
NETWORKS OF HETEROGENEOUS

EXPECTATIONS IN AN ASSET PRICING MARKET∗

Tomasz Makarewicz

June 5, 2015

Abstract

The paper studies the effect of information networks on learning to forecast in an asset

pricing market. Financial traders have heterogeneous price expectations, are influenced

by friends and seem to be prone to herding. However, in laboratory experiments subjects

use contrarian strategies. Theoretical literature on learning in networks is scarce and

cannot explain this conundrum (Panchenko et al., 2013).

The paper follows Anufriev et al. (2014) and investigates an agent-based model,

in which agents forecast price with a simple general heuristic: adaptive and trend ex-

trapolation expectations, with an additional term of (dis-)trust towards their friends’

mood. Agents independently use Genetic Algorithms to optimize the parameters of the

heuristic. The paper considers friendship networks of symmetric (regular lattice, fully

connected) and asymmetric architecture (random, rewired, star).

The main finding is that the agents learn contrarian strategies, which amplifies mar-

ket turn-overs and hence price oscillations. Nevertheless, agents learn similar behavior

and their forecasts remain well coordinated. The model therefore offers a natural inter-

pretation for the difference between the experimental stylized facts and market surveys.
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1 Introduction

In this paper, I study the effect of networks on learning in the context of a non-linear asset

pricing market. I consider a model, in which the agents apply Genetic Algorithm (GA) to

optimize a simple price forecasting rule. The agents learn whether to trust the observed price

trend and the former trading decisions of their friends. The main questions of the paper are:

how do networks affect individual behavior of the agents and the emerging aggregate market

dynamics? Does the network facilitate convergence to the fundamental equilibrium? To what

extent will the network promote coordination or herding?

One of the fundamental debates of contemporary economics is whether economic agents

can learn rational expectations (RE), that is model-consistent predictions of future market

prices. Among other evidence, experiments suggest that people use simple forecasting heuris-

tics (Heemeijer et al., 2009; Hommes, 2011; Hommes et al., 2005). In the case of asset pricing

economies, this leads to price oscillations that repeatedly over- and undershoot the fundamen-

tal (RE) equilibrium. Nevertheless, many economists question the empirical validity of such

experiments, as these are based on economies with no or limited information flows between the

agents. An informal (yet popular) belief is that in real financial markets the agents can share

knowledge about efficient and inefficient trading strategies, and so an information network

facilitates convergence towards RE.

Informal information sharing is indeed an important market phenomenon (Bollen et al.,

2011; Nofsinger, 2005). Being closer to the core of an information network leads to higher

profits (Cohen et al., 2008), but some researches have also argued that networks are a cause

of herding (Shiller and Pound, 1989). The latter argument became popular after the 2007

crisis in the non-academic discussion1 and in behavioral economics (for example Akerlof and

Shiller, 2010, refer to animal spirits as the driving force of financial bubbles).

Herding is understood as behavior such that individuals, facing strategic uncertainty, prefer

to follow the ‘view of the others’ (the mood of their friends or general market opinion) rather

than basing their decision only on individual data. In the context of financial trading, this

can be a rational strategy for agents who are endowed with noisy information about the asset,

which ‘averages out’ for the whole public (Park and Sabourian, 2011). An information network

can further facilitate such herding (Acemoglu and Ozdaglar, 2011). However, herding can also

lead to coordination on bubble paths if the individual information is correlated (Panchenko

et al., 2013). This leads back to the two conflicting views on the rationality of financial agents,

which can be associated with Keynes (Akerlof and Shiller, 2010) and Muth (Muth, 1961). How

important is therefore herding for market stability, and is herding propagated by information

networks? There is no clear answer neither from theoretical nor from empirical work.

From the RE perspective, market price should contain all necessary information about the

stocks, hence perfect rationality rarely leaves room for herding or networking. The exception

1Among other examples, Robert R. Johnson wrote in Financial Times (20/09/2009) that ‘managers might
augment their existing strategies to avoid herding, over-reaction, regret aversion, and other behavioural biases
that interfere with (...) effective implementation [of finance investment strategies].’
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would be the case of significant private information (Park and Sabourian, 2011) or sequential

trading (with the famous example of information cascades, see Anderson and Holt, 1997, for

a discussion), but neither approach has a clear empirical motivation.

Alternatively, models that depart from rational expectations often investigate some form of

social learning. The seminal paper by Kirman (1993) stands as the benchmark for the studies

of economic herding (see Alfarano et al., 2005, for a more recent example and a literature

review). In this ‘ant-model’, agents are paired at random and imitate each others choices

with some exogenous probability, which leads to interesting herding dynamics. The problem

with this approach, however, is that individual imitation is assumed as given, instead of being

learned by the agents.

Another approach comes with the classical Brock-Hommes Heuristic Switching Model

(HSM; Brock and Hommes, 1997), in which agents coordinate on price prediction heuristics

that have a better past forecasting performance. A more general, agent-based counterpart

of HSM comes with Genetic Algorithm based models of social learning (see Arifovic et al.,

2013, for example and a good literature overview). This approach can explicitly account for

learning (agents switch to better strategies), but does not fit our intuition of herding, which is

understood as following others, instead of using similar trading or forecasting strategies (see

Panchenko et al., 2013, for interesting discussion; see also Section 2.6).

Empirical studies give ambiguous results on the existence or importance of herding, with

the main issue being that such behavior cannot be directly observed in market data. Chiang

and Zheng (2010) show that the stock indices between industries are sometimes more correlated

than the fundamentals would imply, which can be understood as a sign of herding. However,

this effect is absent in Latin America and US data, and its interpretation is subject to debate.

An alternative approach is to use experiments, where the information structure is controlled

by the researcher, who can thus directly observe herding. This leads to a surprising result,

however: experiments suggest that contrarian (understood as anti-herding) behavior is more

popular than herding. Two such studies were reported by Drehmann et al. (2005) and Cipriani

and Guarino (2009). This is important evidence, since both authors include professional

traders in their experiments.

As a result, existence of herding (or contrarian) behavior in financial markets is not a

clear-cut fact. Furthermore, it is not clear whether herding would bring economic agents

closer to the rational outcome, or rather to volatile price dynamics (Shiller and Pound, 1989).

In order to understand the empirical evidence, we require a theoretical inquiry into how

herding or contrarian behavior may be learned. Furthermore, such a learning may depend

on the structure of ‘information flows’, and thus we need to study it in a context of different

information networks.

Recent years have seen a rising popularity of studies devoted to the agent interaction within

networks. Probably the most famous example comes with the Siena model (Snijders et al.,

2010), which offers a valuable insight into peer effects on the individual decision making. In

the financial literature, researchers became interested in the balance sheet interconnections
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of financial agents such as banks (Fricke and Lux, 2014; in’t Veld and van Lelyveld, 2014).

Nevertheless, theoretical studies of networks in the economic literature typically focus on

static environments (such as the mentioned balance sheet connections). Models with explicit

learning and expectations formation are scarce, and tend to rely on simple behavioral rules

of imitation, since adding realistic learning features into such models easily makes them an-

alytically intractable (see Jadbabaie et al., 2012, for a discussion). An additional conceptual

problem is that the RE models focus on an alleged fixed point of the postulated underlying

learning process, while being agnostic about its dynamics. Therefore, if taken seriously in the

context of networking in asset pricing markets, these models predict that networks, as was

the case of herding, are relevant only in the presence of important individual information,

like private signals about the fundamental price. This is difficult to defend without implicit

assumptions on (bounds of) individual rationality.

To my best knowledge, Panchenko et al. (2013) (henceforth PGP13) are the only authors

who conduct a full-fledged theoretical study of the effect of the information network on expec-

tations formation learning in an asset pricing market. The authors use a HSM model to show

that prices are not tamed by the presence of the network. Their interesting paper is however

subject to some limitations. For example, the agents can choose between two forecasting

heuristics, and are placed on a random network. As a result, it may be difficult to directly

use their results for specific markets or experimental studies.

The goal of my paper is to investigate a much more involved learning structure. I will use

the GA model proposed by Anufriev et al. (2014) (henceforth AHM14), which explains well

the individual forecasting heterogeneity of Learning to Forecast experiments. This approach

has two advantages: (1) I will work with a realistic, experimentally tested model that explains

well financial bubbles and (2) I will obtain further insight into the original experiments: to

what extent their results (such as the price bubbles) depend on the lack of networking. This

model will also serve as an ideal benchmark for further asset pricing experiments with more

involved information networks.

The GA model by Anufriev et al. (2014) is an agent-based model (ABM) based on the

work of Hommes and Lux (2011). Its idea is that agents, who are asked to predict a price,

follow a simple linear forecasting rule, which is a mixture of adaptive and trend extrapolation

expectations. This rule requires specific parametrization, and each agent is endowed with a list

of possible specifications of the general heuristic. The agents then observe the market prices

and update the list of rules with the use of the GA stochastic evolutionary operators. For

instance, if the market generates persistent price oscillations, the agents will experiment with

higher trend extrapolation coefficients. Since the agents use the GA procedure independently,

the model allows for explicit individual learning. Anufriev et al. (2014) show that the model

replicates well the experimental degree of individual heterogeneity, as well as aggregate price

dynamics.

In this paper I extend the GA model of Anufriev et al. (2014), to include an information

network. Agents observe the past trading behavior of their friends and can learn whether to
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trust it, just as they learn whether to extrapolate the price trend. The model by its ABM

structure can evaluate the effects of different, also asymmetric, networks on price dynamics.

Furthermore, the model explicitly accounts for individual learning, and so I can also study

the formation of herding/contrarian behavior at the individual level.

The paper is organized in the following way. Section 2 will introduce the theoretical

agent-based model, describing a two-period ahead non-linear asset pricing market with GA

agents and robotic trader, with GA agents forecasting prices conditional on past realized prices

and trades of their friends. The third section will present the parametrization of the model,

including the investigated network structures, and the setup of the Monte Carlo numerical

study of the model. Section 4 will be devoted to small networks of six agents, with which

I will highlight the emerging properties of individual learning and resulting price dynamics.

The fifth section will move to large networks of up to 1′000 agents. Finally, the last section

will sum up my results and indicate potential extensions.

2 Theoretical model

In this section I present the building blocks of the model: an asset pricing market with

heterogeneous expectations and an information network. The model is based on the standard

two-period ahead asset pricing market, used for example by Hommes et al. (2005). For the

sake of presentation, most of the analytical results concerning the rational solution of the

model are given in Appendix A.

2.1 Market

Consider I myopic mean-variance agents who invest on a period to period basis. They can

choose between a safe bond with a gross return R = 1+r (with r > 0), or a risky asset that in

period t can be bought at price pt and gives a stochastic dividend yt. It is commonly known

that yt ∼ NID(y, σ2
y). Then the expected return on a unit of the asset bought at pt is

(1) Ei,t {ρt+1} ≡ ρei,t+1 = Ei,t{pt+1}+ y −Rpt,

where Ei,t{·} stands for the individual expectation, which do not have to coincide with the

(true) conditional expected value operator E{·}.

Denote the agent i’s expectation of the price in the next period t+ 1 as Ei,t (pt+1) = pei,t+1.

We assume that the agent perceives the variance of one unit of the asset return as a constant,

V art(ρt+1) = σ2
a.

2 Conditional on the realized price in the current period t, the agent’s i risk

2One easily find σ2
a such that in the RE solution, the perceived and realized variances of the asset return

coincide. Namely, σ2
a = (1 +R)2σ2

η + σ2
y.
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adjusted utility at period t is given by

Ui,t+1 = Ui,t + zi,tEi,t (ρt+1)−
a

2
V art(zi,tρt+1)

= Ui,t + zi,t
(
pei,t+1 + y −Rpt

)
− a

2
σ2
az

2
i,t,(2)

where a is the risk-aversion factor. Hence, define agents’ i optimal demand at period t as zi,t,

which becomes a linear demand schedule of the form

(3) zi,t(pt) ≡
pei,t+1 + y −Rpt

aσ2
a

=
pei,t+1 + y

aσ2
a

− R

aσ2
a

pt.

For simplicity I assume that the agents face no further liquidity constraints. Agents can take

short positions, so zi,t < 0 is viable.

