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Abstract

In order to understand heterogeneous behaviour amongst agents, empirical data from

Learning-to-Forecast (LtF) experiments can be used to construct learning models. This

paper follows up on Assenza et al. (2013) by using a genetic algorithms (GA) model

to replicate the results from their LtF experiment. In this GA model individuals opti-

mise an adaptive, a trend following and an anchor coefficient in a population of general

prediction heuristics. We replicate experimental treatments in a New-Keynesian en-

vironment with increasing complexity and use Monte Carlo simulations to investigate

how well the model explains the experimental data. We find that the model is able to

replicate the three different types of behaviour in the treatments using one GA model.

The research furthermore shows that heterogeneous behaviour can be explained by an

adaptive, anchor and trend extrapolating component and therewith contributes to the

existing literature in the way that GA can be used to explain heterogeneous behaviour

in LtF experiments with different types of complexity.

1 Introduction

In this paper we study a simple New Keynesian economy, in which the individuals optimize

a forecasting heuristic with a genetic algorithms optimization procedure. We show that this

model, taken almost directly from Anufriev et al. (2013), is able to replicate well the main

findings of an experimental study by Assenza et al. (2013). Our contribution therefore is that
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we show that the discussed learning model can be extended from the context of micro to macro

economies.

In dynamic macroeconomic models, such as the standard New Keynesian model, expec-

tation feedback plays an important role in the shape and stability of economic equilibria.

Traditional literature (Muth, 1961) would disregard the potential heterogeneity of forecasting

behavior and focus instead on the model consistent Rational Expectations. However, limita-

tions on the individual rationality are likely to prevail (Cornea et al., 2013), especially when

the individuals need time to learn the structure of the economy (Sargent, 1993). Once we al-

low for bounded rationality, a non-linear price expectations feedback can lead to complicated

and potentially volatile dynamics (Anufriev et al., 2011). On the other hand, there are many

different forecasting rules that individuals can use to form their expectations about future

prices. It is therefore important to study how such rules are selected in a realistic learning

environment; and how does the learning in the context of macroeconomics relate to forecasting

in other economic settings, including financial or commodity markets.

In order to study the individual forecasting behavior, literature suggests Learning-to-

Forecast (LtF) experiments (Marimon et al., 1993). In these, the role of human subjects

is to forecast prices, which are hence translated into realized prices through some market

mechanism, such as a simple supply-driven economy in which the subjects are framed as ad-

visers to the commodity producers. The LtF experiments typically have a straightforward and

unique fundamental equilibrium, and hence can be directly used to assess individual learning

dynamics. In practice, they show that individuals indeed have heterogeneous expectations

(Anufriev and Hommes, 2012; Heemeijer et al., 2009; Hommes, 2011), which greatly depend

on the specific structure of the feedback market. Moreover, subjects can coordinate away from

the fundamental equilibrium, or even on oscillatory time paths (Assenza et al., 2013).

In order to understand this heterogeneous behavior, the LtF experimental data can be

used to construct and assess learning models. A notable example is work by Anufriev and

Hommes (2012), who adapted the Brock-Hommes model (Brock and Hommes, 1997) into a

Heuristic Switching Model (HSM) with four simple rules, and apply it with success to the

experiment of Hommes et al. (2005). Assenza et al. (2013) use the same model to explain

their experimental findings. In general, HSM remains a versatile model that can approximate

the individual learning of forecasting behavior across different experiments.

A generalized, agent-based counterpart of HSM is the model of individual learning based

on genetic algorithms (GA; Haupt and Haupt, 2004). GA is an optimization method based on

a population of arguments which compete on their function value and can therefore be applied

to a wide class of problems: they rely on an intelligent search of a large but finite solution space

using statistical methods and can deal with discrete variables and noncontinuous cost functions

(Haupt and Haupt, 2004). Arifovic (1991) has developed an augmented GA model, which was

consequently applied in different economic settings such as a cobweb model (Arifovic, 1994;

Hommes and Lux, 2013) and an overlapping generation model (Arifovic, 1995). Following a

more mature version of the model by Hommes and Lux (2013), Anufriev et al. (2013) have
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shown that a model, in which individuals independently optimize their prediction rules using

GA, is able to replicate experimental findings from four different LtF experiments, based on

commodity or financial markets. A great advantage of this approach is that this model is a

generalized version of the HSM with no need a pre-specification of forecasting rules, and hence

can be used to motivate the parametrization of the latter model (Anufriev et al., 2013).

