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Abstract

Similar to the patterns of stock market prices, housing prices also exhibit tem-

porary bubbles and bursts. One possible explanation for such abrupt changes is the

catastrophe model. However, due to the deterministic nature of catastrophe theory,

applications to social science are rare. It remains a question whether the catastro-

phe model can be used to explain and predict the dynamics of housing markets.

Our paper fits a stochastic cusp catastrophe model to empirical housing market

data in different countries for the first time. Two estimation approaches are dis-

cussed – Cobb’s Method and Euler Discretization. The analysis shows that Euler

Discretization provides better short-run predictions while Cobb’s better describes

the long term invariant density. Moreover, the results using Euler Discretization

suggest that the dynamics of housing markets could be explained and predicted by

a multiple equilibria cusp catastrophe model. In particular, this paper yields impor-

tant insights on interest rate policy regarding the stability of economic system.
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1 Introduction

The collapse of the U.S. housing bubble in 2007 was followed by an enormous world-

wide financial crisis. This tragedy has raised great concerns of housing bubbles among

financial regulators and researchers. Like stock market bubbles, housing bubbles can

be identified through rapid increases in housing prices before they crash. Figure 1 illus-

trates the bust phase of housing price cycles surrounding banking crises from 1899 to

2008 using real housing prices (Reinhart and Rogoff, 2009). The historical average of the

declines from peak to trough is 35.5 percent. A number of countries with major hous-

ing crashes are included. For instance, Finland, Colombia, the Philippines and Hong

kong have experienced the most severe real housing prices crashes in the past 25 years.

Their crashes amounted to 50 to 60 percent from peak to trough. Notably, the duration

of housing price declines has been quite long lived, averaging roughly 6 years. After

the housing market crash of Japan in 1992, real housing prices declined for consecutive

17 years. In particular, housing price declines are even longer lived than equity price

declines. The average historical downturn phase in equity prices lasts 3.4 years, still less

than half of the downturn phase in housing prices (Reinhart and Rogoff, 2009). The In-

ternational Monetary Fund (IMF) recorded that housing price busts lasted nearly twice

as long and led to output losses that are twice as large as asset price bursts (IMF World

Economic Outlook, 2003). Moreover, financial crises and recessions are often preceded

by housing market crashes (Reinhart and Rogoff, 2009). The credit crisis and global

financial crisis in 2008 are convincing examples. After housing prices declined in the

latter half of 2007, the secondary mortgage market collapsed. A complex chain reaction

almost brought down the whole world’s financial system. Furthermore, in some papers,

housing market bubbles are considered as leading indicators of financial instability and

crises (Davis and Heathcote, 2005). For the above reasons, a good understanding of the

instability in housing market is crucial.

Housing market models have been studied extensively in literature. Unfortunately,

most of the available research in macroeconmics is mainly based on state-of-the art dy-

namic stochastic general equilibrium (DSGE) models which are based on fundamentals.

However, these traditional models are insufficient to explain the observed booms and

busts in housing prices. A series of papers by Shiller have argued that the changes in

economic fundamentals such as population growth, construction costs, interest rates
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Figure 1: The bust phase of housing price cycles surrounding banking crises. Left panel:

peak-to-trough price declines; Right panel: years duration of downturn. Source: Rein-

hart and Rogoff, 2009

or real rents did not match up with the observed house price fluctuations (Case and

Shiller, 2003; Shiller, 2007, 2008, 2012, 2015). Davis and Heathcote (2005) also suggested

that DSGE models with housing consumption and production were unable to capture

the instability of house price.

During the last decades, a number of theories were proposed that are based on a

multiple equilibria approach. Unlike traditional DSGE models under the general equi-

librium assumption, they recognise economic systems as complex systems with multi-

ple equilibria. Along these times, a theoretical approach on heterogenous agents mod-

els (HAMs) has been introduced to the housing market. It was inspired by the work on

heterogenous agent-based financial market models (see Brock and Hommes,1997, 1998

and comprehensive survey in Hommes, 2013). For instance, Kouwenberg and Zwinkels

(2011) developed and estimated a HAM model for the U.S. housing market. Their esti-

mated model produced boom and bust price cycles endogenously, which were induced

by boundedly rational behaviour of investors. Dieci and Westerhoff (2012, 2013) in-

3



vestigated the speculative behaviour in housing markets using a heterogenous agent

approach. Their examples illustrated a variety of situations that can display irregular

endogenous dynamics with long lasting, significant price swings around the fundamen-

tal price, like in many actual markets. In a recent paper Bolt et al. (2014) established and

estimated a HAM model for eight different countries. They found evidence of heteroge-

nous expectations from empirical data and identified temporary house price bubbles for

different countries.

Although HAMs have proven to be successful theoretical tools to capture temporary

deviations from market equilibrium, a method which allows statistical time series anal-

ysis is still lacking. In this paper, we fill this gap by using statistical analysis to capture

the crash phenomena in real time series. Forecasting market crashes based on previ-

ously observed time series is also possible. In this paper, we are attempting to fill this

blank. Catastrophe theory has been suggested to be a good candidate (Zeeman, 1974).

It captures the instability in many nonlinear dynamical systems and has proven to be an

extremely successful tool to investigate the qualitative properties in a wide range of dif-

ferent complex systems ranging from physics and engineering to biology, psychology

and sociology. Its applications involve urban and regional systems (Wilson, 1981), quan-

tum morphogenesis (Aerts et al., 2003), the stability of black holes (Tamaki et al., 2003),

the size of bee societies (Poston and Stewart, 2012), the cognitive development of chil-

dren (Van der Maas and Molenaar, 1992), sudden transitions in attitudes (Van der Maas

et al., 2003) and so on. In all these applications, behaviour of the observed system shows

sudden and discontinuous changes or phase transitions as a result of a small change in

control variables. Catastrophe theory offers a mathematical basis for the number and

the type of critical points for the classification of nonlinear dynamical systems. Since

the economic system has been recognised as a complex system, displaying quick transi-

tions such as market crashes, catastrophe theory might be a good candidate to explain

its extreme fluctuations. Zeeman (1974) already proposed that some of the unstable be-

haviour of stock exchanges could be explained by a model based on catastrophe theory.

A similar model can also be applied to currencies, property markets, or any market that

admits speculators. The proposed HAM model in financial market was also motivated

by some behavioural finance elements in Zeeman’s work. Barunik and Vosvrda (2009)

and Barunik and Kukacka (2015) tested Zeeman’s idea and fitted a stochastic cusp catas-

trophe model to stock market data. They provided an important shift in application of
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catastrophe theory to stock markets. Their examples showed that stock market crashes

were better explained by cusp catastrophe theory than other models.

In our paper, following the idea of Zeeman (1974), we fit a stochastic cusp catastro-

phe model to housing market data for the first time. The aim of this paper is twofold.

Firstly, we discuss the estimation method of fitting stochastic cusp catastrophe model.

Two estimation approaches are studied: Cobb’s method and Euler Discretization. Sec-

ondly, we apply catastrophe behaviour to the housing markets and study its policy

implications further.

There are two main contributions in this paper. Firstly, we study two estimation

methods: Cobb’s method and Euler Discretization. We show that Euler Discretization

gives better forecasting ability than Cobb’s Method. Secondly, we explain the underly-

ing mechanisms of the instability of housing markets by using a cusp catastrophe model

. A critical transition can be distinguished from ordinary fluctuations. We also unfold

the underlying link between interest rates and systematic fluctuations in housing mar-

kets.

Our analysis sheds some light on the application of catastrophe theory to time series

data in social science. We fit a stochastic cusp catastrophe model to housing markets in

six different countries. Our results show how the equilibria of the system are changing

depending on the interest rate. This scenario can be used to explain several housing

price bubbles and crashes in empirical data, such as UK 1978, 1980, 1990, NL 1978, 1990,

and the depression of SE after 1990. The policy implication of this paper is that policy

makers should commit an interest rate policy which prevents the system from getting

too close to the cusp curve that may induce a systemic market crash. To achieve this,

the cusp catastrophe fit could provide a reasonable guidebook. This is one of the most

appealing contributions of our paper.

This paper is organised as follows. We first introduce, in Section 2, the cusp catastro-

phe theory and its application to housing markets. Subsequently, we discuss the empir-

ical methods of Cobb and Euler Discretization, estimation variables and empirical data

in Sections 3 and 4. The results of Euler Discretization are presented and discussed in

Section 5. This paper ends with a summary and conclusion in Section 6.
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2 Catastrophe Theory

Catastrophe theory has been first proposed by the French mathematician René Thom

(1972). Before his work, most models only described phenomena with smooth and con-

tinuous changes. However, the world is full of sudden transformations and unpre-

dictable divergences. The proposed catastrophe theory has shed some lights on “a law

of nature”. Zeeman cooperated with Thom and proposed catastrophe’s applications in

the fields of economics, psychology, sociology, political studies, and others (Zeeman,

1974, 1977). In particular, he proposed the application of cusp catastrophe model to

stock markets and qualitatively described the bull and bear markets as a result of in-

teraction between two main types of investors: fundamentalists and chartists (Zeeman,

1974). This work contains a number of important behavioural finance elements, which

later led to research on HAM models. However, the biggest difficulty in application of

catastrophe theory arises from the fact that it stems from deterministic systems, while

most scientific investigations allow for random noise. In order to apply it directly to

behavioural science in which random influences are common, we need a bridge to lead

catastrophe theory from deterministic to stochastic systems. Loren Cobb was the first

to address this challenge. He proposed a stochastic version of catastrophe theory based

on Itô stochastic differential equation (Cobb, 1980). Later the development of statisti-

cal methods made catastrophe theory very useful and applicable empirically on real

data. Unfortunately, this maximum likelihood estimation (MLE) method is not invari-

ant under nonlinear diffeomorphic transformations. Much of the topological generality

of catastrophe theory was lost in the statistical portion of this theory (Cobb and Wat-

son, 1980). Hartelman (1997) improved Cobb’s method by taking into account the Itô

transformation rule. They showed that this model remained invariant under smooth

1-to-1 transformations and can be estimated by a straightforward time series analysis

based on level crossings (Wagenmakers et al., 2005). This model has been applied to

psychology to model transitions in attitudes successfully (Van der Maas et al., 2003).