The market operates in the following fashion. At the beginning of every period t, each

agent i has to provide her demand schedule zi,t (3). Notice that because the agents are asked

for a demand schedule, they do not have to forecast the contemporaneous price pt. Next to the

agents’ demands, there is no additional exogenous supply/demand of the asset. The market

clears if the following equilibrium condition is fulfilled:

(4) Demandt =
I∑
i=1

zi,t = 0 = Supplyt.

Denote the average prediction of the agents of the price at t + 1 as p̄et+1 ≡ 1
I

∑I
i=1 p

e
i,t+1.

Substituting the demand schedules (3) into the market equilibrium condition (4), we have

that the realized market clearing price is given by

(5) pt =
p̄et+1 + y

R
+ ηt > 0,

where ηt ∼ NID(0, σ2
η) is a small idiosyncratic price shock.3 The price cannot be negative, so

it is capped at zero.

This market has a straightforward RE stationary solution such that pei,t+1 = E{pt+1} = pf

with

(6) pf =
y

r
.

Without any additional assumptions, the model could explode even under Rational Ex-

pectations (RE). Following the experimental design of Hommes et al. (2005), I introduce a

robotic trader to act as a stabilizing force on the market.

Robotic trader at period t trades as if the next price would be at the fundamental, i.e. his

price forecast is peROBO,t+1 = pf . He becomes the more active the farther the market is from

3One can provide microfoundations for ηt with additional supply shocks or demand of noise traders.
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the fundamental solution. Define

(7) nt = 1− exp
(
−φ
∣∣pt−1 − pf ∣∣)

as the relative trading share of the robotic trader, which depends on his sensitivity φ. Denote

(8) p̂et+1 ≡ ntp
f + (1− nt)p̄et+1 = pfnt +

1− nt
I

I∑
i=1

pei,t+1,

that is p̂et+1 denotes the ‘total’ market price expectations, averaged over the robotic trader and

the GA agents. Then the actual realized price including the robotic trader becomes

pt =
(1− nt)p̄et+1 + ntp

f + y

R
+ ηt

=
p̂et+1 + y

R
+ ηt(9)

which is a two-period ahead nonlinear price-expectations feedback system. Notice that the

introduction of the robotic trader does not change the steady state RE solution, nor does

it exclude a possibility of an explosive rational solution (see Appendix A for a discussion).

Nevertheless, the stabilizing effect of the robotic trader will appear strong enough to prevent

the model simulations from diverging.

2.2 Network

The agents are not fully isolated. Instead, they are positioned on an unweighted symmetric,

irreflexive and a-transitive information network I. Let Ii denote the set of friends of agent i

and Îi ≡ |Ii| denote the number of her friends (or the size of her friend set Ii). Throughout the

paper, I assume that for a particular market this information network is fixed and exogenous.

A natural extension is to have the agents learn how to link with other agents. See Albert and

Barabási (2002); Goyal (2002); Newman (2003) for a general introduction into networks and

Bala and Goyal (2000) for endogenous network formation. In the next section I will discuss

the specific networks used in the numerical simulations of the model.

Within the network, an agent cannot directly observe the price expectations of her friends,

but she knows whether in the recent past they were buying or selling the asset. This resembles

reality, where the market participants are likely to share only qualitative information (‘this

stock is profitable, I just bought it!’). I emphasize that an agent cannot see the contemporary

trade decisions of her friends, and moreover agents have no private information about the

future price shocks ηt, ηt+1, ηt+2, . . .. Consider agent j and define

(10) mj,s =


+1 if zj,s > 0,

0 if zj,s = 0,

−1 if zj,s < 0
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a simple sign function of her realized demand in period s.

The agents have memory length τ and consider the simplest possible index Moodj,t−1,

defined as the average mood of agent j in periods [t− τ, t− 1]

(11) Moodj,t−1 =
1

τ

t−1∑
s=t−τ

mj,s.

For instance, if during the last τ periods the agent j was always buying (selling) the asset,

her index is +1 (−1). If she was more likely to buy (sell) the asset, her mood index is positive

(negative) and so a positive (negative) index means that the agent j remained optimistic

(pessimistic) about the asset profitability. A special case of short memory is τ = 1 when the

mood index becomes the sign of the agent’s j very last transaction at period t− 1.

By assumption, the mood of agent j Moodj,t−1 is visible to all of her friends, that is agent

i can access all Moodj,t−1 for which j ∈ Ii. However, in order to study the effect of herding, I

assume that the agents do not distinguish between their friends and instead rely on the mood

of their peers, that is the mood index (11) averaged among all Îi of their friends:

Peeri,t−1 ≡
1

Îi

∑
j∈Ii

Moodj,t−1

=
1

τ Îi

∑
j∈Ii

t−1∑
s=t−τ

mj,s.(12)

I will refer to (12) as the measure of agent i’s friends’ mood. It has a straightforward inter-

pretation as the average mood of i’s friends. Hence if the agents learn to herd, their price

expectations should depend positively on the peer mood.

2.3 Fundamental solution benchmark

We define the fundamental solution to our model as a rational expectations (RE) equilibrium,

that is as a set of model-consistent demand schedules such that for every agent i at every

period t it holds that pei,t+1 = Et{pt+1} (where Et denotes the (mathematical) conditional

expected value). This is equivalent to Ei,t (ρt+1) = Et{ρi,t+1}, that is the expected returns on

the asset are model consistent.

As already mentioned, the RE steady state solution is unique. Notice that the network has

no effect on the RE solution. In fact, its presence or particular structure makes no difference

on the behavior of the agents in equilibrium. Therefore, the RE framework gives a strong

prediction that adding a network into a model will result in the same (long-run) dynamics.

See Appendix A for a discussion.
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2.4 Experimental and Genetic Algorithms benchmark

Our model is based on the experimental market investigated by Hommes et al. (2005), with

almost the same parametrization (see later discussion). The authors report that the subjects

follow price trend extrapolation rules and that the prices were unlikely to settle on the fun-

damental value, and often oscillated instead around the fundamental in an irregular fashion.

Robotic agent prevented large bubbles, however. Hommes et al. (2008), who studied an exper-

imental two-period ahead asset pricing market without the robotic trader, found their prices

to explode instead of oscillating.

As discussed, AHM14 already investigate the model without the networks. They report

that the GA agents learn to use trend following heuristics in a similar fashion to the exper-

imental subjects. Furthermore, long-run simulations of the model revealed that it contains

two attractors. The market could switch between settling on the fundamental steady state

and oscillations of varying amplitude. A basic question is whether the introduction of a net-

work will change this outcome, and in particular whether both attractors are robust against

networks.

2.5 Price expectations and learning

Agents consider themselves as price-takers and so their task is simply to try to predict the

next price pt as accurately as possible, conditional on the market events and friends’ behavior

until and including period t − 1. The GA agents are not perfectly rational and instead rely

on a simple rule of thumb, a linear heuristic of the form

(13) pei,t+1 = αi,tpt−1 + (1− αi,t)pei,t︸ ︷︷ ︸
adaptive expectations

+ βi,t(pt−1 − pt−2)︸ ︷︷ ︸
trend extrapolation

+ γi,tΓPeeri,t−1︸ ︷︷ ︸
herding/contrarian

.

The first two elements of the rule, adaptive and trend extrapolation expectations, come directly

from the baseline GA model by AHM14. The new part of the above rule is the last term, the

peer effect, which is a weighted sum of the moods of all friends of agent i.4

The linear heuristic (13) of agent i depends on the specific parameters chosen at period

t: the price weight αi,t ∈ [0, 1], the trend coefficient βi,t ∈ [−1.3, 1.3] and finally the trust

index γi,t. The trust index γi,t ∈ [−1, 1] can be interpreted as the importance agent i attaches

towards her friends decisions. If γi > 0, agent i believes it is worth to follow her friends’

past trades, and that the past optimism of her friends signals the price pt to increase even

more than just due to current trend. Conversely, γi < 0 implies that the agent i behaves in

contrast to her friends. In other words, γi,t > 0 means herding behavior, while γi,t < 0 implies

contrarian behavior.5

4RE are a special case of (13). To be specific, with αi,t = βi,t = γi,t = 0 and pei,2 = pf , every next forecast

of pt+1 will also be equal to pei,t+1 = pf .
5In the literature on heterogeneous price expectations, one can often find the label ‘contrarian’ in an

alternative use, namely as a heuristic according to which a positive (negative) price trend means expected
price decrease (increase). For (13), this means βi,t < 0. In line with Anufriev et al. (2014), the agents in my
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The specific value of the trust index γi,t is multiplied by a sensitivity parameter Γ, which

remains constant and homogeneous across agents. I use the multiplicative form of the herd-

ing/contrarian term, with these two factors separated, for the sake of an easier display and

interpretation of the results.

The agents do not use the same heuristic over time. Depending on the market conditions,

the heuristic (13) should be based on different parameters. For instance, in the periods of

strong price oscillations, agents should switch from low or negative trend extrapolation to

strong trend extrapolation. Furthermore, the goal of the paper is to identify circumstances in

which the agents learn herding or contrarian strategies.

We follow AHM14 and model the time evolution of the heuristic (13) by Genetic Algo-

rithms. This results in individual learning and heterogeneity of forecasting behavior, similar

to the experimental findings. See AHM14 for a technical discussion and parametrization. The

intuition of the model is the following.

The agents are endowed with a small set of different parameter triplets (αi,t, βi,t, γit,), which

correspond to a small list of specific forecasting heuristics (13). At every period t, every agent

chooses one particular heuristic pei,t+1 to predict the next price pt+1, according to their relative

forecasting performance in the previous period. Next, the price pt is realized and the agents

observe how well their heuristics would forecast pt in the previous period (conditional on the

relevant past information set). Based on this information, every agent independently updates

her heuristics using four evolutionary operators: procreation (better heuristics replace worse),

mutation and crossover (experimentation with heuristic specification) and election (screening

ineffectual experimentation). Afterward, the next period t + 1 starts and the procedure is

repeated. See AHM14 for technical presentation.

2.6 Coordination versus herding

I emphasize the difference between coordination and herding. Herding (contrarian) means

that the agents directly follow (contrast) the decisions of their friends, which in this model

is embodied by relatively high positive (negative) values of the trust index γ. On the other

hand, coordination is the similarity of agents’ behavior: in this context similarity of individual

price forecasts and forecasting rules. I follow Heemeijer et al. (2009) and express this value as

the standard deviation of the individual price forecasts, a measure of dis-coordination of the

form

(14) Dt =

√√√√1

6

6∑
i=1

(
pei,t+1 −

1

6

6∑
j=1

pej,t+1

)2

∈ [0,∞[.

If Dt = 0, then all agents at period t have the same forecast of the next price, while higher

values of (14) imply larger dispersion of the contemporary individual price forecasts.

model will converge to strong trend following rules with βi,t >> 0 and βi,t < 0 will not play a significant role.
I will thus never use the term ‘contrarian’ in this sense.
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It is easy to see that coordination and herding are two different things. Regardless of

the particular network, agents interact indirectly through the market price. Experiments and

previous work on the GA model by AHM14 show that such an indirect interaction can be

sufficient to impose a large degree of coordination in asset markets, even though the agents

cannot observe each other. One of the goals of this paper is to investigate whether herding

further can help coordination.

3 Monte Carlo studies

3.1 Parametrization of the model

Following the design of Hommes et al. (2005), the parameters are set in the following way.6

Regardless of the network, the gross interest rate is set to R = 1 + r = 0.05 and the dividend

to y = 3, which gives the fundamental price pf = 60. The standard deviation of the price

shocks in (9) is set to ση = 0.1, which implies that under RE the price should be normally

distributed and approximately in the [59.75, 60.25] interval for 99% number of periods. It will

appear that these small idiosyncratic price shocks play no significant role in the system.

The only difference with Hommes et al. (2005) comes with the parametrization of the

robotic trader. Recall the definition of the relative weight of robotic trader (7), which depends

on the sensitivity parameter φ. For instance, the robotic trader will take over exactly a quarter

of the market (nt = 0.25) if the absolute price deviation is

(15) |pt−1 − pf | =
− ln 0.75

φ
.