This paper follows up on Assenza et al. (2013) by using a GA model to replicate the re-

sults from their LtF experiment based on New Keynesian macro model. We use the same GA

model as Anufriev et al. (2013), i.e. we update heuristics with an adaptive, an anchor an a

trend extrapolation coefficient. In this way we contributed to understanding LtF experiments

in a New Keynesian environment using GA. Unlike Arifovic et al. (2012) who have investi-

gated GA in a New Keynesian environment as well, we explain the heterogeneous behavior

with heuristics that depend only on the realizations and previous predictions by the agent,

similar to the heuristics used by Heemeijer et al. (2009), Anufriev and Hommes (2012) and

Assenza et al. (2013). Moreover, we use experimental settings with different types of com-

plexity and show that LtF experiments with increasing complexities can be explained using

the same GA model. This shows that the GA model is versatile and can replicate varied

experimental economies, but also remains robust against the object of the forecasting task. To

be specific, our main contribution is to prove that the original GA model by Anufriev et al.

(2013) explains the individual learning to forecast not only of prices in a specific market, but

also of macro variables such as inflation and output gap. However, we note that the more

complicated experimental treatments require some adaptation of the GA model (c.f. Anufriev

et al., 2013, who encountered a similar problem with the two-period ahead non-linear asset

pricing economy). This shows that the further research should focus on extensions of this

model.

We replicate results for six different experimental treatments: three different treatments

with increasing complexity (1, 2 and 3), each subdivided into two sessions (A and B). The

results from the treatments 1, 2 and 3 in the experiment can be classified in three types of

aggregate behavior respectively: converging, oscillatory and dampened oscillatory behavior.

The main goal of this paper is to show that all three types of behavior can be reproduced

using one GA model. We use Monte Carlo simulations in the spirit of Anufriev et al. (2013)

to investigate how well the model explains the experimental data.

2 Model

During the past decade the New Keynesian (NK) monetary model has been a widely used

framework for the analysis of monetary policy, in which inflation expectations play an im-

portant role. Branch and McGough (2009) have incorporated bounded rationality at the

individual agent level and heterogeneous expectations in the NK model. Assenza et al. (2013)

use this model to set up a laboratory experiment. In order to study the individual expecta-

tions process, subjects are asked to forecast the inflation rate under three different scenarios.
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This section describes the NK model, the experimental setup and an explanation of the ex-

perimental results, followed by a description of the GA model.

2.1 New Keynesian model

The New Keynesian model with heterogeneous expectations developed by Branch and Mc-

Gough (2009) is described by the following equations:

yt = yet+1 − ϕ(it − πet+1) + gt(1)

πt = λyt + ρπet+1 + ut(2)

it = π + φπ(πt − π)(3)

In this system equation 1 describes the aggregate demand in which the output gap yt depends

on the average expected output gap yet+1 and on the real interest rate it − πet+1. Equation 2

shows how the inflation rate depends on the output gap and on average expected inflation.

Equation 3 is the monetary policy rule implemented by the monetary authority in order to keep

inflation at its target value π. In equations 1 and 2, gt and ut are small normally distributed

errors.1

The NK model requires agents to forecast both inflation and the output gap. Given that

forecasting variables might be a too difficult task for subjects, the experiment is ran using

three different treatments.

2.2 Treatments

In the first treatment of the experiment where only the inflation rate needs to be forecast,

the model reduces to a framework with a structure similar to the experimental framework

that was used by Anufriev et al. (2013). In this treatment, the output gap is fixed at the

equilibrium predictor. In the second treatment subjects only forecast the inflation rate and

expectations on the output gap are represented by naive expectations. This results in a two

dimensional structure which makes the framework more complicated. The third treatment

of the experiment represents an economy driven by individual expectations on two different

aggregate variables, with two different groups of forecasters, predicting respectively inflation

and the output gap.