Barunik and Vosvrda (2009) and Barunik and Kukacka (2015) fitted it to stock market

data and showed that stochastic cusp catastrophe model explained the crash of stock

market much better than other models. Housing market crashes are often prior to fi-

nancial crises and recessions. Housing bubbles are considered as leading indicators of

financial instability and crises. There are no other examples of understanding hous-

6



ing markets by using catastrophe theory. Therefore, we will use catastrophe theory to

explain the dynamical behaviour in housing markets. In what follows, a basic under-

standing of catastrophe theory is discussed.

Catastrophe theory provides a mathematical basis for systems involving discontin-

uous and divergent phenomena. In particular, it is effective in those systems where

gradually changing forces lead to abrupt changes in behaviour. The nonlinear dynam-

ics of the system under study follows, in the noise-less case

dyt =
−dV(yt; c)

dyt
dt, (1)

where yt represents the state of system. It implies that the studied system changes in

response to a change in V(yt; c); V(yt; c) is a potential function which is determined by

control parameter c, and c determines the specific structure of the system and can consist

of one or multiple variables. The system is in equilibrium when the spatial derivative

of the potential function equals 0, i.e. −dV(yt; c)/dyt = 0. The equilibrium corresponds

either to a maximum or a minimum of potential function V(yt; c) with respect to y.

When V(yt; c) takes a minimum, the equilibrium points are stable. The system will

always return to it after a small perturbation with respect to system’s state; Following

the same idea, the equilibrium points are unstable equilibria if the potential function

V(yt; c) takes a maximum. Even a small perturbation will drive the system away from

these equilibrium states and move towards a stable equilibrium. The Hessian matrix has

eigenvalues equal to 0 in these equilibria, at which a system can give rise to unexpected

bifurcations when the control variables are changed. Therefore, catastrophe theory can

be employed in systems which can be driven toward an equilibrium state, such as a

gradient dynamical systems with critical points.

2.1 Cusp Catastrophe

One of the extraordinary findings of catastrophe theory is that it proposed the be-

haviour of deterministic dynamical systems around the critical points of potential func-

tion V(yt; c). It proposed that this behaviour can be characterised by a set of seven

canonical forms with no more than four control variables and one or two canonical

state variables (Thom,1972; Zeeman, 1976; Gilmore,1993). In behavioural sciences, the

most commonly used canonical form is the so-called cusp catastrophe. In terms of a
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normalised variable zt, it describes the sudden, discontinuous transitions in equilibria

states as a result of continuous changes in two normal form control parameters α and β:

−V(zt; α, β) = −1
4

z4
t +

1
2

βz2
t + αzt. (2)

The equilibria can be obtained by solving the cubic equation:

−∂V(z; α, β)

∂z
= −z3

t + βzt + α = 0, (3)

in which the derivative of potential function V(z; α, β) equals 0. For descriptive pur-

pose, a statistic so-called Cardan’s discriminant is proposed to distinguish the case of

three solutions from the case of one solution (Cobb, 1981). This Cardan’s discriminant

is defined as:

δ = 27α2 − 4β3. (4)

When δ < 0, there are three solutions, while when δ > 0, there is only one solution.

When δ exactly equals 0, there are three solutions and two of them have the same value.

Figure 2 gives a visual description of the cusp catastrophe model in an example of a

housing market. It illustrates a cusp equilibrium surface living in a three dimensional

space. The folded surface with a fold cusp represents the equilibrium surface of system.

The floor is a two dimentional control plane which is determined by a set of control

parameters, α and β. The height predicts the value of the system’s state with respect

to control parameters. In the middle of the graph, there are two sheets representing

the behaviour of system, and they are connected by a middle sheet making a continu-

ous surface. The difference between the middle sheet and the other two sheets is that

the middle sheet represents the least probable state of the system. The curve defining

the edges of the fold cusp projected onto the control plane showing an across hatched

cusp shaped region. The cusp which marks its boundary is called the bifurcation set

(Zeeman, 1974, 1976), for which Cardan’s discriminant δ = 0. When δ > 0, the system

has only one stable equilibrium state. There is only one predicted state value. How-

ever, within the cusp fold, where δ < 0, the surface predicts two possible stable state

values instead of one. This implies that in a system with noise the state variable is bi-

modal inside the bifurcation area. In addition, this middle surface predicts that certain

state values, such as unstable equilibrium states, should not occur frequently. It “anti-

predicts” an intermediate value for these values of the control variables (Grasman et
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al., 2009). Moreover, the system might get into a hysteresis loop by jumping between

these two possible state values. The jump from the top sheet to the bottom sheet of

the behaviour surface occurs at a different value of the variable than the jump from the

bottom to the top sheet does.

y B
A

Crash

Bifurcation set
δ =0

Figure 2: Cusp catastrophe model of housing market

2.2 Stochastic Cusp Catastrophe

Although Zeeman has proposed that catastrophe theory could be applied to multiple

disciplines (Zeeman, 1977), a practical empirical investigation requires a model that al-

lows stochastic shocks. In order to address this issue and to build a bridge between

catastrophe theory and real scientific data, several stochastic formations of catastro-

phe theory which allow empirical investigations have been proposed (Oliva et al., 1987;

Guastello, 1988; Alexander et al., 1992; Lange et al., 2000). Of all the methods, the method

of Cobb and Watson (1980) is arguably the most appealing. They proposed to combine

the deterministic catastrophe theory with stochastic systems theory by using Itô stochas-

tic differential equation (SDE). It leads to the definitions of stochastic equilibrium state
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and stochastic bifurcation that are compatible with their deterministic counterparts, in

such a way that it establishes a link between the potential functions of deterministic

catastrophe systems and the stationary probability density functions of stochastic pro-

cesses.

Assuming that the (canonical) variable zt is still governed by the potential function

of Eq. (2), and that there is a driving noise term with variance σ2
z per time unit, the

dynamics can be written in terms of the SDE:

dzt = − ∂V(z; α, β)

∂z

∣∣∣∣
z=zt

+ σzdWt. (5)

= −z3
t + βzt + α + σzdWt.

The deterministic term −∂V(zt; α, β)/∂zt is the drift function, σz is the diffusion pa-

rameter, and Wt is a Wiener process. zt is the dependent variable. α and β are the

“canonical variates” which are the smooth transformations of actually measured inde-

pendent control variables x1, . . . , xn.

In this stochastic context, on the one hand, if α = 0, its density function is symmetric.

The sign of α decides whether it is left or right skewed. Thus α is called “asymmetry

factor” and determines direction of the skew of the density. On the other hand, as β

changes from negative to positive, the density is changing from unimodal to bimodal.

β is the “bifurcation factor” and determines the number of modes of the density.

2.3 Cusp catastrophe behaviour of housing market

The best way to understand the nature of models derived from cusp catastrophe is to

illustrate it by examples. Zeeman has considered some popular example applications

of catastrophe model to different disciplines, such as ecology, physics and psycology

(Zeeman, 1974). His work was the first attempt to explain unstable behaviour of stock

market using catastrophe model. Some behavioural finance elements in his work mo-

tivated HAM models, in which the instability of market is expectations-driven. The

housing market has several common characteristics with the stock market. Their dy-

namical behaviours are connected in some ways. The booms and burst cycle of housing

prices was also proved to be partly driven by heterogenous expectations of agents (Bolt

et al., 2014). Several theoretical models have been shown to perform well in the analysis

of housing markets and stock markets. For instance, HAMs are successful examples
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to capture the instability in both the stock market and the housing market (Brock and

Hommes, 1997, 1998; Hommes, 2013; Kouwenberg and Zwinkels, 2010; Dieci and West-

erhoff, 2012, 2013; Bolt et al., 2014). Since Zeeman has proposed that catastrophe model

could be used to explain stock market, it could also be useful in the housing market.

An example of a cusp catastrophe model in housing market is illustrated visually in

Figure 2. The smooth folded surface with three levels of sheets represents the equilibria

of the system. A set of control parameters α and β forms a two-dimensional control

plane. The z-axis of the 3-dimensional space y represents the state variable, such as

housing prices.

The catastrophe behaviours are now observable whenever the set of control param-

eters moves all the way across the cusp equilibrium surface. Each point on the top and

bottom sheets of this surface gives equilibrium of system. If the point is on the top

sheet and follows the path A on the control surface, the corresponding path moves to

left on the top sheet until it reaches the fold curve; the top sheet then vanishes, and the

path must suddenly jump to the bottom sheet. A small change in control parameters

can produce a sudden large change in the state of the system. Alternatively, the path B

on the control surface outside of the cusp bifurcation exhibits the behaviour of an ordi-

nary market. Its corresponding path moves to the bottom sheet slowly and smoothly,

without catastrophes.

