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Abstract

We generalize the concept of behavioral learning equilibrium (BLE) to a general

high dimensional linear system and apply it to the standard New Keynesian model.

Boundedly rational agents learn to use a simple AR(1) forecasting rule for each

variable with parameters consistent with the observed sample mean and autocor-

relation of past data. Agents do not fully recognize the more complex structure of

the economy, but learn to use an optimal simple AR(1) rule. We find that BLE

exists, under general stationarity conditions, typically with near unit root autocor-

relation parameters. BLE thus exhibits a novel feature, persistence amplification:

the persistence in inflation and output gap is much higher than the persistence in

exogenous fundamental driving factors. In a boundedly rational world, coordina-

tion of individual expectations on an aggregate outcome described by our simple,

parsimonious BLE seems more likely. We also consider monetary policy under BLE

for different Taylor interest rate rules and study whether inflation and/or ouput gap

targeting can stabilize coordination on near unit root BLE.
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1 Introduction

Rational Expectations Equilibrium (REE) requires that economic agents’ subjective

probability distributions coincide with the objective distribution that is determined, in

part, by their subjective beliefs. There is a vast literature that studies the drawbacks of

REE. Some of these drawbacks include the fact that REE requires an unrealistic degree

of computational power and perfect information on the part of agents. Alternatively, the

adaptive learning literature (see, e.g., Evans and Honkapohja (2001, 2013) and Bullard

(2006) for extensive surveys and references) replaces rational expectations with beliefs that

come from an econometric forecasting model with parameters updated using observed time

series. A large part of this literature involves studying under which conditions learning

will converge to the rational expectations equilibrium. When the perceived law of motion

(PLM) of agents is correctly specified, convergence of adaptive learning to an REE can

occur. However, in general the PLM will be misspecified. As shown in White (1994),

an economic model or a probability model is only a more or less crude approximation to

whatever might be the ”true” relationships among the observed data and consequently it

is necessary to view economic and/or probability models as misspecified to some greater or

lesser degree. Whenever agents have misspecified PLMs a reasonable learning process may

settle down to some sort of misspecification equilibrium. In the literature, different types

of misspecification equilibria have been proposed, e.g. Restricted Perceptions Equilibrium

(RPE) where the forecasting model is underparameterized (Sargent, 1991; Evans and

Honkapohja, 2001; Adam, 2003; Branch and Evans, 2010) and Stochastic Consistent

Expectations Equilibrium (SCEE) (Hommes and Sorger, 1998; Hommes et al., 2013),

where agents learn the optimal parameters of a simple, parsimonious AR(1) rule.1

A SCEE is a very natural misspecification equilibrium, where agents in the economy

do not know the actual law of motion or even recognize all relevant explanatory variables,

but rather prefer a parsimonious forecasting model. The economy is too complex to fully

understand and therefore, as a first-order approximation, agents forecast the state of the

economy by simple autoregressive models (e.g. Fuster et al., 2010). In the simplest model

applying this idea, agents run an univariate AR(1) regression to generate out-of-sample

forecasts of the state of the economy. Hommes and Zhu (2014) provide the first-order

SCEE with an intuitive behavioral interpretation and refer to them as a Behavioral Learn-

1Branch (2006) provides a stimulating survey discussing the connection between these types of mis-

specification equilibria.
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ing Equilibrium (BLE). Although it is possible for some agents to use more sophisticated

models, one may argue that these practices are neither straightforward nor widespread.

A simple, parsimonious BLE seems a more plausible outcome of the coordination process

of individual expectations in large complex socio-economic systems (Grandmont, 1998).