Hommes et al. (2005) set φ = 1/200, which means that the robotic traders takes over 25% if

the price is close to the minimum allowed price pt = 0 or the maximum allowed price pt = 100.7

In this paper I want to study the impact of the networks on market stability and hence I want

to scale down possible price oscillations. Hence, I set φ = 1/104.281784903, which implies

that the robotic trader will take over a quarter of the market if the price will reach pt−1 = 90

or pt−1 = 30, that is if it deviates from the fundamental by a factor of 50% (100% in the setup

of Hommes et al. (2005)).

The GA model requires parametrization in two respects. First, the specification for the

evolutionary operators I take directly from AHM14. In comparison with AHM14, the GA

agents in this paper optimize three parameters instead of two, because of the extra trust

index γ. This parameter is associated with a gene of 20 bits, which is the same as genes

representing the two other coefficients of the agent heuristic (13).

Second, the GA agents can optimize the heuristic parameters only from a predefined in-

6All the simulations were written in Ox matrix algebra language (Doornik, 2007) and can be provided at
request.

7Specifically, nt = 25% happens if the price deviation is |pt−1 − pf | ≈ 57.5. There were two treatments
with pf = 60 and pf = 40, for which thus nt ≈ 25% if the price hits pt = 0 and pt = 100 respectively.

11



terval (see AHM14, for a discussion). The price weight α ∈ [0, 1] has to span a simplex; the

trend weight I take from AHM14 to be β ∈ [−1.3, 1.3]. I assume that all agents have their

total herding/contrarian effect equal to 6 (in absolute terms), which corresponds to 10% of

the fundamental price. This implies that the trust sensitivity is set as Γ = 6, given that the

trust index has to be chosen from a unit interval γ ∈ [−1, 1]. Finally, the heuristic (13) is

based on the mood index (11), for which I take memory τ = 5.8

3.2 Initialization

AHM14 note that the GA model is sensitive to initial conditions. First, the agents require

some initial heuristics. Here I follow the authors and sample them at random. Second, the

heuristics require past data from at least two periods, including the previous price forecasts

itself. In my numerical simulations, the agents in the very first period always predict the

fundamental price and only start using their heuristics in the second period, assuming no

trend. Specifically

pei,2 = pf = 60,(16)

pei,3 = αi,3p1 + (1− αi,3)pei,2
= 60 + αi,3η1 for every i ∈ I,(17)

which implies that the market is initialized at the fundamental value (lest the price shock),

p1 ≈ p2 ≈ pf .

This may seem as a surprising design feature, since ABM’s are often used to study conver-

gence. It will turn out that the model in this paper is inherently unstable. Indeed, if initialized

in the fundamental, most likely it will diverge at some point!

3.3 Small networks of six agents

In the first part of my study, I will look at networks of six agents. This is is the typical number

of subjects in the LtF experiments, which can thus serve as a reference point for the following

results. Furthermore, it is easy to trace the behavior of only six agents, while this number

of nodes is sufficient to have networks with interesting properties, such as regular lattice or

asymmetric positioning. I will therefore use these networks to gather basic intuitions of how

the network structure and placement affects individual behavior, herding and coordination,

before moving to large networks.

For six symmetric agents, one can arrange them on 108 different networks. For the sake of

presentation, I focus on six specific: no network, circle, fully connected, two connected clusters,

core-periphery and star. See Figure 1 for a visualization of these networks, and Table 1 for

summary statistics.

8See the next two sections for additional information on the robustness of the parameters Γ and τ .
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Figure 1: Small networks used in Section 4.

The model with no network serves as an natural benchmark, a setting studied with the

LtF experiments and by AHM14. The circle and fully connected networks are important to

evaluate the network effect on price stability, coordination, learning and herding. The three

other networks represent asymmetric positioning of the agents, which I will show to have an

interesting effect on herding.9

Network Clusters Diameter Closeness Density Transitivity

No network 6 N/A 0 0 0
Circle 1 3 0.6667 0.4 0
Fully connected 1 1 1 1 1
Two connected clusters 1 3 0.6889 0.4667 0.7778
Core-periphery 1 3 0.7556 0.5333 0.5
Star 1 2 0.6667 0.3333 0

Table 1: Properties of the small networks used in Section 3, see Appendix D for definition.

In the later analysis the model turns out to be unstable in terms of the realized prices,

but also in terms of individual coordination and strategies. In repeated simulations of the

small networks of six agents, a clear median pattern will emerge, but individual simulations

will exhibit oscillatory behavior. In order to understand these dynamics, I will focus on three

types of evidence.

Every network will be simulated 1′000 times, based on the same price shocks ηt,
10 but on

9Another interesting topic is whether clustering has any effect on individual coordination. I investigated
three additional networks (with three and two symmetric clusters, and with four fully connected agents and two
unconnected outsiders). However, these networks indicate that the clustering does not have any meaningful
effect on the market, so for the sake of presentation I leave them out of the paper. The Monte Carlo results
are available in the online supplementary material.

10Because the price shocks are normally distributed with small variance, the simulation dynamics are largely
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differently realized learning via different random numbers given to the GA procedure. Every

market is simulated for 2′500 periods, including the initial 100 periods which can be interpreted

as a learning phase. This offers two ways to the represent the data.11

First, for each of the 1′000 simulated markets one can look at the realized statistics of that

market (for periods 101 till 2′500, so excluding the learning phase), which I will refer to as

long-run statistics. This gives a distribution of 1′000 long-run statistics, and one of particular

importance is the distribution of the long-run market price standard deviation. The latter can

be used directly as an indicator of market volatility.

Second, one can look at realized market variables across the 1′000 markets in a particular

period. I will focus on the median and 95% confidence intervals (CI) and how they evolve over

time. The variables of interest are price, dis-coordination measure (14) and the coefficients

chosen by the agents to specify the forecasting heuristic (13).

Finally, the two above Monte Carlo (MC) measures show general patterns of market behav-

ior. It will be clear that the model does not converge, hence it may be difficult to understand

the emergent properties of individual learning based solely on this MC exercise. In order to

interpret the results, I will also present some sample time paths of the realized market and

learning variables.12

3.4 Large networks

Large networks are empirically more relevant than the ones based on six agents. However,

one can identify a myriad of possible and interesting large network topologies, inducing a

need for a selection for the numerical study. I will base mine on Panchenko et al. (2013)

and the above mentioned small networks. Specifically, I will focus on networks of size I ∈
{50, 100, 250, 500, 1000}, with 10 different architectures that range from regular lattice to

small-world network. Due to the limit of the study, I will leave large-scale networks for future

studies (cf. PGP13).

The non-regular networks are defined through a non-deterministic generating process (see

below for details for random and small world networks). In principal one could obtain a

distribution of results based on a repeated sampling of these non-regular networks. This in

turn would be obtained by a proper MC exercise per every realized network (in line with the

MC study for the networks of 6 agents). However, a single sample network of many agents

(with 1′000 as the maximum market size in this paper) is already numerically involved, and

difficult in terms of presentation. Furthermore, we will see that the behavior of sample large

networks is consistent with the behavior observed in the MC study for the small networks. As

independent from them.
11It is impossible to have the same random numbers for learning, since in the model with no network the

agents do not optimize the trust index. However, in all other five networks indeed all the agents optimize this
coefficient, and their learning is based on the same set of random numbers.

12The full results of the MC study for all 6 small networks, and three additional, three and two clusters and
two outsiders, which include 330 graphs grouped into 77 panels, as well as tables for prediction correlation,
constitute a 52 page supplement online material.
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a result, a full-fledged MC exercise could offer only little additional understanding. Instead,

for every network size and architecture, I will focus on one sample realized simulation, with

longer time horizon of 25′000 periods. I will present the long-run outcomes of these networks,

including the distribution of trust and price stability.

I will study four regular networks, with architectures that are based on their 6-agent

counterparts:

No network — every agent has an empty set of friends.

Fully connected — every agent is befriended with every other agent.

Regular — every agent has exactly 4 friends. This market can be represented by a circle

such that every agent is linked with two agents to the left and two to the right.

Star — one central (or star) agent, who is connected to all other agents, whereas other edge

agents are connected only with the star agent.

Random network with probability πl is typically defined as a random graph, in which every

two agents are linked with probability πl. Such an architecture is analytically tractable, and,

relevant for my study, can offer a wide distribution of links between the agents. I will focus

on two random networks:

Random(4) — sparse random with πl set in such a way that on average there are exactly 4

links per agent, which gives the same density as for the regular network defined above.

Random(16) — dense random with πl such that on average there are exactly 16 links per

agent, i.e. with density four times larger than for the regular network defined above.

Empirical social networks often have characteristics of the so-called small world networks

(SM): small density (few links between the agents), together with large transitivity (‘cliquish-

ness‘, high probability that a friend of my friend is also a friend of me), but also small

characteristic path (average distance between the agents). In practice such networks look like

semi-independent clusters that are connected with each other by infrequent ‘bridge agents’

(see the network in Figure 1d for a simplest example, in which agents 3 and 4 serve as such a

bridge between two clusters). It is impossible to obtain networks with such properties through

random graphs. Watts and Strogatz (1998) propose the following algorithm: start with a reg-

ular lattice network of K links per node and rewire every link with probability πr. Rewired

networks based on well chosen parameters K and πr have SM properties. In order to obtain

networks of a similar density as the random ones, while maintaining a connection to the study

of PGP13, I will use the following four rewired networks:

Rewired(4, 0.01) — on average four links per agent and rewiring probability of πr = 1%.

This gives a SM network for the largest market I = 1′000.

Rewired(4, 0.1) — on average four links per agent and rewiring probability of πr = 10%.

This gives a SM network for the intermediate market I = 100.
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Rewired(16, 0.01) — on average 16 links per agent and rewiring probability of πr = 1%.

Rewired(16, 0.1) — on average 16 links per agent and rewiring probability of πr = 10%.

The representation of the realized non-regular networks for all five possible network sizes,

together with a table of basic characteristics, is available in Appendix E.

4 Networks of six agents

This section consists of three parts. First, I will look on the model without a network (or an

empty network). This is essentially the same setup as investigated by Anufriev et al. (2014).

However, the authors had a different focus than this study, namely they considered four

different LtF experiments and how the model is able to replicate the behavior of the subjects.

I will supplement their investigation by an in-depth analysis of the emergent properties of

the GA model for the two-period ahead asset pricing market, specifically what drives the

coordination on the oscillatory prices paths and how does this link with the individual learning.

Second, I will introduce two regular lattice networks (circle and fully connected; see Figure 1

for a visualization) in order to study whether the agents learn to herd or rather to contrast the

behavior of their friends. Finally, I will consider three asymmetric networks (two connected

clusters, core-periphery and star) in order to check if such asymmetries have any effect on

herding, as would seem natural.

4.1 Benchmark model without network

Observation 1. Without a network, there are two types of attractors in the model: coordina-

tion on the fundamental price and oscillations around the fundamental.

In line with the findings of AHM14, I find that there are two possible outcomes in the model

if there is no network. First, the GA agents can coordinate on the fundamental price and stay

there (see Figure 2b for a sample market). This is a self confirming steady state, since if the

price stays at the fundamental level, the forecasting rule (13) effectively reduces to forecasting

the fundamental as well. The trend term β is irrelevant and retains wide distribution centered

around zero (weak trend following; see below for a further analysis). The price shocks ηt are

too small to push the agents from this equilibrium.

However, if by chance the agents were on average considering sufficiently strong trend

extrapolation (sufficiently large β), then they can pick up a sufficiently large shock ηt as a

sign for price trend, outweigh the robotic trader and impose a regime of price oscillations (see

Figure 2c for a sample market). This is again a self-confirming regime: if there is significant

trend, agents effectively learn to follow it, which amplifies the trend despite the stabilizing

effect of the robotic trader. We observe that across 1′000 simulations,13 slightly more than

13Recall that the simulations for a specific network are based on the same series of price shocks but different
realized learning.
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Figure 2: Monte Carlo study (1000 markets) of the GA model without network: distribution of
long-run price standard deviation; and sample stable and unstable time series of prices.

50% of the markets slipped into significant price oscillations. This is visible in the bimodal

distribution of the long-run standard deviation of the price, as visible on Figure 2a. It also

corresponds to the results of Hommes et al. (2005), who report that among the seven experi-

mental groups with pf = 60, four exhibited oscillations, two monotonic convergence and one

an intermediary case.

