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Abstract

We set up a laboratory experiment within the overlapping-generations model
of Grandmont (1985). Under perfect foresight this model displays in�nitely many
equilibria: a steady state, periodic as well as chaotic equilibria. Moreover, there
exists some learning theory predicting convergence to each of these equilibria. We
use experimental evidence as an equilibrium selection device in this complex OLG
economy, and investigate on which outcomes subjects most likely coordinate. We
use two alternative experimental designs: learning-to-forecast, in which subjects
predict the future price of the good, and learning-to-optimize, in which subjects
make savings decision. We �nd that coordination on a steady state or 2-cycle are
the only outcomes in this complex environment. In the learning-to-forecast design,
coordination on a 2-cycle occurs frequently, even in the chaotic parameter range.
Simulations of a behavioral heuristic switching model result in initial coordination
on a simple AR(1) rule though sample autocorrelation learning, with subsequent
coordination on a simple second-order adaptive rule once the up-and-down pattern
of prices has been learned.
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1 Introduction

A well-known concern among theorists is that (macro)economic rational expectation models are

prone to indeterminacy. These models may possess multiple long-run equilibria, some of which

may involve sub-optimal outcomes or volatility in real variables that are undesirable from the

point of view of policy makers aiming at stabilizing aggregate �uctuations. Selecting among

those equilibria is then a critical issue in the model and for policy design.

From a theoretical point of view, adaptive learning has been frequently advocated as an

equilibrium selection device. The main idea of this literature is that agents are not endowed

with rational expectations beforehand, but rational expectations may be viewed as the long run

outcome of some adaptive learning process. Only equilibria that emerge as a long-run outcome

of the adaptive learning process are then regarded as plausible (see Evans & Honkapohja (2001)

for a comprehensive discussion).

A problem with the theory of adaptive learning is that "anything goes", that is any equi-

librium may be stable under some suitable form of adaptive learning. For example, in an OLG

economy with in�nitely many periodic equilibria, any equilibrium cycle can be learned provided

that the adaptive rule of agents is consistent with the periodicity of the cycle (Grandmont 1985,

Guesnerie & Woodford 1991, Evans & Honkapohja 1995). In a similar set-up, Woodford (1990)'s

learning-to-believe in sunspots shows that a suitable adaptive learning rule may lead to con-

vergence to a sunspot equilibrium with probability one. The goal of our paper is to design

laboratory experiments as an empirical test for equilibrium selection and stability under learning

in a complex environment.

Laboratory experiments with human subjects constitute a promising way of empirically test-

ing the learning predictions, and determining which rules agents are likely to adopt. Experimental

evidence can then also serve as an equilibrium selection device in case of indeterminacy in eco-

nomic models, as in the pioneering experimental work of Marimon et al. (1993), Marimon &

Sunder (1993, 1994). Lucas (1986) already stressed the importance of an experimental approach

in studying expectations and stability of equilibria under learning:

Recent theoretical work is making it increasingly clear that the multiplicity of equi-

libria [...] can arise in a wide variety of situations [...]. All but a few equilibria are, I

believe, behaviorally uninteresting: They do not describe behavior that collections

of adaptively behaving people would ever hit on. I think an appropriate stability

theory can be useful in weeding out these uninteresting equilibria [...]. But to be
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useful, stability theory must be more than simply a fancy way of saying that one does

not want to think about certain equilibria. I prefer to view it as an experimentally

testable hypothesis [...]. (Lucas 1986, pp. S424-S425)

This paper presents such an experimental study within the environment of a complex OLG

economy à la Grandmont (1985). This environment is particularly interesting in regards to

the question of equilibrium selection because it possesses in�nitely many long-run equilibria,

including a steady state, cycles of all periods, and even chaotic dynamics. Cycles are not caused

by exogenous or policy shocks as the OLG model is deterministic. Complicated dynamics arise

as an equilibrium outcome of the model as soon as there is a strong con�ict between substitution

and wealth e�ects of a change in the return on savings, which can be easily tuned by varying the

risk aversion parameter of the utility function in the model. This model has been extensively

studied in the learning literature. All these equilibria are stable under adaptive learning if

agents use a suitable rule that is consistent with their periodicity (Grandmont 1985, Guesnerie &

Woodford 1991). Interestingly, there are two adaptive learning theories that predict only simple

outcomes in this complex OLG environment. Evolutionary genetic algorithms (GA) learning

only selects forecasting rules that are consistent with the steady state or the 2-cycle (Bullard

& Du�y 1998). Hommes et al. (2013) reach similar conclusions when agents forecast prices by

sample autocorrelation learning, where agents learn a simple but optimal AR(1) rule with correct

sample average and sample autocorrelation (cf. Hommes & Zhu (2014)).

We design several experimental treatments and formulate two hypotheses. The �rst hypoth-

esis states that coordination on simple equilibria (for instance a steady state or a two-cycle) is

more likely to emerge than coordination on more complicated equilibria. We therefore consider

di�erent treatments with increasingly complicated dynamics. The second hypothesis postulates

that the ability to coordinate also depends on the experimental task. Previous experiments show

that when agents have to directly submit quantity decisions, the experimental economies display

more variability and coordination of subjects' strategies is more challenging than when subjects

have to make forecasts, see e.g. Bao et al. (2013, 2016). We therefore consider two designs, a

learning-to-forecast (LtF) design, where subjects only forecast the price and the optimal savings

decision is computed based on their forecasts, and a learning-to-optimize (LtO) design, where

subjects make directly savings decisions. The second hypothesis is that coordination may arise

on simpler equilibria when subjects have to optimize than when they have to forecast.

Our results may be summarized as follows. First, we always observe coordination on either
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the monetary steady state or the 2-cycle, but never on any higher-order cycle. Our experiment

is the �rst in which coordination of expectations of a group of subjects on a 2-cycle equilibrium

arises (see the discussion of related work by Marimon et al. (1993) below). Second, the more

"unstable" the steady state, the more likely the coordination on the 2-cycle in the LtFE, even

if the 2-cycle is unstable in the backward perfect foresight dynamics. This coordination arises

spontaneously in the experiment. We obtain both aggregate convergence of price values and

individual coordination of price forecasts on the steady state or the 2-cycle, possibly after a long

transition. These outcomes are predicted by the weak E-stability criterion: only if the forecasting

rule of the agents is exactly consistent with a steady state or a 2-cycle, these outcomes may

be achieved under adaptive learning. However, this result is not robust to misspeci�cation or

overparametrisation of the forecasting rule. Hence, our result suggest that subjects make use

of �rst or second order behavioral rules, but do not use higher order rules. By contrast, in the

LtOE, subjects spontaneously coordinate on the monetary steady state, even if it is unstable

under adaptive learning. They do so with more heterogeneity in the savings decisions, and

aggregate price dynamics displays more volatility than under the LtFE. However, if subjects

are "trained" at the beginning of the experiment with a �ctitious group of players who are

coordinated on the 2-cycle, we may observe convergence to a "noisy" or "attenuated" 2-cycle.

This suggests that subjects tend to select simpler equilibria (a steady state rather than a 2-cycle)

as a coordination device when the sophistication of their task increases.

Related literature A large number of experimental studies have explored the question of

equilibrium selection in static or repeated games, see e.g. Camerer (2003) for a survey. We discuss

here two contributions that are closely related to our experimental study, but with important

di�erences. Van Huyck et al. (1994) investigate the question of equilibrium selection in an

experiment within a coordination game with two e�cient Nash equilibria. The myopic best

response dynamics coincide with the chaotic quadratic map, while the interior equilibrium is

stable under adaptive learning (if the gain is small enough). In all their experimental sessions,

subjects coordinate on the interior solution, in line with the prediction of adaptive learning.

An important di�erence with our experimental environment is that our set-up has in�nitely

many perfect foresight periodic cycles that arise as equilibrium outcomes of the model, without

imposing a priori an expectation rule, and these cycles can be stable under adaptive learning.

By contrast, in Van Huyck et al. (1994), the chaotic dynamics is not an equilibrium of the

coordination game, but results from the assumption of myopic best response behavior. The
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authors do not address the question whether or how subjects may coordinate on the best response,

which seems especially di�cult since it involves complicated dynamics. In our complex OLG

environment, we are interested which of those many periodic equilibria, if any, subjects may

coordinate on. The second closely related contribution is the work by Marimon et al. (1993),

which have been the �rst (and, to the best of our knowledge, so far the only one) to observe, to

some extent, coordination on two-cycle type of dynamics in a laboratory experiment. They use a

design similar to our LtFE, but there are several major di�erences with respect to our framework

and our results. First, they consider an OLG environment in which only a steady state, a two

period cycle and two state sunspot equilibria exist, while our model involves in�nitely many

periodic and chaotic equilibria, making our equilibrium selection problem more complex. Second,

they employ a three group design, in which each generation is renewed from a pool of subjects.

We use a single group design, so that the resulting course of events in the experiment is the same

as in the adaptive learning literature, especially the seminal contribution of Grandmont (1985).

Most importantly, Marimon et al. impose real shocks to the OLG economy by cyclically varying

the number of subjects in each generation between a high and a low number in phase with the

color of a blinking square on subjects' computer screens. This generates temporary "attenuated"

2-cycle oscillations driven by these exogenous shocks. However, these oscillations dampen out

once the exogenous shocks to the generation size were turned o�.1 Hence, Marimon et al. �nd

no evidence of 2-cycles arising spontaneously. In our LtFE, subjects spontaneously select the

2-cycle as a coordination device in an OLG economy where many more complex equilibria exist.

The rest of the paper is organized as follows. Section 2 introduces the OLG model of the

experiment, and discusses its properties and learning dynamics. Section 3 details and motivates

the experimental design and the hypotheses, while Section 4 presents the experimental results.

Section 5 discusses a behavioral model explaining our experimental data, and Section 6 concludes.

2 The model

2.1 The underlying OLG economy

The underlying model of the experiment is a deterministic OLG economy à la Grandmont (1985).

This is an exchange economy with a single perishable consumption good and constant population.

In each period t, a continuum (of measure 1) of identical agents is born and lives for two periods,

1See the �ve economies in Marimon et al. (1993, Figure 3, p. 89).
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so that, in each period, two generations coexist: the young and the old generations. Individuals

receive an endowment e1 > 0 of the consumption good when young, and 0 < e2 < 1 when old.

Young individuals can save part of their �rst-period endowment by selling to the old individuals

a quantity st ∈ (0, e1] of the good at the market-clearing price Pt, and holding the corresponding

(non-negative) money balances, denoted by mt = ptst. The aggregate quantity of money supply

in the economy is held constant, and endogenously set to M > 0. Once old, in the next period

(t+ 1), any individual purchases back goods from the young generation using all his savings at

the market-clearing price, denoted Pt+1.

Formally, at any arbitrary period, a young individual chooses his current consumption, de-

noted by ct (conversely his real money balances st), to maximize his two-period expected utility

function, denoted by U(ct, c
e
t+1), subject to his current (when young) and expected (when old)

budget constraints: 
ct ≤ e1 − st

cet+1 ≤ e2 + Pt
P e
t+1
st,

(1)

where Ret+1 ≡ Pt
P e
t+1

corresponds to the expected gross return on savings.

2.2 De�nition of a perfect foresight equilibrium

We follow Grandmont (1985) and assume a separable utility function, i.e. U(ct, ct+1) = V1(ct) +

V2(ct+1), with the functions V1,2(·) being continuous, strictly increasing and concave on [0,+∞),

twice continuously di�erentiable on (0,+∞), with limc→0 V
′(c) = +∞. These properties together

with the compactness of the budget constraints ensure that the maximization problem of the

young individuals has a unique solution. The �rst order condition can be expressed as:

V
′
1 (ct)Pt+1 = V

′
2 (ct+1)Pt (2)

or equivalently, in terms of real money balances:

V
′
1 (e1 − st)st = st+1V

′
2 (st+1 + e2). (3)

Once the optimal savings and consumption decisions are determined, it is possible to de�ne a

perfect foresight equilibrium sequence of prices (or equivalently of real money balances) using
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market clearing condition in the money and the good markets:

mt = M , st =
M

Pt
and st+1 =

Pt
Pt+1

st ∀t (4)

At this stage, it is convenient to de�ne functions v1(s) = sV
′
1 (e1 − s), that maps [0, e1) onto

[0,+∞), and v2(s) = sV
′
2 (e2 + s) that maps [0,+∞) into itself. v1(.) is strictly increasing,

so that v−11 (.) exists. The dynamics of s under perfect foresight can then be described by the

continuous map χ = v−11 ◦ v2. The graph of χ is called the o�er curve, de�ned as the locus of

points representing optimal consumption when young and when old (ct, ct+1) when the return

on savings Rt+1 varies. Equivalently, the dynamics of the model can be expressed in terms of

prices by a continuous map, denoted by G:

Pt = G(P et+1) =
M

χ(M/P et+1)
. (5)

The maps G and χ are topologically equivalent, i.e. describing the dynamics of the model in

terms of prices or savings is equivalent.

A perfect foresight (periodic) equilibrium is a (periodic) sequence of prices that is a solution

of (5) with P et+1 = Pt+1. A perfect foresight steady state is a �xed point P̄ of the map G, so that

P̄ = G(P̄ ). A periodic perfect foresight equilibrium of period k (k being the smallest integer

greater than one satisfying this) is a sequence of k prices {P1, P2, ..., Pk} (or orbit), such that

Pj = Gk(Pj), j = 1, ..., k, where Gk denotes the kth iterate of the map G.