Hommes and Zhu (2014) formalize the concept of BLE in the simplest class of models

one can think of: a one-dimensional linear stochastic model driven by an exogenous linear

stochastic AR(1) process. Agents do not recognize, however, that the economy is driven

by an exogenous AR(1) process yt, but simply forecast the state of the economy xt using

an univariate AR(1) rule. The parameters of the AR(1) forecasting rule are not free,

but fixed (or learned over time) according to the observed sample average and first-order

sample autocorrelation. Within this simple, but general, class of models Hommes and

Zhu (2014) fully characterize the existence and multiplicity of BLE and provide stability

conditions under a simple adaptive learning scheme –Sample Autocorrelation Learning

(SAC-learning). Although this class of models is simple, it contains two important stan-

dard applications: an asset pricing model driven by autocorrelated dividends and the New

Keynesian Philips curve with inflation driven by autocorrelated output gap (or marginal

costs). As shown in Fuhrer (2009), however, the skeleton model of the New Keynesian

Philips curve with AR(1) driving variable leaves implicit the determination of real output

and the role of monetary policy in influencing output and inflation.

In this paper we extend the BLE concept to a general n-dimensional linear stochastic

framework. As an application we consider the standard two-dimensional dynamic stochas-

tic general equilibrium (DSGE) model-the New Keynesian model–and study the role of

monetary policy under BLE. Agents are boundedly rational. They do not know the exact

form of the actual law of motion because of cognitive limitations or simply prefer a par-

simonious prediction rule. Agents’ perceived law of motion (PLM) is a simple univariate

AR(1) process for each variable to be forecasted. The same consistency requirements are

imposed upon BLE to pin down the parameters of the forecasting model: for each endoge-

nous variable observed sample averages and first-order sample autocorrelations match the

corresponding parameters of the forecasting rule.

Numerous empirical studies show that overly parsimonious models with little parame-

ter uncertainty can provide better forecasts than models consistent with the actual data-

generating complex process (e.g. Nelson, 1972; Stock and Watson, 2007; Clark and West,

2007; Enders, 2010). In a similar vein (but without analytical results) Slobodyan and

Wouters (2012) study a New Keynesian DSGE model with agents using an AR(2) fore-
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casting rule. Chung and Xiao (2014) and Xiao and Xu (2014) study learning and predic-

tions with an AR(1) or VAR(1) model in a two dimensional New Keynesian model with

limited information and show, based on simulations, that the simple AR(1) model is more

likely to prevail in reality when they make predictions. Laboratory experiments in the

NK framework also show that simple forecasting rules such as AR(1) describe individual

forecasting behavior surprisingly well (Assenza et al., 2014; Pfajfar and Zakelj, 2016).

The main contributions of our paper are fourfold: (1) existence proofs of BLE in a

general linear framework, (2) stability conditions of BLE under sample autocorrelation

(SAC-) learning, (3) persistence and volatility amplification, and (4) monetary policy

stabilization analysis under BLE. Many models of learning lead to excess volatility, that

is, volatility under learning is typically much higher than under REE. Our BLE model

exhibits another novel feature, persistence amplification: the persistence of inflation and

output gap under BLE is significantly higher than under REE. In fact, even when auto-

correlations of the exogenous shocks to fundamentals are small, inflation and output gap

along BLE are near unit root processes. Monetary policy through inflation and output

targeting may have strong effects upon this persistence and volatility amplification.

Related literature

The issue of persistence has been of great interest to macroeconomists and policy-

makers. A number of models of frictions have been proposed to replicate persistence,

such as habit formation in consumption, indexation to lagged inflation in price-setting,

rule-of-thumb behavior, or various adjustment costs (Phelps, 1968; Taylor, 1980; Fuhrer

and Moore, 1992, 1995; Christiano et al., 2005; Smets and Wouters, 2003, 2005; Boivin

and Giannoni, 2006; Giannoni and Woodford, 2003). These papers essentially improve

the empirical fit by adding lags in the model equations. Estimating these rich models

with frictions under the assumption of rational expectations one typically finds that sub-

stantial degrees of habit persistence and inflation indexation are supported by the data.

Those additional sources of persistence appear, therefore, necessary to match the iner-

tia of macroeconomic variable. These estimations also typically involve highly persistent

structural shocks. Our BLE model is applied to a frictionless New Keynesian framework,

but nevertheless exhibits strong. Learning causes persistence amplification: small auto-

correlations of exogenous shocks are strongly amplified as agents learn to coordinate on

a simple AR(1) forecasting rule with near unit root parameters consistent with observed
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sample average and sample autocorrelations. The high persistence of inflation and output

thus arises from a self-fulfilling mistake (Grandmont, 1998).