Moreover, all treatments are run under different monetary policy regimes, a regime a in

which φπ = 1 and a regime b in which φπ = 1.5.

1In the experiment the parameters are fixed at the calibration by Clarida et al. (2000): ρ = 0.99, ϕ = 1
and λ = 0.3. The inflation target is set to π = 2. Coefficient φπ measures the response of nominal interest
rate it to deviations of the inflation rate πt from its target π.
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2.2.1 Treatment 1

In the first treatment subjects forecast inflation, while the expectations on the output gap

are assumed to be given by the equilibrium predictor yet+1 = (1 − ρ)πλ−1. The initial set of

equations can now be written as:

yt = (1− ρ)πλ−1 − ϕ(it − πet+1) + gt(4)

πt = λyt + ρπet+1 + ut(5)

it = π + φπ(πt − π)(6)

in which πet+1 is the average prediction of the subjects in the experiment. Substituting 6 into

4 results in:

yt = (1− ρ)πλ−1 + ϕπ(φπ − 1)− ϕφππt + ϕπet+1 + gt(7)

πt = λyt + ρπet+1 + ut(8)

Solving this in terms of inflation πt gives:

πt =
(1− ρ)− λϕ(φπ − 1)

1 + λϕφπ
π +

λϕ+ ρ

1 + λϕφπ
πet+1 +

λgt + ut
1 + λϕφπ

(9)

Note that this is a linear relation between πt and πet+1, plus a composite shock as a third term.

2.2.2 Treatment 2

In the second treatment subjects also forecast inflation, but now the expectations on the

output gap are assumed to be represented by naive expectations: yet+1 = yt−1. In this case,

inflation and output gap at time t can be written as follows:

yt = ϕπ(φπ − 1)− ϕφππt + ϕπet+1 + yt−1 + gt(10)

πt = λyt + ρπet+1 + ut(11)

in which πet+1 is the average prediction of the subjects in the experiment. In matrix form, this

system of equations becomes:

[
yt

πt

]
=

1

1 + λϕφπ

[
0 ϕ(1− φπρ)

0 λϕ+ ρ

][
yet+1

πet+1

]
+

[
1 0

λ 0

][
yt−1

πt−1

]
+

[
1 −ϕφπ
λ 1

][
gt

ut

](12)

This treatment is more complicated than the first since the inflation does not only depend on

expected inflation but also on the output gap in the previous period.
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2.2.3 Treatment 3

In the third treatment, two groups participate in the same economy, where one group forecasts

inflation and the other group forecasts the output gap. Substituting 3 into 1 and writing the

equations in matrix form results in the following system:

[
yt

πt

]
=

1

1 + λϕφπ

[
1 ϕ(1− φπρ)

λ λϕ+ ρ

][
yet+1

πet+1

]
+

[
1 −ϕφπ
λ 1

][
gt

ut

](13)

In contrast to the first two treatments, treatment 3 represents an experimental economy that

is driven by individual expectations on two different interacting aggregate variables.

2.2.4 Monetary policy regimes

Each of the three treatments was run under two different monetary policy regimes. In sessions

a coefficient φπ is set to 1 so that equation 3 reduces to it = πt. With this setting, there is

no attraction whatsoever to target inflation value π. In session b coefficient φπ is set to 1.5 so

that the monetary policy responds to inflation aggressively. In this scenario, π does not drop

out of equation 3, so that the inflation rate has a tendency towards target value π.

2.3 Experimental results

The experimental results can be classified into three different types of behavior. The experi-

mental results that clearly show these different types of behavior are presented in figures 1a

through 1f.

Convergence: In treatment 1a, two groups converge to a non-fundamental steady state

equilibrium. Because the monetary policy responds weakly to inflation rate fluctuations,

subjects coordinate on inflation rates other than the target inflation rate. In treatment 1b,

two out of three group also converge to a steady state. In this case however, the monetary

policy responds aggressively to inflation, so that subjects tend to coordinate on the target

inflation.