2.3 Existence of perfect foresight equilibria

There are at most two steady states in the model (Gale 1973): one monetary steady state

where real money balances are strictly positive, and the sequence of the returns on savings

equals unity, and one non-monetary steady state where aggregate savings is zero and individuals

consume their endowment every period. In his seminal paper, Grandmont (1985) shows that

this economy may possess in�nitely many perfect foresight equilibria when the income e�ect of

a change in the return on savings R is su�ciently strong, as an increase in R has an ambivalent

e�ect on consumption when young. These equilibria include periodic equilibria of any period

and in�nitely many chaotic equilibria.2

2Azariadis & Guesnerie (1986) show that if the model has an equilibrium cycle, it also has many
sunspot equilibria, on which expectations may coordinate.
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In our lab experiments, we use CRRA utility functions, as often in the related literature:

V (c1) =
c1−ρ11

1− ρ1
, V (c2) =

c1−ρ22

1− ρ2
, (6)

where we further assume 0 < ρ1 < 1 and ρ2 > 0. Parameters ρ1 and ρ2 measure the degree of

relative risk aversion of the young and the old individuals, and play a critical role in the long-run

dynamics of the economy. Given the characteristics of the model and the further assumption that

e1 + e2 > 1/e2, Grandmont (1985, Corollary to Proposition 4.4, p. 1023) shows that complex

dynamics arise as a long-run outcome of the model as soon as ρ2 is high enough. When ρ2 ≤ 1,

substitution e�ects dominate, the o�er curve is monotonic for all consumption values, and the

dynamics always converge to the unique monetary steady state. When ρ2 > 1, the o�er curve

becomes non-monotonic. As ρ2 increases, the o�er curve becomes more and more humpy, the

long-run price dynamics becomes increasingly complicated, after an in�nite cascade of period-

doubling bifurcations. For values of ρ2 su�ciently high, the map has in�nitely many periodic as

well as chaotic perfect foresight equilibria, together with the monetary steady state.

2.4 Stability of perfect foresight equilibria under learning

Grandmont (1985) distinguishes between the forward perfect foresight dynamics (when the map

G in (5) is de�ned with P et+1 = Pt+1) and the backward perfect foresight dynamics (when P et+1 =

Pt−1 in (5)).3 Equilibria that are (locally) unstable in the forward perfect foresight dynamics are

(locally) stable in the backward perfect foresight dynamics. However, those two dynamics are

largely theoretical outcomes, as forward perfect foresight dynamics can be regarded as the long-

run outcome of some learning process, and backward dynamics is �ctitious (time goes backward).4

Grandmont (1985) advocates an expectation formation process that is based on past prices (akin

to econometric learning), together with mild assumptions on the expectation function, and proves

that an equilibrium which is stable in the backward perfect foresight dynamics is stable in the

forward dynamics with learning. Provided that the memory of past prices in the expectation

function is consistent with the periodicity of such a cycle, any cycle can be learned under adaptive

learning.

For later use, we summarize the stability conditions obtained in the literature under di�erent

3The forward dynamics may not be globally well-de�ned. Gardini et al. (2009) characterize the forward
perfect foresight equilibria as iterated function systems with fractal attractors.

4Another interpretation of the backward perfect foresight dynamics is that agents have naive expec-
tations.
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learning schemes consistent with periodic equilibria, and how they relate to each other. Any

period k-cycle {P ∗1 , ..., P ∗k } (k ≥ 1) of the map G is stable under backward perfect foresight if and

only if | DGk(P ∗k ) |=|
∏k
i=1DG(P ∗i ) |< 1, where DGk is the derivative of the k-th iterate of G.

This condition corresponds to the determinacy condition of any cycle under perfect foresight (see

e.g. Guesnerie & Woodford (1991)). This condition is also equivalent to the strong E-stability

condition under recursive learning of Evans & Honkapohja (1995, Proposition 3, p. 197), de�ned

as a stability criterion which is robust to over-parametrization of the forecasting rules of agents.

If an equilibrium is stable only when the forecasting rule of the agents is exactly consistent with

its periodicity, it is said to be weakly E-stable. The weak E-stability criterion is less stringent,

and requires DGk(P ∗k ) < 1 for k ≤ 2, and − cos(π/k)−k < DGk(P ∗k ) < 1 for k > 2. When

k → +∞, this condition is equivalent to strong E-stability.

Guesnerie & Woodford (1991) consider a period-k adaptive expectation scheme with a con-

stant parameter 0 < w < 1:

pet+1 = wpt+1−k + (1− w)pet+1−k (7)

which is consistent with a period k ≥ 1 equilibrium, and reduces to the backward perfect foresight

dynamics when w = 1 and k = 2. The strong E-stability is a su�cient condition for stability

under adaptive expectations. The necessary and su�cient condition for stability is a complicated

function of k and w which cannot be solved in closed form for k > 2, but reduces to weak E-

stability when w → 0, and to strong E-stability when w → 1. Moreover, when k = 1, a steady

state P ∗ is stable under adaptive expectations if and only if DG(P ∗) < 1 or DG(P ∗) > 2−w
w .

When k = 2, the stability condition of a 2-cycle becomes − (2−w)2
w < DG2(P ∗1,2) < 1. If we

note d ≡ DG2(P ∗1,2), a 2-cycle is stable under the rule (7) if and only if i) w ∈ (0, w), where

w =
4−d−
√
d(d−8)

2 , if d ≤ −1, ii) is always stable if d ∈ (−1, 1).

Figure 1 reproduces the bifurcation diagram of the backward perfect foresight dynamics in

Grandmont (1985, p. 1030) using the parametrization: e1 = 2, e2 = 0.5, ρ1 = 0.5, that we

also use in the experiments. The long run outcomes of the model are displayed in terms of real

money balances (y-axis) for any value of ρ2 > 2 (x-axis). Under this calibration, Grandmont

(1985, Lemma 4.6, p.1026) shows that there is at most one periodic equilibrium, say of period

k, that is stable in the backward perfect foresight dynamics for each ρ2 value. As long as the

forecasting rules of the agents are consistent with the k−periodicity of this equilibrium, it is

equivalently stable in the forward dynamics under learning, and it follows that it is strongly E-
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stable under recursive learning. All other equilibria that may co-exist are either weakly E-stable

or E-unstable, but (locally) stable in the forward perfect foresight dynamics. In particular, when

there is a cycle of period 3, it is well-known that cycles of any periodicity co-exist with the period

3 cycle as equilibrium solutions of the system. This happens e.g. for values of ρ2 beyond 13.

Figure 1: Bifurcation diagram under backward perfect foresights dynamics in Grandmont
(1985, p. 1030). The red vertical lines indicate the �ve di�erent ρ2 values run in the
experiments (see Section 3).

At least two other learning mechanisms have been applied to this speci�c OLG economy,

and predict di�erent outcomes from the ones under adaptive learning. Bullard & Du�y (1998)

use an heterogeneous agent version of this model, with two populations, in which agents forecast

using evolutionary learning. A genetic algorithm (GA) encodes the lag in the past price series

to be chosen to form the next period's price forecast, so that their algorithm can in principle

learn higher order cycles. They conduct numerical simulations of the OLG economy under the

same range of ρ2 values as in Figure 1. The model displays in�nitely many equilibria, including

many cycles of di�erent periods. However, they only observe two outcomes under GA learning:

convergence to the monetary steady state or to the two-cycle when it exists, i.e. for values of ρ2

roughly higher than 4.5 This result suggests that learning agents tend to coordinate on simple

equilibria.

Hommes et al. (2013) apply the so-called Sample-AutoCorrelation (SAC) learning (Hommes

& Zhu 2014) to this OLG economy with ρ2 = 12, i.e. when the dynamics in the backward

5They also �nd one 4-period cycle for one simulation at a speci�c value of ρ2, as well as two cases of
non-convergence.
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perfect foresight is chaotic. SAC learning assumes that boundedly rational agents make use of

a parsimonious linear AR(1) forecasting rule, and update the two parameter values using the

observed sample average and �rst order autocorrelation of past prices. SAC-learning also only

selects simple equilibria � steady state or a noisy two-cycle � in this complex environment.6

We design an experiment to test which theories of learning outcomes are empirically relevant

in this complex OLG environment.

3 Experimental design

The experiment is a single-group design and a within-session randomization. At the beginning

of every experimental session, participants are divided into groups of N = 6 subjects, and each

group represents an experimental economy. Each experimental economy is governed by the OLG

model described in Section 2. In the single group design, each participant repeatedly plays the

role of a professional advisor bureau to one young individual for T periods (see Heemeijer et al.

(2012) for a similar OLG design). As the role of the old individuals in the OLG framework is

essentially passive (they just consume the amount of goods that their savings can buy), they do

not make any strategic decision, and subjects do not need to advise them. This single group

design is in line with the learning literature in this framework, e.g. as considered in Grandmont

(1985) and the references to the adaptive learning literature previously cited, and thus forms a

natural empirical test for learning in an OLG framework.

We consider two di�erent experimental designs, learning-to-forecast (LtF) and learning-to-

optimize (LtO), where subjects have to perform di�erent tasks, either to submit price forecasts

or savings decisions. These di�erent designs have been introduced by Marimon et al. (1993).

3.1 The Learning-to-Forecast Experiment (LtFE)

In the LtF design, subjects provide a forecast of the future price of the consumption good

to the members of the young generation, who then use the forecast to optimally decide upon

their savings. Subjects have to form two-period ahead forecasts: at the beginning of every

period/generation t, each subject i = 1, ..., N has to submit a forecast of the price P ei,t(t + 1)

in the next period t + 1. We assume that every member of the young generation then makes

6Along a 2-cycle (p1, p2), SAC-learning parameters (αt, βt) converge to α∗ = p1+p2

2 and β∗ = −1.
Hommes et al. (2013) consider a stochastic model and refer to a " noisy two-cycle" when the �rst order
autocorrelation of prices converges to a value close to −1.
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the optimal savings decision, conditional on the forecast he receives from his advisor. Formally,

using the CRRA utility functions (6), and combining the �rst order condition (2) with the budget

constraint (1), the optimal consumption of any young individual i, denoted by ci,t (or conversely

his real money balance e1 − ci,t) is implicitly de�ned by:

ci,t + c
(ρ1/ρ2)
i,t

P ei,t(t+ 1)

Pt

[(ρ2−1)/ρ2]

= e1 + e2
P ei,t(t+ 1)

Pt
(8)

where the market clearing price at time t is given by Pt = M∑N
i=1 si,t

= M
Ne1−

∑N
i=1 ci,t

.

Sequence of events In each generation t, once the N price forecasts have been submitted

by the subjects, the corresponding level of consumption and savings of each individual, together

with the market clearing price Pt, are numerically solved for (as condition (8) does not allow

for a closed-form solution of the optimal individual consumption levels), and displayed to the

subjects. The experimental economy then goes to the next generation t + 1, etc. Note that for

the �rst period, subjects have to submit two price forecasts, for the current period 1 and the

next period 2, before the �rst market clearing price P1 can be computed.

Payo� Subjects earn points as a function of their forecast errors. The lower their forecast

error, the higher their payo�. We use the quadratic payo� function, as in Bao et al. (2016) :

max

(
1300− 1300

49

(
P ei,t(t+ 1)− Pt+1

)2
, 0

)
(9)

in which the payo� is maximal and equal to 1300 points in case of perfect prediction, and equals

zero if the prediction error is higher than 7. Note that the timing of the payo� is two-period

ahead, as subjects only observe the realized price and their forecast error at the end of the next

period. A payo� table that shows the pay-o� value for a grid of forecast errors was provided in

the instructions.

This LtF design has been �rst introduced in the OLG experiments of Marimon et al. (1993).

It allows us to focus entirely on the expectation formation process of subjects, and to assess

which expectation model may describe the forecasts data observed in the lab, and explain the

resulting price dynamics.
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3.2 The Learning-to-Optimize Experiment (LtOE)

In the second design � a so-called Learning-to-Optimize experiment (LtOE), see e.g. Bao et al.

(2013, 2016), we drop the assumption of optimal conditional savings decisions, and ask the

subjects to directly submit the savings quantity of a young individual. This savings decision may

be based on his forecast of the return on savings Pt/P
e
t+1, but we do not explicitly elicit return

forecasts from subjects. This is essentially because this design focuses on quantity decisions of

subjects, and we did not want to introduce a more demanding cognitive load, by combining a

forecasting and an optimizing task (see Bao et al. (2016) for more discussion). However, subjects

are instructed (see Appendix E) that they face a two-stage decision process, and they �rst have to

forecast the return on savings, and then choose the corresponding optimal value of savings using

their two-dimensional payo� table (see below). Additionally, visual information (e.g. question

marks in the table on their screen, see Figure 27 in Appendix F) indicates the two-period ahead

nature of the forecast of the return on savings. Quantities that are displayed to the subjects are

also scaled by a factor of 100, so that they make decisions in the interval between 0 and 200,

and not between 0 and 2. This allows an easier interpretation of the savings task.

Sequence of events At any generation t, once every subject i = 1, ..., N has submitted a

savings decision for a member of the young generation, denoted by si,t, the market clearing price

for the consumption good is given by Pt = M∑N
i=1 si,t

, and the experimental economy goes to the

next generation t+ 1, etc.7

Payo� Subjects are rewarded by the realized utility of the young individual over his two-period

life. As in the LtFE, the timing of the payo� of any savings decision is then two-period ahead : a

savings decision made for any member of the young generation in period t is rewarded at the end

of period t+ 1. In order to implement this payo� scheme in the lab, we use two transformations

of the utility function U (with separable utility functions given by (6)). First, in order to rule

7We also initialize the price P0 so that subjects can observe a value of the return on savings right
from period 1, after having submitted their �rst savings decision, i.e. P0

P1
. This is to avoid that subjects

have to submit two savings decisions in a row without seeing the �rst realization of the return on savings.
In this case, pilot sessions indicate that they would have no reason to change their decisions, and the
�rst two realizations of aggregate savings would be similar, and so would the �rst two realizations of
the price. The �rst realization of the return on savings would then be close to one, arti�cially driving
the experimental economies towards the steady state. We chose the initial values P0 (speci�cally 50 for
ρ2 = 3,5 and 10 for ρ2 = 8, see below) i) to be consistent with the initial price ranges given in the LtFE,
and ii) in order for the �rst return to be su�ciently di�erent from unity, but not too extreme, so that
the plots on the subjects' screen remain readable.
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out negative payo�, we apply the following transformation of the utility:

ũ = max (K × (U(ci,t, ci,t+1) + C), 0) (10)

where the parameters K,C > 0 are chosen to keep the values of the payo� function under LtOE

in the same order of magnitude as the ones under LtFE, and to ensure that any equilibrium real

money balances gives rise to a non-zero payo�.8 We use the payo� function (10) for ρ2 = 3, when

the monetary steady state is the only equilibrium solution of the model (see Subsection 3.3).