Observation 2. GA agents, without any direct link, can coordinate well by learning to follow

the price trend, which can differ across time and between markets.

Disregarding the initial 100 periods, the predictions of GA agents are sharply correlated

with an average correlation coefficient of (average from 1′000 simulated markets).14 Across

the simulations, the median dis-coordination (14) remains low, below 0.1 (see Figure 3b for

the median and 95% CI over time). Nevertheless, large outliers are possible and the upper

bound of the 95% CI exceeds 2. This implies that the agents are typically well coordinated,

but momentary breaks of this coordination occur from time to time.

The reason that the agents remain well coordinated despite no direct links between them

is that they learn similar behavior, and so their predictions react to specific market condition

(current price and price trend) in the same manner. This in turn is reinforced by the positive

feedback nature of the market. For example, if the GA agents have similar optimistic price

forecasts, the realized price will indeed be high and the agents have no incentive to change

their behavior. If the prices remain stable, a specific parametrization of the forecasting (13)

is in practice irrelevant. On the other hand, the median GA agent converges to the following

strong trend rule

(18) pei,t+1 ≈ 0.9pt−1 + 0.1pet−1 + 0.5∆pt−1,

as presented at the bottom panel of Figure 3. Notice that this rule is similar to the median

rule reported by AHM14 for the same market. In the unstable markets GA agents learn

to coordinate on the price trend. The trend coefficient β retains a wide distribution even

towards period 2′500, including its upper 95% CI bound being far away from the median,

which suggests that the specific trend is realized differently on different markets. Indeed, the

14Specifically, correlation of predictions for any pair of agents across 1′000 markets is equal to 98.7%.
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Figure 3: Monte Carlo study (1000 markets) of the GA model without network: time evolution of
important market and individual variables. Median represented by a red line and 95%
CI represented by blue lines. Notice that forecast SE is the squared difference between
forecast and realized price.

long-run standard deviation of the unstable markets has a wide distribution, which means

that different markets are unstable to a different degree, or the market instability (i.e. the

specific price trend) changes over time.

Observation 3. In unstable markets, the robotic trader is responsible for the reversal of price

trends (crashes of bubbles and reversals of crisis).

Regardless of whether the market was stable or not, its long-run average price has a degen-

erate distribution at approximately the fundamental level. Furthermore, the price oscillations

are centered around the fundamental and 95% of times are approximately contained within the

interval [45, 75], that is 75%−125% of the fundamental price (see Figure 3a). This corresponds

to a relative weight of the robotic trader (7) nt ≈ 13.4% at the peak of oscillations.

Consider again the unstable market presented in Figure 2c. Figure 4 displays a number

of variables from that market in periods 1′001 till 1′025. Within these 25 periods, the market

experienced one bubble, a subsequent crash, a period of crisis and then recovery towards a

new bubble. The turning points of the bubble and crisis happened in periods 1′005 and 1′016

respectively (which means that one full cycle took around 20 periods, see Figure 4a). What

caused these market turn-overs?

Throughout periods 1′000− 1′025 the price shocks were not larger than 0.2 (i.e. their two

standard deviation) in absolute terms. The cycle of bubbles and crashes arises endogenously,

without a need for large exogenous shocks.15 Before the bubble turning point in period

1′006, GA agents used the highest possible trend extrapolation (Figure 4f) and remained well

15Compare with standard RE models.
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Figure 4: Sample market without network, periods 1′001 till 1′025. Realized market variables in
these periods and individual forecasts (including the corresponding heuristic specifica-
tions) of price from these periods.

coordinated. Notice that in the period of bubble build-up, the agents undershoot the price,

but slowly converge towards it. Indeed, their error approaches zero at the turning point

(Figure 4e). It means that GA agents are ‘catching up’ with the bubble. This is possible,

because they use a constant trend coefficient, whereas the actual price trend (pt−1 − pt−2)

looses on its momentum (see Figure 4d for the price trend observed by the agents). The latter

is due to the robotic trader: the more the bubble builds up, the more he becomes active

(Figure 4c). The maximum price trend happens three periods before the turning point, after

which the robotic trader becomes twice as active (with his relative weight increasing from

around 5% to 10%).

At some moment, the robotic trader becomes influential enough to outweigh the GA agents

and to halt the price trend completely.16 Specifically this happens in period 1′006, the last

period for the price trend to remain positive (albeit already close to zero, see Figure 4d). GA

agents do not realize that yet, but rather observe that in the past it paid off to follow the

trend (indeed they just ‘caught up’ with the growing price) and so follow its latest observed

value p1005−p1004 (which is only mildly positive) when forecasting the price in the next period

1′007. On the other hand, in period 1′007 the robotic trader does not care for the price trend

to have lost momentum. Instead he considers only the absolute deviation of the price from

the fundamental and remains highly active. The total effect is that the realized price p1007

is slightly smaller than the previous price. GA agents momentarily realize that the strong

trend following just lost its potency and start to experiment with lower coefficients β of (13)

16This does not require a substantial negative price shock. Instead, it relies more on the decreasing price
trend, growing weight of the robotic trader and the feedback coefficient in the price equation (9) being less
than unity due to a positive interest rate.
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for predicting price in the next period p1008 (see Figure 4f). This results in a moment of

dis-coordination (Figure 4b), and also means that the stabilizing effect of the robotic trader

becomes even more important and the price starts to drop in a more pronounced way.

This does not lead the price to converge to the fundamental, what the robotic trader is

trying to achieve. Instead, GA agents notice the downward trend and immediately follow it

(chosen trend coefficients β were diverging from their allowed upper bound of 1.3 for only two

periods), which reinforces the crash. The market undershoots the fundamental value and a

symmetric sequence of events happens around period 1′015.

Finding 1. Without a network, the market can be both stable and unstable. Instability occurs

if GA agents learn to follow the current price trend, which generates a high level of coordination

during the build-up of bubbles and crises. However, a constant price trend cannot be sustained

forever because of the robotic trader. When the trend looses enough momentum, the GA

agents experiment with their forecasting heuristics. As a result, a tipping point of bubbles

and crashes emerges, in which agents are dis-coordinated before a price trend reversal, which

renews coordination on extrapolating the reversed price trend.

These findings are not driven by the nature of the robotic trader per se, but by the fact

that a stable price trend is unattainable because of the robotic trader. In real markets, a

number of factors can have a corresponding effect of breaking up the price trends: liquidity

constraints, regulations on prices (such as a maximum allowed price change in a day); and

finally ‘common knowledge’ that bubbles cannot build up forever. If there is uncertainty of

how exactly the price trend will be broken (for example because of strategic uncertainty, or

because the legal constraints are imprecise), market participants find it easy to follow price

bubbles and crashes, but are not that skilled at playing out the markets’ tipping points. The

same mechanism emerges in my model as summarized in Finding 1. Just as in real life, the

GA agents follow the market, which reinforces its growth, until it reaches its natural limit and

despite the agents being overly optimistic, it starts to stagnate. The agents panic and the

bubble bursts without the optimism it was built upon. A period of crisis thus emerges, when

agents’ pessimism reinforces the price drop.

4.2 Contrarian strategies induced by networks

Observation 4. Networks have a destabilizing effect on the market.

Introducing any type of network into the model brings forth additional price instability.

MC results for two regular networks, circle and fully connected, are presented in Figure 5. In

comparison with the model without a network, coordination on the fundamental price does

not constitute a likely attractor anymore. Only about 5% of the markets exhibit long-run

price’s standard deviation close to zero for the circle network, and virtually none for the

denser fully connected network (middle panel of Figure 5). On the other hand, in almost all

markets price oscillations arise. Furthermore, these oscillations are stronger, implying larger
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Figure 5: Monte Carlo study (1000 markets) of the GA model without network, circle and fully
connected networks: time evolution of prices (median represented by a red line and 95%
CI represented by blue lines); distribution of long-run mean prices and price standard
deviations; sample realized prices for initial 500 periods.

market volatility. The prices still fluctuate around the fundamental value, but the 95% CI of

the realized price across time are approximately twice as wide as without network, specifically

they consititute an interval close to [30, 90], i.e. [50%, 150%] of the fundamental price. This

implies price oscillations, that start almost immediately (left panel of Figure 5). In the unstable

simulations, typical price long-run standard deviation is also twice as large for both the circle

and the fully connected networks than without network. Sample simulations (right panel of

Figure 5) confirm that the price oscillations have a more pronounced amplitude.

Observation 5. Agents learn to use heuristics with strong price trend extrapolation, and also

a contrarian attitude towards other agents. Despite the contrarian strategies, they remain well

coordinated.

In the remaining of this subsection, I will focus on the fully connected network. Results

for the circle network are essentially the same. The first observation is that just as was the

case for the model without a network, the GA agents exhibit strong trend following behavior.

Figure 6 presents the time distribution of the price weight α and trend coefficient β chosen

by the agents across 1′000 simulated fully connected markets. The median agent quickly

converges to a strong trend following rule

(19) pei,t+1 ≈ pt−1 + 1(pt−1 − pt−2)− 0.9ΓPeeri,t−1,

which is slightly stronger in terms of trend following coefficient β than for the case of no
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Figure 6: Monte Carlo study (1000 markets) of fully connected network: time evolution of heuristic
(13) parameters chosen by the agents to forecast prices. Median represented by a red line
and 95% CI represented by blue lines.

network (even though the 95% CI have approximately the same width). Notice furthermore

that the weight on the previous forecast 1 − α is close to zero, which is consistent with the

findings of AHM14: large price instability induces learning of stronger trend, but also less

‘conservative’ behavior.

Interestingly, the agents learn contrarian rules with median γ ≈ −0.9. If the friends of an

agent were buying in the past (remained optimistic), she would decrease her price forecast.

Figure 7 shows the 95% CI of the trust agent 1 puts into her friends and trust she receives

herself over time.17 The median agent quickly learns a strong contrarian heuristic and is

furthermore distrusted by her friends. However, the 95% CI for both variables remain wide

and approach zero from below, which means that the agents are still experimenting with the

specific strength of the contrarian strategies. Indeed, at all time the agents seem to have

similar trust coefficients γ, but there are periods of significant differences between them in

their level of trust, as seen in the standard deviation of that variable between the agents (low

median, but wide 95% CI, see Figure 7c). Finally, despite the contrarian behavior, GA agents

remain well coordinated, as measured by the correlation of their price forecasts equal to 96.8%.

What is the reason for these two facts, and how are they connected with the increased price

volatility?

Observation 6. Agents can only look at the past behavior of their friends, but the market is

unstable. Therefore, trades that were optimal in the past are inconsistent with contemporary

market conditions. As a result, observed mood of friends is ‘sticky’, which induces the agents

to learn contrarian strategies.

To study the reason of the contrarian behavior, I will focus on a sample cycle of boom

and crisis presented in Figure 8, for one market with the fully connected network. We observe

that this cycle is similar to the one from a sample market without a network, specifically the

oscillations have similar period (but a higher amplitude, as discussed in Observation 4) and

the timing of the bubble-crisis cycle is symmetric. During a build-up period of the bubble,

the agents are ‘chasing’ the bubble with strong trend following rules, until the robotic trader

17Because the network is symmetric, the results for the other five agents are indistinguishable. This shows
that the MC sample of 1′000 gives a sufficient picture of the model’s behavior.
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Figure 7: Monte Carlo study (1000 markets) of fully connected network: time evolution of γ1 trust

index of agent 1; 1
5

(∑6
i=2 γi

)
normalized trust index received by agent 1 from her friends

(all other five agents); and standard deviation of the trust indices of all six agents. Median
represented by a red line and 95% CI represented by blue lines.

curbs the price trend. Afterwards, there is a small phase when the agents experiment with

their rules, what together with the influence of the robotic trader causes a trend reversal,

which is quickly picked up by the agents. The evolution of the trust index γ is the opposite

to that of the trend coefficient: it typically stays close to its lower boundary (γ ≈ −1), but

agents experiment with higher trust during the market reversals.

To interpret these results, the following lemma is useful (see Appendix B for the proof):

Lemma 1. Disregarding the price shocks, agent i buys (sells) if her price forecast is higher

(lower) than the average market expectation (8), that is if pei,t+1 > p̂et+1 (pei,t+1 < p̂et+1). Sim-

ilarly, robotic trader buys (sells) if the average market expectation (8) is above (below) the

fundamental price, i.e. robotic trader’s forecast. This implies that the GA agents and the

robotic trader can buy (sell) even though they expect negative (positive) price trend.