Oscillations: In the second treatment, a different type of aggregate behavior can be ob-

served. Subjects in group 2 of treatment 2a converge to an oscillatory pattern. Towards

the end of the session the oscillations are principally above the target inflation rate, due to

the monetary policy settings. In treatment 2b, subjects are again forced towards the target

inflation rate. The experiment shows small oscillations around the fundamental inflation

rate.

Dampened oscillations: The third type of aggregate behavior that this research aims to

reproduce is an oscillatory convergence towards a steady state. This behavior occurs in the
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(a) Treatment 1a, group 3 (b) Treatment 2a, group 2 (c) Treatment 3a, group 2

(d) Treatment 1b, group 2 (e) Treatment 2b, group 3 (f) Treatment 3b, group 2

Figure 1: Typical experimental results.

second session of treatment 3b, which starts out with oscillations around the target inflation

rate. The oscillations slowly dampen such that there is convergence to the fundamental

steady state (which is in line with the monetary policy settings of the b-treatment) near

the end of the session.

2.4 The genetic algorithm model

We follow Arifovic’ augmented GA model, in which every individual starts with a set of

forecasting heuristics, for either inflation rate or the output gap, which are encoded in binary

string. After initialization of the model the heuristics undergo a GA iteration. This iteration,

an optimization procedure that uses four evolutionary operators, is the core of the model.

In the GA model, each individual possesses a population of forecasting heuristics, in which

one or more parameters need to be optimized. Every heuristic therefore entails a candidate

vector of optimization parameters encoded in a binary string. This binary string can be seen

as a chromosome containing one or more genes - the parameters in the vector. Parameter θnh,i,t
is the nth parameter in heuristic h of individual i in period t, and is coded in a binary string

of length l with binary values gn,kh,i,t at the kth position in the string as follows:

(14) θnh,i,t = an +
bn − an

2l−1

l∑
k=1

gn,kh,i,t2
k − 1

7



Since each gene has a finite length, the parameter values are limited to a finite interval, with

an and bn as lower and upper boundary respectively, and to a finite number of different values.

The size of this interval, together with the length of the string, determines the precision of

the parameter.2

2.4.1 GA iteration

The encoded heuristic goes through four stages of updating: reproduction, mutation, crossover

and election. The operators in the GA iteration are inspired by the theory of evolution, but

also have an economic intuition.

The first operator in every GA iteration is the reproduction operator, which randomly

draws 20 heuristics for each individual. Every draw takes places according to the heuristics’

probabilities to be chosen for reproduction, based on their performance measure The reproduc-

tion operator represents the phenomenon that more successful strategies (in terms of utility)

are more likely to be used in the future.

After reproduction there is a small probability that a mutation will occur in the new

strategy. In the binary string, each position has an equally small chance of changing from a

0 to a 1 or vice versa. Depending on the position of the string in which the mutation takes

place, the effect of a single mutation can be significant or very small.

Combining two different strategies into new strategies is captured by the crossover operator,

whereas the mutation operator models small changes in strategies. All 20 heuristics that are

picked in the reproduction stage are, after mutation, signed up as random pairs and will

interchange a part of the binary string that represents the forecasting coefficients.3

In the crossover and mutation stage two newly formed heuristics are formed from the two

old heuristics for the new period. Because these two new heuristics do not always perform

better than its predecessors, an election operator tests the performance of the two new and

the two old heuristics. The performance of these strings will be based on the difference of the

inflation (or output gap) prediction with respect to the last observed inflation (output gap).

Out of these four strings, the best performing two will be chosen for the next period.

After the GA iteration, every individual has an updated set of heuristics at their disposal.

From this new set of heuristics, every individual chooses one as their inflation (or output gap)

forecast. In order to make this choice, individuals make use of a performance measure for every

heuristic: heuristics that perform better according to this measure, have a higher probability

of being chosen. The forecasts of all individuals together determine the first actual value for

inflation or output gap according to equations 1, 2 and 3. Individuals now take their updated

set of heuristics to the next period, in which the next GA iteration starts. The complete

2We take genes to consists of 20 bits. This means that interval [an bn] is subdivided into 220 ≈ 106 possible
values. In an interval with length 1, say an interval [0 1], the precision in the GA model is then approximately
10−6.