Additionally, all periodic equilibria in the OLG are Pareto-optimal, but di�er in terms of

intergenerational equity (Grandmont 1985). This means that utility values along cycles, and

especially along the 2-cycle and at the monetary steady state may di�er. In order to be consistent

with the LtF design where subjects' payo� is maximized and the same along perfect foresight

cycles and at the steady state, and to give an equal chance to coordination on the 2-cycle or the

steady state, we apply the following transformation of the payo� function:

û = 1300×
(

ũ

1300

)α
(11)

where the scale parameter 1300 is chosen in consistency with the payo� function under LtFE,

and α is adjusted so that the average payo� along the two cycle is in the same order of magnitude

as the payo� at the steady state.In the case of ρ = 5 and 8 (see Subsection 3.3), the payo� of

any given savings decision st is given by (11).

The instructions given to the subjects include a two-dimensional payo� table that report the

expected payo� of a discrete grid of savings decisions as a function of a range of expected values

of the return on savings (see Appendix E). The optimal savings decisions conditional on each

expected return on savings then correspond to the consumers' o�er curve, and the shape of the

o�er curve is una�ected by the transformations of the utility functions that we have considered.

3.3 Experimental treatments and hypotheses

We adopt the calibration used in Section 2, i.e. e1 = 2, e2 = 0.5, ρ1 = 0.5. We then vary

the parameter ρ2 to de�ne di�erent treatments with increasingly more complicated equilibrium

outcomes9 (see Section 2 and Figure 1).

8See Marimon et al. (1993) for a similar transformation of the utility function.
9The implementation of the OLG model in the lab rules out the possibility of chaotic dynamics, as

price values are rounded to two digits on subjects' screen, and it becomes impossible to construct a
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In the LtFE, we consider �ve treatments: ρ2 = 3, ρ2 = 5, ρ2 = 8, ρ2 = 12 and ρ2 = 13.5

(see Figure 1). Table 1 summarizes the stable outcomes predicted by the learning literature in

each treatment. For ρ2 = 3, the monetary steady state is strongly E-stable, and the map G does

not have any other equilibrium.10 For ρ2 = 5, the map has both a monetary steady state and

a period 2 cycle, that is the only stable outcome under backward perfect foresight and the only

strongly E-stable outcome, while the steady state is weakly stable. For ρ2 = 8, the map G has

no strongly E-stable cycle, the monetary steady state, the 2-cycle and the 4-cycle are the only

weakly E-stable equilibria, while all cycles11 are (locally) stable in the forward perfect foresight

dynamics. For ρ2 = 12 and ρ2 = 13.5, the map G has chaotic dynamics, and in�nitely many

periodic cycles (for all periodicities but three for ρ2 = 12, and including three for ρ2 = 13.5),

and chaotic orbits (together with the monetary steady state). None of the cyclic equilibria are

strongly E-stable or stable in the backward perfect foresight dynamics with ρ2 = 12, while they

are all locally stable under the forward perfect foresight dynamics. With ρ2 = 13.5, the only

strongly E-stable outcome is a period 3 cycle. The stability of the 2-cycle under the adaptive

rule (7) in Treatments ρ2 = 5, ρ2 = 8, ρ2 = 12 and ρ2 = 13.5 depends on the weight w on

past prices. In this economy, cycles of period 2k are created by period doubling bifurcations, so

that the derivative of the second iterate of the map G, DG2(P ∗1,2) at the 2-cycle is negative. In

case of ρ2 = 8, 12 or 13.5, we have DG2(P ∗1,2) < −1, while DG2(P ∗1,2) ∈ (−1, 0) when ρ2 = 5

as the 2-cycle is strongly E-stable. For our calibration, the stability threshold w for adaptive

expectations in (7) are: for ρ2 = 8, w ' 0.8, for ρ2 = 12, w ' 0.61 and for ρ2 = 13.5, w ' 0.57.

We use a non-linear, topologically equivalent transformation of the map G in treatments with

ρ2 = 12 and ρ2 = 13.5. This is because, for su�ciently large ρ2 values, real money balances

become close to the bounds 0 and 2, which produce price values that are too wide to be readable

on the graph and the table of the subjects' screen (see Figure 27 in Appendix F). Therefore,

for ρ2 = 12 and ρ2 = 13.5, we map the subjects' price forecasts into the actual price values as

follows:

p = H(p̃) = 3.5
p̃
8 − 1 or equivalently the inverse p̃ = H−1(p) = 8× ln(p+ 1)

ln(3.5)
(12)

bounded path that never repeats any past value. However, it still leaves room for high order cycles.
10In the lab, price forecasts are bounded, and the autarkic steady state in which agents only consume

their endowment and do not save at all is not feasible. Similarly, in the LtOE, subjects are instructed
to submit a strictly positive savings decision, so that the price level is always de�ned, and the monetary
steady state is the only feasible steady state.

11These cycles have periodicity that is a multiple of 2k after the cascade of period doubling bifurcation.
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ρ2 backward forward strong weak adaptive SAC GA
p.f. p.f. E-stability E-stability expectations learning

Guesnerie & Hommes & Bullard &
Grandmont (1985) Evans & Honkapohja (1995) Woodford (1991) et al. (2013) Du�y (1998)

3 SS none SS SS SS SS i� β = 0 SS
5 2-cycle SS 2-cycle SS SS SS i� β = 0 SS

2-cycle 2-cycle ∀w 2-cycle 2-cycle

8 none 2k-cycles none SS SS SS i� β = 0 SS
2-cycle 2-cycle noisy 2-cycle 2-cycle
4-cycle (if w < 0.8) (β ' −1)

2k-cycles
(if w low enough)

12 none all cycles none SS SS SS i� β = 0 SS
(period 6= 3) 2-cycle 2-cycle noisy 2-cycle 2-cycle

(if w < 0.61) (β ' −1)
any cycle

(period 6= 3,
if w low enough)

13.5 3-cycle all cycles 3-cycle SS SS SS i� β = 0 SS
(period 6= 3) 2-cycle 2-cycle noisy 2-cycle 2-cycle

3-cycle (if w < 0.57) (β ' −1)
any cycle

(if w low enough)

Table 1: Summary of the theoretical learning predictions of stable outcomes in the �ve
treatments. SS stands for the monetary steady state. Stability of any cycle under adaptive
expectations is conditional on agents using an adaptive rule consistent with its periodicity.
Results under GA learning are obtained through numerical simulations. In bold, we
highlight the results in line with our experimental evidence, see Section 4.

with p, p̃ ∈]0,+∞[ the actual value of the price.12

As the map H is one-to-one, G and H are topologically equivalent, and the non-linear

transformation does not a�ect the dynamical properties of the system (in particular, the number

of equilibria and their stability, the slope of any iterate of G and H being the same at any of

their �xed points).

By running these �ve treatments, we test the following hypotheses:

Hypothesis 1. (LtFE): Coordination of forecasts from heterogeneous players, if any, on

high-order cycles or complicated dynamics is less likely than on simple equilibria, such as a

steady state or a cycle of low periodicity.

This may be because of cognitive and memory limitations, that makes the use of high-order

adaptive rules unlikely, or because of the systematic forecasting errors that would result from

the use of too simple heuristics, such as naive expectations. In this case, simple outcomes are

more likely to serve as coordination devices of heterogeneous beliefs (Bullard & Du�y (1998),

Hommes (2011)). We design these �ve treatments in the LtFE in order to test Hypothesis 1.

We then use the LtOE to assess to what extent the resulting outcomes depend on the nature

12For example, for ρ2 = 12, the transformation maps the two-cycle {4.67, 13451.29} in {11.08, 60.71}.

16



and the di�culty of the experimental task performed by the subjects. The design of the payo�

in the LtOE requires a two-dimensional table where subjects need to forecast the return on

savings.13

Hypothesis 2. (LtO vs. LtFE): Coordination of savings decisions from heterogeneous

agents on high-order cycles is less likely under LtOE than under LtFE. In other words, aggregate

outcomes are likely to be simpler under LtO than under LtFE.

Hypothesis 2 may be justi�ed by the increasing di�culty of the experimental task in the

LtOE compared to the LtFE, where subjects have to cope with a two-stage decision process,

and an implicit forecasting task. This may favor simpler coordination device under LtOE than

under LtFE. In this context, the monetary steady state may serve as a focal point. The nature

of the tasks are also di�erent. Previous experimental evidence suggest that optimizing is a

more complicated task than forecasting, and generates noisier aggregate outcomes (see the trial

sessions discussed in Marimon et al. (1993) in an OLG model, see Bao et al. (2013, 2016) in,

respectively, a cobweb and an asset-pricing model). Additionally, in cognitive psychology, the

sequence learning literature concludes that humans are good at learning patterns of up to few

prior observations (see Spiliopoulos (2012) and the references herein). Forecasting is more akin

to sequence prediction, where a period k-cycle is a pattern of length k, than making savings

decisions. Subjects may be more likely to coordinate their forecasts on cycles but of low-order

(Hypothesis 1) than their savings decisions.

After observing from pilot sessions and the experimental sessions presented in this paper that

only coordination on the steady state arises in the LtOE, we decided to increase the likelihood

of coordination on the 2-cycle to test for the robustness of the selection of the monetary steady

state. We did so by training the subjects in the �rst periods of the experiment. Such a training

phase is current practice in laboratory experiments, see e.g. Marimon et al. (1993), Du�y &

Fisher (2005), Arifovic et al. (2014). Here, we follow the training design of Arifovic et al. (2014).

During the �rst 10 periods of the experiment with ρ2 = 5 and ρ2 = 8, each subject interacts with

N − 1 automatized players who make the savings decisions consistent with the period 2-cycle.

Subjects do not see the individual decisions of the other advisers but can track the average

savings decision on a graph (see Figure 27 in Appendix F). We call this training treatment T,

and form the following hypothesis, by contrast to the treatment without training that we denote

13The transformation of prices (12) does not leave the return on savings invariant. Without, the values
of the prices, and hence the returns on savings, along cyclical equilibria are too extreme. therefore, we
only run the three di�erent treatments in the LtOE ρ2 = 3, 5 and 8.
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O.

Hypothesis 2'. (LtOE: O versus T): Subjects who have experienced an initial training

phase are more likely to coordinate their savings decisions on the 2-cycle than subjects who have

not.

Finally, after observing that coordination on the 2-cycle never arises in Treatment T with

ρ2 = 8, we have elaborated an additional treatment with a non-linear transformation of the

savings values, in order to test whether the selection of the monetary steady state is not related

to a speci�c feature of the model. Indeed, the equilibrium values of the real money balances along

the 2-cycle are quite extreme when ρ2 = 8 (roughly 1 and 146 in the payo� grid of the subjects

where savings lie in (0, 200]). The di�culty of coordination on a periodic equilibrium may then

be well explained by a so-called framing e�ect: when it comes to make savings decisions, following

extreme variations in the decisions may appear a less natural strategy than when forecasting a

given time series pattern. Even with a training phase on a 2-cycle, inertia in savings decisions

or conservative strategies may be more likely to arise than a strategy that follows a 2-cycle

pattern with wide oscillations. We use the following transformation for every quantity in the

experimental economy:

s̃ = 100×
(s

2

)0.16
∈]0, 100] (13)

where s̃ is the savings decision submitted by the subjects, and s ∈]0, 2]. The resulting savings

values along the 2-cycle are {42, 95} and the steady state equals s∗ = 81.

We call this treatment S, and form the following conjecture, by contrast to the training

Treatment T with ρ2 = 8 :

Hypothesis 2�. (LtOE, ρ2 = 8: T and S): If variations of the savings strategies are of

mild amplitude along a cycle, coordination of heterogeneous individual savings decisions on this

cyclical pattern is more likely than when the amplitude of the cycle is wider.

3.4 Implementation

The experiment was programmed in Java using the PET software14 and was conducted at the

CREED laboratory at the University of Amsterdam over the period November-December 2014

and February � May 2015. A total of 288 subjects were recruited from the CREED subject pool

(composed of students from any �eld, both undergraduate and graduate) to participate in 48

14The PET software was developed by AITIA, Budapest, and is available at http://pet.aitia.ai,
within the FP 7 European project CRISIS, Grant Agreement No. 288501.
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experimental economies of N = 6 subjects each. In the LtF design, we ran 4 economies per

treatment, for a total of 20 economies, and 120 subjects. For the LtO design, we ran 4 economies

for each of the values ρ2 = {3, 5, 8} and Treatment O, 5 and 4 economies respectively for ρ2 = 5

and 8 in treatment T, and 7 economies in Treatment S, for a total of 28 economies and 168 sub-

jects. We run each experimental economy with ρ2 = 3 for T = 50 generations/periods, as pilot

observations indicate a very quick stabilization in the LtFE, and we run all the other treatments

for T = 100.15 The computer interfaces of the LtF and the LtOE are reported in Appendix F,

and the instructions, together with the payo� tables and the questionnaire for each design in

Appendices D and E. Subjects receive a detailed description of the OLG environment underlying

the experiment, their experimental task and their payo�. The consumption good is referred as

"chips", following Marimon et al. (1993). The participants were given the opportunity to read

the instructions at their own pace, and then were asked to �ll in a quiz on paper. The instructors

then checked that each subject, one by one, was able to correctly answer each question before

starting the experiment. In case of a wrong answer, the experimentalist privately explained to

the participant the correct answer. Only when all participants had answered all questions cor-

rectly was the experiment started. This procedure allows us to be sure that every subject has

understood the economic environment underlying the experiment and his experimental task, in

particular the use of the two-dimensional payo� table in the LtOE, before entering the exper-

imental economy. Participants' payo� was expressed in points, that were converted into euros

at the end of the experiment at an exchange rate that what announced in the instructions, and

participants earned on average 23.6 euros. Each experimental session lasted on average for about

2 hours, including an average of 40 minutes for the instructions and questionnaire, with strong

disparities across treatments (see Section 5 for details).