This lemma follows from the two-period ahead structure of the market and has a simple

interpretation. Consider a market at period t with only two agents, no price shocks (ηt = 0)

or robotic trader (nt = 0). Let both agents expect the price to increase in the next period

t+ 1 in comparison with the last observed pt−1. Their demand functions (3) however depend

not only on their expectations of pt+1, but also on the contemporary price pt, which follows

the market clearing condition (4). If one agents is more optimistic about the next period (say

pe1,t+1 > pe2,t+1), then she will take relatively longer position. Because the market has to clear,

she will buy the asset from the other agent, z1,t = −z2,t > 0. In a general case of many agents,

price shocks and the robotic trader, the market clearing condition implies that a GA agent

buys the asset if she is relatively optimistic, not if she is optimistic in absolute terms.

The important consequence of the lemma is that, because of the robotic trader, GA agents

are likely to be buying (selling) the asset even after they realize a market reversal. For an

illustration consider the sample network of six fully connected agents (Figure 8). In this

market there was a bubble with a peak in period 1015, with a negative price trend afterwards.

The agents realized that after observing p1016 and their subsequent prediction pei,1017 for price

in period 1017 decreased in comparison with their previous forecast pei,1016, but was still highly

above the fundamental price. Agents noticed that the price gained a negative trend, but did
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Figure 8: Sample market with fully connected network, periods 1′001 till 1′025. Realized market
variables in these periods and individual forecasts (including the corresponding heuristic
specifications) of price from these periods.

not expect it to fall to or below the fundamental price immediately. On the other hand, the

robotic trader is always trading as if the next price will be at the fundamental level. As a

result, the GA agents after the reversal of the bubble became pessimistic in absolute terms,

but still optimistic relatively to the robotic trader. Figure 8i shows the sign of the robotic

trades.18 We observe him to take the short position until period 1018.

The construction of the market is that the agents forecast two-period ahead, and their

information set spans until the previous period. This means that they form their forecast

of p1015, i.e. the peak of the bubble, based on the friends’ behavior until period 1013, which

roughly corresponds to the moment when the price (following the previous crisis) surpasses

the fundamental level and the GA agents finally become relatively more optimistic than the

robotic trader and start to buy the asset. Furthermore, the peer effect is based on an index

with a non-trivial memory (of 5 periods). We observe that the agents’ mood indices becomes

positive only around the moment of the bubble burst (Figure 8g), that is the agents acquire

reputation of full optimism when the market already crashes or is about to crash. This lag is

18Notice that this is not the index based on five previous trade signs.
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apparent in Figure 8h, which shows for every GA agents the mood index averaged between

her friends she observes at period t, that is averaged over friends and over periods t − 6

until t − 1 , which she uses to predict the next price t + 1. The GA agents can trade quite

efficiently, but their reputation is ‘sticky’ and hence reflects the past, not the contemporary

market conditions. A contrarian attitude is therefore natural.

To what extent is this driven by the robotic trader? Because the robotic trader has such

a firm belief about the next price, the GA agents are likely to take similar (long or short)

positions once the market is far from the fundamental: their individual price forecasts remain

heterogeneous, on ‘the same side’ (below ar above the fundamental). On the other hand,

without the robotic trader the GA agents would be more likely to trade in a more diversified

fashion (some would buy, some would sell), and on average their reputation could be less

‘sticky’. Nevertheless, agents who have many friends would still likely observe ‘sticky’ mood

(notice the difference between individual mood indices (Figure 8g) and the observed ones

(Figure 8h)). Furthermore, even without the robotic trader the lag of the index mood is

apparent (especially after the market reversals).19 It means that unless the price oscillations

can take a relatively long period, the agents will simply never have time to acquire a positive

(negative) mood index during the bubble (crisis) build-ups.20 Notice that the current model

generates fast oscillations despite the stabilizing influence of the robotic trader. I leave it for

future inquiries to study the robustness of this phenomenon in alternative market structures.

Observation 7. Contrarian strategies add momentum to the trend reversal around the tipping

points of bubbles and crises. Through interaction with agents’ strong trend following behavior,

this causes price oscillations with larger amplitude.

As discussed for the markets without a network, the reason for price trend reversals is that

once the price diverges sufficiently away from the fundamental, the robotic trader halts its

current trend. This causes dis-coordination and a tipping point: agents start to experiment

with their heuristics, while the robotic trader insists on pushing the price back to the funda-

mental. Therefore, the prices turn around and agents quickly pick the new trend up, causing

a new phase of the bubble-crisis cycle.

The contrarian strategies work in the same direction. For example, during a bubble build-

up the agents slowly become optimistic. As discussed, this happens not fast enough to make

the agents learn herding strategies, since the agents become fully optimistic close to the tipping

point of the bubble. Thus their heuristics remain strictly contrarian, but the optimism build-

up around the tipping point plays a crucial role in the bubble crash.

Once the robotic trader stops the price growth, we see in the price expectation heuristic (13)

that the price trend becomes unimportant, while the negative γ trust index together with the

newly established optimism among friends means that the agents are likely to forecast lower

price (observed optimism times the contrarian attitude yields an additional negative element

19Simulations, in which a cap on price change replaced the robotic trader as a stabilizing factor, also indicate
strong contrarian behavior; this seems to be caused by the discussed lag of the mood index.

20Sample simulations indicate that in this setup the specific value of the memory length τ plays little role.
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in the pricing forecast heuristic). Given the positive feedback between the predictions and

price, the initial price drop is therefore more severe relatively to the case without a network,

in which no such contrarian attitude can emerge.

One can observe this by comparing the first price drop after the bubble burst: p1016−p1015 ≈
−4.65 for the sample fully connected market (Figure 8a) is much larger than p1007 − p1006 ≈
−0.67 for the sample no network market (Figure 4a), which results for a sharper decrease of

the corresponding price forecasts. The increased (in absolute terms) initial trend after bubbles

burst (or crises finish) makes the agents predict larger price change, which reinforces the size

of the trend. This can be mitigated by the robotic trader only once the price deviation is

sufficiently larger in comparison with the market without a network, which makes the realized

oscillations wider.

Notice that this further confirms the discussed intuition of the contrarian strategies. Agents

around the peak of the bubble (crisis) are considered optimistic (pessimistic). They also use

contrarian strategies, which reinforces the market reversal (in contrast to the observed mood

of the friends), and makes the contrarian attitude self-fulfilling.

The general conclusion about the network effect on the market is therefore only partially

in line with the popular belief. The GA agents, if endowed with additional information about

friends’ behavior, learn contrarian beliefs. This actually implies larger bubbles and crashes,

while not disturbing the high level of forecasting coordination — the two phenomena that

some economists would in fact associate with herding (Shiller and Pound, 1989).

Finding 2. In markets with a relatively fast bubble-crisis cycle, the history of agents’ trading

decisions lags behind the contemporary market conditions. As a result, agents have an incentive

to learn contrarian strategies. This has a negative impact on price stability. Because the agents’

reputation catches up with the market conditions just before the tipping point, the contrarian

strategies imply that the turning points of the price cycle generates stronger price reversal.

This larger initial price trend is in turn reinforced by the agents’ trend extrapolation behavior,

which makes it more difficult for the robotic trader to stabilize the market.

4.3 Learning in asymmetric networks

Observation 8. An asymmetric position in the network has no direct effect on herding. In-

stead, agents with fewer friends experiment with relatively weaker contrarian strategies.

Intuition suggests that agents with a unique position in a network — like a center of a

star network — should receive more attention and thus play an important role in coordi-

nation. However, my model predicts so only for some networks. Consider three networks:

two connected clusters, core-periphery and star. In all of them, one can distinguish central

and non-central agents with interesting asymmetric positions. In the two connected clusters,

agents 1 and 3 belong to the same cluster, but agent 3 also links to the second cluster (see

Figure 1d). In the core-periphery network, a reverse case holds: agent 1 lies in the core and

links to a periphery agent, while agent 3 is such a periphery agent (see Figure 1e). The most
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Figure 9: Monte Carlo study (1000 markets) of two connected clusters, core-periphery and star
networks: time evolution of trust index γ of specified agents. Median represented by a
red line and 95% CI represented by blue lines.

extreme is the situation of the star network, where agent 1 is the hub of the star, while agent

3 is a typical edge of the star (see Figure 1f).

Figure 9 shows MC results for the trust given by these agents across time. Again the 95%

CI are wide (demonstrating erratic behavior of these networks), but there is a clear pattern

in terms of the median agent across the simulations. Regardless of the network, the central

agent is always likely to use strict contrarian strategies, just as was the case of the agents from

regular networks. Non-central agents are also contrarian. However, their median trust index

can be much larger: instead of a low γ ≈ −0.9 for the case of the fully connected network,

the median non-central agent 3 in star (core-periphery) uses a weaker contrarian γ ≈ −0.6

(γ ≈ −0.75).21 This is not the case for the non-central agent 1 in the two connected clusters

network, who uses a strong contrarian strategy with γ ≈ −0.9. This indicates that a more

central position on its own does not guarantee higher levels of received trust.

What we observe instead is agents experimenting with relatively higher trust levels if they

have fewer friends. Specifically, the edge agents in the star network, and the periphery agents

in the core-periphery network, have only one friend; and their median trust level is visibly

higher (even if still negative) in contrast to other agents.22 This result will be more apparent

in the large networks, and has a natural intuition.

21In practice this means that the agents have low typical value of γ, but are willing to temporarily experiment
it to a larger extent than other agents.

22One can see that as well by analyzing networks with small clusters, which are not presented in this paper.
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In the setup of my model, the agents cannot distinguish between their friends and look only

at the average sign of their friends’ mood. On the other hand, the agents remain heterogeneous

(see the previous discussion): despite in general similar price forecasts, they can have quite

different realized moods over time (see lemma 1). It means that a ‘popular’ agent (with many

friends) often has to wait longer to observe ‘sharp’ consensus among her friends, whereas

‘unpopular’ agents are more likely to observe outliers, which can be useful around the tipping

points. For instance, consider the sample fully connected network (Figure 8) and compare the

sharply changing individual mood index (Figure 8g) with much smoother observed friends’

mood index (that is, the average mood index of five friends, Figure 8h). Therefore the agents

with fewer friends are typically contrarian, but are also willing to experiment more when

bubbles and crises regimes brake down.

A clear suggestion for future studies follows. First, the above reasoning does not have to

hold when the agents can distinguish between their friends.23 Second, this is an important in-

sight when studying models with endogenous network formation. Both issues demand further

theoretical and experimental work.

Observation 9. Overall coordination is the same regardless the shape of the network, includ-

ing whether it is symmetric or not.

Figure 10 presents the MC results for the stability of the three asymmetric networks: the

two connected clusters, the core-periphery and the star, namely the 95% CI and median dis-

coordination over time (top panel) and SD of the long-run prices over 1000 markets for each

network. There is a clear pattern visible. No difference emerges in terms of coordination

(which also looks like the coordination in any market with a symmetric network).24 However,

across the three networks the star market is likely to experience higher long-run SD of prices,

while the two other networks are much more similar. Furthermore, the star network never

stays in the stable attractor, which can happen in the case of other asymmetric networks.

This indicates that the star network generates unique dynamics in comparison with all the

other non-empty networks, which yield more comparable results. We will see a similar pattern

in the large networks.

Finding 3. In asymmetric networks, more herding can emerge. This is driven by the fact

that agents with fewer links find it easier or more useful to experiment with relatively higher

trust. With the exception of the unique dynamics of the star network, this does not influence

the overall market stability or coordination.

23As a robustness check, I run some simulations where agent i can attach different trust levels γi,j to her
different friends j. This does not seem to change the qualitative outcome of contrarian strategies being learned
by the agents, but further studies should investigate this manner in a systematic fashion.

24The typical correlation of the individual forecasts is also comparable between all considered networks and
around 95%.
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Figure 10: Monte Carlo study (1000 markets) of two connected clusters, core-periphery and star
networks: time evolution of dis-coordination measure (14) (median represented by a
red line and 95% CI represented by blue lines); distribution of the long-run standard
deviation.