The mechanism of housing market crashes can now be understood. We assume

that the equilibrium of a housing market with rising prices is on the top sheet of the

behaviour surface. The housing market with falling prices has its equilibrium on the

bottom sheet of the equilibrium surface. A crash can then be induced by any event

that changes the control parameters enough to push the behaviour point over the fold

curve, fall off the “cliff” and jump to the bottom sheet. In particular, if the equilibrium

is in the bifurcation set and very close to the cusp curve, even a small perturbation

can induce large market collapse. Similar, the “negative” crashes could induced by an

upward jump from the bottom sheet to the top sheet. In particular, the equilibrium of

the system could also transition from one stable equilibrium to another without passing

through the cusp curve. This can be used to explain the slow recovery from a crash

in housing markets. A recovery is affected by the slow feedback from the behaviour

of housing market on the control parameters. It does not pass through the catastrophe

cusp, but slowly and smoothly follow the reversal of the path B. The system is then set
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for another cycle of boom and bust. Therefore, the duration of housing price declines

was quite long lived and the subsequent recovery from a crash was exceptional slow.

3 Estimation Methods

In the estimation, α and β are approximated by using a first order Taylor expansion

α = α0 + α1x1 + α2x2 + ... + αvxv (6)

β = β0 + β1x1 + β2x2 + ... + βvxv

Then α0, α1..., αv and β0, β1..., βv are the parameters to be estimated when fitting the

catastrophe model to empirical data. x1, x2..., xv are the independent variables.

3.1 Cobb’s Method

The most common estimation method that allows quantitative comparison of catastro-

phe models with empirical data is that proposed by Cobb (Cobb, 1978, 1980, 1981; Cobb

and Watson, 1980; Cobb et al., 1983). He established a stochastic cusp catastrophe by

simply introducing a stochastic Gaussian white noise, with the SDE as Eq.(5).

In this approach, maximum likelihood estimation is applied to the cusp probability

density function (PDF). To simplify the estimation procedure, instead of using the con-

ditional PDF f (zt|zt−1, zt−2, ...; α, β), Cobb considered the invariant PDF which is given

by solving the corresponding Fokker-Planck equation. As time passes, t → ∞, the con-

ditional PDF f (zt|zt−1, zt−2, ...; α, β) converges to a stationary and time invariant form

f (zt|α, β). With linear transformations of dependent variable zt = (yt − λ)/c, the dis-

tribution of system’s states on any moment in time is expressed as

f (y) = ψ exp

[
α̃

(
y− λ

c

)
+

1
2

β̃

(
y− λ

c

)2

− 1
4

(
y− λ

c

)4
]

, (7)

where α̃ =
(

σ2
z

2

)− 3
4

α and β̃ =
(

σ2
z

2

)− 1
2

β, c = r
(

σ2
z

2

) 1
4
, and ψ is normalisation constant

so this PDF’s integral over the entire range equals 1. For a derivation, see Appendix B.2.

The location parameter λ and scale parameter c are kept constant.
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Consequently, with the invariant PDF as theoretical PDF in the estimation, and un-

der the assumption that the diffusion function is constant, σz = constant, the deter-

ministic and stochastic potential function can be linked with each other. The stochastic

stable and unstable equilibrium of the potential function are associated with modes and

anti-modes of the invariant PDF respectively. The stochastic bifurcations correspond to

the changes in the number and type of the modes of the invariant PDF. A qualitative

change in the potential function is identical to a qualitative change in the PDF with re-

spect to the change of control parameters. For instance, the PDF changes from unimodal

to bimodal as the bifurcation parameter β changes from negative to positive. As a re-

sult, by estimating the distribution of invariant PDF, any point on the cusp equilibrium

surface can be estimated according to their closest maximum mode of PDF. The inacces-

sible middle sheet of equilibrium surface is reflected in the middle of the bimodal that

a low probability mode is between two high probability modes.

Based on Cobb’s statistical catastrophe theory, a series of works by Hartelman (1997),

Hartelman et al. (1998), and Grasman et al. (2009) implemented and extended Cobb’s

estimation method. They presented robust and practical computer programs which

made it easy to fit cusp catastrophe models on empirical data in a statistical way. In

these approaches, Cobb’s method is combined with the subspace fitting method of Oliva

et al. (1987). The state of system is measured as a first approximation of

z = w0 + w1y1 + w2y2 + ... + wvyv. (8)

z is the smooth transformation of the actual state variable of system. w0, w1, ..., wv are

the first order coefficient of a polynomial approximation to the smooth transformation.

y1, y2..., yv is a set of measured dependent variables. Because independent variables

α and β are also approximated by the first approximation (see Equation (6)), fitting the

cusp model to empirical data is then reduced to estimate the parameters of w0, w1, ..., wv;

α0, α1..., αv and β0, β1..., βv.

Although the Cobb’s method has been proved to be a successful tool in several mul-

tiple equilibria systems, we should note that it requires a system with dynamics change

much more quickly than the feedback reactions of control parameters, due to its nature

of time independent. This method gives a good fit of the overall invariant density for

the cross-sectional dataset, or for those systems with quickly changing dynamics. For

time series dataset or for systems with slow process, particularly when the scale of state
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of system (z-axis in Figure 2) can not be separated from the scale of control parame-

ters (x-axis and y-axis in Figure 2), the forecasting ability of Cobb’s method may be not

sufficient.

3.2 Estimations of Euler Discretization

In order to estimate the stochastic differential equation (SDE) of cusp catastrophe with

changing time, we consider another numerical method - Euler Discretization, which is

the numerical method which seeks to approximate the SDE at discrete times.

Time t is subdivided into intervals of length ∆t, so that tn = n∆t. Then we could

approximate the solution at those times tn. Because y = λ + rz is a scaled and/or

translated variable, in terms of yt = λ + rzt the SDE becomes (see Appendix B.3)

1
r

dyt = −
∂V(z; α, β)

∂z

∣∣∣∣
z= yt−λ

r

+ σzdWt, (9)

Euler Discretization gives an approximate equation which predicts a future value of

state of system y in terms of past value:

yt+∆t = yt −
∂V(ỹt; α, β)

∂ỹt

∣∣∣∣
ỹt=

yt−λ
r

r∆t + rσWεt
√

∆t + h.o.t. (10)

≈ yt +

(
α + β

(
yt − λ

r

)
−
(

yt − λ

r

)3
)

r∆t + rσz
√

∆tεt+∆t ,

where εt+∆t ∼ N(0, 1).

The distribution of state of system at any moment in time can now be approximated

as:

fyt+∆t(y|yt) ≈ ψ exp


−
[

y−
(

yt − r∆t
((

yt−λ
r

)3
− β

(
yt−λ

r

)
− α

))]2

2σ2
z r2∆t

 (11)

ψ is normalisation constant so the PDF’s integral over the entire range equals 1. The

location parameter λ and scale parameter c are kept constant. In this paper λ is as-

sumed to be equal to 0 since there is a fundamental equilibrium at 0 (and the mean of

14



the price fluctuations around this is assumed to be zero). The estimated parameters are

λ, c; α0, α1, ..., αv and β0, β1, ..., βv. The conditional PDF is considered in this approach

while invariant PDF is used in Cobb’s method. Therefore, by using one-step-ahead

forecast, any moment on the equilibrium surface is able to be predicted with changing

time. To compare with Cobb’s method, the estimation method used here is also Nonlin-

ear Least Squares (NLS). Brillinger (2007) used another approach to estimate a potential

function based on a linear model.

We should note that the one-step-ahead forecast is over-parameterised in the sense

that the forecasts the model produces are independent of the value we choose for ∆t.

This might have been expected, since changing the value of ∆t simply corresponds to

a change of time units, which should not affect the forecasts. We therefore set ∆t = 1

throughout (i.e. we define one time unit to correspond to one quarter, the time interval

between consecutive observations in our data set). We do emphasize that the choice of

the time scale does affect the estimated numerical values of α, β and r. Doubling ∆t

can be compensated in the point forecast by multiplying r and β by
√

2 and dividing α

by
√

2. The term σ2
z r2∆t in the denominator can be considered a single parameter (the

forecast variance over a period of one month), which is independent of the choice made

for the time unit.

3.3 Cobb’s Method v.s. Euler Discretization

Cobb’s method aims to give a good fit of cusp catastrophe based on the overall invariant

density of system. This method requires a system with separated measure scales and

quickly changing dynamics. As a matter of fact, it is time independent and would give

better fit on cross-sectional dataset rather than time series data. On the contrary, Eu-

ler Discretization considers the one-step-ahead forecast by estimating the conditional

density of system in time. The assumption of time independent in Cobb’s method is

relaxed. Intuitively, Euler Discretization should make considerable improvement to

Cobb’s Method regarding the forecasting ability in a time series framework.

To compare the forecasting ability of these two estimation approaches, the most sim-

ple and straightforward way is to examine their residuals. Figure 3 shows the plots of

residuals against time in the example of US by using Cobb’s Method and Euler Dis-

cretization respectively. In Figure 3 (a), we observe strongly correlated residuals with
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clear patterns and obvious deviations from randomness. Moreover, the values of the

residuals are big, i.e. bigger than 0.1. This is due to the fact that the predicted values

in Cobb’s method are estimated based on the closest maximum mode of invariant PDF

rather than by past information. Although it may still give a good fit with respect to

invariant density distribution, when it comes to the evaluation of the forecasting ability,

our analysis shows it is insignificant. Nevertheless, as shown in Figure 3 (b), these resid-

uals are randomly distributed and are small, i.e. smaller than 0.04 in absolute value. This

suggests that Euler Discretization gives much better predictions than Cobb’s method.