Table 8 in Appendix A summarizes the features of the di�erent treatments and designs

presented in this section and the parameter values, and reports the equilibrium values of prices

and real money balances along the monetary steady state and the 2-cycle for the di�erent ρ2

values considered. We now discuss to the experimental results.

4 Experimental results

This section �rst provides an overview of the results in terms of aggregate convergence and

coordination and then analyze individual behavior.

15Economy 1 in the LtOE with Treatment T and ρ2 = 5 ended at period 58 due to a server crash.
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4.1 Overview of experimental results

Tables 2 - 5 summarize the outcomes of the 48 experimental economies along �ve dimensions: the

type of long-run attractor of the realized aggregate real money balances, the distance to its values

along this attractor, its �rst-order autocorrelation throughout the experiment, the coordination

between subjects' decisions (forecasts or savings) and the e�ciency of the economies measured

by the payo� of the subjects. For a visual representation, the dynamics of the individual price

forecasts or savings decisions together with the aggregate price or savings level are reported for

every single experimental economy in the �gures in Appendix B.

We obtain three main outcomes from the experiments. First, all 48 experimental economies

either converge to the monetary steady state or to a 2-cycle. We do not observe any other

type of long-run dynamics in the experiments. It is worth stressing that our experiment is

the �rst to observe spontaneous coordination of a group of subjects on a 2-cycle. This clearly

shows that, in this complex environment, only simple aggregate outcomes arise as a coordination

device in the lab, and simple equilibria may thus be viewed as most empirically relevant. These

simple outcomes are all weakly E-stable equilibria, the steady state when ρ2 = 3 and the 2-

cycle when ρ2 = 5 are also strongly E-stable. From the experimental evidence, it seems that

neither backward perfect foresight nor forward perfect foresight dynamics provides an accurate

description of the dynamics in the experimental economies. Moreover, the criterion of weak

E-stability is a necessary condition for an equilibrium to be selected as a coordination device in

our experiments, but not all weakly E-stable cycles are observed in our experiments.

Second, the coordination on the 2-cycle is easier in the LtFE than in the LtOE. In the LtFE,

when the steady state is stable in the backward perfect foresight dynamics16, i.e. for ρ2 = 3,

all economies very quickly converge to the steady state. When the steady state is unstable (in

16 economies out of 20), we observe 14 convergences towards the 2-cycle out of 16 economies,

possibly after a long transient, with �rst order autocorrelation of aggregate time series close to -1,

and only two convergences to the steady state. A transient of at least 50 periods to the 2-cycle is

observed in 6 economies (group 2 with ρ2 = 8, groups 1 and 4 with ρ2 = 12 and groups 1, 2 and

3 with ρ2 = 13.5). The �rst case of convergence to the unstable steady state is observed when

ρ2 = 5, and occurs very quickly. However, in the second case (ρ2 = 8, Group 4), we observe a

"noisy" convergence towards the unstable steady state, and the aggregate price oscillates in a

16In the sequel, when we refer to a stable equilibrium, we refer to stability in the backward perfect
foresight dynamics as depicted in Figure 1, which also corresponds to stable equilibrium under naive
expectations, and to strong E-stability, see Section 2.
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small neighborhood of the steady state, with negative autocorrelation. In the strongly unstable

treatments ρ2 = 12 and 13.5, the only long run outcome is the 2-cycle. It is worth stressing that

coordination on the 2-cycle arises spontaneously in the LtFE, without any training phase, or any

signal akin to sunspots in the lab. By contrast, in the LtOE, the monetary steady state is the

long run outcome of the aggregate dynamics of all but 3 of the 28 experimental economies. In

treatment O (i.e. without a training phase), the economies always converge towards the steady

state. For ρ2 = 5, 2-cycle oscillations, with �rst order autocorrelation close to -1, arise after a

training phase (i.e. in Treatment T), in two out of �ve cases (Groups 1 and 5). For ρ2 = 8, such

an outcome is observed only in Treatment S, once (Group 5), even if two other groups (3 and 7)

display some �uctuations with a strong negative �rst order autocorrelation.

Third, the LtOE display more variability than the LtFE : both the aggregate time series display

more volatility, and the individual decisions are more heterogeneous in the LtOE, compared to

the LtFE. This suggests that coordination between a collection of heterogeneous players in the

lab is easier in the LtF than in the LtOE.

We now take a closer look at the experimental results.
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N.B.: For each experimental economy, the tables below report the type of equilibrium that is selected

as a long run outcome of the dynamics in the experiments. ADE measures the average relative distance

to this equilibrium, and is computed over the last 10 periods of each experiment (in absolute value).

For instance, the ADE for an experimental economy is 0.1, aggregate savings are on average 10% away

from their equilibrium values over the last 10 periods. The �rst order autocorrelation of average savings

(denoted by ρs) is computed over the last 50 periods (* indicates that it is signi�cant at 5%). The

variance of aggregate savings among the N subjects (denoted by V ar(si)) is evaluated in each period,

and the tables report the average over the last 10 periods. In the LtFE, we compute the variance of the

implied savings decisions, conditional on the price forecasts of the subjects. The earning e�ciency ratios

are expressed in percentage points, and measure the number of points earned by the subjects over the

whole T periods of the experiments w.r.t. the maximum amount of points possible at the equilibrium

(see also Subsection 4.6).

LtFE LtOE
economy 1 2 3 4 1 2 3 4
type of steady steady steady steady steady steady steady steady

equilibrium state state state state state state state state
ADE 0.000 0.000 0.001 0.000 0.055 0.195 0.029 0.073
ρs -0.161 -0.082 -0.042 -0.074 0.313* 0.014 0.25 0.254

V ar(si) 0.000 0.000 0.000 0.000 0.017 0.108 0.003 0.012
earnings e�ciency 95.62 95.31 91.04 94.55 97.16 95.27 96.55 95.56
ratio (all periods)

Table 2: ρ2 = 3
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LtFE LtOE
economy 1 2 3 4 1 2 3 4
type of 2-cycle 2-cycle 2-cycle steady steady steady steady steady

equilibrium state state state state state
ADE 0.151 0.116 0.326 0.001 0.026 0.033 0.046 0.105
ρs -0.966* -0.962* -0.941* -0.329* 0.316* 0.592* -0.024 -0.398*

V ar(si) 0.008 0.002 0.011 0.000 0.00189 0.004 0.002 0.005
earnings e�ciency 81.78 69.23 83.89 96.78 98.1 92.4 94.05 91.34

ratio

LtOE with training
economy 1 2 3 4 5
type of 2-cycle steady steady steady 2-cycle

equilibrium state state state
ADE 0.854 0.07 0.042 0.057 1.528
ρs -0.96* -0.187 0.394* -0.226 -0.845*

V ar(si) 0.016 0.019 0.001 0.001 0.008
earnings e�ciency 96.9 91.31 96.57 92.6 93

ratio

Table 3: ρ2 = 5
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LtFE LtOE
economy 1 2 3 4 1 2 3 4
type of 2-cycle 2-cycle 2-cycle steady steady steady steady steady

equilibrium state state state state state
ADE 0.041 0.169 0.022 0.532 0.04 0.089 0.039 0.062
ρs -0.975* -0.952* -0.967* -0.882* -0.106 -0.134 0.527* 0.205

V ar(si) 0.016 0.030 0.024 0.02 0.003 0.036 0.000 0.016
earnings e�ciency 77.85 87.86 80.4 98.03 93.43 88.52 81.12 96.45

ratio

LtOE with training
economy 1 2 3 4
type of steady steady steady steady

equilibrium state state state state
ADE 0.042 0.054 0.111 0.023
ρs 0.072 0.186 0.47* 0.528*

V ar(si) 0.000 0.006 0.072 0.001
earnings e�ciency 85.78 87.82 94.39 89.37

ratio

LtOE with training and non-linear transformed savings (Tr. S)
economy 1 2 3 4 5 6 7
type of steady steady steady steady 2-cycle steady steady

equilibrium state state state state state state
ADE 0.153 0.068 0.34 0.071 17.901 0.039 0.362
ρs 0.193 0.032 -0.722* 0.001 -0.956* 0.681* -0.663*

V ar(si) 0.011 0.043 0.19 0.011 0.134 0.001 0.179
earnings e�ciency 69.04 84 88.5 84.89 74.67 85.73 76.6

ratio

Table 4: ρ2 = 8

ρ2 = 12 (LtFE) ρ2 = 13.5 (LtFE)

economy 1 2 3 4 1 2 3 4

type of 2-cycle 2-cycle 2-cycle 2-cycle 2-cycle 2-cycle 2-cycle 2-cycle
equilibrium

ADE 0.512 0.257 0.225 0.222 0.046 0.081 0.047 0.041

ρs -0.931* -0.926* -0.969* -0.972* -0.828* -0.961* -0.977* -0.98*

V ar(si) 0.147 0.006 0.001 0.000 0.007 0.000 0.002 0.019

earnings e�ciency 54.28 62.03 69.37 73.12 55.87 64.56 68.37 88.26
ratio

Table 5: ρ2 = 12 and ρ2 = 13.5.
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Figure 2: Cumulative distribution of the relative distance of prices to equilibrium (either
steady state or 2-cycle). Left panel: LtF versus LtO. Right panel: economies that con-
verge to the steady state versus economies that converge to the 2-cycle, LtF and LtO
experiments pooled together.

4.2 Aggregate convergence

Figure 2 reports the cumulative distribution of the relative distance of price to equilibrium

in the experimental economies, by discarding the �rst 10 periods of each experiment. Figure

2a compares these distributions in LtFE versus LtOE, and a K-S test leads to reject the null

hypothesis of equal distribution against the alternative hypothesis of distance values lower in the

LtFE than in the LtOE (p-value = 0.0014). We can conclude that overall, aggregate convergence

is signi�cantly better in LtFE than in LtOE. Similarly, Figure 2b compares the distributions of

distance to the monetary steady state versus the 2-cycle, by pooling LtFE and LtOE together.

We can conclude that aggregate convergence is signi�cantly better when the dynamics converge

towards the steady state, than towards the 2-cycle.17

4.3 Coordination between subjects' decisions

We now take a closer look at the individual coordination of subjects' decisions in the experiments.

In order to compare decision values that have the same order of magnitude, we report the

standard deviations of the implied savings decisions, given subjects' price forecasts in the LtFE.

Figure 3 displays the cumulative distribution of the standard deviations among the six individual

17The p-value of the same KS test is 0.0047.
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decisions, measured in each period. Figure 3a compares the coordination between subjects in the

LtFE versus the LtOE. Subjects' decisions are signi�cantly more homogeneous in the LtFE than

in the LtOE.18 In other words, subject's coordination is easier in the LtFE than in the LtOE,

and the LtOE display more heterogeneity between subjects than the LtFE. This is striking from

the comparison between the two designs with ρ2 = 3, i.e. when the monetary steady state is the

only equilibrium, and is stable. These economies converge almost perfectly on the steady state

in the LtFE (this is the best coordination obtained among all experimental economies), but only

converge to a (close) neighborhood of the steady state in the LtOE.

More homogeneous price predictions in comparison to savings decisions may be explained

by two phenomena. First, we observe a bias towards round numbers in the LtOE. Recall that

subjects make savings decisions with the help of a 2-D payo�, in which the savings decisions are

discretized, but the instructions insist on the fact that they can submit any number (up to two

digits). We �nd that, overall, 60% of the savings decisions are multiples of 5 (i.e. 50, 55, 60, etc.),

and 47% are multiples of 10 (i.e. 50, 60, etc.). Pilot sessions using an A3 format payo� table

with a thinner grid report the same type of decisions. By contrast, only 36% of price predictions

are an integer, and they are concentrated at the beginning of the experiment, when subjects

have only few past observations to make precise predictions. This tendency to submit round

number can also be explained by the �atter payo� values in the neighborhood of the steady state

under the LtOE than under the LtFE (see payo� tables in Appendix E). With �atter payo�

values, the subjects have less monetary incentives to submit the exact equilibrium value. A

second explanation to the more heterogeneous savings decisions with respect to price predictions

could be strategic behavior from some subjects. Five subjects report in the questionnaire at

the end of the experiment that they intentionally deviate from the average savings values in

their experimental economy in an attempt to manipulate the return on savings. This is the

case for instance in Group 2, with ρ2 = 3: one subject reported that he/she made occasionally

high savings decisions in an attempt to decrease the price, and increase the return on savings, in

order to reach the bottom left part of the payo� table when the payo� is maximized. Those types

of deviations are observed across treatments in the LtOE (for instance, based on questionnaire

data, subject A2 in group 2 with ρ2 = 3, or subject B3 in group 4 with ρ2 = 8 and Treatment

S). Finally, the di�erence in the nature of the experimental task (forecasting versus saving), and

the implied cognitive load may also account for the observed di�erences between the two designs.

This point is further developed in the conclusion of the paper.

18The corresponding p-value of the K-S test is lower than 2.2e− 16.
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Furthermore, Figure 3b compares the cumulative distribution of the standard deviations

among individual decisions in the LtFE and in the LtOE, in each design, and in case of con-

vergence to the steady state versus the 2-cycle. Coordination between subjects is signi�cantly

better on the steady state than along the 2-cycle, both in the LtFE and in the LtOE.19 The

better coordination on the steady state compared to the 2-cycle can be at least partly explained

by subjects' mistakes when entering their decisions in the experimental software: the likelihood

of making mistakes when entering price predictions seems higher when alternatively entering a

high and a low forecasts than when entering a constant number. Several subjects indeed re-

ported in the questionnaire at the end of the experiment making typos, for instance in Group 1

of the LtFE, with ρ2 = 5. However, the 2-cycle appears to be a long run outcome that is robust

against individual deviations: even when the 2-cycle is temporarily "destroyed" after a subject's

individual mistake, the dynamics settles down back to the 2-cycle after few periods. This is also

the case in the LtOE: in Group 5 with ρ2 = 5 and Treatment T, subject D3 reported in the

questionnaire that he/she became "confused" around period 24/25, and made several typos when

entering savings decisions, causing the amplitude of the cycle to diminish. However, towards the

end of the session, the amplitude of the cycle increases again. We note that convergence back to

the 2-cycle after a temporary deviation appears quicker in the LtFE than in the LtOE.

