essential.
It is the anticipation of tighter competition in the third stage of the game that drives �rms to higher
levels of product di�erentiation and eventually to higher pro�ts.

Although it was perhaps not more than a theoretical exercise initially, the choice of a speci�c
market variable was given an economic interpretation by Klemperer and Meyer (1986) who contrast
two approaches for supplying consulting services: the consultant can either set an hourly rate or
charge a fee per consulting project and subsequently adjusts the amount of time spent per project
depending on how many other ongoing projects the consultancy is involved in. The �rst market
strategy resembles price-setting whereas the second is more akin to quantity-setting. In their work it
is demand uncertainty in combination with the shape of the marginal cost function that determine
the type of market competition in equilibrium, therefore in the absence of asymmetries it would be
impossible for �rms to end-up in the asymmetric equilibrium where one �rm sets prices and the other
one sets quantities. However, Tremblay et al. (2013) provide an example of PQ competition from
car dealership markets16. The model presented here is able to explain the empirically relevant PQ
competition without relying on any ex-ante asymmetry.

The results presented here contrast those found in previous work by Symeonidis (2003) and by
Qiu (1997) who only qualify Singh and Vives's results regarding welfare, but �nd no pro�t reversal.
In Symeonidis (2003) product innovation increases market demand only for the �rm's own product
which will intuitively boost a quantity setter's incentives to innovate while Qiu (1997) considers only
cost reducing-innovation which also turns out to be more appealing for Cournot competitors compared
to Bertrand competitors. In both cases, innovation has a direct negative e�ect on the payo�s of a
competitor through the (inverse) demand functions. In the model presented here, product innovation is
horizontal, with �rms investing to reduce product substitutability and thus imposes a strictly positive
externality on the competitor. It would be interesting to compare the strength of these to e�ects
when �rms can invest in heterogeneous types of product innovation - horizontal and vertical - or
in (horizontal) product and process (cost reducing) innovation. Further research may also consider
extending the setup to n-�rm oligopolies and investigating other demand structures. In particular,
one can conjecture that with network goods, as in Pal (2014), the parameter space where non-Cournot
markets are equilibria would become larger.
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Appendix A

In all three market scenarios considered, Cournot, Bertrand and PQ, making the variable change
ḡi = bgi in the net pro�t maximization program (8) leaves it depending on only one parameter,
ᾱ = αb.

Pro�ts, net of R&D costs, under Cournot competition are:

πC (gi, g−i;α, b) =

(
α

3− bgi − bg−i

)2

− g2
i

2
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Making the variable change ḡi = bgi and factoring out α2 the program becomes:

πC (ḡi, ḡ−i; ᾱ) = α2

[(
1

3− ḡi − ḡ−i

)2

− ḡ2
i

2ᾱ2

]
,

where ᾱ = αb. Now the maximand of the pro�t function will only depend on ᾱ as a parameter and,
since our variable change is invertible, the maximand of the initial and the reformulated program will
also be related by: ḡ?i = bg?i .

For Bertrand and PQ competition the same argument applies since the net pro�ts after the variable
change are:

πB (ḡi, ḡ−i; ᾱ) = α2

[
1− δ2

[2 + δ − δ2]
2 −

ḡ2
i

2ᾱ2

]
and respectively:

πQ (ḡi, ḡ−i; ᾱ) = α2

[(
1− δ2

) (
2−δ

4−3δ2

)2

− ḡ2i
2ᾱ2

]
πP (ḡi, ḡ−i; ᾱ) = α2

[(
2−δ−δ2
4−3δ2

)2

− ḡ2i
2ᾱ2

]
.

with δ = 1− ḡi − ḡj .

Appendix B

Computing the �rst order conditions we can dispose of the factor α2. Using the variable change ḡi = bgi
and substituting δ = 1− ḡi − ḡ−i whenever possible, the �rst order conditions for program (8) under
Cournot competition are:

2ᾱ2 = ḡi (2 + δ)
3
.

Under Bertrand competition the �rst order conditions are:

2ᾱ2 = ḡi

[
2 + δ − δ2

]3
1 + δ3

For PQ competition where �rm i sets quantities and �rm j sets prices we have:

2ᾱ2 = ḡi

(
4− 3δ2

)3
(2− δ) (4− 4δ − 5δ2 + 6δ3)

2ᾱ2 = ḡj

(
4− 3δ2

)3
(4− 4δ + 3δ2) (2− δ − δ2)

.
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