4.4 Profits and utility

Under RE, the expected profits are equal to zero.25 The intuition of this result follows from the

arbitrage argument: the fundamental price pf balances the asset revenue (the dividend y and

the resale gain pt+1) and the opportunity cost (Rpt). Formally, under RE if pei,+1 = E{pt+1} =

pf for every period t and disregarding the price shock ηt, the asset return (1) becomes

(20) E{ρt+1} = pf + y −Rpf = y − rpf = 0,

where the last equality holds because pf = y/r. This further implies that the individual

demands (3) are also equal to zero, since zi,t = ρei,t+1/(aσ
2
a).

The GA model predicts price oscillations and forecasting heterogeneity. This, in contrast

to RE, implies non-trivial trades and asset returns. Notice that furthermore the GA agents

are maximizing a trade-off between the asset return and the risk. It is therefore important to

understand the model profit and utility distribution.

Figure 11 shows the MC distribution of average profits for three networks, circle, fully

connected and star, for the GA agents (left panel) and the robotic trader (right panel). Average

25Notice that the law of motion of the economy and hence the realized prices, as well as the GA agents
learning problem (forecasting efficiency) do not depend on the relative risk aversion factor aσ2

a. Thus I have
not specified its value in the previous discussion. On the other hand, as evident from equations (2) and (3),
the total demand and the utility of GA agents are both a linear function of the inverse of the risk aversion
factor. The specific choice of aσ2

a therefore can only scale the numerical value of the realized profits and utility,
without changing their qualitative behavior. In the presented simulation outcomes, I used normalized aσ2

a = 1.
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Figure 11: Monte Carlo study (1000 markets) with circle, fully connected and star networks: time
evolution of average profit of the GA agents and the robotic trader (median represented
by a red line and 95% CI represented by blue lines).

profit of agent i is defined as

(21) π̄i,t =
1

t

t∑
s=1

ρt+1zi,t.

Because the robotic trader has a constant price expectation and the market cycle is symmetric,

his average profit quickly converges to zero, with narrow 95% CI. On the other hand, GA

agents seem to be trading quite poorly: regardless of the network, their average profit quickly

becomes negative (including the upper bound of 95% CI).26

This does not mean that the GA agents are irrational, however. Their trading is dictated

by aversion towards risk. The pricing equation (9) was defined under the assumption that

the agents have myopic mean-variance preferences, trading conditional on their beliefs about

the subsequent price. Therefore, the same utility based on the robotic trader’s decisions can

be used as a reference point for the performance and learning efficiency of the GA agents.

Specifically, I focus on the average realized utility

(22) Ūi,t =
1

t

t∑
s=1

ρt+1zi,t − 0.5z2i,t.

26Notice that the profits in a given period do not sum up to the dividend, because I include the opportunity
cost of the forfeit secure interest rate into the asset return. In fact, the total economic profit cannot be positive
unless the market diverges to an infinite price, which resembles the transversality condition in the RE infinite
time-horizon solution.
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Figure 12: Monte Carlo study (1000 markets) with circle, fully connected and star networks: time
evolution of average utility of the GA agents and the robotic trader (median represented
by a red line and 95% CI represented by blue lines).
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Figure 13: Sample unstable market without network: realized average profit and realized average
utility of robotic trader (black line) and GA agents (green lines).

Figure 12 shows that the GA agents, regardless of the network, obtain much higher utility

than the robotic trader. In fact, after around 1000 period the lower bound of the 95% CI of

their average utility is higher than the median average utility of the robotic trader.

This observation has a simple interpretation. Because of his constant price expectations,

the robotic trader has on average zero profit, but also takes extremely risky positions around

the market reversals, i.e. when he also becomes the most active. GA agents forfeit part of the

profit and hence increase their utility by avoiding excess risk. This is particularly clear for

the case without networks. Figure 13 shows the evolution of average profits and utilities in

the sample unstable no network, which was presented before in Figures 2c and 4. We observe
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that initially the prices are stable, which corresponds to inactive robotic trader and individual

trades and profits close to zero. However, once the market switches to the unstable attractor,

robotic trader tries to push the price back to the fundamental, while GA agents follow price

trends. As a result, the relative average profit of the robotic trader increases at the expense

of his relative utility.

Finding 4. GA agents, in comparison with the robotic trader, obtain lower economic profits,

but also higher utility. The reason is that instead of predicting the fundamental price, they

follow the market cycle and thus avoid substantial risk.

5 Large networks

In this section I present the results for the sample simulations of the large network as a

function of their size (with 50 to 1000 agents). I first show the aggregate dynamics and then

discuss individual learning. One of the most important findings of this analysis is that the

large networks (even with hundreds of agents) generate similar market dynamics as the small

ones, which suggests that the specific network architecture or size is less significant than the

existence of links between the agents in the first place.

5.1 Impact of the network on price stability

Observation 10. Network size has a stabilizing effect on the prices only for relatively small

networks and past a certain threshold plays no significant role.

Figure 14 shows the long-run price SD of regular and non-regular networks (see section 3

for definition). In comparison with the networks of six agents, large regular networks are

marginally more stable (with the markets without a network being the sole exception). For

example, the star network of 50 agents has price SD equal to SDp = 15.657 (Figure 14a),

which is below the price SD for the bulk of star networks with 6 agents (see bottom right

panel on Figure 10). Above 100 agents, however, the network size hardly has an effect on

price volatility.

Observation 11. Specific network architecture (including its density) plays little role in price

volatility, and is important only for extreme cases, namely no network markets and star net-

works.

Another interesting observation from Figure 14 is that, with the exception of markets

without a network, the long run price SD is similar between the network structures (both

regular and non-regular), as it is between networks of the same structure and different size

(in fact it is difficult to distinguish individual networks in this Figure, since the relevant lines

almost overlap). In all these cases, the price SD falls into a narrow interval SDp ∈ [14.5, 15.5],

despite the networks having different density and other relevant measures. We will see below
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Figure 14: Standard deviation of price in periods 101 − 25′000 for different network architecture
and size.

that the reason for this is that the agents from different networks learn comparable behavior,

especially in terms of price trend extrapolation.

As mentioned above, the exception is the no network case. It has price SD SDp ≈ 8 half

in magnitude of other networks, which is consistent with the findings for the small networks.

This shows that the contrarian behavior, absent in the case without a network, gives an

additional momentum to the price trends, implying larger oscillations. The GA model without

a network is nevertheless unstable in comparison with the RE benchmark, according to which

SDp = 0.1� 6.

Finding 5. Specific network size and architecture has a negligible effect on price stability for

large enough networks. The exception is the case without a network, which is more stable than

markets with any type of a network.

5.2 Impact of the network on individual behavior

Observation 12. Regardless of the network size, agents focus on strong trend extrapolation

rules. They continue to experiment with the specific trend coefficient and this learning does

not settle down.

In almost all considered networks (both in terms of architecture and size), agents on average

use high trend extrapolation coefficients with β ≈ 0.85 (where the specific value does not seem

to differ substantially between networks). Figure 15 gives the average β for all networks and

network sizes. Furthermore, there is no convergence. The SD of β is close to 0.55 in all

networks, consistent with the small networks outcomes: agents typically use very high β,

but during market reversals they experiment with lower values of the trend extrapolation

coefficient. A noticeable exception are agents from the no network markets of small size (up

to 100 agents), who do focus on higher β ≈ 1. It means that in the positive feedback type

markets, specific network structure has little effect on the emerging trend following behavior.
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Figure 15: Average used trend extrapolation coefficient β in periods 101 − 25′000 for different
network architecture and size.

Observation 13. Agents in general use strong contrarian strategies, regardless of the specific

network architecture or size. However, the less friends an agent has, the more she is willing

to experiment with relatively higher trust levels.

Across all networks, the average trust given by agents is low, with (roughly) γ ∈ [−0.7, 0.9].

Nevertheless, there is some variability across time and between agents, as seen in relatively

high standard deviations of the relevant trust measures. Furthermore, the number of connected

friends has a clear and negative effect on the trust level. The most striking illustration of this

effect can be seen in the case of star networks, were the central agent (regardless of the actual

network size) on average uses γ ≈ −0.8, but the other agents prefer γ ≈ −0.3, which is close

to a neutral strategy (see Figure 16a).
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Figure 16: Star and non-regular networks with 1′000 agents sample simulations: average chosen
trust index γ of agents with different number of friends.

In all other networks with a diversified number of friends per agent, more popular agents

have lower average trust, though this effect becomes negligible once agents have more than

a dozen of friends. Figure 17 shows the average trust index γ for the sample non-regular

networks, as a function of network size and agent’s number of friends. We observe that

the effect of network size is small, but the number of friends is important. Furthermore,

Figure 16b shows the average γ as a function of the number of friends for these networks with

1′000 agents. The clear pattern is that the more popular agents have lower average trust index,
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with a decreasing marginal effect of the number of friends. Another interesting observation is

that there is little difference between the networks. Indeed, the lines describing this effect for

different network architectures almost coincide on one hyperbola, and further MC would be

likely to show that the relevant distributions of the trust index are indistinguishable.
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Figure 17: Sample simulations of non-regular networks: average chosen trust index γ of agents for
different network size and number of friends.

I argue that the reason for this outcome is in line with Finding 3. Namely, as discussed

in the previous section, the more friends an agent has, the smoother over time becomes the

average friends mood she observes. As a result, it more closely follows the market cycle with

a substantial lag. At any point, the mood index of many agents is more likely to represent the

overall market mood in the past, before the latest market reversal. Therefore, the agent with

more friends has a higher incentive to remain conservative, unwilling to experiment with strong

contrarian attitude. The results for large networks are consistent with this interpretation.

Finding 6. Agents tend to use strong price trend extrapolation and contrarian heuristics. They

experiment with the specific heuristic parametrization after the market reversals. Furthermore,

agents with fewer friends are more likely to experiment with trust level, since they are more

likely to observe outlier behavior.

To sum up, embedding the agents in a network has a strong effect on the aggregate out-

comes: non-empty networks generate stronger price oscillations. However, specific network

architecture is not important, because the emerging learning is similar between the networks.
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6 Conclusions

In this paper I investigate a financial market, in which agents need to predict the price of an

asset two-periods ahead. They are placed in a fixed information network, and use a simple

general forecasting heuristic, which contains adaptive and trend extrapolation expectations,

and an additional term of (dis-)trust towards friends’ past trading decisions. The agents

independently optimize the specification of their heuristics by Genetic Algorithms. This gives

a model of endogenous learning of price forecasting and herding/contrarian behavior. My

main findings are: (i) networks destabilize the markets; (ii) the Genetic Algorithm agents

learn to extrapolate the trend; and (iii) they learn to use contrarian strategies, because the

observed pessimism/optimism of their friends lags behind the cyclical market dynamics.

Information networks play a crucial role for real financial investors, but it is not clear how

they affect market stability and efficiency. From the perspective of the Rational Expectations

framework, information flows can help the agents to converge to the fundamental equilibrium,

but if the agents have no private information, networks should play no role in the equilibrium

itself. On the other hand, many behavioral economists, in line with the popular opinion,

identify networks as one of the reasons for herding and ‘animal spirits’, which enables the

agents to coordinate on non-fundamental, self-reinforcing price oscillations. Here herding is

understood as following the opinion of friends (or maybe the general market opinion) instead

of ones private beliefs or information. Empirical investigations add a twist to the theoretical

puzzle: market data gives no clear indication whether herding is a popular strategy, while

experiments identify contrarian strategies as a more common behavioral pattern.

In order to shed some light on this puzzle, I design an agent based network model for a

simple market of financial asset. Every agent can independently learn whether to follow the

observed price trend and in addition, whether to trust the past decisions of her friends (increase

or decrease price forecast, if her friends were optimistic). I investigate small networks of six

agents to obtain basic understanding of such learning dynamics, and hence I study networks

of fifty to one thousand agents with architectures ranging from regular through random to

small world properties.