4.4 Estimation of individual forecasting rules in the LtFE

We then estimate forecasting rules on the individual price prediction data for the 120 subjects

in the LtFE. We follow here standard practice in the related literature (see e.g. Heemeijer et al.

(2009)). We discard the �rst 10 periods to allow for a learning phase, and estimate the general

forecasting rule:

pei,t+1 = α+ βPt−1Pt−1 + βPt−2Pt−2 + βpei,tp
e
i,t + βpei,t−1

pei,t−1 + εi,t (14)

where pei,t+1 is the price forecast made by subject i at the beginning of period t for period

t + 1, Pt−1 the last observable price in period t − 1, Pt−2 the price in period t − 2, pei,t the

last price forecast made in period t − 1 for period t, pei,t−1 the price forecast made in period

t − 2 for period t − 1 and εi,t a noise term. We use the heteroskedasticity and autocorrelation

consistent (HAC) estimator of the R package sandwich (Zeileis 2004). We use the Ljung Box

19Both in the LtOE and in the LtFE, the K-S tests with the alternative hypothesis that values of
the standard deviations are lower on the steady state than on the 2-cycle gives a p-value smaller than
2.2e− 16.
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Figure 3: Cumulative distribution of the standard deviations of individual decisions in
each period. Left panel: LtF (savings decisions implied by price forecasts) versus LtO
(submitted savings decisions), all economies. Right panel: economies that converge to
the steady state only versus 2-cycle, distinguishing LtF and LtO.

test for autocorrelation with 4 lags, which is consistent with the number of observations of

each regression. We successively drop the non-signi�cant variables and re-estimate the rule (14)

until only signi�cant variables remain present. We adopt a 5% con�dence level for the whole

econometric analysis.

The general rule (14) includes as a special case the second-order adaptive rule that is consis-

tent with learning a 2-cycle pattern when it exists (see Equation (7), and Guesnerie & Woodford

(1991)). A subject is said to use such a rule if the following constraints on the estimated co-

e�cients result from the econometric estimation of (14): β̂pt−1 + β̂pet−1
= 1, β̂pt−1 , β̂pet−1

∈]0, 1[,

β̂pt−2 = β̂pet = α̂ = 0. In the special case of β̂pt−1 = 1, β̂pt−2 = β̂pet = β̂pet−1
= α̂ = 0, the subject

uses naive expectations, which delivers convergence to a two-cycle only in case of ρ2 = 5. A

stable AR(1) forecasting rule corresponds to β̂pt−1 < 1, β̂pt−2 = β̂pet = β̂pet−1
= 0.

The distributions of the estimates of the parameters of the general rule for the 120 subjects

are reported in Appendix C.1. First, we estimate the general rule (14) for all groups in the

LtFE that converge towards a 2-cycle, i.e. 14 economies, for a total of 84 subjects. Table 6

classi�es the subjects according to their corresponding rule. Given the learning predictions in

theoretical models discussed in Section 2, the second-order adaptive rule, naive expectations

and the AR(1) rule constitute our three benchmark rules in the case of a convergence to the

2-cycle, with 90% of the subjects falling into one of these categories. More than half of the
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subjects (i.e. 47) follow a second-order adaptive rule, and we cannot reject the joint hypothesis

β̂pt−1 + β̂pet−1
= 1, β̂pt−2 = β̂pet = α̂ = 0 at 5% for all but 6 of them. Almost all those subjects

belong to economies with ρ2 = 8, 12 or 13.5, which is consistent with the theoretical predictions of

second-order adaptive expectations (Guesnerie & Woodford 1991) and the observed convergence

to the 2-cycle. Recall the stability condition of the 2-cycle under the adaptive rule (7) given in

Sub-section 2.4: the stability of the 2-cycle depends on the weight put on Pt−1 (w in Equation

(7)). Intuitively, the 2-cycle is stable if the weight on the past observed price is not too high,

and this weight has to be lower and lower when the 2-cycle becomes "more and more unstable".

This theoretical prediction is in line with our estimations in the experiments. Coe�cients on

Pt−1 are lower, the higher ρ2, and the average coe�cient values for each ρ2 treatment is always

lower than the corresponding threshold w.20

A quarter of the subjects (20) use naive expectations, and they mostly belong to economies

with ρ2 = 5, for which the 2-cycle is stable under naive expectations, and stable under the

adaptive rule (7) for all w values. For Group 2 with ρ2 = 5, the results are less obvious, and this

is also the group within this treatment in which the 2-cycle appears the most "noisy": 4 out of 6

subjects use an AR(1) rule without constant but with a coe�cient on Pt−1 close but signi�cantly

lower than unity. This may suggest that the learning process that converges to the 2-cycle, and

to naive expectations has not been completed for those subjects.21 In most groups however,

the results of the estimation are clear-cut. For instance, in Group 1 with ρ2 = 5, all 6 subjects

use naive expectations, which is theoretically consistent with the observed convergence to the

two-cycle. In Group 4 with ρ2 = 13.5, all subjects have second-order adaptive expectations, that

delivers convergence to the two-cycle under learning. Looking at the corresponding time series

in Appendix B.1, those two groups are also the groups that converge faster to the 2-cycle in

their respective treatment. Figure 4a displays the estimated values of the coe�cients associated

to Pt−1 against the ones of P et−1 for all the 84 subjects. It clearly shows that most points are

scattered around the dashed line y = 1−x, which corresponds to the second-order adaptive rule.

We also observe a concentration of points around (1, 0) for the case ρ2 = 5, which corresponds to

naive expectations, while the points are more scattered along the dashed line for higher values

20More precisely, the average coe�cient associated to Pt−1 is 0.6603 in Group 1, 2 and 3 with ρ2 = 8
(w ' 0.8), 0.6016 (w ' 0.61) across all groups with ρ2 = 12 and 0.5583 (w ' 0.57) when ρ2 = 13.5.
KS-tests indicate that these coe�cients are all signi�cantly lower than for ρ2 = 5 (where the average value
of this coe�cient is 0.9076). Additionally, coe�cients on Pt−1 are signi�cantly lower when ρ2 = 13.5 than
8, but other pair-di�erences across treatments are not signi�cant at 5 %.

21The point that the degree of homogeneity of forecasting rules among the subjects matters for the
coordination on an outcome has been made by Marimon et al. (1993) who estimate similar forecasting
rules in their LtFE.
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2nd order adaptive naive stable AR(1) rule stable AR(1) rule mixed rule
rule expectations without constant with constant �

β̂pt−1 + β̂pet−1
= 1 β̂pt−2 = β̂pet = β̂pet−1

= α̂ = 0 β̂pt−2 = β̂pet = β̂pet−1
= 0 other combinations of

β̂pt−2 = β̂pet = α̂ = 0 β̂pt−1 = 1 β̂pt−1 < 1 β̂pt−1 < 1, α̂ > 0 signi�cant variables

ρ2 = 5 gp 1 6
gp 2 1 1 4
gp 3 1 4 1

ρ2 = 8 gp 1 4 1 1
gp 2 5 1
gp 3 5 1

ρ2 = 12 gp 1 3 1 2
gp 2 5 1
gp 3 4 1 1
gp 4 2 2 1 1

ρ2 = 13.5 gp 1 2 2 2
gp 2 4 1 1
gp 3 5 1
gp 4 6

TOTAL 47 (56%) 20 (24%) 7 (8%) 2 (2%) 8 (10%)

Table 6: Distribution of forecasting rules among the subjects in the LtFE

of ρ2, which is line with the stability conditions discussed above.

The remaining 8 subjects (10%) use a mixed forecasting rule, half of them belong to Group 1

with ρ2 = 12 and 13.5, in which we observe a particularly long transient with irregular movements

in price before convergence to the 2-cycle.

The estimation of the rule (14) is less meaningful for the remaining 36 (out of 120) subjects, for

which we observe a convergence to the steady state, as their predictions quickly become essentially

constant over time (with the exception of Group 4, with ρ2 = 8 where small oscillations persist

throughout the experiment). Excluding this latter group, 26 subjects out of the remaining 30

have an implied value of savings (consistent with their price forecast) within 0.01 of the steady

state value. In these groups, after 10 experimental periods, 98% of the price predictions are

within the steady state value ± 1, and 84% in a neighbourhood of 0.1. Therefore, for these 36

subjects, we perform the following exercise. We compute the long run estimated price level of

Equation (14):

P ∗∗ ≡ α

1− β̂pt−1 − β̂pet−1
− β̂pt−2 − β̂pet

(15)

We use the implied savings values for the LtFE in order to compare with the LtOE below. The

distribution of the relative distance of the estimated long-run equilibrium to the steady state for

the 36 subjects is reported in Figure 4b. Overall, we cannot reject the hypothesis that the long

run savings level is equal to steady state.22

22The average relative distance to steady state of the estimated long run equilibrium of savings equals
0.003, and the p-value of a bilateral Wilcoxon signed rank test is 0.1252.
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Figure 4: Outcomes of the estimations of individual forecasting rules. Left panel: Scat-

ter plot of the estimated coe�cients β̂pt−1 and β̂pet−1
in rule (14) for the economies that

converge to a 2-cycle (i.e. all groups with ρ2 = 12 and ρ2 = 13.5 and Groups 1-2-3 with
ρ2 = 5 and ρ2 = 8, 84 observations). The dotted gray line represents the locus of points
for which β̂pt−1 + β̂pet−1

= 1. Right panel: frequency distribution of the distance between
the steady value of average savings and the long run savings equilibrium M/peq implied
by (14) for the economies which converge to the steady state (i.e. all groups with ρ2 = 3
and Group 4 for ρ2 = 5 and ρ2 = 8, 36 observations).

4.5 Estimation of individual savings rules in the LtOE

We estimate savings rules from the individual savings decisions made by the subjects in the

LtOE by following exactly the same procedure as for the estimations of the forecasting rules in

the LtFE. We estimate the following behavioural rule for each participant:23

si,t = α+ βst−1si,t−1 + βst−2si,t−2 + βRt−1Rt−1 + εi,t (16)

where si,t is the savings decision made by subject i at the beginning of period t for period t,

Rt−1 ≡ Pt−1

Pt−2
the return on savings between period t − 2 and period t − 1 and εi,t a noise term.

We include two lagged values of the individual savings decisions because they are relevant along

a 2-cycle, and we include Rt−1 as this is the last observable return on savings that subjects

have (and is displayed on their screen). The general rule (16) embeds a constant rule if the

joint constraint β̂st−1 = β̂st−2 = β̂Rt−1 = 0 results from the estimation, a stable AR(1) rule if

β̂Rt−1 = β̂st−2 = 0 and |β̂st−1 | ∈ (0, 1), a stable AR(2) rule if β̂Rt−1 = 0 and |β̂st−2 +β̂st−1 | ∈ (0, 1).

23For instance, Bao et al. (2016) estimate a similar rule with an AR(1) structure for quantity decisions
in an LtOE in an asset pricing model.
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intercept only stable AR(1) rule stable AR(2) rule mixed rule mixed rule

β̂st−1 = β̂st−2 = 0 β̂st−2 = 0, |β̂st−1 | ∈]0, 1[ β̂st−2 6= 0, |β̂st−1 | ∈ [0, 1[ |β̂st−2 |, |β̂st−1 | ∈ [0, 1[

β̂Rt−1
= 0 β̂Rt−1

> 0 β̂Rt−1
< 0

ρ2 = 3 gp 1 2 1 1 2
gp 2 2 1 1 1 1
gp 3 2 2 1 1
gp 4 2 2 2

ρ2 = 5 gp 1/O 2 2 1 1
gp 2/O 2 1 1 1 1
gp 3/O 3 1 1 1
gp 4/O 1 1 4
gp 1/T 4 2
gp 2/T 1 2 2 1
gp 3/T 1 2 2 1
gp 4/T 1 3 1 1
gp 5/T 1 5

ρ2 = 8 gp 1/O 1 2 3
gp 2/O 2 2 1 1
gp 3/O 2 1 1 2
gp 4/O 3 1 2
gp 1/T 3 2 1
gp 2/T 1 3 2
gp 3/T 2 1 3
gp 4/T 1 2 2 1
gp 1/S 1 2 1 1 1
gp 2/S 1 2 3
gp 3/S 2 1 3
gp 4/S 1 2 3
gp 5/S 6
gp 6/S 1 1 2 1 1
gp 7/S 1 2 1 2

TOTAL 34 (20%) 38 (23%) 40 (24%) 17 (10%) 39 (23%)

Table 7: Distribution of savings rules among the subjects in the LtOE. the groups that
converge towards the 2-cycle are highlighted in bold.

We estimate a savings rule for the 168 subjects who participated in the LtOE, 150 in economies

that converge or oscillate around the steady state, and 18 in economies that display regular

up-and-down oscillations in a neighbourhood of the 2-cycle.24

Appendix C.2 reports descriptive statistics of the individual savings time series, and the dis-

tributions of the estimates of the parameters of the general rule for the 168 subjects. First, we

notice that the intercept is always signi�cant, and for all but one subject is positive. A high con-

centration of the estimated values is observed between 0.5 and 0.6, which broadly corresponds to

the steady state values of savings. Table 7 classi�es the subjects according to their corresponding

savings rule. By considering �rst the 150 estimates at the steady state, 94 subjects (63%) are

characterized by an AR rule with signi�cant intercept (β̂Rt−1 = 0): 34 of them use a constant

rule, 33 use an AR(1) rule, and 27 an AR(2) rule. For those 94 cases, we compute the estimated

long run equilibrium value of savings from Rule (16) (with β̂Rt−1 = 0) as s∗∗ ≡ α
1−β̂si,t−1−β̂si,t−2

.