3In this research the heuristic is a binary representation of multiple coefficients. The crossover is designed
such that a subset of these coefficients are interchanged, i.e. the string is not broken up within a coefficient,
which means that no new values for coefficients come into existence during the crossover stage. Hence, mutation
and crossover have strictly different functions.
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Figure 2: Schematisation of the GA model.

iterative process in the model is illustrated in figure 2. This process continues for a number

of periods, in which individuals should be able to make better predictions as time goes by,

because their heuristics update every iteration.

2.4.2 Forecasting Heuristics

GA can be interpreted as a generalized version of the forecasting heuristics in the heuristic

switching model used by Assenza et al. (2013). Agents do not choose from a set of predefined

rules, but use Genetic Algorithms to optimise over a set of coefficients in a simple linear

prediction rule, based on the past inflation and/or output gap, individual past prediction, the

observed trend and the average of past inflation and/or output gap.

This general rule consists of an adaptive component (α), a trend extrapolating component

(β) and an anchor component (γ):

(15) xei,t+1 = γxavt−1 + (1− γ)(αxt−1 + (1− α)xei,t) + β(xt−1 − xt−2)

This rule is in line with the so-called ‘first order heuristic’, which is used by Heemeijer et al.

(2009) to explain the participants’ behavior in an experimental economy, which is also used in

the GA model by Anufriev et al. (2013) to explain behavior in an experimental economy. A

condition of the first order heuristic is that the coefficients for the anchor [γ], the last observed

value [(1 − γ)α] and the last forecast [(1 − γ)(1 − α)] are non-negative and sum up to one.

This particular way of formulating the forecasting heuristic ensures this for all values of α and
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γ between 0 and 1. Individuals optimize the three coefficients α, β and γ, encoded in a 60-bit

string (3× 20 bits).

The forecasting heuristics described above are used for simulations of all three different

treatments. In treatment 1 and 2, only inflation π is predicted by the participants, so that

the forecasting heuristic simply becomes:

(16) πei,t+1 = γi,h,tπ
av
t−1 + (1− γi,h,t)(αi,h,tπt−1 + (1− αi,h,t)πei,t) + βi,h,t(πt−1 − πt−2)

In treatment 3, however, there are six participants who predict inflation while six other par-

ticipants predict the output gap. Both variables are updated using the same general rules.

Superscripts π and y are added to coefficients α and β to differentiate between inflation and

output gap.

πei,t+1 = γπi,h,tπ
av
t−1 + (1− γπi,h,t)(απi,h,tπt−1(1− απi,h,t)πei,t)βπi,h,t(πt−1 − πt−2)(17)

yei,t+1 = γyi,h,tπ
av
t−1 + (1− γyi,h,t)(α

y
i,h,tyt−1(1− αyi,h,t)y

e
i,t)β

y
i,h,t(yt−1 − yt−2)(18)

2.4.3 Performance measure

In this GA framework, every individual has a whole range of forecasting heuristics at hand

to forecast inflation (or the output gap) in every period. This choice is made on the basis

of the performance of the heuristics, determined by a fitness measure. Hence, the type of

performance measure used in the model is of key importance to the simulation process. In

the GA model this performance measure is assumed to be equal to the payoff function used

by Assenza et al. (2013) in their experiment, namely:

(19) Ui,h,t =
100

1 + ||xei,h,t−1 − xt−1||

The performance measure of each heuristic is used twice in every GA iteration: to choose

heuristics for reproduction, and to pick one heuristic as a forecast for the next period. In

both cases, the probability that a heuristic is chosen is obtained by formalizing the logit-

transformation of the utility measure and adding an intensity of choice parameter βs.
4 This

parameter measures the sensitivity of individuals to differences in the performance of their

heuristics. This is in line with the performance measure that was used in the HSM by Assenza

et al. (2013). The probability that a heuristic is chosen then becomes:

(20) Πi,h,t =
exp(βsUi,h,t−1)∑H
h=1 exp(βsUi,h,t−1)

4Subscript s is added to this parameter to distinguish the intensity of choice parameter from the trend
extrapolation parameter in the heuristics.
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For all simulations in this research this normalized logit-transformation is used. We choose

βs = 1 in all simulations. The performance measure then simply becomes:

(21) Πi,h,t =
exp(Ui,h,t−1)∑H
h=1 exp(Ui,h,t−1)

2.5 Parametrization

Besides the GA operators, the forecasting heuristics and the performance measure, the model

requires the tuning of a few important model settings to replicate the experimental economies.