The residuals in the examples of many other countries are observed under the same

patterns, which are shown in Figure 13 and Figure 14 in Appendix B.1.
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(b) Euler Discretization

Figure 3: Plots of residuals against index by using Cobb’s Method and Euler Discretiza-

tion in the example of US.

Hartelman (1997) and Grasman et al. (2009) proposed to use the AIC and BIC to

assess the model fit. The AIC and BIC in our examples are presented in Table 1. It can

be seen that the AIC and BIC by using Euler Discretization are much smaller than using

Cobb’s method, which suggests a better model fit of Euler Discretization. It further

proves that the forecasting ability of Euler Discretization is more promising than Cobb’s

Method with respect to housing prices.

The possible explanations are following. Firstly, although the estimation method of
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Table 1: AIC and BIC of Cobb’s method and Euler Discretization in different countries.

US JP UK NL SE BE

Cobb
AIC 497.955 491.587 438.482 357.619 361.697 379.087

BIC 510.568 504.200 451.096 370.232 373.258 391.049

Euler
AIC −983.611 −901.021 −715.484 −721.421 −592.250 -782.153

BIC −971.021 −888.431 −702.894 −708.831 −580.719 -770.191

Cobb has been proved to be a successful tool to fit cusp catastrophe in several areas,

most of these examples considered cross-sectional datasets. Rather than observing with

changing time, these examples focused on a cross section of time and aimed to approxi-

mate the overall stationary density of the system. However, the dataset in our examples

are housing price deviations which are time series data. From this point of view, the

one-step-ahead forecast in Euler Discretization should be considered as a better can-

didate than Cobb’s method. Secondly, when fitting time series data, Cobb’s method

presumes separated time scales; it requires that the state of system changes much more

quickly compared with the feedback reactions of control parameters. However, housing

markets involve very long boom and burst cycles, the noise is big and the speed of the

process is slow. Furthermore, because we are going to discuss the forecasting ability

of cusp catastrophe model on the housing market, Euler Discretization is considered

as a better candidate than Cobb’s method regarding forecasting ability. For the above

reasons, in what follows, we will analyse the cusp catastrophe behaviour of housing

markets using Euler discretisation.

4 Estimation Variables

In this paper, we are going to observe the housing markets of six different countries: the

United states (US), the United Kingdom (UK), the Netherlands (NL), Japan (JP), Sweden

(SE) and Belgium (BE). The variables in the estimation of the cusp catastrophe model

consist of state variables and control variables.
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4.1 State Variables

The state variable is required to be able to describe the unstable behaviour of housing

markets. Bolt et al. (2014) estimated a HAM model for housing markets in different

countries and observed bifurcations driven by policy parameter out of relative devia-

tions of housing price from fundamental price. Following their success, we also use

the relative deviation of housing price from the estimated fundamental price as state

variable, which is denoted by

yt =
pt

p∗t
− 1 ≈ lnpt − lnp∗t . (12)

The fluctuations of the housing price around the fundamental price (based on ex-

pected future rental prices) are described by a model in which agents choose between

either buying or renting house. In this model, agents make their decisions at time t

based on the expected excess return on investing in housing relative to renting during

the period between time t and t + 1. The fundamental price is assumed as the price that

would prevail under rational expectations about the conditional mean of excess return.

In equilibrium, the annual cost of home ownership must equal the housing rent ad-

justed for risk. The supply of the market is the stock of housing. The demand of agents

is determined by maximising one-period ahead expected excess returns adjusted for

risk. By solving the market clearing condition for price pt (See Appendix A for detailed

calculation), we have the price equation

pt =
1

1 + r + α
Eh,t

[
pt+1 + (1 + rr f )Qt

]
, (13)

where Qt denotes the price for renting one unit of housing in the period between times

t and t + 1. Because rents are typically payed up-front at time t, the rent at time t in

terms of currency at time (t + 1) should be inflated by a factor (1 + rr f ), where rr f is

the risk free mortgage rate. Therefore the cost of renting between t and t + 1 is given

by (1 + rr f )Qt in terms of currency at time (t + 1). r is the sum of the risk free mortgate

rate and the maintenance/tax rate. α is interpreted as a risk premium of buying a house

over renting a house. In this model, α is assumed to be constant in order to keep the

model tractable. Taking into account the risk premium α in the fundamental price will

provide an equilibrium fundamental price from which the market price will deviate by

an amount which averages out to 0 in long time series.
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The fundamental process underlying the model is assumed to follow a geometric

Brownian motion with drift (Boswijk et al., 2007):

logQt+1 = µ + logQt + υt+1, {υt} i.i.d.∼ N(0, σ2
υ). (14)

When g = eµ+1/2σ2
υ − 1 and εt+1 = eυt+1−1/2σ2

υ , one obtains:

Qt+1

Qt
= (1 + g)εt+1, (15)

such that Et(εt+1) = 1. Therefore, by applying the law of iterated expectations and

imposing the transversality condition, the fundamental price at time t is as:

p∗t = Et

[
∞

∑
i=0

(1 + rr f )Qt+i

(1 + r + α)i+t

]
=

1 + rr f

r + α− g
Qt, r + α > g. (16)

It shows that the fundamental price of housing is directly proportional to the actual

rent level. Figure 4 shows an example of house price and fundamental price in US from

1970 to 2013. Figure 4(a) presents the housing price index pt with the corresponding

estimated fundamental values p∗t . The price deviations of pt − p∗t is shown in Figure

4(b), which is also the state variable y in our case. The plots of the examples of many

other countries are shown in Appendix A in Figure 12.
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Figure 4: The example of housing price and fundamental price in US from 1970 to 2013.

(Source: Bolt et al., 2014). (a)The housing price indices pt with the corresponding esti-

mated fundamental values p∗t ; (b) The log-difference between the two pt − p∗t .
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4.2 Control Variables

We start with a simple model and discuss only one control variable. One of the advan-

tages is that it allows us to observe critical transitions from time series. This could help

us to understand the real market crashes in housing system.

One of the parameters which has the greatest influences on the deviations of hous-

ing prices from fundamentals is argued to be the mortgage rate. Several papers have

pointed out that monetary policy, especially interest rate policy has great impact on

housing prices (Bernanke and Gertler, 1995; Shiller, 2006; Muellbauer and Murphy,

2008; Taylor, 2007, 2009; Crowe et al., 2013; Shi et al., 2014). Moreover, empirical ev-

idence of Bolt et al. (2014) suggested that several bifurcations of price equilibria may

occur driven by interest rates. Therefore, as an important policy parameter, the interest

rate is chosen as our control variable.

4.3 Data Description

The analysed housing markets are the US, UK, NL, JP, SE and BE. In order to observe

the critical transitions from nonlinear dynamics of the housing market, we require time

series as long as possible to contain as much information as possible. The investigated

time window ranges from 1970 to 2013 1. This contains several well-known housing

market crashes, such as those of the United States (2007), Japan (1992), Sweden (1991),

the United Kingdom (2007) and the on-going bubbles in many countries.

Quarterly nominal and real house prices for each country are obtained from the

housing dataset in the Organisation for Economic Co-operation and Development (OECD).

The nominal house price is indexed using 2005 as base year. The real house price index

is derived by deflating with the private final consumption expenditure deflator, which

is available from the OECD Economic Outlook 89 database. The price-to-rent ratio is

defined as the nominal house price index divided by the rent component of the con-

sumer price index, made available by the OECD. The interest rate is indicated by 10-

year government bonds yields, downloaded from the OECD iLibrary for US, UK, NL,

BE. Because OECD iLibrary does not have the interest rate dating back to 1970, for JP

and SE, we downloaded them from Datastream.
1Time window for Sweden (SE) is from 1Q1980 to 1Q2013, and for Belgium is from 2Q1976 to 1Q2013,

based on the availability in the datasets.
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5 Results and Discussions

The differential equation of cusp catastrophe model is estimated by using Euler Dis-

cretization. As described in Section 4, the state variable is the relative deviation of the

housing price from the fundamental price. For the control parameters, we consider two

variants: estimation with constant control parameters, and estimation with the control

variable interest rate governing the control parameters α and β.

5.1 Constant Control Parameters

As a benchmark, we fit the cusp catastrophe model to housing market data given a

constant control variable. Thus the control parameters α and β are constant and are

defined by

α = α0 (17)

β = β0

To describe the stability of system statistically, we investigate Cardan’s discriminant

δ = 27α2− 4β3. δ = 0 indicates the boundary of bifurcation set. When δ < 0, the state of

system is in cusp bifurcation region and unstable. The model predicts two possible state

values instead of one; if δ > 0, the state of the system is outside of bifurcation region

and stable.

Table 2 shows the estimated parameters and their corresponding standard errors in

all six countries. The parameters λ and σ scale the observed state variable. λ is as-

sumed to be equal to 0 since there is a fundamental equilibrium at 0. Bayesian informa-

tion criterion (BIC) and Akaike information criterion (AIC) indicate the fitness of model

(Hartelman, 1997; Grasman et al., 2009). The standard errors of transformed parameters

of Cardan’s discriminant δ are obtained by the delta method.

Delta method takes the variance of the Taylor series approximation of a function as

standard error. Let G be the transformation function and X be the consistent estimator.

X converges in probability to its mean vector U. Let 5G(X) be the gradient of G(X).