24Since savings decisions are more variable than price predictions in economies that converge to the
steady state, the estimation of (16) is less problematic in this case than in the LtFE. In the LtOE, only
3 subjects have strictly constant savings decisions after the �rst 10 periods.
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Figure 5a displays the frequency distribution of the relative distance of these long run savings

equilibrium estimates to the steady value of the savings. The average relative distance equals

−0.01, and we cannot reject the null hypothesis that it equals zero.25

The other 56 subjects among the steady state economies use a mixed rule, i.e. their savings

decisions are well described by an AR rule with a signi�cant reaction to past values of the

return on savings Rt−1. Overall, the estimated coe�cients associated to Rt−1 are signi�cantly

negative.26 If we assume that participants at least partly based their predictions of the return on

savings on the last observed value Rt−1, negative coe�cients are consistent with the o�er curve

displayed in the two-dimensional payo� table: a higher expected return on savings corresponds

to a lower savings decision (bottom left corner of the payo� table), and reciprocally as long as

the expected return is not too small.
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Figure 5: Outcomes of the estimations of individual savings rules. Left panel: Frequency
distribution of the relative distance between the steady value of the savings and the long
run estimated savings equilibrium s∗∗ for the economies which converge to the steady
state and the 94 subjects that are characterized by an AR(1) or AR(2) rule. Right panel:
Frequency distribution of the distance between the average of the 2-cycle values of e
savings and the long run savings equilibrium seq in (16) for the economies which converge
to the 2-cycle, 18 subjects.

In the three economies for which the dynamics corresponds to a (noisy) 2-cycle (i.e. for which

the �rst order autocorrelation of the aggregate savings is close to -1), the 18 participants all use an

AR(1) or an AR(2) rule, all the estimated coe�cients associated to st−1 are signi�cantly negative,

and all those associated to st−2 are signi�cantly positive.27 These signs are consistent with a

25A two-sided Wilcoxon rank sum test gives a p-value of 0.6481.
2639 out of the 56 coe�cients are signi�cantly negative, and the p-value of the associated unilateral

Wilcoxon signed rank test is 0.0244.
27The average estimates of β̂st−1

and β̂st−2
, respectively in group 1 with ρ2 = 5 and Treatment T, in
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two-cycle type of dynamics � see Hommes et al. (2013) for a discussion of AR rule associated

to 2-cycle dynamics. We then compute the average relative distance of the long run estimated

savings equilibrium s∗∗ to the average value of savings along the 2-cycle for each of the three

economies (see Figure 5b). This distance is very small for two of three groups, i.e. −0.0188 in

group 1 with ρ2 = 5/Treatment T and −0.018 in group 5 with ρ2 = 8/Treatment S. It is larger

for group 5 with ρ2 = 5/Treatment T (−0.1337). These estimates are fully consistent with the

observed patterns in those groups: distances are always negative as the up-and-down oscillations

never overshoot the theoretical 2-cycle, and we observe the wider oscillations in group 1 with

ρ2 = 5/Treatment T and group 5 with ρ2 = 8/Treatment S.

4.6 Earnings

In order to evaluate the e�ciency of the participants in performing their experimental task, we

take a closer look at the earnings e�ciency ratios (reported in Tables 2-5) for each experimental

economy. The earning e�ciency ratios measure the average percentage of points earned by the

subjects out of the maximum possible during the whole experiment. In the LtFE, at any period,

the maximum points are 1300 in case of perfect prediction. In the LtOE, the maximum points

are given by the transformed values of utility function on the payo� table.28

Figure 6 reports the distributions of the earnings e�ciency ratios in the experiments. As

depicted in Figure 6a, e�ciency is higher in the LtO than in the LtFE.29 This can be explained

by taking a closer look at the e�ciency ratios at the steady state and along the 2-cycle. First, as

shown in Figure 6b, the earnings e�ciency ratios are signi�cantly higher in case of convergence

to the steady state than to the 2-cycle, and as detailed above, we observe many more 2-cycle

dynamics in the LtFE than in the LtOE, in which most groups converge to the steady state.30

Convergence is much quicker towards the steady state than towards the 2-cycle, as re�ected

by the long transient periods observed in the LtFE. Once at the steady state in the LtFE, the

price dynamics is constant as the model is deterministic, subjects make perfect forecast and

maximise their payo�. By contrast, the convergence towards the 2-cycle takes more periods,

the transient phases are characterized by irregular price oscillations, without any clear pattern

(see e.g. Groups 1 with ρ2 = 12 and 13.5) and subjects make large forecasts errors. Therefore,

group 5 with ρ2 = 5 and Treatment T and in group 5 with ρ2 = 8 and Treatment S are −0.7172, −0.3753
and −0.3646, and 0.1646, 0.4777, and and 0.5135.

28Recall that the utility functions have been transformed to allow similar payo� at the steady state
and along the 2-cycle, see Section 3.

29The p-value of the associated unilateral Wilcoxon rank sum test is 0.00444.
30The p-value of the associated unilateral Wilcoxon rank sum test is 0.00003.
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Figure 6: Distribution of the earnings e�ciency ratios. Left panel: LtF (20 observations)
versus LtO (28 observations); Middle panel: steady states (31 observations) versus 2-cycle
(17 observations), LtFE and LtOE pooled together; Right panel: with (12 observations)
versus without (16 observations) training in the LtOE.

the LtFE with ρ2 = 12 and ρ2 = 13.5 display the lowest earnings e�ciency ratios across all

experimental sessions.31 By contrast, most economies converge to the steady state in LtOE, the

subjects' payo� is �at around the steady state (essentially between 0.5 and 0.6), and therefore

near-maximized despite small persistent deviations from the optimal savings decision.

Figure 6c focuses on the LtOE, and compares economies without (Treatment O) and with

an initial training phase (Treatments T and S). Training signi�cantly increases the earnings

e�ciency ratios.32 During the 10 period training phase, aggregate savings, price and the corre-

sponding returns on savings vary widely. We may then conjecture that the subjects experienced

a broader range of values of the return on savings, and got more acquainted with the payo� table

with than without the training phase. This may explain why training increases e�ciency in the

LtOE.

5 A behavioural explanation of the LtFE

To explain the LtFEs, this section presents a behavioral model in which agents switch between

di�erent forecasting rules based upon their relative performance.

Section 4.4 shows that many subjects use adaptive expectations as in Equation (7). Coordi-

nation on a steady state or on a 2-cycle in the LtFE may thus be explained by coordination on

a very simple adaptive expectation rule. However, this rule does not provide an explanation of

31However, di�erences in earnings e�ciceny ratios are not signi�cant at 5% across ρ2 values for the
groups that converge to the 2-cycle in the LtFE.

32The p-value of the corresponding unilateral Wilcoxon rank sum test is 3.3e− 08.
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how subjects come to learn to use the order k = 2 and the coe�cient w of the rule.

Hommes et al. (2013) provide an alternative explanation of coordination on a steady state or

a two-cycle in Grandmont's OLG model, where agents learn the two parameters of an AR(1) fore-

casting rule through sample autocorrelation (SAC) learning. Under SAC learning, the perceived

law of motion of the price is an AR(1) process:

Pt = α+ β(Pt−1 − α) + εt (17)

where ε is an iid error term, α, β are real numbers, α being the unconditional mean of the price

and β ∈ (−1, 1) the �rst order autocorrelation coe�cient. Given (17), the two-period ahead

price forecast that minimizes the MSE is:

P et+1 = α+ β2(Pt−1 − α). (18)

Agents do not know the true values of α and β but estimate them based on past price

observations using two simple observable statistics: the sample average and the �rst-order sample

autocorrelation. Hommes & Zhu (2014) present a constant gain version of sample auto-correlation

(SAC) learning:



αt = αt−1 + κ(xt − αt−1)

βt = βt−1 + κR−1t
(
(xt − αt−1)(xt−1 − αt−1)− βt−1(xt − αt−1)2

)
−κ2R−1t

(
x0 − αt−1 + βt−1(xt − αt−1)2

)
+ κ3R−1t (αt−1 − xt)

Rt = Rt−1 + κ
(
(xt − αt−1)2 −Rt−1

)
− κ2(xt − αt−1)2

(19)

where Rt ≡ 1
1+t

∑t
i=0(xi − αt)

2 is the price variance. The parameter κ is a positive gain.33

Hommes & Zhu (2014) stress the behavioral interpretation of SAC-learning with constant gain:

agents "guestimate" sample average and �rst-order auto-correlation from the observed time se-

ries. This interpretation explains why the empirical ACF in the lab price forecasts (see Figure 22)

is indeed consistent with the strongly negative autocorrelation of prices. For groups converging

to steady state, the sample average is close to the steady state price. For groups converging to

the 2-cycle, the sample average tends toward the average of the price values along the 2-cycle

and the �rst order sample autocorrelation is strongly negative, and in fact close to −1. These

observations are consistent with the de�nition of a �rst-order Consistent Expectation Equilib-

33In the case of decreasing gain, we have κ = 1
1+t .
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rium (CEE) given in Hommes & Sorger (1998): a �rst-order CEE is a sequence of prices (pt)
+∞
t=0

that satis�es the actual law of motion of the price, for which αt converge to the sample average

and βt to the sample �rst-order autocorrelation. In particular, if a 2-cycle {p1, p2} is a CEE,

then limαt = (p1 + p2)/2 and limβt = −1.

In order to measure the relative contribution of the AR(1) rule under SAC learning and

second-order adaptive expectations, we �t an heuristic switching model to the experimental data

by extending Anufriev & Hommes (2012). We add these two rules to the switching model to

test how much each one contributes to the explanation of the observed lab forecasts. The model

includes six rules that cover the di�erent types of behavior that have been identi�ed in many

previous LtFEs (Hommes 2011). These rules are: (i) an anchoring and adjustment rule pet+1 =

pavt−1+pt−1

2 +(pt−1−pt−2) (pavt−1 being the average of all past prices), (ii) a weak trend-following rule

pet+1 = pt−1 + 0.4(pt−1 − pt−2), (iii) a strong trend-following rule pet+1 = pt−1 + 1.3(pt−1 − pt−2),

(iv) second-order adaptive expectations pet+1 = 0.5pt−1 + 0.5pet−1 (where we choose a weight

w = 0.5, consistent with convergence to the 2-cycle in all ρ2 treatments), (v) naive expectations

pet+1 = pt−1, and (vi) a SAC-learning rule (18). Each rule i = 1, .., 6 is evaluated in each period

by its forecasting accuracy:

Ui,t−1 = −(pt−1 − pei,t−1)2 + ηUi,t−2 (20)

And the fraction of each rule is updated according to a discrete choice model with asynchronous

updating:

ni,t = δni,t−1 − (1− δ) exp(βUi,t−1)∑n
i=1 exp(βUi,t−1)

(21)

so that better performing rules spread into the population of rules at the expense of poor per-

formers. Aggregate price expectations are the average of the six predictions weighted by their

fraction ni (Brock & Hommes 1997). We use β = 0.3, η = 0.5 and δ = 0.7.34 We report the

results for three typical groups: convergence to the steady state (ρ2 = 5, Gp. 4) in Figure 7,

convergence to a "noisy" 2-cycle (ρ2 = 5, Gp. 1) in Figure 8, and quick convergence to the

2-cycle (ρ2 = 13.5, Gp. 4) in Figure 9. We report the experimental prices together with the

heuristic switching model forecasts (left panel), the evolution of the fractions of the six rules

(middle panel) and the evolution of αt and βt of the SAC rule (right panel).

34This calibration is close to the one used in Anufriev & Hommes (2012) but implies more sensitivity
of the switching process, which appears consistent with the experimental data. The qualitative picture
that we discuss from these simulations is not a�ected by changes in these parameter values. For the gain
coe�cient in Equation (19), we use κ = 0.2.
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Figure 7: ρ2 = 5, Gp. 4 (quick onvergence to the steady state).
NB: Right panel, steady state price in dotted red line.
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Figure 8: ρ2 = 5, Gp. 1 (convergence to a "noisy" 2-cycle).
NB: Right panel, average price on the 2-cycle in dotted red line.
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Figure 9: ρ2 = 13.5, Gp. 4 (quick onvergence to the 2-cycle). Left panel: heuristic
switching model forecasts verusus experimental prices; Middle panel: evolution of the
share of each of the six rules; Right panel: evolution of β and α of the SAC rule, average
price on the 2-cycle in dotted red line.

We observe �rst, from the left panels, that the forecasts from the heuristic switching model

�t the experimental data quite nicely. From the middle panels, we see that the SAC learning

rule (blue dashed line) is always dominant, i.e. is always the best performing forecasting rule, at

the beginning of the experiment (typically within the �rst twenty periods), regardless of whether

the experiment converges on the steady state or the 2-cycle. It means that the appearance of

either the steady state or the 2-cycle as long run outcome of the experiment always start with

coordination on a simple AR(1) rule. However, the evolution of the values of αt and βt di�er

(right panels): in the case of the steady state, we observe αt → p∗ and βt → 1 (Figure 7), while

we observe αt → p1+p2
2 and β → −1 in Figures 8 and 9 along the 2-cycle.

In the case of the steady state (Figure 7), agents in the simulations learn the steady state value
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and the price converges quickly (all rules give then a perfect prediction as the price is constant,

so that all fractions converge to 1/6). By contrast, in the case of the 2-cycle, agents progressively

update the �rst autocorrelation parameter and learn the strong negative autocorrelation pattern

of the price which ampli�es the up and down oscillations of their forecasts and the realized prices.

Either naive expectations (in the case of ρ2 = 5, Figure 8, middle panel) or the second order

adaptive expectations (in the case of ρ2 = 13.5, Figure 9, middle panel) then dominates and

the price dynamics settles on the 2-cycle. After convergence to the 2-cycle, naive and adaptive

expectations deliver the same, perfect prediction and their fraction converges to 1/2. Notice

that the two trend rules or the anchoring rule perform particularly badly in this experimental

environment, and their fraction are close to zero.