The main outcomes of the model are the following. First, information networks destabi-

lize the market. Without information flows, the model exhibits two types of attractors, the

fundamental solution and erratic price oscillations around the fundamental. Once the agents

are positioned in an information network of any architecture or size, the stable fundamental

steady state attractor disappears and market repeatedly over- and under-prices the asset in

a smooth cycle of bubbles and crashes. Second, agents learn to extrapolate the price trend

regardless of the network, which makes their price forecasts well coordinated. Third, despite

the large degree of coordination in terms of realized price forecasts, agents learn contrarian

heuristics. This is because the mood of friends, which the agents observe, is ‘sticky’: it rep-

resents past decisions that were made during a different part of the market cycle, and so are

different from what is rational in the present. For example, after a bubble crashes, agents
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should expect the price to decrease, but they remember their friends being optimistic just

before the market collapsed. Fourth, the Genetic Algorithms (in comparison with the robotic

trader) take less risky trading position, which implies lower profit, but higher realized util-

ity. Fifth, the specific network architecture plays little role in market volatility (past network

size of mere hundred agents) or emerging learning. The heuristics do not settle, since during

market reversals the agents experiment with their specification. These dynamics resemble

real markets: during bubbles and crashes financial agents just follow the current trend, but

‘panic’ around bubble/crash tipping points. Finally, agents with fewer links experiment with

relatively higher trust during market reversals, as a natural consequence of the fact that they

cannot distinguish between their friends.

The results of my model offer a good interpretation to many empirical and experimental

findings. First, the agents learn contrarian behavior, in line with the findings from exper-

iments. Second, the agents remain well coordinated despite the contrarian attitude, which

explains why indirect measures for market data may (mistakenly) point towards herding. It

also shows that the popular belief about herding (that it is a driving factor of price oscilla-

tions) may be wrong: coordination occurs despite agents’ lack of trust towards each other,

since they converge to similar forecasting rules of thumb.

My investigation is based on the selection of two crucial elements: asset market and net-

works. These choices are independent from the Genetic-Algorithms-based learning itself. In

principle, my model can be used for other financial regimes or information networks. Indeed,

many of my results should be tested in other economic environments. For example, con-

trarian behavior emerges because the agents are not able to acquire reputation of optimism

(pessimism) before the market bubble crashes (crisis ends). This relies on the fact that the

financial market, which I have used, allows for relatively fast price oscillations. Furthermore,

the outcomes of my simulations seem to be robust against specification of some key parame-

ters of the model (including the allowed trust), nevertheless further experimental work could

fine-tune the model or show its limitations. The model should therefore be thought of as a

benchmark for future theoretical and laboratory inquiries.
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A Rational solution

Proposition 1. The network I has no effect on the fundamental RE solution.

Proof. Under RE, at every period t the agents have homogenous price expectations, and by

extension homogenous demand schedules (3) and realized demands. The agents know that and

so can infer the realized demands (and the mood indices) of all agents in the economy. Since

there is no private information, the information set of every agent is the same and publicly

known, hence the network cannot provide any additional information.

Proposition 2. Under Rational Expectations, the fundamental price (6) defined as pf = y/r is

the unique stationary steady state such that the predictions are constant over time (in expected

terms) and model consistent, namely pei,t+1 = Et{pt+1} = Et−1{pt} for every period t.

Proof. Recall that the market clearing (9) gives the price pt as a linear function of price

expectations in the next period

pt =
p̂et+1 + y

R
+ ηt.

In expected terms, model consistent predictions in a stationary steady state imply thus the

predictions must be homogenous and solve the equation

(23) p∗ =
p∗ + y

1 + r
,

which implies p∗ = y/r.

Proposition 3. Explosive price paths are possible RE solutions in the model without additional

constraints on the price. A price cap Π > pt reduces the set of RE equilibria to the fundamental

solution.

Proof. Assuming model consistent predictions, agents are able to ‘guess’ the next price pt+1

(less the random shock ηt+1). Thus, the market clearing equation requires

(24) pt =
(1− nt)pt+1 + ntp

f + y

R
,

where the share of the robotic trader nt is defined by equation (7). It is easy to see (cf.

Hommes et al., 2005) that without the robotic trader, the prices could lie on an explosive

path with growth rate R. However, the presence of the robotic trader implies that explosive

paths have to grow even faster to ‘outweigh’ the robotic trader. Specifically

(25) pt+1 =
Rpt −

(
1− exp

(
−φ|pt−1 − pf |

))
pf − y

exp (−φ|pt−1 − pf |)
.

Because this non-linear dynamic system is analytically cumbersome and furthermore discon-

tinuous exactly at its steady state,27 I present the following proof of the system’s instability.

27Specifically, the robotic trader share nt is a function of absolute price deviation from the fundamental
solution.
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Recall that by definition of the fundamental solution, y = rpf . Consider now a case such that

pt > pf and furthermore pt−1 6= pf , which implies nt > 0. It follows that

(r + nt)pt > (r + nt)p
f

[(1 + r)− (1− nt)]pt − y − ntpf > 0

Rpt − ntpf − y > (1− nt)pt
pt+1 > pt.

Symmetric proof shows that if pt < 0 and pt−1 6= 0, pt+1 < pt. In words, if the price diverges

from the fundamental equilibrium under model-consistent predictions for two periods t and

t − 1 (disregarding the price shocks), then the agents predict that the price in next period

t + 1 will diverge even more from the fundamental and in the same direction as it happened

in period t.

This implies that price time paths are monotonic for every period s subsequent from t− 1,

s > t. It is easy to see that in the limit the prices will diverge to infinity or negative infinity,

since the term R
1−nt

> 1 is growing over time. Notice there is an infinite number of such

explosive solutions.

The infinite price decline is impossible due to the natural non-negativity constraint. In a

similar vein, infinite price growth is curbed if there is an additional price cap pt < Π

B Proof of Lemma 1

Proof. Recall that the optimal demand of an agent i is

(26) zi,t =
pei,t+1 + y

aσ2
a

− R

aσ2
a

pt.

In the same manner, demand of the robotic trader is simply

(27) zROBO,t =
pf + y

aσ2
a

− R

aσ2
a

pt.

Finally, the realized price setting the price shock to zero is

(28) pt =
p̂et+1 + y

R
=

(1− nt)p̄et+1 + ntp
f + y

R
.

Substituting (28) into (26) we obtain

zi,t =
pei,t+1 + y

aσ2
a

− R

aσ2
a

p̂et+1 + y

R

=
pei,t+1 − p̂et+1

aσ2
a

.(29)
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It follows that the demand of agent i at period t zi,t is positive only if the price forecast for

period t+ 1 of that agent is larger than the average (including the robotic trader) forecast of

pt+1, namely if pei,t+1 > p̂et+1. By extension, the robotic trader will also buy the asset if his

prediction (which is the fundamental value) is larger than the average market prediction, that

is if the average market prediction is below the fundamental.

C Equivalence of forecasting and trading peer bias.

In the model, I specified the peer effect and the corresponding herding/contrarian strategies

as the bias to the price forecast. In this appendix I will show that this can be reinterpreted

as a demand bias. To be specific, following AHM14 the agents in my model forecast the

prices with adaptive/trend extrapolation rule (optimized with GA procedure) and hence trade

optimally; however, they can also change their price forecast if they observe their friends to

be optimistic/pessimistic, which is measured by the trust index γ ∈ 1, 1] in (13). I defined

herding (contrarian) behavior as γ > 0 (γ < 0).

However, one may think that herding or contrarian behavior has nothing to do with price

forecasting itself, but rather reflects an additional (possibly irrational) bias to the demand.

In other words, the agent has a price forecast, which in our case is generated by the GA

optimized heuristic, but in principle could follow any other model, ranging from fundamental

to simple adaptive or naive expectations. The agent hence uses this forecast to compute the

optimal demand and only then adds or subtracts an additional quantity to the demand if she

follows herding or contrarian strategy.

To see that these two interpretations are equivalent, recall the forecasting heuristic (13).

Substituting it into the optimal demand schedule (3) yields

zi,t =
pe,Peeri,t+1 + y −Rpt

aσ2
a

=
αpt−1 + (1− α)pei,t−1 + β(pt−1 − pt−2) + γΓPeeri,t−1 + y −Rpt

aσ2
a

≡
pe,NoPeeri,t+1 + y −Rpt

aσ2
a

+ γΓ̃Peeri,t−1,(30)

where Γ̃ = Γ/sσ2
a is a constant measuring agents’ sensitivity to the peer effect, γ ∈ [−1, 1] is

the trust index as in the main body of the paper and

(31) pe,NoPeeri,t+1 = αpt−1 + (1− α)pei,t−1 + β(pt−1 − pt−2)

is the original adaptive/trend extrapolation forecasting heuristic from AHM14.

We can see that the demand written as (30) exemplifies the above mentioned interpretation:

agents forecast the next price with the typical heuristic, which is agnostic to the friends’

behavior; but then the agents have an additional demand bias depending on the trust index
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γ. Consider now a GA model in which the agents use (31) to obtain price forecasts pei,t+1

and hence use the herding/contrarian biased demand (30). Next, they update α and β the

parameters of the forecasting heuristic (31) and the bias γ with the GA procedure, where the

performance of a heuristic specification is measured in terms of logit transformation of the

hypothetical utility (2). To be specific,

(32) Vi,h,t = Ui,h,t+1 + zi,t(p
e,NoPeer
i,h,t+1 ) (pt+1 + y −Rpt)−

a

2
σ2
azi,t(p

e,NoPeer
i,h,t+1 )2.

Now define the realized return on the asset as

(33) ρt+1 ≡ pt+1 + y −Rpt.

The demand function (30) with quantity bias is equivalent to the demand used in the

paper (forecasting bias and no quantity bias), and so using (33) we can rewrite

Vi,h,t − Ui,h,t+1 =
pe,Peeri,h,t+1 + y −Rpt

aσ2
a

(pt+1 + y −Rpt)−
aσ2

a

2

(
pe,Peeri,h,t+1 + y −Rpt

aσ2
a

)2

=
(pe,Peeri,h,t+1 − pt+1 + ρt+1)ρt+1

aσ2
a

−
(pe,Peeri,h,t+1 − pt+1 + ρt+1)

2

aσ2
a

=
(pe,Peeri,h,t+1 − pt+1)ρt+1 + ρ2t+1

aσ2
a

−
(pe,Peeri,h,t+1 − pt+1)

2 + 2(pe,Peeri,h,t+1 − pt+1)ρt+1 + ρ2t+1

2aσ2
a

=
ρ2t+1

2aσ2
a

−
(pe,Peeri,h,t+1 − pt+1)

2

2aσ2
a

.(34)

It follows that the performance of the quantity-biased demand (30) is equal to a constant

term minus MSE of the forecast-biased heuristics (13). Therefore, in practice the two models:

in which the peer effect bias appears in the price forecast or directly in the demand, are

equivalent, if one properly chooses the sensitivity parametrization of the logit transformation.

D Definition of network properties

Consider I agents, who are placed within an unweighted, symmetric and a-transitive network

of friends I. First recall that degree between two agents is defined as the shortest path

(sequence of linked agents) between them. The following measures are commonly used to

describe the architecture of the network I:

Number of clusters I define cluster as a subset of the network such that (1) all the agents in

the cluster are pairwise connected (there exists a path of a finite degree between them)

and (2) none of the agent is connected with any agent that does not belong to the cluster.

In some of the analyzed networks, the agents form ‘non-trivial’ subsets such that there

is no link between them. On the other hand, these agents will still interact indirectly,

through the market clearing price. Diameter Also denoted as the characteristic degree
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or the longest path, simply measures what is the longest path between nodes in the

network.28

Closeness This measure is typically set as the average degree: how far away agents are on

average. The drawback of the average path length is that it cannot properly cope with

networks of disconnected clusters, and hence I will follow suggestion of Newman (2003)

and use the closeness measure instead. First recall that the network is anti-reflexive,

or that we disregard whether an agent is linked with herself or not. Instead, we are

interested in what is the typical distance between the agent and the remaining I − 1

agents. Thus define

(35) Cl =
1

0.5I(I − 1)

I−1∑
i=1

I∑
j=i+1

d−1ij ,

where d−1ij is the inverse of the shortest path length (degree) between agents i and j,

or 0 if these two agents are not connected. The closeness measure Cl is an index with

a straightforward interpretation: if all the agents are connected (disconnected), Cl = 1

(Cl = 0).

Density Denote the number of links between the agents as E. Density is defined as

(36) DE =
E

0.5I(I − 1)
,

which is simply the ratio of realized to potential links: how dense the network is.