The first two terms of the Taylor expansion are then an approximation for G(X),

G(X) ≈ G(U) +5G(U)T · (X−U), (18)
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which implies that the variance of G(X) is approximately

Var(G(x)) ≈ 5G(X)T · Cov(X) · 5G(X) (19)

where Cov(X) is the variance-covariance matrix of X. Var(G(x)) is thus the standard

error of Cardan’s discriminant δ.

Table 2: Estimation results with respect to constant α and β in different countries. “Sta-

bility” shows local stability of the system. The values in the brackets are standard errors.

US JP UK NL SE BE

λ 0.000 0.000 0.000 0.000 0.000 0.000

σ
(s.e.)

5.298
(2.858)

3.420
(2.041)

· 3.056
(1.261)

∗ 2.982
(1.255)

∗ 2.405
(1.348e+00)

· 2.641
(0.373)

∗∗∗

α
(s.e.)

7.704e− 05
(5.314e−04)

−0.0004
(0.0005)

1.781e− 03
(0.001)

1.448e− 03
(0.001)

2.583e− 05
(9.484e−04)

0.003
(0.0010)

∗∗

β
(s.e.)

−9.632e− 03
(1.795e−02)

0.014
(0.012)

1.376e− 02
(0.018)

1.353e− 02
(0.018)

1.131e− 02
(2.489e−02)

0.048
(0.011)

∗∗∗

δ
(s.e.)

3.735e− 06
(1.842e−05)

−5.528e− 06
(2.368e−05)

7.526e− 05
(0.0001)

4.673e− 05
(8.298e−05)

−5.773e− 06
(3.799e−05)

−0.0001
(0.0002)

AIC −983.611 −901.021 −715.484 −721.421 −592.250 −782.153

BIC −971.021 −888.431 −702.894 −708.831 −580.719 −770.191

Loc.stab. stable unstable stable stable unstable unstable

∗ ∗ ∗ significant at 0.1% level, ∗∗ significant at 1% level, ∗ significant at 5% level, · significant at 10%

level.

The local stability of the system, which is indicated by the sign of δ, is also presented

in Table 2. Using US and SE as examples, Figure 5 shows the kernel density of the price

deviations in stable and unstable systems. The US shows an unimodal distribution

while the SE has a bimodal distribution.

Figure 6 gives a visual illustration of the estimated location of the behaviour points

(equilibria) of different countries on the projection of cusp equilibrium surface in Figure

2. The cusp shaped shaded area is the control plane which is determined by the sets of

control parameters α and β. As shown in the legend, each symbol and colour indicates

the estimated parameters of equilibrium of one country. The ellipse around it with the

same colour corresponds to its 95% probability region. Consistent with the estimation

results in Table 2, countries of US, NL and UK are in stable regions, while JP, SE and
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Figure 5: The examples of Kernel density estimate on price deviations when δ > 0 and

δ < 0.

BE are unstable and inside the grey bifurcation region. With confidence level of 95%,

the confidence regions include the points representing the “true” values of behaviour

points.

Notably, by combining Figure 6 with the cusp equilibrium surface in Figure 2, we

are able to forecast the dynamical behaviour of the housing market by observing where

its behaviour point is located on the cusp equilibrium surface. For instance, country

SE is inside the bifurcation set where the surface predicts two possible state values in-

stead of one. With the change of control parameters, its behaviour point may follow

the path A in Figure 2 and move close to fold curve. A tiny perturbation on the control

variables would induce it to fall off the cusp “cliff” and jump to a different equilibrium

suddenly. The US is in the “normal” situation and outside of the cusp bifurcation. If

the control variable α changes, its state point would follow the path B in Figure 2. Its

transition between equilibria is slowly and smoothly without experiencing cusp catas-

trophes. However, it does not mean that no critical transition could occur. When control

variable β increases, it would move into the unstable bifurcation set and experiences a

critical transition. We shall observe similar situations for NL and UK. Although they are

in stable regions, as long as their control parameters change in certain directions, they
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Figure 6: The estimated behaviour points of different countries in different regions of

the control plane with respect to constant α and β. The cusp shaped shaded area is the

control plane. The ellipses correspond to confidence regions with confidence level of

95%.

may move into bifurcation set and experience possible critical transitions. They are

particularly dangerous when they are too close to the bifurcation border. Even a small

perturbation may induce a critical transition. Therefore, the changes of corresponding

control variables perform an important role in the dynamic behaviour of the systems.

By monitoring and controlling these changes, we are able to influence or even prevent

the instability of housing markets.
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5.2 Interest Rate as Control Variable

In what follows, we study the situation when the interest rate is used as a control vari-

able. Following the estimation methods in Section 3, the control parameters α and β are

now defined by

α = α0 + α1x, (20)

β = β0 + β1x,

where x is the control variable - interest rate. It is indicated by the 10-year government

bonds yields. σ, α0, α1, β0, β1 are the parameters to be estimated. Table 3 shows the

estimation results in different countries. Because we are interested in predicting the

changes of equilibria and investigating critical transitions, although some parameters

are not very significant, we will later show that the model fits well with respect to the

changes of equilibria. Like the example of constant control parameters, we conduct a

plot of the control variables with the estimated behaviours for different countries in

Figure 7 to provide a visual illustration.

Table 3: Estimated parameters of σ, α0, α1, β0, β1 when using interest rate as the control

variable. λ is constant. The values in the brackets are standard errors.

US JP UK NL SE BE

λ 0.000 0.000 0.000 0.000 0.000 0.000

σ
(s.e.)

2.097
(1.985)

4.482
(4.639)

2.773
(0.972)

∗∗ 7.495
(21.405)

1.485
(0.286)

∗∗∗ 2.533
(0.342)

∗∗∗

α0
(s.e.)

0.003
(0.004)

−0.002
(0.002)

0.013
(0.006)

∗ 0.005
(0.014)

0.020
(0.006)

∗∗∗ 0.015
(0.003)

∗∗∗

α1
(s.e.)

−0.0005
(0.0006)

0.0004
(0.0005)

−0.001
(0.0005)

∗ −0.0005
(0.002)

−0.002
(0.0007)

∗∗∗ −0.002
(0.0003)

∗∗∗

β0
(s.e.)

0.0123
(0.046)

−0.0002
(0.016)

−0.032
(0.034)

−0.094
(0.042)

∗ 0.025
(0.030)

0.051
(0.020)

∗

β1
(s.e.)

−0.004
(0.006)

−0.001
(0.003)

0.004
(0.004)

0.013
(0.005)

∗∗ 0.0009
(0.003)

−0.006
(0.002)

∗

AIC −988.770 −912.718 −732.828 −729.114 −630.110 −831.070

BIC −969.885 −893.832 −713.943 −710.229 −612.813 −813.128

∗ ∗ ∗ significant at 0.1% level, ∗∗ significant at 1% level, ∗ significant at 5% level, · significant at 10%

level.

As shown in Figure 7, in different countries, their equilibria changing with time trace

25



different paths on the control plane. These tracks are distinguished by different symbols

and colours. By comparing with the benchmark in Figure 6, we shall see that the interest

rate as a control variable has great impact on the instability of housing markets. For

the housing markets of NL and UK, although their equilibrium points locate in the

stable regions under constant control parameters (Figure 6), the changes of interest rate

induce them move into the unstable bifurcation region in certain times (Figure 7). On

the contrary, the equilibrium points of SE, BE and JP are now able to move outside of

the bifurcation region. As for the US which remains in stable regions, its equilibrium

point also changes with interest rate.

5.2.1 Equilibrium

Figure 8 shows the predicted equilibrium values and the time series of housing price

deviations from fundamentals in different countries. It allows us to investigate the equi-

libria of the system, and also provides information on how the state of system transits

from one equilibrium to another.

The black line in Figure 8 represents the time series of housing price deviations on

fundamentals. The black dotted line indicates the baseline of 0. All six countries exhibit

long-lasting periods of fluctuations of price deviations around 0. It can be observed

that housing prices have been increasing rapidly since the mid-1990s and have peaked

around 2008 in the US and NL. After that they have dropped considerably for those

countries. The JP housing prices peaked earlier around 1990, and subsequently declined

to levels below the baseline 0. For the UK, SE and BE, they exhibited peaks around 1990

and 2008. After that, housing prices dropped significantly.

The red and blue lines indicate the estimated equilibria when control parameters

are constant (Section 5.1), while the scatter plots show equilibria with interest rate as

control variables. The red lines or scatters represent stable equilibria on the upper or

bottom sheet of cusp equilibrium surface, while the blue lines or scatters imply unstable

equilibria on the middle sheet of cusp equilibrium surface.

Although some predicted equilibria do not completely fit the position of real data in

the plots, we should note that our objective is to forecast the systematically changes of

equilibria. It can be observed that the cusp model forecasts the changes of equilibrium

in real housing data well. When the housing price deviation increases or decreases,
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Figure 7: The estimated behaviour points of different countries in different regions of

the control plane. The control variable is interest rate. The cusp shaped shaded area

is the control plane. Each symbol and colour indicate the estimated behaviour of one

country.

the cusp model forecasts its equilibrium changes in the same direction. For instance,

in the example of SE around mid-1990s, the equilibrium presented a transition from a

lower equilibrium to an upper equilibrium. Around the same time, the corresponding

housing price data experienced a rapid drop and a gradual increase. Therefore, the cusp

model performs well regarding the endogenous changes.
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5.2.2 Critical Transition

Figure 9 presents the time series of price deviations, interest rates and the cube root of

Cardan’s discriminant δ in different countries. Under the monitoring of monetary pol-

icy, interest rates in all countries exhibited long lasting fluctuations regarding different

economic situations. In general, for JP, SE and NL, interest rates were dropping in the

observed period. For the US, UK and BE, interest rates peaked around 1980. After that,

it was followed by persistent droppings.