We conclude that an initial coordination on a simple AR(1), whose parameters are up-

dated with observed average and �rst-order autocorrelation, followed by coordination on a simple

second-order adaptive rule once the up-and-down pattern of the prices has been learned, provides

an interesting behavioral explanation of the LtFEs.

6 Conclusions

This experimental study adds to the literature on equilibrium selection, and provides an em-

pirical test of learning predictions. We design an experiment in the well-know complex OLG

environment �rst studied by Grandmont (1985), which exhibits in�nitely many periodic, and

even chaotic equilibria, together with a steady state. Adaptive learning theory supports most of

these equilibria as stable outcomes of some suitable learning process. We compare two designs of

the experiment: a learning-to-forecast design in which subjects submit price predictions and real

money balances are optimally computed, and a learning-to-optimize design in which subjects

directly submit savings decisions. Our lab experiments form an empirical test of the most likely

outcomes of the coordination process of a group of individuals in a complex environment.

We �nd two major results. First, subjects tend to coordinate on simple equilibria: they

either select the monetary steady state or the 2-cycle, possibly after a long transient, but never

coordinate on any other, more sophisticated equilibria. This shows that subjects are able to

coordinate in a complex environment, but only simple equilibria may be regarded as empirically

relevant, even if many other outcomes are theoretically possible under speci�c assumptions about

adaptive learning. It is worth stressing that this is the �rst lab experiment that reports spon-

taneous coordination on a 2-cycle equilibrium of a group of individuals without any exogenous
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shocks or sunspot announcements.

The second major �nding is the di�erences between the LtF and the LtO designs. While

subjects mostly coordinate on the 2-cycle in the LtFE, even if it is unstable under learning,

they mostly coordinate on the (unstable) steady state in the LtOE. We provide three potential

explanations of these di�erences.

A �rst explanation could be a framing e�ect. Cautious or conservative behaviour may appear

more natural when it comes to making savings decisions than to making forecasts and tracking

a time series pattern. Relatively stable savings decisions from one period to the next drives the

dynamics towards the steady state by driving the return on savings towards unity.35 By contrast,

as discussed in Section 3.3, the forecasting task is akin to pattern recognition for which cycles of

low periods are more likely to be spotted and tracked by human subjects.

A second explanation could be the di�erence in cognitive load implied by the two experimental

tasks. We report a signi�cantly higher cognitive load in the LtO than in the LtF design using

two measures: the cumulative distribution of individual decision times and the length of the

instructions before starting the experiment across the two designs (see Figure 10). Subjects read

the instructions, complete the quiz and make their decisions in the LtFE more quickly despite the

more complicated equilibrium on which they often coordinate (the 2-cycle) vis-à-vis the steady

state in most LtOE36 This may suggest that the more sophisticated the experimental task and

the higher the implied cognitive load, the simpler the equilibrium subjects are likely to coordinate

on, and the simpler their behavioural rules.

A third explanation, namely risk aversion, occurred to us when studying the questionnaire

that subjects have to �ll in at the end of the experiment. The experimental environment is

deterministic, but uncertainty arises from others' actions as long as there is no perfect coordi-

nation between the six subjects. Even if the payo� function is designed in the LtOE to give

rise to the same average payo� values at the steady state and along the 2-cycle, subjects may

perceive di�erently the 2-cycle payo� outcome. Along the 2-cycle, the average payo� over two

periods is the same as the steady state payo�, but this requires that all subjects will not deviate

and coordinate on the 2-cycle. By contrast, at the steady state, subjects get the same payo�

35This could also explain why savings exhibit a stronger negative autocorrelation in Treatment S, where
the 2-cycle values are rescaled to less extreme values, than in Treatments T and O with ρ2 = 8.

36The average individual decision time in the LtFE is 19.9 seconds while it is 24.71 in the LtOE, and it
took on average 33.5 minutes for the subjects to read the instructions and answer the quiz in the LtFE,
while it took them on average 42.4 minutes to do so in the LtOE. The p-value of the corresponding
unilateral K-S test is less than 2e-16 in the two cases. Note that the instructions are slightly longer (half
of page) in the LtOE but it probably cannot account alone for almost 10 minutes more.
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Figure 10: Measurement of cognitive loads in LtFE vs. LtOE

every period, provided that the others will keep on playing the same strategy. In this sense,

coordination on the steady state may appear less risky to the subjects. Indeed, in the question-

naire, subjects exposed to the large variations in return on savings during the �rst 10 training

periods reported several times that they were trying to "secure a smooth payo�", "hold on to

an equilibrium situation", "have a sure payment", or "avoid �uctuations". In the LtFE, we do

not observe such a risk aversion for price cycles because pattern recognition is likely to o�set it

by making coordination on a 2-cycle easier.

The di�erences between the LtF and the LtO designs may suggest that insights can be only

derived from the LtO, as in economic models, agents are optimizers. However, we believe that

this would be a misleading interpretation of our results. Instead, our results show that the

di�erences between LtF and LtO depend on the underlying framework. We �nd that within a

complex OLG framework, LtO favors simpler equilibria. Previous experimental work shows that

LtO may lead to more complex behavior than LtF. For example, in the negative feedback cobweb

experiments (Bao et al. 2013), convergence to steady state in LtO is slower than in LtF, while

in the positive feedback asset-pricing experiment (Bao et al. 2016), volatility of asset prices is

signi�cantly higher in LtO than in LtF.

Whether our experimental results in terms of equilibrium selection remain valid in a larger

class of contexts, e.g. in multi-dimensional expectation systems, constitutes an interesting follow-

up question that is left for future research.
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A Summary of the experimental treatments

ρ2 3 5 8 12 13.5

s∗ 0.562 0.5387 0.5246 0.5166 0.5148

P ∗ 17.78 8.91 0.72 17.1 16.208

{s∗1, s∗2} NA {1.1823, 0.1203} {1.4614, 0.0094} {0.0001, 1.4981} {0.0002, 1.497}
{P ∗1 , P ∗2 } NA {4.06, 39.9} {0.26, 40.39} {11.0835, 60.71} {10.288, 66.5}

LtFE

ρ2 3 5 8 12 13.5

exchange rate 0.00027
(1300 pts = 0.35E)

T 50 100 100 100 100

nb. of 4 4 4 4 4
observations

LtOE

ρ2 3 5 8 12 13.5

nb. of 4 9 15 NA NA
observations

α NA 4 25 NA

P0 50 50 15 NA

exchange rate 0.00045 0.00039 NA

payo� on the 975 pts 723 pts 639 pts NA
steady state 0.44E 0.28E 0.26E NA

payo� on NA 40+1310
2 = 675pts 15+1301

2 = 658pts NA
2-cycle = 0.26E = 0.27E

C 0 1 15.25 NA

K 500 350.5 71.92 NA

Table 8: Summary of the experimental treatments and designs

N.B.: The equilibrium price values for ρ2 = 12 and 13.5 in the LtFE corresponds to the
transformed values given by Equations (12). The exchange rate between experimental currency
and euros is higher in the LtOE than in the LtFE in order to ensure reasonable earnings for
subjects with respect to the relative length of the experimental sessions.
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B Individual and aggregate dynamics in the experi-

mental economies

B.1 Experimental economies � LtFE
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Figure 11: ρ2 = 3 (steady state)
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Figure 12: ρ2 = 5 (2-cycle)
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Figure 13: ρ2 = 8 (noisy 32 cycle)
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Figure 14: ρ2 = 12 (chaotic dynamics)

46



0

20

40

60

80

100

25 50 75 100
Period

forecasts

price

LtFE_rho_13.5_gp_1

0

20

40

60

80

100

25 50 75 100
Period

forecasts

price

LtFE_rho_13.5_gp_2

0

20

40

60

80

100

25 50 75 100
Period

forecasts

price

LtFE_rho_13.5_gp_3

0

20

40

60

80

100

25 50 75 100
Period

forecasts

price

LtFE_rho_13.5_gp_4

Figure 15: ρ2 = 13.5 (3-cycle)
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B.2 Experimental economies � LtOE
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Figure 16: ρ2 = 3 (steady state)
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Figure 17: ρ2 = 5 (2-cycle)
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Figure 18: ρ2 = 5 (2-cycle) with training. N.B.: a computer crashed at period 58 in
group 1.
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Figure 19: ρ2 = 8 (32-cycle)
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Figure 20: ρ2 = 8 (32-cycle) with training
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Figure 21: ρ2 = 8 (32-cycle)with training and non-linear transformation of savings

∈ [1, 100]
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C Additional results

C.1 LtFE
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Figure 22: Sample average and �rst order sample autocorrelation of individual forecasts,
LtFE, discarding the �rst 10 periods. In red: convergence to the steady state, in blue:
convergence to the 2-cycle.
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Figure 23: Cumulative distribution of the estimated coe�cients in Equation (14) for the
economies that converge to a two-cycle (i.e. all groups with ρ2 = 12 and ρ2 = 13.5 and
Groups 1-2-3 with ρ2 = 5 and ρ2 = 8, 84 observations).
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C.2 LtOE
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Figure 24: Average and �rst order autocorrelation of individual savings decisions, LtOE,
discarding the �rst 10 periods. In red: convergence to the steady state, in blue: conver-
gence to the 2-cycle.
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Figure 25: Cumulative distribution of the estimated coe�cients in Equation (16) for
groups that converge to steady state, 150 observations.
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D Instructions of the LtFE for ρ2 > 3 [ρ2 = 3]

Welcome! The experiment is anonymous, the data from your choices will only be linked to
your station ID, not to your name. If you follow these instructions carefully, you can earn a
considerable amount of money. You will be paid privately in cash at the end of the experiment,
after all participants have �nished the experiment. Before the payment, you will be asked to �ll
out a short questionnaire. On your desk you will �nd a calculator and scratch paper, which you
can use during the experiment. Before starting the experiment, you have to answer the questions
at the end of the instructions to make sure that you understand your role in the experiment.

Each participant has the same role, and the rules are the same for all participants. From

now until the end of the experiment, you are not allowed to communicate with other

participants. If you have any questions, please raise your hand, and we will come to

you and answer your question privately.

Information about the experimental economy

You participate in a market, in which individuals trade chips at a given price in each period.
You are a Professional Forecaster, and you have to predict the price of the chips in

the next period.

In every period, two generations of individuals � the young and the old � trade a consumption
good. We will refer to this consumption good as chips. Imagine that a period in this economy
represents a generation: in each period, the young generation from the previous period becomes
old, and a new young generation enters. The young generation consists of individuals of working
age who receive an income of 200 chips. The old generation does not work any more, and
therefore only receives a smaller income of 50 chips. These incomes are �xed and identical across
all individuals from the same generation.

Young individuals can choose to consume only part of their 200 chips, and to save the rest
to consume more in the next period, when they will be old. In each period, a young individual
then consumes:

consumption of chips when young = 200− number of chips saved

To carry the saved chips to the next period, the young individual converts these chips into
money, by selling them to the old individuals at the current price in the chips market. The
savings of a young individual in money then equals:

savings in money = number of chips saved× current price of the chips

Once old, in the next period, an individual spends all his money to buy as many chips as his
savings can buy from the new young individuals, at the prevailing price for chips. The amount
of consumption of chips of an old individual then equals:

consumption of chips when old = 50 +
savings in money

price of the chips when old

The price of chips is always determined in such a way that the chips saved by the young
individuals can be exactly bought by the monetary savings of the old individuals.

As a professional forecaster, at the beginning of each period, you have to predict

the price of the chips in the next period, and your prediction is then used by a young
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individual for making a savings decision in the current period. In each period, there are
six young individuals, each of them is advised by a forecaster. Each forecaster is played by a
participant like you.

The price predictions of participants for the next period determines the number of
chips young individuals will be selling to the old ones in the current period, and therefore the
price of the chips in the current period : the higher your price forecast for the next

period, the more chips the young individuals save and the more chips to buy in the market in
the current period, and the lower the realized price of chips in the current period. This
means that your price prediction for the next period only in�uences the price in the

current period, not the price in the next period. As for old people, they do not need your
forecasts, as they just consume the number of chips their savings can buy.

In economies similar to this one, the price of chips has historically been between

1 and 100.

Information about your prediction task

The experiment lasts for 100 [50] periods or generations. At the beginning of each period,

you have to submit a prediction of the price of the chips in the next period. This
means that you will observe the realized value of the price that you predicted in a given period
only at the end of the next period. Your payo� in each period depends on your forecast error,
that is the di�erence between your price forecast for a given period and its realized value (we
explain below how your payo� is exactly computed). You will then observe your forecast

error and your corresponding payo� for a forecast made at the beginning of any

period at the end of the next period.

The experiment starts at period 1. For this period only, you are asked to submit two forecasts:
your price forecast for the current period (period 1) and for the next period (period 2). Once
all participants have submitted their two price forecasts, all young individuals decide how many
chips to save and sell to the old in period 1, and this determines the price of the chips in period
1. You can now observe your forecast error for period 1. You are then entering period 2.

From period 2 to the end of the experiment (period 100 [50]), you have to submit a single

forecast of the price in the next period. At period 2, you have to submit your price forecast
for period 3. After all participants have submitted their price forecasts, young individuals decide
how many chips to save in period 2, and the price of chips in period 2 is disclosed. You then
observe your forecast error based on the forecast that you made in period 1 for period 2, and
your corresponding score for period 2. You are then entering period 3. This sequence of events
takes place in each of the 100 [50] periods of the experiment.

The computer interface is mainly self-explanatory. When making your forecast at any period,
the following information will be displayed in the table (right panel of the computer screen) and
the graph (left panel):

• The price level from the beginning of the experiment (period 1) up to the previous period;

• Your price forecast from the beginning of the experiment up to the current period;

• Your payo� from the beginning of the experiment up to the previous period.

All these elements can be relevant to make your forecasts, but it is up to you to determine how
to use this information in order to make accurate forecasts.
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You have to enter your price predictions in the bottom left part of the screen. When submit-
ting your prediction, use a decimal point if necessary (not a comma). For example, if you want
to submit a prediction of 2.5, type 2.5. At the bottom of the screen there is a status bar telling
you when you can enter your prediction and when you have to wait for other participants.