Our BLE concept fits with the literature employing adaptive learning to analyze the

evolution of U.S. inflation and monetary policy. Adaptive learning can help in under-

standing some particular historical episodes, such as high inflation in the 1980s, which

are often harder to explain under rational expectations. For example, Orphanides and

Williams (2003) consider a form of imperfect knowledge in which economic agents rely

on adaptive learning to form expectations. This form of learning represents a relatively

modest deviation from rational expectations that nests it as a limiting case. They find

that policies that would be efficient under rational expectations can perform poorly when

knowledge is imperfect. Milani (2007) also assumes that agents form expectations through

adaptive learning using correctly specified economic models and updating the parameters

through constant-gain learning (CGL) based on historical data. He shows empirically

that when learning replaces rational expectations, the estimated degrees of habits and

indexation drop closer to zero, suggesting that persistence arises in the model economy

mainly from expectations and learning. Fuhrer (2009) provides a good survey on inflation

persistence. He examines a number of empirical measures of reduced form persistence

including the first-order autocorrelation and the autocorrelation function of the inflation

series. He also investigates the sources of persistence, including learning of agents in a

rational- expectation setting.

Our behavioral learning equilibrium concept is closely related to the Exuberance Equi-

libria (EE) in Bullard et al. (2008), where agents’ perceived law of motion is misspecified.

However, because of difficulty of computation, in Bullard et al. (2008) there are only

numerical results on the exuberance equilibria, while here we analytically show the exis-

tence of BLE, its stability under learning and the persistence amplification in a general

linear framework with application to the New Keynesian model. Another related mis-

specification equilibrium is Limited Information Learning Equilibrium (LILE) defined in

Chung and Xiao (2014), which is defined by the least-squares projection of variables on

the past information of the actual law of motion equal to that in the perceived law of

motion. Different from the LILE, our general Behavioral Learning Equilibrium is defined

by the conditions that sample means and first-order autocorrelations of each variable of

the actual law of motion are consistent with those corresponding to the perceived law of

motion. We further study the effects of monetary policy under the more plausible BLE.

The concept of natural expectations in Fuster et al. (2010) and Fuster et al. (2011,

6



2012) is another misspecification concept, where agents use simple, misspecified models,

e.g., linear autoregressive models. Natural expectations, however, do not pin down the

parameters of the forecasting model through consistency requirements as for a restricted

perceptions equilibrium nor do they allow the agents to learn an optimal misspecified

model through empirical observations. Cho and Kasa (2015) study model validation in

an environment where agents are aware of misspecification and try to detect it through

adaptive learning. In our BLE misspecification is self-fulfilling and the outcome of the

SAC-learning process.

The paper is organized as follows. Section 2 introduces the main concepts of BLE and

Section 3 generalizes the existence and stability of BLE to a general n-dimensional linear

system. Section 4 applies BLE to the two-dimensional New Keynesian model and studies

existence of BLE, their stability under learning and the persistence amplification. Section

5 studies whether monetary policy can mitigate persistence and volatility amplification

for different specifications of the Taylor rules. Finally, Section 6 concludes.

2 Main concepts

In Hommes and Zhu (2014), we introduced BLE in the simplest setting, a one-

dimensional linear stochastic model driven by an exogenous linear stochastic AR(1) pro-

cess. In this paper we generalize BLE to n-dimensional (linear) stochastic models driven

by exogenous linear stochastic AR(1) processes of multiple shocks.

Let the law of motion of an economic system be given by the stochastic difference

equation

xxxt = FFF (xxxe
t+1, uuut, vvvt), (2.1)

where xxxt is an n×1 vector of endogenous variables denoted by [x1t, x2t, · · · , xnt]
′ and xxxe

t+1

is the expected value of xxx at date t+1. This denotation highlights that expectations may

not be rational. Here FFF is a continuous n-dimensional vector function, uuut is a vector of

exogenous stationary variables and vvvt is a vector of white noise disturbances.