Because δ is small and close to 0, transformation to its cube root allows us to visually

catch more details on its value around 0. We shall observe its up and down oscillations

around 0 in different countries. When δ > 0, the system is in a quiet and stable regime;

When δ < 0, it is in unstable bifurcation area. As shown in Figure 9, the time series of

δ is consistent with the tracks of different countries in Figure 7. A negative value of δ is

observed in the examples of the NL, SE, UK and BE, but not in the US and JP.

We are particularly interested in the corresponding dynamics when δ crosses the 0

baseline from negative to positive, which implies that the state of system moves from

the unstable bifurcation region to stable region. This is observed during most of the

housing price bubble and burst cycles in the UK, NL, SE and BE. When crossing the

bifurcation boundary from inside to outside, a systemic change of system may occur

through a “critical transition”, with respect to the directions of the changes of the control

variable - the interest rate. The corresponding cusp behaviour is that the system’s state

‘falls’ off the cusp curve and jumps from one equilibrium to another.

A fluctuation in time series can be a normal oscillation in a single equilibrium or a

systematic change via critical transition between two equilibria. To distinguish between

the two, a study of the change of equilibria with respect to the control variables is use-

ful. Figure 10 illustrates how the time series of the control variable - the interest rate,

corresponded with the bifurcation band in the housing market historically. The grey

band indicates the range of interest rate values with respect to δ < 0, which implies the

unstable bifurcation region with three equilibria - two stable and one unstable. Because

a critical transition happens when the state of system jumps off the cusp curve and ends

in a different equilibrium, it can be distinguished when the interest rate cross through

the bifurcation band.

By observing the relationship between interest rates and the bifurcation region, dis-
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played across time in Figure 10, we are able to study the underlying mechanisms of

fluctuations in housing markets. For instance, in the example of SE, the state of housing

system has fallen into the bifurcation region twice during 1990 and 2000. This corre-

sponds with the bottom of the downturn of the housing price index. After falling into

the bifurcation region for the first time, the state of the system quickly came out of it

and went back to the previous stable equilibrium due to a rise of the interest rate. A

year after that, the interest rate dropped and the system was brought down to the mul-

tiple equilibria bifurcation region for the second time. For this time, it did not end in

the previous equilibrium but transitioned to a new stable equilibrium. This transition

induced the retrieval of the housing market. Since then, the SE housing price was con-

tinuously increasing. The UK and BE show similar bifurcation bands in their interest

rates and exhibited similar systematic fluctuations as SE. They had experienced sev-

eral critical transitions between two equilibria before mid-1990s, which were consistent

with the fluctuations in real housing price. After that, the system of UK came back to

its previous stable equilibrium. These behaviours corresponded with the recovery of

housing market in these two countries. In particular, the housing system of NL has the

widest bifurcation band of all. It remained in a multiple equilibria region for almost a

decade between 1973 to 1984, while the corresponding housing price was experiencing

a bubble and burst cycle. Nevertheless, its equilibrium never went across the bifurca-

tion band and always came back to its previous stable equilibrium. For the US and JP,

there is no bifurcation band. In our analysis, their housing systems remained in a single

equilibrium.

To analyse the impact of interest rate on the equilibrium of housing system further,

Figure 11 presents the bifurcations showing the predicted equilibrium as a function of

the interest rate r in different countries. Red scatter represents the stable equilibrium

on the upper or bottom sheet of cusp equilibrium surface. Blue scatter represents the

unstable equilibrium which lies on the middle sheet.

The results unfold the underlying bifurcations in different housing systems. For the

UK, SE and BE, the observed bifurcations are so-called saddle-node bifurcations. With

interest rate as a control parameter, the cusp model exhibits three equilibria for a certain

range of interest rate. It also shows that as interest rate increases further, the housing

system becomes stable again in a new equilibrium. The bifurcation scenario for the

example of NL is different. As the interest rate increases, the cusp model exhibits one
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stable equilibrium. After passing a critical thresholds when interest rate around 7.5, a

new saddle-node bifurcation occurs and creates two new equilibria, one stable and one

unstable. The system has been in the multiple equilibria regime from then on. For the

US and JP, there are no bifurcations going on during the analysed period.

5.2.3 Policy Implication

The housing bubble and bursts cycles were followed by financial crisis which could

create enormous tragedies. They have raised great concerns of the instability of hous-

ing price among policy makers. How can a policy maker stabilise the housing price

and prevent market instability? As an essential factor in the monetary policy, interest

rate has been pointed out to have great influence on the instability of housing market

(Bernanke and Gertler, 1995; Shiller, 2006; Muellbauer and Murphy, 2008; Taylor, 2007,

2009; Crowe et al., 2013; Shi et al., 2014). Our study once again shed lights on the impor-

tance of interest rates. Moreover, we unfold the underlying link between interest rate

and systematic fluctuations in housing market. The dynamic of housing system shows

cusp catastrophe behaviour with interest rate as control parameter. It exhibits critical

transitions between multiple equilibrium states as a result of the changes of interest

rate. It is also dangerous when the system is in the unstable bifurcation region, or gets

too close to the cusp curve. Even a small perturbation could induce significant fluctua-

tions. This scenario can be used to explain the majority of housing bubbles and bursts

in the data, such as in UK 1978, 1980,1990, NL 1978, BE 1987,1990, and the depression

of SE after 1990.

A general lesson for policy makers to be drawn from these examples is that cusp

catastrophe may yield important insights on policies that can cause global instability in

economics. As we argued in our analysis, policy makers should monitor the instability

of economic systems, be alerted when the system approaches a bifurcation, in partic-

ular be aware of critical transitions which could lead to significant market bubbles or

sudden market collapse. The examples in this paper suggest that interest rate policy

plays an important role in keeping the stability of economic system. By performing an

appropriate interest rate policy, policy makers are able to prevent endogenous market

crashes. There is no empirical evidence to show whether a high or a low interest rate

should be beneficial to the economy. “ You can never be too rich or too thin”. Taking
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the SE housing market as an example, as seen in Figure 11, if we set the interest rate too

high, i.e. between 7 and 9 percent, the market might collapse. However, when the inter-

est rate is set too low, bubbles may arise. Our method gives us an overall picture about

the multiple equilibria of the system and how the equilibria change with interest rate

policy. It could provide policy makers a reasonable guide to conduct a proper interest

rate policy that keeps the economy in a healthy state. It could also help to deal with

markets with bubbles and to establish a post-crisis policy on the recession following a

housing market collapse.
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Figure 8: Time series of housing price deviations and predicted equilibria in different

countries. Black line represents the time series of housing price deviations. Scatter plots

indicate estimated equilibria when control variables are interest rate. Red and blue lines

indicate the estimated equilibria when control parameters are constant.
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Figure 9: Time series of state variable (top panels), interest rate (middle panels) and

cube root of Cardan’s discriminant δ (bottom panels) in different countries. The control
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Figure 11: Bifurcations showing the predicted equilibrium as a function of the interest

rate r in different countries. Red scatter represents the stable equilibrium (up or bottom

sheet). Blue scatter represents the unstable equilibrium (middle sheet)
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6 Concluding Remarks

This paper attempts to find out whether instability of housing market can be explained

and predicted by catastrophe theory. A stochastic cusp catastrophe model was fitted to

empirical housing market data for the first time. Using housing price deviations and

quarterly data on long term government interest rates, we estimated the model for six

different countries: United States (US), United Kingdom (UK), Netherlands (NL), Japan

(JP), Sweden (SE) and Belgium (BE).

Two estimation approaches are discussed - Cobb’s Method and Euler Discretization.

The analysis shows that Cobb’s Method requires a system for which the state variables

change fast compared to the control parameters. It performs well when modeling the

overall invariant density of state variables. However, when it comes to forecasting,

Euler Discretization always gives better predictions. In this paper, because we are using

time series data and our objective is to study the forecasting ability of cusp catastrophe

model, Euler Discretization is employed in the later sections.

The estimation results obtained using Euler Discretization are discussed in the later

part of the paper. We find that the dynamics of the housing market can be explained by

cusp catastrophe behaviour. Under constant control parameters, the housing systems

of US, UK and NL are in a normal stable regimes while the housing systems of SE, JP

and BE are in unstable bifurcation regime. Nevertheless, when using interest rate as

control variable, the interest rate changes the stability of the systems; those systems’

equilibria vary with interest rate. The predicted equilibria give us a general picture on

the changes of equilibria with time. Time series of cardan’s discriminant δ links the

changes of system equilibria and the bubbles and bursts cycles in empirical data. More-

over, by observing the relationship between interest rates and bifurcation bands, we are

able to study the underlying mechanisms of fluctuations in housing markets. A criti-

cal transition can be distinguished when the interest rate cross through its bifurcation

band. The underlying bifurcations can be given by the correlation between predicted

equilibria and interest rates.

Our results yield important insights into policies that monitor the instability in eco-

nomics. A change of the main control parameter, interest rate, may move the economic

system closer to the unstable region with multiple equilibria. As a control variable, in-

terest rate plays an important role in keeping the stability of economic system. Policy
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makers should prevent the economic system from moving into the multiple equilibria

regions, or from getting too close to the cusp curve that may induce critical transitions.