Information about your payo�

In each period, your payo� depends on the accuracy of your price forecast. The
accuracy of your forecast is measured by the squared error between your price forecasts and the
price realized values. Your payo� will be displayed on the computer screen in terms of points,
and is computed as follows:

Your earnings = max

[
1300− 1300

49
(your forecast error)2 , 0

]
There is a payo� table with the instructions. It shows your payo� for di�erent values of forecast
errors.

If you forecast the price perfectly, your squared error is zero and you get 1300 points. This
is the highest payo� that you can get in any period. The more accurate your forecast, the lower
your squared forecast error, and the higher your payo�. If your forecast error is higher than 7,
you get 0 point, and this is the minimum payo� you can get in any period.

Example If your price forecast was 6 and the realized price is 5.7, your squared error is
(6− 5.7)2 = 0.32 = 0.09, and your payo� is max(1300− 1300

49 × 0.09 = 1298, 0) = 1298 points. If
your prediction of the price was 32 and the realized price is 42, your squared error is (42−32)2 =
102 = 100, and your payo� is max(1300− 1300

49 × 100 = −1353, 0) = 0, and you do not earn any
point.

The sum of your prediction scores over the di�erent periods is shown in the bottom right
of the screen. At the end of the experiment, your cumulative payo� over all 100 [50] periods is
computed, and converted into euro. For each 1300 points you make, you earn 0.35 euros.

This will be the only payment from this experiment, you will not receive a show-up

fee on top of it.

Please �ll out the questionnaire below. We will make sure that every subject has �lled
out the questionnaire with the correct answers for each of the six questions before starting the
experiment.
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Questionnaire

1. If you enter period 6, for which period are you asked to submit a price forecast?

· · ·

2. If you enter a price prediction for period 10, which period's price will be in�uenced by
your prediction?

· · ·

3. Suppose that in a period, your prediction for the market price was 40, and the market
price turns out to be 45.5, how many points do you earn in this period?

· · ·

4. Suppose that in a period, your prediction for the price was 10, and the price turns out to
be 25, how many points do you earn in this period?

· · ·

5. Suppose the total amount of savings of the young generation in period 2 is 5, and the total
amount of savings in period 3 is 20. In which period will the price be the highest?

· · ·

6. Suppose all forecasters like you are predicting at the beginning of period 12 a "high" price
for period 13, would you say that:

(a) The price in period 13 is likely to be high;

(b) The price in period 13 is likely to be low;

(c) The price in period 12 is likely to be high;

(d) The price in period 12 is likely to be low;

(e) Forecasts of the price for period 13 do not in�uence the price in period 13;

(f) Forecasts of the price for period 13 do not in�uence the price in period 12.

N.B.: multiple answers are possible.
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Pay-o� table for the price forecasting task

Your payo� : max
[
1300− 1300

49 (your forecast error)2 , 0
]

1300 points = 0.35 euro

error points error points error points error points

0 1300 1.85 1209 3.7 937 5.55 483

0.05 1300 1.9 1204 3.75 927 5.6 468

0.1 1300 1.95 1199 3.8 917 5.65 453

0.15 1299 2 1194 3.85 907 5.7 438

0.2 1299 2.05 1189 3.9 896 5.75 423

0.25 1298 2.1 1183 3.95 886 5.8 408

0.3 1298 2.15 1177 4 876 5.85 392

0.35 1297 2.2 1172 4.05 865 5.9 376

0.4 1296 2.25 1166 4.1 854 5.95 361

0.45 1295 2.3 1160 4.15 843 6 345

0.5 1293 2.35 1153 4.2 832 6.05 329

0.55 1292 2.4 1147 4.25 821 6.1 313

0.6 1290 2.45 1141 4.3 809 6.15 297

0.65 1289 2.5 1134 4.35 798 6.2 280

0.7 1287 2.55 1127 4.4 786 6.25 264

0.75 1285 2.6 1121 4.45 775 6.3 247

0.8 1283 2.65 1114 4.5 763 6.35 230

0.85 1281 2.7 1107 4.55 751 6.4 213

0.9 1279 2.75 1099 4.6 739 6.45 196

0.95 1276 2.8 1092 4.65 726 6.5 179

1 1273 2.85 1085 4.7 714 6.55 162

1.05 1271 2.9 1077 4.75 701 6.6 144

1.1 1268 2.95 1069 4.8 689 6.65 127

1.15 1265 3 1061 4.85 676 6.7 109

1.2 1262 3.05 1053 4.9 663 6.75 91

1.25 1259 3.1 1045 4.95 650 6.8 73

1.3 1255 3.15 1037 5 637 6.85 55

1.35 1252 3.2 1028 5.05 623 6.9 37

1.4 1248 3.25 1020 5.1 610 6.95 19

1.45 1244 3.3 1011 5.15 596 error ≥ 7 0

1.5 1240 3.35 1002 5.2 583
1.55 1236 3.4 993 5.25 569
1.6 1232 3.45 984 5.3 555
1.65 1228 3.5 975 5.35 541
1.7 1223 3.55 966 5.4 526
1.75 1219 3.6 956 5.45 512
1.8 1214 3.65 947 5.5 497
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E Instructions of the LtOE for ρ2 = 3 [ρ2 = 5] {ρ2 = 8}
/tr = S/

General information about the experiment

Welcome! The experiment is anonymous, the data from your choices will only be linked to
your station ID, not to your name. If you follow these instructions carefully, you can earn a
considerable amount of money. You will be paid privately in cash at the end of the experiment,
after all participants have �nished the experiment. Before the payment, you will be asked to �ll
out a short questionnaire. On your desk you will �nd a calculator that you can use during the
experiment. Before starting the experiment, you have to answer the questions at the end of the
instructions to make sure that you understand your role in the experiment.

Each participant has the same role, and the rules are the same for all participants. From now
until the end of the experiment, you are not allowed to communicate with other participants.
If you have any questions, please raise your hand, and we will come to you and answer your
question privately.

Information about the experimental economy

You participate in a market for a consumption good. We will refer to this consumption good
as chips. In every period, two generations of individuals � the young and the old � trade
chips. Imagine that a period in this economy represents a generation: in each period, the
young generation from the previous period becomes old, and a new young generation enters.
The young generation consists of individuals of working age who receive an income of 200 /100/
chips. The old generation does not work any more, and therefore only receives a smaller income
of 50 /80/ chips. These incomes are �xed and identical across all individuals from the same
generation.

Young individuals can choose to consume only part of their 200 /100/ chips, and
to save the rest to consume more than their 50 /80/ chips in the next period, when

they will be old. In each period, a young individual then consumes:

consumption of chips when young = 200/100/− quantity of chips saved

You work for a Professional Saving Advisor Bureau, and you have to decide in

each period the quantity of chips a young individual will save. In each period, there are
six young individuals, each of them follows the savings decision of a professional advisor. Each
advisor is played by a participant like you.

To carry the saved chips to the next period, the young individual converts these chips into
money, by selling them to the old individuals. The quantity of money in the economy remains
constant. The savings of a young individual in money then equals:

savings in money = number of chips saved× current price of the chips

The current price of the chips is always determined in such a way that the chips saved by the
young individuals can be exactly bought by the monetary savings of the old individuals. The
more chips all the young individuals save, the lower the realized price of chips,
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and the more chips the old individuals can purchase back with their savings and

consume. As old individuals just consume the number of chips their savings can buy from the
new young individuals, they do not need your savings advice. The consumption of chips of an
old individual then equals:

consumption of chips when old = 50/80/+
savings in money

price of the chips when old

Your savings decision in�uences what the individual consumes both when young

in the current period, and when old in the next period. The price of the chips in

the current period determines how much in money the young individual saves. The price of

chips in the next period will determine how many chips the individual will be able to buy
with his savings when old. Therefore, the consumption of chips when old also depends on the
return on savings between the current period and the next period, de�ned as:

return on savings =
current price (when young)

future price (when old)

The return on savings tells you how many chips the individual will be able to buy

when old with one chip you choose to save for him when young .

You do not know yet the prices of the current and the next periods, so you do not know

yet the return on savings when making your savings decision. However, you should

make a forecast of the return on savings of the next period to guide your savings

decision in the current period .

Information about your task as an advisor

The savings advisor bureau exists for 50 [{/100/}] periods or generations. Each individual lives
for two periods, consumes and saves when young, and consumes when old. At the beginning
of each period, you have to submit a savings decision for a young individual. Your payo�

depends on the consumption of chips of this individual both when young and when

old (we explain below how your payo� is exactly computed): this means that you will observe

the quantity of chips this individual has consumed over his two-period life, and the

corresponding payo� of your savings decision, only at the end of the next period,

when he will have become old.

The experiment starts at period 1. From period 1 to the end of the experiment (period 50
[{/100/}]), you have to make a savings advice. Once all participants have entered their savings
decision in period 1, all young people consume and save chips, all old individuals trade the money
they are initially endowed with against the saved chips of the young and consume them. This
determines the price of chips for period 1. Based on the initial price level, that usually ranges
from 1 to 100, you observe the �rst return on savings. You are then entering period 2. After all
participants have submitted their savings advice for period 2, young individuals consume and
save chips, old individuals buy and consume chips, and the realized price of chips for period 2 is
disclosed, which determines the return on savings between period 1 and 2. You then observe the
consumption of the young person you advised in period 1 both in period 1 (when young) and
2 (when old), and therefore the corresponding payo� of your savings decision made in period 1.
You are then entering period 3. This sequence of events takes place in each of the 50[{/100/}]
periods of the experiment.
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The computer interface is mainly self-explanatory. When making your savings decision at
any period, the following information will be displayed in the table (right panel of the computer
screen):

• The price level from the beginning of the experiment (period 1) up to the previous period;

• The return on savings from period 1 up to the previous period;

• The average savings decisions among the 6 advisers from the beginning of the experiment
(period 1) up to the previous period;

• Your savings decisions from the beginning of the experiment (period 1) up to the previous
period;

• The corresponding consumption of chips when young from the beginning of the experiment
(period 1) up to the previous period;

• The consumption of chips when old of the individual you advised when young from period
2 up to the previous period;

• Your payo� from period 2 up to the previous period.

The two plots (left panel) indicate your savings decisions together with the average decisions and
the returns on savings.

All these elements can be relevant to make your savings decision but it is up to you to
determine how to use this information. In each period, the return on savings you need

to forecast for the next period and the savings decision you need to make for the

current period will be displayed on your screen with question marks (?) to help you.

When submitting your savings decision, use a decimal point if necessary (not a comma). For
example, if you want to save 15.05 chips, type 15.05. At the bottom of the screen there is a
status bar telling you when you can enter your savings decision and when you have to wait for
other participants.

Information about your payo�

In each period, your payo� depends on the quality of your savings decisions. The

higher utility the individual you are advising gets from his consumption when young

and when old, the higher the quality of your savings decisions, and the higher your payo�.
You do not need to calculate his utility, and hence your payo� yourself. There is a payo�

table on your table. According to your forecast of the return on savings (vertical axis), it
shows the number of points that you can earn for a given savings decision. You should use

this payo� table to choose your savings decision in the current period (horizontal

axis) according to your forecast of the return on savings in the next period (vertical

axis). Note that the payo� table displays only some possible savings decisions and forecasts of
the return on savings, but you can choose other ones. For instance, you do not need to choose
between 130 or 140, but you may submit 141.2. Equally, you do not have to choose between 0.7
and 0.8 for your forecast of the return on savings, you may choose 0.72.
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Example If you have advised a young person to save 90 chips, and the current price turns out
to be 10 and the next period's price 20, the return on savings is 10

20 = 0.5, this person consumes
200− 90 = 110/100− 90 = 10/ when young, and 50 + 0.5× 90 = 95/80 + 0.5× 90 = 125/ when
old, and your payo� is 772[422]{356}/329/ points. For the same savings decision and current
price, if the next period's price turns out to be 5, the return on savings is 10

5 = 2 and this person
consumes 50+2×90 = 230/80+2×90 = 260/ when old, and your payo� is 1002[630]{475}/394/
points.

The sum of your payo� from your savings advices over the di�erent periods is shown in
the bottom right of the screen. At the end of the experiment, your cumulative payo� over all
50[{/100/}] periods is computed, and converted into euro. For each 1000 points you make,

you earn 0.5 euros. This will be the only payment from this experiment, you will

not receive a show-up fee on top of it.

You now have to ful�l the questionnaire below on the last page of these instructions. We will
make sure that every subject has �lled out the questionnaire with the correct answers for each
of the seven questions before starting the experiment.

If you have any questions, please ask them now!
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Questionnaire

1. If you enter period 6, for which period do you need to forecast the return on savings to
make your savings decision?

· · ·

2. If you make a savings decision at the beginning of period 9, in which period will you
observe your corresponding payo�?

· · ·

3. If you advise to save 150 chips, how many chips will the individual consume when young?

· · ·

4. Suppose that in a period 9, you advised to save 4 chips, the price of the chips was 30 in
this period, and 10 in the next period (period 10). What is the return on savings between
period 9 and period 10?

· · ·

5. Suppose you forecast that the return on savings will be 9.5, how many chips should you
advise to save? Use your payo� table!

· · ·

6. Suppose the total amount of savings of the young generation in period 2 is 100, and the
total amount of savings in period 3 is 200. In which period will the price be the highest?

· · ·

7. Suppose you have decided for a young individual to save 100 chips in a given period.

(a) The young individual will consume 100 + 50 = 150 chips when old.

(b) You do not know yet how many chips the individual will consume when old.

(c) The consumption of the individual when old will depend only on the price of the
chips in the next period.

(d) The consumption of the individual when old will depend on both the price of the
chips in the current and in the next period, and his savings when young.

(e) You know the current price of the chips when making a saving decision.

N.B.: multiple answers are possible.
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F Computer interfaces

Figure 26: Subjects' computer interface (LtFE)

Figure 27: Subjects' computer interface (LtOE)
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