Agents are boundedly rational and do not know the exact form of the actual law

of motion (2.1). They only use a simple, parsimonious forecasting model where agents’

perceived law of motion (PLM) is a simple univariate AR(1) process for each variable

to be forecasted. As shown in Enders (2010, p.84-85), coefficient uncertainty increases

as the model becomes more complex, and hence it could be that an estimated AR(1)

7



model forecasts a real ARMA(2,1) process better than an estimated ARMA(2,1) model.

Numerous empirical studies also show that overly parsimonious models with little pa-

rameters uncertainty can provide better forecasts than models consistent with the actual

data-generating complex process (e.g. Nelson, 1972; Stock and Watson, 2007; Clark and

West, 2007). Thus agents’ perceived law of motion (PLM) is assumed to be the simplest

VAR model with minimum parameters, i.e. a VAR(1) process

xxxt = ααα+ βββ(xxxt−1 −ααα) + δδδt, (2.2)

where ααα is a vector denoted by [α1, α2, · · · , αn]
′, βββ is a diagonal matrix2 denoted by



β1 0 · · · 0

0 β2 · · · 0

· · ·

0 0 · · · βn



with βi ∈ (−1, 1) and {δδδt} is a white noise process; ααα is the uncon-

ditional mean of xxxt and βi is the first-order correlation coefficient of variable xi. Given the

perceived law of motion (2.2), the 2-period ahead forecasting rule for xxxt+1 that minimizes

the mean-squared forecasting error is

xxxe
t+1 = α + β2(xt−1 − α)α + β2(xt−1 − α)α + β2(xt−1 − α). (2.3)

Combining the expectations (2.3) and the law of motion of the economy (2.1), we obtain

the implied actual law of motion (ALM)

xxxt = FFF (ααα+ βββ2(xxxt−1 −ααα), uuut, vvvt). (2.4)

In the case that the ALM (2.4) is stationary, suppose the variance-covariance matrix

ΓΓΓ(0) := E[(xxxt−xxx)(xxxt−xxx)′] and the first order covariance matrix ΓΓΓ(1) := E[(xxxt−xxx)(xxxt+1−

xxx)′], where xxx is the mean of xxxt. Let ΩΩΩ be the diagonal matrix in which the ith diagonal

element is the variance of the ith process, that is ΩΩΩ = diag[γ11(0), γ22(0), · · · , γnn(0)],

where γii(0) is the ith diagonal entry of ΓΓΓ(0). Let EEE be the diagonal matrix in which

the ith diagonal element is the first-order autocovariance of the ith process, that is EEE =

diag[γ11(1), γ22(1), · · · , γnn(1)], where γii(1) is the ith diagonal entry of ΓΓΓ(1). LetGGG denote

the diagonal matrix in which the ith diagonal element is the first-order autocorrelation

coefficient of the ith process xi,t. Hence

GGG = EEEΩΩΩ−1. (2.5)

2Chung and Xiao (2014) also argue using simulations that the simple AR(1) model is more likely

to prevail in reality because of limited information restrictions when they model predictions in a two

dimensional New Keynesian model.
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Behavioral Learning Equilibrium (BLE)

Extending Hommes and Zhu (2014), the concept of BLE is generalized as follows.

Definition 2.1 A vector (µ,ααα,βββ), where µ is a probability measure, ααα is a vector and

βββ is a diagonal matrix with βi ∈ (−1, 1) (i = 1, 2, · · · , n), is called a behavioral learning

equilibrium (BLE) if the following three conditions are satisfied:

S1 The probability measure µ is a nondegenerate invariant measure for the stochastic

difference equation (2.4);

S2 The stationary stochastic process defined by (2.4) with the invariant measure µ has

unconditional mean ααα, that is, the unconditional mean of xi is αi, (i = 1, 2, · · · , n);

S3 Each element xi for the stationary stochastic process of xxx defined by (2.4) with the

invariant measure µ has unconditional first-order autocorrelation coefficient βi, (i =

1, 2, · · · , n), that is, GGG = βββ.