The cusp catastrophe theory could provide policy makers with a reasonable guidebook

on interest rate policy.
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A Fundamental Price and Price Deviations

In this model, agents are boundedly rational and have different views about the future

values of asset prices. At the same time, agents are allowed to switch from one period

to the next between a number of available strategies, based on how well they have

performed in the recent past. Agents base their decisions at time t on the expected

excess return Rt+1 on investing in housing relative to renting during the period between

time t and t + 1. Let Pt denote the price of one unit of housing at time t. Let the price

for renting one unit of housing in the period between times t and t + 1 be given by Qt.

Since rents are typically payed up-front (at time t), to express the rent at time t in terms

of currency at time t + 1, it should be inflated by a factor (1 + rrf), where rrf denotes the

risk free mortgage rate. Therefore, the cost of renting in the period between time t and

t + 1, expressed in terms of currency at time t + 1, is given by (1+ rrf)Qt rather than Qt.

The ex post excess return Rt+1 on investing in housing during the period between time

t and t + 1 then is given by the sum of the capital gain minus mortgage/maintenance

costs and the saving on rent.

Rt+1 =
(Pt+1 − (1 + rt)Pt) + (1 + rrf)Qt

Pt
=

Pt+1 + (1 + rrf
t )Qt

Pt
− (1 + rt),

where rt = rrf
t + ωt is the sum of the risk-free (mortgage) rate rrf

t and the mainte-

nance/tax rate ωt.

The demand, zh,t, of agents of belief type h is determined by maximizing one-period

ahead expected excess returns adjusted for risk:

Eh,t (Rt+1zh,t)−
a
2

Varh,t (Rt+1zh,t) , (21)
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where a is a measure of risk aversion. For simplicity we assume rrf
t and ωt to be con-

stant over time: rrf
t = rrf, ωt = ω (and hence rt = r). Agents are assumed to be homoge-

neous with respect to their expectations regarding the conditional variance of the excess

return, that is, Varh,t
(
(Pt+1 + (1 + rrf)Qt)/Pt − (1 + r)

)
= Vt, while they are heteroge-

neous concerning their expectations of excess return Eh,t
(
(Pt+1 + (1 + rrf)Qt)/Pt − (1 + r)

)
.

Maximizing Eq. (21) leads to the demand for housing:

zh,t =

(
Eh,t

(
Pt+1 + (1 + rrf)Qt

)
/Pt − (1 + r)

)
aVt

=
Eh,t(Rt+1)

aVt
,

The market clearing condition is:

∑
nh,t

(
Eh,t

(
Pt+1 + (1 + rrf)Qt

)
/Pt − (1 + r)

)
aVt

= St, (22)

where St is the stock of housing, and nh,t is the fraction of agents in period t that hold

expectations of type h.2 Solving the market clearing condition for the price Pt leads to

the following price equation:

Pt =
1

1 + r + α ∑ nh,tEh,t

(
Pt+1 + (1 + rrf)Qt

)
, (23)

where α ≡ aVt × St is assumed to be constant in order to keep the model tractable.

Agents require a rate of return on housing equal to r + α rather than r = rrf + ω. There-

fore the parameter α can be interpreted as a risk premium of buying a house over renting

a house. Treating α as a constant in the model allows for estimating this extra required

rate of return, under the assumption that it is a constant.

We next turn to expectations regarding the fundamental price. Following Boswijk

et al. (2007), we assume that the fundamental process underlying the model, i.e. Qt,

follows a geometric Brownian motion with drift, i.e.

log Qt+1 = µ + log Qt + υt+1, {υt} i.i.d.∼ N(0, σ2
υ),

with commonly known parameters µ and σ2
υ , from which one obtains

Qt+1

Qt
= (1 + g)εt+1,

with g = eµ+ 1
2 σ2

υ − 1 and εt+1 = eυt+1− 1
2 σ2

υ , such that Et(εt+1) = 1.

2We assume that S is large enough, such that neither type has an incentive to sell short on houses.
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We define the fundamental price as the price that would prevail under rational ex-

pectations Et(Rt+1) about the conditional mean of Rt, while taking into account the risk

premium α. Taking into account the risk premium in the fundamental price is conve-

nient, as it will provide an equilibrium fundamental price from which the market price

will deviate by an amount which averages out to zero in long time series. Under ra-

tional expectations on the first conditional moment, we can re-write the price Eq. (23)

as

(1 + r + α)Pt = Et

(
Pt+1 + (1 + rrf)Qt

)
.

By applying the law of iterated expectations and imposing the transversality condition,

we obtain the fundamental price at time t, denoted by P∗t .

P∗t = Et

[
∞

∑
i=0

(1 + rrf)Qt+i

(1 + r + α)i+1

]
=

∞

∑
i=0

(1 + g)i(1 + rrf)Qt

(1 + r + α)i+1 =
1 + rrf

r + α− g
Qt, r + α > g.

(24)

This shows that the fundamental price of housing is directly proportional to the actual

rent level. Figure 12 shows the examples of house price, fundamental price and price

deviations lnpt − lnp∗t in all the countries from 1970 to 2013.

43



Time

pr
ic

e 
in

de
x

1970 1980 1990 2000 2010

10
0

12
0

14
0

16
0

real house price
fundamental real house price

US

Time

X

1970 1980 1990 2000 2010

−
0.

5
0.

0
0.

5
1.

0

US

Time

pr
ic

e 
in

de
x

1970 1980 1990 2000 2010

10
0

20
0

30
0

50
0 real house price

fundamental real house price

JP

Time

X

1970 1980 1990 2000 2010

−
0.

5
0.

0
0.

5
1.

0

JP

Time

pr
ic

e 
in

de
x

1970 1980 1990 2000 2010

10
0

20
0

30
0

50
0

real house price
fundamental real house price

UK

Time

X

1970 1980 1990 2000 2010

−
0.

5
0.

0
0.

5
1.

0
UK

Time

pr
ic

e 
in

de
x

1970 1980 1990 2000 2010

10
0

15
0

20
0

30
0

real house price
fundamental real house price

NL

Time

X

1970 1980 1990 2000 2010

−
0.

5
0.

0
0.

5
1.

0

NL

Time

pr
ic

e 
in

de
x

1980 1985 1990 1995 2000 2005 2010

80
10

0
14

0
18

0

real house price
fundamental real house price

SE

Time

X

1980 1985 1990 1995 2000 2005 2010

−
0.

5
0.

0
0.

5
1.

0

SE

Time

pr
ic

e 
in

de
x

1970 1980 1990 2000 2010

10
0

12
0

14
0

16
0

real house price
fundamental real house price

US

Time

pr
ic

e 
in

de
x

1970 1980 1990 2000 2010

10
0

20
0

30
0

50
0

real house price
fundamental real house price

JP

Time

pr
ic

e 
in

de
x

1970 1980 1990 2000 2010
10

0
20

0
30

0
50

0

real house price
fundamental real house price

UK

Time

X

1970 1980 1990 2000 2010

−0
.5

0.
0

0.
5

1.
0

US

Time

X

1970 1980 1990 2000 2010

−0
.5

0.
0

0.
5

1.
0

JP

Time

X

1970 1980 1990 2000 2010

−0
.5

0.
0

0.
5

1.
0

UK

Time

pr
ic

e 
in

de
x

1970 1980 1990 2000 2010

10
0

15
0

20
0

30
0 real house price

fundamental real house price

NL

Time

pr
ic

e 
in

de
x

1970 1980 1990 2000 2010

10
0

12
0

14
0

16
0 real house price

fundamental real house price

CH

Time

pr
ic

e 
in

de
x

1970 1980 1990 2000 2010

10
0

15
0

25
0

35
0 real house price

fundamental real house price

ES

Time

X

1970 1980 1990 2000 2010

−0
.5

0.
0

0.
5

1.
0

NL

Time

X

1970 1980 1990 2000 2010

−0
.5

0.
0

0.
5

1.
0

CH

Time

X

1970 1980 1990 2000 2010

−0
.5

0.
0

0.
5

1.
0

ES

Time

pr
ic

e 
in

de
x

1980 1985 1990 1995 2000 2005 2010

80
10

0
14

0
18

0

real house price
fundamental real house price

SE

Time

pr
ic

e 
in

de
x

1980 1990 2000 2010

10
0

15
0

20
0 real house price

fundamental real house price

BE

Time

X

1980 1985 1990 1995 2000 2005 2010

−0
.5

0.
0

0.
5

1.
0

SE

Time

X

1980 1990 2000 2010

−0
.5

0.
0

0.
5

1.
0

BE

Figure 1: House price indices (top sub-panels, solid lines, 1970Q1=100), estimated fundamen-
tal real house prices (left, dashed lines) and corresponding relative over-valuation Xt (bottom
sub-panels).

The switching between the two types of beliefs is based on the recent past performance of

the strategies, measured in terms of realised profits, ⇡h,t�1, as in Brock and Hommes (1997,

1998). We derive the realised profits ⇡h,t�1 at time t � 1 along the lines of Boswijk et al.