Transitivity Often described as ‘cliquishness’ or clustering, shows whether the nodes in the

network form triangles (‘cliques’): friends of my friends are also friends of mine. Among

many formal definitions of this measure, I follow Watts and Strogatz (1998) and specify

transitivity as computationally efficient index of the form

(37) Tr =
1

I

I∑
i=1

number of triangles connected to vertex i

number of triples centered on vertex i
.

If the agents are always (never) connected with the friends of their friends, Tr = 1

(Tr = 0).29

Notice that (37) is a local, not a global measure. It shows how close are friends of friends,

but not whether the network can be divided into significantly differentiated clusters of

‘sub-networks’. In order to avoid confusion I decided to adopt the name ‘transitivity’

instead of the widely used ‘clustering’.

28Sometimes unconnected nodes are said to have path equal to infinity. I will define diameter disregarding
such unconnected nodes.

29Notice that if a vertex i is not a center of any triple, it cannot be a part of a triangle either. In such a
case, the element in the sum would be a ratio of zero to zero. Instead, it is simply defined as zero.

44



1

4

14

15

37

43

49

2
8

32

35

41

46

48

3

25

47

10

27

30

50

5 17

26

6

28
7

11

36

23

9

45

22
34

44

18

39

42

12

13

31

19
16

20

21

33

24
38

40

29

(a) 50 agents

1

27

51

53

60

82

98
2

28

36

69

84

87

3

12

65

86

4

35

73

97

100

5

18

77

6

40

74

96

99

7
11

83

85

8

21

9

49

59

10

44

50

55

64

7245

13

14

19

33 38

48

66

80

26

68

75

15

88

95

16

17

57

20

94

30

78

22

23

34

91

24

32

54

25

62

92

93

29

43

31
58

52

79

89

37

41

46

39

42

61

70

90

47

56

67

76

63

71

81

(b) 100 agents

1

42

57

62

70 104

120

215

235

2

11

3 113

158

4

10

87

229

5

27

41

137

246

6

150161

218

232

7

46

110

142

143

244

8

55

75

186

240

9

36

59

2166

96

181

225
238

20

61

95

237

12

187207
209

13

45

127

230

14

33

202

15

39

192

211

16

51

172

179

17

100

18
67

117

124
155

19

47

50

171

176

25

80

116

212
23

90

98

122

174 222
250

22

32

105

126

165

198

24

109

92

132

234

26

93

243

72

194

28

48

220

29

128

130

152

30

193

31

49

102

148

201

217
65

107

3469

114

35

94

166

73

153

233

37

54

89

239

38
183

221

226

40

157

83

106

160

43

81

44

71

97

144

147

112

140

177

190

60

74

85

101

173

248

145

197

52

53

185

196

188

56 136159

58

199

99

125

119

182

63

214

64

123

68

77

203

79

163

223

121

149

76

164

78

111

180

224

88

82
84

134

168

86

184

115

156

91

108

178

189

228

216

191

103

210

135

162

133
118

219

206

175

138

129

131

154

227

249

236

213

139

141

242

146

170

151

231

245

167

169

205

200

204

195

208

241

247

(c) 250 agents

143

81

264

342

451

493

2

151

427

3

32

152

252
261

432

4

18

91

106

156

334

5

172

250

269

6

20

143

177
202

329456

7

203
231 414

8

54

178

497

9

380

10

37

161

418

11

12

26

69

119
416

201

346

13

349

437

488

14

136

311

337

344

15

55

134

183

254

343

387

438

16

100 138

17

25
129

287

313

90

132

324

489

19

148

164
219

227

319

386

459 70

160
298

331

433

21

281

495

22

31

23

496

24

228

408

53

72

318 62

347

27 262
395

423

28

96

113

180

240

29

116
159

336
464

30 121

124

167

207

248

325

191

33

125

461

34 339

431

483

35
45

133

36

246

68

85

286

38
199

405

39

59

235

40

75
317

345

41

137

277

42 58

109

67

135

370

44

222353

144

175

326

46

47162

232

270

413

445

48

237

453

49

425

473

492

50

304

441

51

120

52

114

421

500

99

242

364 170

154

283

474

475

486

56198

221
57

102

112

446

481

253

356

155

391

60

153

389

457

61

204

176

268

358

388

63

101

224

308

327

64

260

482

65

94

320

66

394

168

487

71

348

274

463

73

407

434

491

74

110

76

186

374

77

266

365 78

79

150

435

80

468

415

462

469

82

247

83

84

402

480

322

86

141

225

87

147

302

88

146

239

89

397

275
294

447

363

92

157

307

312

314

46093

208

174

95

200

430

97

216

305
355

98

499

443

484

181

400

293

362

429

103

111
271

333

104 158

165

169

367

485

105

255

282

328

442

107

122

209

108

276

256

126

140

279

419

212

115

354

384

117

128

245

359

118

130

243

420

476

123

171

127
351

211

272

301

448

205
278

404

131
236

478

193

428

316

197

139

288

467

455

142

217

392

439

145

244

230

335

149

226

369

399

379

398

411

477

372

450

263

382

338

452

390

163

229

375

166

393

371

173

340

296

220 188

179

292

376

182

184

265

471

185

187

189

454

190

192

403

280426

194

210

289

195

196

383
412

494

330
215

273

290

323

401
206

285

213

472

214

315

378
218

295

234

300

223

297
361

479

306

258

259

332
233
303

238
357

241

417

444

249

251

498

299

257

366

267

470

310

406

410

321

381

284

291

436

466

309

449

368

373

458

341

409

350352

385

360

377

396

465

490422

424

440

(d) 500 agents

1

362

667

2

457

643

690

3

50

659

739 4

472

504

837

5

135

209

718

6

294

320

477

800

921

7

149

413

510

689

731

826

973

979

8

185

823

9
460

521

715

880

10

12
777

11

519

605

764

904

56

298 421

615

735

853

894

13

68226

501

888

14168

240

832

968

15

416

838

881

928

16

193

222

280

355

399

817

825

903

17

376

434

579

703

862

988

18

860

19

940

996

20

446

476

487

21

406

604

22

32423

306

462

533

562

680

748

749

785
990

24

314

25

276

445

952

26

356

755

27

207

494

859

28

397

687

775

29 379

639

810

915

978

30

159

621 918

954

31

423
651

32

42

531

33
66

696

34

190

254

500

961

997

35

200

232
328

583
36

153

480

786

37

101

341

374

730

867

38

382

473

848

39

542

695
798

40
88

126

365

809

41

181

247

750

797

868

871
923

61

97

203

415

575

821

842

43

418

44

49

146

202

454

557

45

147

770

899

46

133

47

950

48

681

942

194

529
648

843

267

433

509

811

846

51
210

983

52498

566

645792 53
675

721

782

965

54
409

882

55

676

169

684

57

238

594

58

152

440

710

955

59
60

121

67

322

325

346

835
855

926

350

490
569

623693

62

92

63

352

900

64

359

527

708

802

822

65

422

629

728
783

173

757

793

505

543

780

861

277

834

69

650

70

148

220

578

697

740

851

858

71

637

670

876

72

151

451

466

73

827

74

81

75

302

392

478

945
76

610

624

77

683

78

668

79

865898

80

329

331

760

943

351

400

459

82

296

83

224

84

85

163

211

321

600

86

160

257

805

854

87
801

288

1000

89

336

758

844

90

192

481

573

91

234

877
964

201

93

94

95

128

596

795

96

275

368

384

274

636

98

431

635

99

140

437

512

100

104

751

995

239

343

102

663

734

779

907

103

158

455

646

105

215

516

959

106

109
230

745

107

263

458
567

108

338
345

491

641

771

183

311

110

206

358

453

502

526

669

111

157

177

456

539
912

930

112

219

911

113

572

886

114

261
541

829

115

282

398

116

552

117
119

129

910

118

204

471

845

885

236

386
666

120
176

449

474

807

831

122

123

436

890

124
919

125

235

375

523

686

905

127

283

488

638

707

395

644

130

131

402

570

132

461

134

407

588908

171

969 999

136

289

772

137

138

175

432

139

586

630

936

141

142

378

598

980

143

565

590

144

145
508

850

499

265

279

685

262
553

723

150334

243

576909

729

182

794
840

154

396

426

694

824

155366

532

655

688

156
310

315

977

208

394

742

503

161

580

672

162

237

292

447

164

165

166

762

167

875

496
626

982

170

189

492

281

932

172

974

442

608

736

947

174

258
300

633

295
790

622

560

756

178

601

179

674

180

199

348

493

766

216724

981

467

184

186

577

692

187

188

654

660

763

767

769

661

970

191

228

303

435

873

984

665

815

255

828

195597

196
229

424

620

804

820

953

197
713 753

920

198372

555

872

613

361

593617

673

972

205

536524

678

917

212

244

333

773

957

778

233

540

357

213

627

214
290

304

323

933 963

246

371

245
489

515

217

725

895

218

388

221

747

830

373

223

538
857

225227

403
420

642

705

896

408

427
544

717

231
647

307

385

259

677

369

417

652

716

632

864

592

931

241

463

242

297

405

879

985

671

248

367

581

249

250

870
251

381

252

897

253

561

649

852

625

966

256

941

934

260

656

714

370

264
869

935

266

318

419
709

720

268

269

291

270

299

962

271486
679

272

273

916

278
339

607

284

525 285

286

287

497347

698

599

293

902

616

726

308

960

574

301

309

305

609

441

340

759

312

737

313

711 611

956

937

316

816

317

554

634

803

727

319

354

925

548

849

326 439
602

327
507

986

438
765

330

332

619

335

337

701

618 946

342

412

344

389

768

813

349

991
833

353

682

704

360

401

612

363

364

628

994

789

892

741

537

938

949506

891

967

377
585

380

887

906

799

383

410

787

387

495

390

874

391

784

929

393464

484

514

551

404

699

658

987

530

411

429

856

414

712

606

781

425

975

428

841

430

520

691

806

640

836

443

444

700

448

450

847

922

452

744

558

776

791 465

475

992

468

469

470

743

589

479

482

483

485

584

878

550

812

595

518

706

939

511

913

513

517

587

547
839

522

989

528

951

761

591

534

535

901

545

546

738

549

733

556

559

614

664

563

564

889

796

568

571
814

582

722

603

958

653

863

993

976

631

927

657

662

788

808

702

819

944

719

754

732

883

746

752

774

884924

818

914

971

866

948

893998

(e) 1000 agents

Network size Clusters Diameter Closeness Density Transitivity

50 agents 2 6 0.3847 0.08 0.08219
100 agents 3 8 0.3205 0.04 0.04183
250 agents 5 9 0.2637 0.016 0.01632
500 agents 10 10 0.2282 0.008 0.009678
1000 agents 18 12 0.2027 0.004 0.003791

(f) Network properties

Figure 18: Realized random(4) networks.
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Figure 19: Realized random(16) networks.
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Figure 20: Realized rewired(4, 0.01) networks.
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Figure 21: Realized rewired(4, 0.1) networks.
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Figure 22: Realized rewired(16, 0.01) networks.
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Network size Clusters Diameter Closeness Density Transitivity

50 agents 1 3 0.6461 0.3265 0.5587
100 agents 1 4 0.5194 0.1616 0.5242
250 agents 1 4 0.4091 0.06426 0.5133
500 agents 1 5 0.3493 0.03206 0.5125
1000 agents 1 5 0.3053 0.01602 0.5123

(f) Network properties

Figure 23: Realized rewired(16, 0.1) networks.

50


	Introduction
	Theoretical model
	Market
	Network
	Fundamental solution benchmark
	Experimental and Genetic Algorithms benchmark
	Price expectations and learning
	Coordination versus herding

	Monte Carlo studies
	Parametrization of the model
	Initialization
	Small networks of six agents
	Large networks

	Networks of six agents
	Benchmark model without network
	Contrarian strategies induced by networks
	Learning in asymmetric networks
	Profits and utility

	Large networks
	Impact of the network on price stability
	Impact of the network on individual behavior

	Conclusions
	References
	Rational solution
	Proof of Lemma 1
	Equivalence of forecasting and trading peer bias.
	Definition of network properties
	Large networks characteristics