That is to say, a BLE is characterized by two natural observable consistency require-

ments: the unconditional means and the unconditional first-order autocorrelation coef-

ficients generated by the actual (unknown) stochastic process (2.4) coincide with the

corresponding statistics for the perceived linear VAR(1) process (2.2), as given by the pa-

rameters ααα and βββ. This means that in a BLE agents correctly perceive the two simplest

and most important statistics: the mean and first-order autocorrelation (i.e., persistence)

of each relevant variable of the economy, without fully understanding its structure and

recognizing all explanatory variables and cross correlations. Along a BLE the two param-

eters of each linear forecasting rule are pinned down by simple and observable statistics.

Hence, agents do not fully understand the linear structure of the stochastic economy, e.g.

they do not take the cross-correlation of state variables into account, but rather use a

parsimonious univariate AR(1) forecasting rule for each state variable. A simple BLE may

be a plausible outcome of the coordination process of expectations of a large population.

Laboratory experiments within the New Keynesian framework also provide empirical ev-

idence of the use of simple univariate AR(1) forecasting rules to forecast inflation and

output gap (e.g. Adam, 2007; Pfajfar and Zakelj, 2016; Assenza et al., 2014).

Sample autocorrelation learning

In the above definition of BLE, agents’ beliefs are described by the linear forecasting

rule (2.3) with fixed parameters ααα and βββ. However, the parameters ααα and βββ are usually
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unknown. In the adaptive learning literature, it is common to assume that agents behave

like econometricians using time series observations to estimate the parameters as addi-

tional observations become available. Following Hommes and Sorger (1998), we assume

that agents use sample autocorrelation learning (SAC-learning) to learn the parameters

αi and βi, i = 1, 2, · · · , n. That is, for any finite set of observations {xi,0, xi,1, · · · , xi,t},

the sample average is given by

αi,t =
1

t+ 1

t∑

k=0

xi,k, (2.6)

and the first-order sample autocorrelation coefficient is given by

βi,t =

∑t−1
k=0(xi,k − αi,t)(xi,k+1 − αi,t)∑t

k=0(xi,k − αi,t)2
. (2.7)

Hence αi,t and βi,t are updated over time as new information arrives. It is easy to check

that, independently of the choice of the initial values (xi,0, αi,0, βi,0), it always holds that

βi,1 = −1
2
, and that the first-order sample autocorrelation βi,t ∈ [−1, 1] for all t ≥ 1.

As shown in Hommes and Zhu (2014), define

Ri,t =
1

t + 1

t∑

k=0

(xi,k − αi,t)
2,

then the SAC-learning is equivalent to the following recursive dynamical system





αi,t = αi,t−1 +
1

t+ 1
(xi,t − αi,t−1),

βi,t = βi,t−1 +
1

t+ 1
R−1

i,t

[
(xi,t − αi,t−1)

(
xi,t−1 +

xi,0

t+ 1
−

t2 + 3t+ 1

(t+ 1)2
αi,t−1 −

1

(t + 1)2
xi,t

)

−
t

t + 1
βi,t−1(xi,t − αi,t−1)

2
]
,

Ri,t = Ri,t−1 +
1

t+ 1

[ t

t+ 1
(xi,t − αi,t−1)

2 − Ri,t−1

]
.

(2.8)

The actual law of motion under SAC-learning is therefore given by

xxxt = FFF (αααt−1 + βββ2
t−1(xxxt−1 −αααt−1), uuut, vvvt), (2.9)

with αi,t, βi,t as in (2.8).