9

Time

pr
ic

e 
in

de
x

1970 1980 1990 2000 2010

10
0

12
0

14
0

16
0

real house price
fundamental real house price

US

Time

pr
ic

e 
in

de
x

1970 1980 1990 2000 2010

10
0

20
0

30
0

50
0

real house price
fundamental real house price

JP

Time

pr
ic

e 
in

de
x

1970 1980 1990 2000 2010

10
0

20
0

30
0

50
0

real house price
fundamental real house price

UK

Time

X

1970 1980 1990 2000 2010

−0
.5

0.
0

0.
5

1.
0

US

Time

X

1970 1980 1990 2000 2010

−0
.5

0.
0

0.
5

1.
0

JP

Time

X

1970 1980 1990 2000 2010

−0
.5

0.
0

0.
5

1.
0

UK

Time

pr
ic

e 
in

de
x

1970 1980 1990 2000 2010

10
0

15
0

20
0

30
0 real house price

fundamental real house price

NL

Time

pr
ic

e 
in

de
x

1970 1980 1990 2000 2010

10
0

12
0

14
0

16
0 real house price

fundamental real house price

CH

Time

pr
ic

e 
in

de
x

1970 1980 1990 2000 2010

10
0

15
0

25
0

35
0 real house price

fundamental real house price

ES

Time

X

1970 1980 1990 2000 2010

−0
.5

0.
0

0.
5

1.
0

NL

Time

X

1970 1980 1990 2000 2010

−0
.5

0.
0

0.
5

1.
0

CH

Time

X

1970 1980 1990 2000 2010

−0
.5

0.
0

0.
5

1.
0

ES

Time

pr
ic

e 
in

de
x

1980 1985 1990 1995 2000 2005 2010

80
10

0
14

0
18

0

real house price
fundamental real house price

SE

Time

pr
ic

e 
in

de
x

1980 1990 2000 2010

10
0

15
0

20
0 real house price

fundamental real house price

BE

Time

X

1980 1985 1990 1995 2000 2005 2010

−0
.5

0.
0

0.
5

1.
0

SE

Time

X

1980 1990 2000 2010

−0
.5

0.
0

0.
5

1.
0

BE

Figure 1: House price indices (top sub-panels, solid lines, 1970Q1=100), estimated fundamen-
tal real house prices (left, dashed lines) and corresponding relative over-valuation Xt (bottom
sub-panels).

The switching between the two types of beliefs is based on the recent past performance of

the strategies, measured in terms of realised profits, ⇡h,t�1, as in Brock and Hommes (1997,

1998). We derive the realised profits ⇡h,t�1 at time t � 1 along the lines of Boswijk et al.
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Figure 12: Housing price indices (left, solid lines, 1970Q1=100), estimated fundamental

real housing prices (left, dashed lines) and corresponding price deviations Xt (right).
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B Cobb’s Method v.s. Euler Discretization

B.1 Residuals

B.2 Cobb’s Method

For the stochastic differential equation

dyt = −V′(yt)dt + σdWt,

with potential V(y), the invariant distribution is the Gibbs distribution with density

f (y) =
1

Zσ
exp

(
−2V(y)

σ2

)
,

where Zσ is a normalization constant (Anderluh and Borovkova, 2008). [With ε = σ2/2

this coincides with Cobb (1978)].

For the canonical CUSP potential −V(y) = αy + 1
2 βy2 − 1

4 y4, one finds

f (y) =
1

Zσ
exp

(
−αy + 1

2 βy2 − 1
4 y4

σ2/2

)
.

Transforming to

ỹ = y/
(

σ2

2

) 1
4

,

(leaving aside trivial translations) we obtain for the density of ỹ

fỹ(ỹ) ∝ exp

−α
(

σ2

2

) 1
4 ỹ− 1

2 β
(

σ2

2

) 1
2 ỹ2 + 1

4

(
σ2

2

)
ỹ4(

σ2

2

)


≡ exp
(
−α̃ỹ− 1

2
β̃ỹ2 +

1
4

ỹ4
)

.

This suggests α̃ = α/
(

σ2

2

) 3
4 and β̃ = β/

(
σ2

2

) 1
2 .

B.3 Euler Discretization

Suppose that the deterministic part of the (canonical) variable zt is governed by the

potential function

V(z; α, β) = αz +
1
2

βz2 − 1
4

z4,

45



●●●
●

●●
●
●

●
●

●

●
●
●●●●●

●●
●
●●●

●●●
●

●●

●
●
●●●

●●

●

●

●

●

●

●
●●

●
●
●
●

●

●●●●●●●●●●●●●●
●●
●
●●●●●

●●●●●
●●●

●
●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●
●
●
●
●
●
●
●
●
●
●●
●●
●
●
●
●
●
●
●

●

●

●

●

●

●

●

●

●
●●
●●●

●

●

●

●

●

●

●
●

●●●●●

●
●

●
●●●●

●●
●
●

1970 1980 1990 2000 2010

−
0.

1
0.

0
0.

1
0.

2
US

Time

R
es

id
ua

l

●
●
●
●●
●
●●
●
●
●

●

●

●

●●●●
●

●

●
●
●●
●
●
●●●●●●●●●●●

●
●
●
●
●
●
●
●
●
●●
●●
●●●●

●●●●●●●●●●●●●
●●
●
●●
●●
●●
●●
●

●

●

●

●●●●
●
●
●
●
●
●
●
●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

1970 1980 1990 2000 2010

−
1.

0
0.

0
1.

0

JP

Time

R
es

id
ua

l

●●●●●●
●

●

●

●

●
●

●

●

●

●
●

●
●●

●

●
●
●●●●

●
●
●●
●

●

●●

●●
●
●

●

●

●●
●●

●
●

●

●
●●

●

●
●●●●

●
●
●●
●●

●
●

●

●●
●

●
●

●

●

●

●

●
●●●

●

●

●

●

●

●

●
●
●

●

●

●

●●
●●
●●●●●

●
●
●●●●●

●●
●
●●
●

●
●●
●
●

●

●

●

●●

●●●
●
●

●

●

●

●

●
●
●

●
●

●

●
●●
●●●

●
●
●

●

●
●
●●●

●

●

●

●●
●

●

●
●●
●
●
●●●●●●●

1970 1980 1990 2000 2010−
1.

5
−

0.
5

0.
5

UK

Time

R
es

id
ua

l

●

●

●
●●●

●●●
●●
●
●●
●
●
●●●●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●●

●
●

●

●

●

●

●
●
●

●

●

●

●
●
●
●●●●

●
●
●●●

●●●●
●●
●●●●●

●●●
●●●

●
●●●●●●●●●

●
●
●

●●●●
●
●
●●
●●●●●

●●
●
●
●
●
●●
●
●
●
●
●

●

●

●

●

●

●

●
●
●
●
●
●
●●
●●●●●

●●●●
●●●

●●
●●●

●●
●
●●●●

●
●
●

●

●
●
●●●

●
●
●
●
●
●

●

●●

1970 1980 1990 2000 2010

−
1.

5
−

0.
5

0.
5

1.
5

NL

Time

R
es

id
ua

l

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●●

●
●●

●
●
●
●●

●
●
●●

●

●

●

●
●

●

●
●
●●

●
●
●

●

●

●
●

●

●

●

●

●
●
●●

●●●●●●
●●●●●

●●
●
●
●

●
●
●

●
●

●
●
●

●

●
●
●

●●●●
●
●
●
●●●

●
●
●

●
●

●●
●

●

●

●

●
●

●

●

●

●
●
●
●●

●

●
●
●

●

●
●
●
●●

●
●

●
●●●

●●

1980 1990 2000 2010−
1.

0
0.

0
0.

5
1.

0

SE

Time

R
es

id
ua

l ●
●●

●
●

●
●●

●●
●●●●●

●

●

●

●
●

●●

●
●●

●

●
●
●●●●●●●●●●●●

●●●●●
●●

●●
●
●
●●

●
●●●

●●●
●●●

●●●●●●
●●●●●

●●●●●●●
●
●
●●

●
●●

●●
●
●
●●

●●●
●●

●●●
●
●
●
●●

●
●
●
●

●

●
●

●

●
●
●

●

●●

●

●
●
●●

●
●●

●
●
●●

●
●
●●

●
●
●
●●●●●●

●

1980 1990 2000 2010−
1.

5
−

0.
5

0.
5

1.
5

BE

Time

R
es

id
ua

l

Figure 13: Plots of residuals against index by using Cobb’s Method.
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Figure 14: Plots of residuals against index by using Euler Discretization.
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and that there is a driving noise term with variance σ2
Z per time unit, i.e.

dzt = −
∂V(z; α, β)

∂z

∣∣∣∣
z=zt

+ σzdWt.

The invariant density of z then is proportional to (Gibbs distribution)

fZ(z) ∝ exp
[
−2V(z)

σ2
z

]
= exp

[
−αz + 1

2 βz2 − 1
4 z4

σ2
z /2

]
.

If y = λ + rz is a scaled and/or translated variable, then z = (y− λ)/r, and the density

of y is proportional to

fY(y) ∝ exp

−α
(

y−λ
r

)
+ 1

2 β
(

y−λ
r

)2
− 1

4

(
y−λ

r

)4

σ2
z /2

 . (25)

The invariant density fitted by CUSP fit is

fY(y) = ψ exp

[
α̃

(
y− λ

c

)
+

1
2

β̃

(
y− λ

c

)2

− 1
4

(
y− λ

c

)4
]

. (26)

Comparing the coefficients of the fourth powers in Eqs (25) and (26), we see that

these coincide only if c = r
(

σ2
z

2

) 1
4
. It can be readily checked that this implies α̃ =(

σ2
z

2

)− 3
4

α and β̃ =
(

σ2
z

2

)− 1
2

β.

In terms of yt = λ + rzt the SDE is

1
r

dyt = −
∂V(z; α, β)

∂z

∣∣∣∣
z= yt−λ

r

+ σzdWt.

Euler discretization gives

yt+∆t ≈ yt +

(
α + β

(
yt − λ

r

)
−
(

yt − λ

r

)3
)

r∆t + rσz
√

∆tεt+δt ,

where εt+∆t ∼ N(0, 1).
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