These aspects are discussed in this section.

2.5.1 Initialization of the model

Each session in the LtF experiment consists of 50 periods, which means that the GA model

should run for the same amount of time. In order not to use any experimental outcomes, 50-

period ahead simulations are carried out. This means that no information from the experiment

is used except for the initial predictions by the subjects.5 The initial predictions in the

simulations are chosen equal to the initial predictions from the experiment. After this, the

model is ran for 49 more periods, following the structure shown in figure 2.6

2.5.2 Parameters GA model

As explained earlier, the parameters α, β and γ are restricted to a finite interval. For α and

γ these ranges are obvious: the conditions of the first order rule dictate that both α and

γ should be between 0 and 1. The ranges for trend extrapolation parameter β are however

not subject to any constrains. Furthermore, trend extrapolation parameters can in theory be

negative as well, indicating ‘contrarian’ behavior. Massaro (2012) showed that subjects in the

experiment indeed make use of trend extrapolation, but that virtually all subjects use positive

coefficients. The range of β is therefore set to [0, 3] to allow for relatively weak (0 to 1) and

relatively strong (1 to 3) trend extrapolation.

Furthermore, the mutation and crossover operator are both subject to a certain probability

of occurrence. Throughout the simulations in this research, the mutation rate is set to 0.01,

so that during every GA iteration, every bit in every string has a 1% chance of mutating.

5In this economic setup, subjects do not predict the present inflation, but the inflation for the next period
(i.e. two periods ahead forecasts). Therefore, predictions are needed not only for the first but also for second
period. In the second period, subjects observe the inflation in period 1, which they can use in their prediction
of the inflation in period 3.

6The first period of the iteration, however, differs from the following 48 periods, because subjects cannot
use trend extrapolation yet. In this period there is only one observation on the inflation rate. It is therefore
assumed that the trend extrapolation coefficient equals zero in this period. After period two, the GA updating
continues in full form, where agents can forecast using both past inflation rate and the past trend in the
inflation rate.
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Crossover does not always happen either; the crossover rate is set to 0.9, which means that

each pair of strings has a 90% chance of interchanging a part of the string.

2.5.3 Monte Carlo simulations

In order to investigate how well the model explains the experimental data, Monte Carlo

simulations are carried out. For all six treatments, a thousand replications are run, each with

the same initial conditions. Monte Carlo simulations enable the composition of confidence

intervals. The next section shows the experimental results compared to the mean, a 90% and

a 95% confidence interval. Moreover, a confidence interval for some descriptive statistics can

be created. For each treatment this enables us to compare the mean, standard deviation and

autocorrelation of all thousand replications to the experimental result.

3 Results

Overall, the model is able to replicate three general types of behavior from the experimental

results. This section compares the experimental results to the Monte Carlo simulations us-

ing graphically constructed confidence intervals of the simulations. Additionally, confidence

intervals of the mean, standard deviation and autocorrelation are compared.

3.1 Treatment 1

In treatment 1, the experiment shows how the subjects coordinate on a steady state. In

treatment 1a the monetary policy settings are such that there is no tendency towards the

target inflation value, so that coordination on a wide range of inflation rates can occur. In

treatment 1b however, the target inflation plays a role in the system of equations, so that

subjects coordinate on this value when this converging behavior takes place. The results in

Figure 3b clearly show a smaller distribution indicating that GA agents are also drawn towards

the target inflation rate.

We also see that the mean of the treatment 1b simulation (Figure 3b) moves around the

target inflation, whereas the mean stays below the target inflation in treatment 1a (Figure 3a).

In both treatment 1a and 1b, there is however some oscillatory behavior visible, whereas this

behavior is absent in the experimental result. Moreover, we see that the standard deviation

of the Monte Carlo simulations increases at the end of the simulation period. This indicates

at least in some simulations diverging behavior.

3.2 Treatment 2

The oscillatory behaviour in treatment 2 is captured well in treatment 2b (Figure 4b). In

treatment 2 the oscillatory pattern of the Monte Carlo mean matches the experimental results
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(a) Treatment 1a (b) Treatment 1b

Figure 3: Monte Carlo results: treatment 1.

(a) Treatment 2a (b) Treatment 2b

Figure 4: Monte Carlo results: treatment 2.

well. Although the amplitude of the mean is smaller (perhaps due to interference), the exper-

imental result remains almost entirely within the 95% confidence interval. Also, just like in

treatment 1, the difference in monetary policy settings is captured well.

The large oscillations of treatment 2a (Figure 4a) can however not be replicated by the this

model.7 Secondly, the oscillations dampen towards the end of the simulation period. This is

especially visible by the confidence intervals in treatment 2b. This dampening behavior does

not clearly occur in the experiments.

3.3 Treatment 3

The experimental results of treatment 3a clearly shows no attraction to the target inflation

(Figure 5a). This is replicated well by the simulations. The simulations of treatment 3b repli-

cate the oscillatory behavior that occurs in the experiment (Figure 5b). Similar to treatment

2b in Figure 4b, we see that almost the experimental inflation remains almost entirely within

the 95% confidence interval, while the mean of the Monte Carlo simulations closely resembles

the experiment. We also see that the dampening of the oscillations resembles the dampening

in the experiment.

7That is, using these specific parameters for the ranges of the optimization parameters, mutation rate,
crossover rate etc.
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(a) Treatment 3a (b) Treatment 3b

Figure 5: Monte Carlo results: treatment 3.

(a) Adaption parameter α
(b) Trend extrapolation pa-

rameter β
(c) Anchor parameter γ

Figure 6: Monte Carlo results: evolution of the chosen heuristic coefficients.

3.4 Heuristic parameters chosen by the agents

Because each treatment yields different dynamics, coefficients α, β and γ are optimized differ-

ently by the agents. Figures 6a through 6c compares the mean α, β and γ in the six different

treatments. The x-axis shows the simulation period. In general we can say that each period in

the simulation, the adaption parameter α, becomes more important while trend extrapolation

β and anchor γ become less important. This goes for all treatments. We do however see

differences between the different treatments. What strikes especially is that for each of the co-

efficients treatment 1 differs from treatments 2 and 3. The steeper curves of the optimization

parameters in treatments 2 and 3 indicates that the model incentivizes GA agents to update

their coefficients faster in these treatments.

3.5 Descriptive statistics

In addition to the simulation confidence intervals we make a comparison of the mean, variance

and autocorrelation of the experimental results to and the Monte Carlo simulations. We can

use the Monte Carlo simulations to create a mean and a confidence interval for these three

statistics. Table 1 shows that the mean of the experimental inflation rate is close to the mean
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of the simulated inflation rate. The model especially captures the difference between the a-

and b-session of the treatments. In the b-sessions, the mean is closer to target inflation rate

due to a strict monetary policy. This also causes the smaller confidence intervals.

Table 1: Mean of the simulated and experimental inflation rate

Treatment 1a 1b 2a 2b 3a 3b

Experimental µ 1.3333 2.0719 2.7367 2.0882 3.3728 2.2939

Mean Simulated µ 1.7663 1.9082 2.2653 2.0738 3.5199 2.3500

0.8996 1.3841 1.6287 1.9626 2.1906 2.1426
95% confidence interval − − − − − −

2.6506 2.3081 2.9014 2.1479 4.8938 2.5496

Table 2 shows how the variance of the experimental inflation rate is replicated by the

Monte Carlo simulations. We notice that the mean of the variance of the simulations differs

from the variance in the experiment and that the confidence intervals of the Monte Carlo

simulations are large. In treatment 1 the large confidence intervals are especially striking

since the experiments show converging behavior with little variance. In treatments 2 and 3

the mean variance in the simulations is in of same order of magnitude as the variance in the

experiment. We see that the model overestimates the variance of the inflation rate in the

b-sessions, while it underestimates the variance in the a-sessions.

Table 2: Variance of the simulated and experimental inflation rate

Treatment 1a 1b 2a 2b 3a 3b

Experimental σ2 0.0111 0.0120 3.2891 0.1937 5.6214 0.3574

Mean Simulated σ2 3.6695 2.5625 0.9720 0.9818 1.8460 1.5828

0.0174 0.0114 0.0127 0.0224 0.0166 0.1398
95% confidence interval − − − − − −

30.5718 25.0909 10.6451 12.6180 18.0184 13.5817

There is a certain consistency among treatments in the Monte Carlo simulations: the mean

simulated autocorrellations of all six treatments are all very close together (with less than 0.1

difference between the highest and lowest value), whereas the experimental autocorrellation

varies more. The model’s high, consistent autocorrellations suggest that the model entails

some oscillatory behavior regardless of the different treatments. The high autocorrellations

in treatment 1 with respect to the experimental results are consistent with the oscillations in

figures 3a and 3b. Simulations of treatment 2 and 3 perform better, although, the b-session of

these treatments appears to be replicated better than the a-session. These are the treatments

with the most evident oscillatory behavior.
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Table 3: Autocorrellation of the simulated and experimental inflation rate

Treatment 1a 1b 2a 2b 3a 3b

Experimental ρ1 0.3192 0.4698 0.9404 0.7716 0.4012 0.7047

Mean Simulated ρ1 0.8234 0.7779 0.7461 0.7368 0.7706 0.7863

0.6588 0.5565 0.6084 0.6274 0.6172 0.5858
95% confidence interval − − − − − −

0.9355 0.9157 0.8654 0.8282 0.8919 0.9601

4 Conclusions and Recommendations

In this paper we present a genetic algorithms model in which individuals optimize an adaptive,

a trend following and an anchor coefficient in a population of general prediction heuristics.

With this model, based on Anufriev et al. (2013), we replicate results of a Learning-to-Forecast

experiment by Assenza et al. (2013). The experiment investigates how the individuals learn to

forecast in a New Keynesian economy with three different treatments, each of them with two

different monetary policy settings. The results of this experiment can be classified in three

types of aggregate behavior: converging, oscillatory and dampened oscillatory behavior.

The model is able to replicate these types of behavior from the experimental results. In

the first treatment, which typically shows converging behavior, the model clearly captures the

difference between the two monetary policy settings. During the procedure of replicating the

oscillatory and dampened oscillatory behavior, we found that the model is sensitive to changes

in the allowed ranges for the trend extrapolation coefficient. We use a wider range for this

parameter than Anufriev et al. (2013). This underlines their finding that a different feedback

structures lead to different degrees of trend extrapolating behavior. As a result, further work

may be necessary to find a generalized version of this model that would capture this aspect

of the individual behavior.

We show that a single model with a simple set of rules can explain adaptive behavior of

human subjects to a predictions feedback with varying levels of complexity. Like Arifovic et al.

(2012) this paper contributes to understanding learning behavior in a New-Keynesian envi-

ronment. It furthermore shows that heterogeneous behavior can be explained by an adaptive,

anchor and trend extrapolating component. We also contribute to the existing literature that

GA can be used to explain heterogeneous behavior in LtF experiments with different types of

complexity, but also for macro experiments next to more classical ones based on commodity

and financial markets.
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Appendices

A Confidence intervals

(a) Treatment 1a (b) Treatment 1b

(c) Treatment 2a (d) Treatment 2b

(e) Treatment 3a (f) Treatment 3b

Figure 7: GA model: confidence intervals for the α parameter.
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(a) Treatment 1a (b) Treatment 1b

(c) Treatment 2a (d) Treatment 2b

(e) Treatment 3a (f) Treatment 3b

Figure 8: GA model: confidence intervals for the β parameter.
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(a) Treatment 1a (b) Treatment 1b

(c) Treatment 2a (d) Treatment 2b

(e) Treatment 3a (f) Treatment 3b

Figure 9: GA model: confidence intervals for the γ parameter.
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