In Hommes and Zhu (2014), F is a one-dimensional linear function. In this paper FFF

may be a general n-dimensional linear vector function.
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3 Main results in a n-dimensional linear framework

Assume that a reduced form model is a n-dimensional linear stochastic process xxxt,

driven by an exogenous VAR(1) process uuut. More precisely, the actual law of motion of

the economy is given by3

xxxt = FFF (xxxe
t+1, uuut, vvvt) = bbb0 + bbb1xxx

e
t+1 + bbb2uuut + vvvt, (3.1)

uuut = aaa + ρρρuuut−1 + εεεt, (3.2)

where xxxt is an n×1 vector of endogenous variables, bbb0 and aaa are n×1 vectors of constants,

bbb1, bbb2, ρρρ are n×n matrices of coefficients, uuut is an n×1 vector of exogenous variables which

is assumed to follow a stationary VAR(1) as shown in (3.2), and vvvt is an n × 1 vector

of i.i.d. stochastic disturbance terms with mean zero and finite absolute moments, with

variance-covariance matrix ΣvvvΣvvvΣvvv. That is, here all of the eigenvalues of ρρρ are assumed to be

inside the unit circle. In order to study BLE and REE more conveniently, we also assume

all of the eigenvalues of bbb1 lie inside the unit circle4. In addition, εεεt is assumed to be

an n× 1 vector of i.i.d. stochastic disturbance terms with mean zero and finite absolute

moments, with variance-covariance matrix ΣεΣεΣε and is independent of vvvt.

3.1 Rational expectations equilibrium

Under the assumption that agents are rational, assume the perceived law of motion

(PLM) corresponding to the minimum state variable REE of the model

xxx∗

t = ξξξ + ηηηuuut + vvvt. (3.3)

Assuming that shocks uuut are observable when forecasting xxxt+1 the one-step ahead forecast

is

Etxxx
∗

t+1 = ξξξ + ηηηaaa+ ηηηρρρuuut, (3.4)

and the corresponding actual law of motion is

xxx∗

t = bbb0 + bbb1(ξξξ + ηηηaaa + ηηηρρρuuut) + bbb2uuut + vvvt. (3.5)

3As shown in Section 4 for the alternative case with lagged Taylor rule, our results on BLE still hold

for the more general model including the term of lagged xxxt−1 in the RHS of Eq. (3.1).
4In the case when bbb1 has an eigenvalue outside the unit circle a typical time series will be exploding

under naive expectations xxxe
t+1 = xxxt−1. BLE under an AR(1) rule and SAC-learning then typically become

non-stationary and exploding.
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The rational expectations equilibrium (REE) is the fixed point of

ξξξ = bbb0 + bbb1ξξξ + bbb1ηηηaaa, (3.6)

ηηη = bbb1ηηηρρρ+ bbb2. (3.7)

A straightforward computation (see Appendix A) shows that the mean of the REE xxx∗

satisfies

xxx∗ = (III − bbb1)
−1[bbb0 + bbb2(I − ρρρ)−1a(I − ρρρ)−1a(I − ρρρ)−1a], (3.8)

where III denotes a comfortable identity matrix throughout the paper.

In the special case ρρρ = ρIII 5, the rational expectation equilibrium xxx∗

t satisfies

xxx∗

t = (III − bbb1)
−1bbb0 + (III − bbb1)

−1bbb1(III − ρbbb1)
−1bbb2aaa+ (III − ρbbb1)

−1bbb2uuut + vvvt. (3.9)

Thus its unconditional mean is

xxx∗ = E(xxx∗

t ) = (1− ρ)−1(III − bbb1)
−1[bbb0(1− ρ) + bbb2aaa]. (3.10)

Its variance-covariance matrix is

ΣΣΣxxx∗ = E[(xxx∗

t − xxx∗)(xxx∗

t − xxx∗)
′

] = (1− ρ2)−1(III − ρbbb1)
−1bbb2ΣεεεΣεεεΣεεε[(III − ρbbb1)

−1bbb2]
′

+ΣvΣvΣv. (3.11)

Furthermore, the first-order autocovariance is,

ΣΣΣxxx∗xxx∗
−1

= E[(xxx∗

t − xxx∗)(xxx∗

t−1 − xxx∗)
′

] = ρ(1 − ρ2)−1(III − ρbbb1)
−1bbb2ΣεεεΣεεεΣεεε[(III − ρbbb1)

−1bbb2]
′

. (3.12)

The first-order autocorrelation of the i-element x∗

i of xxx∗ is the i-th diagonal element of

matrix ΣΣΣxxx∗xxx∗

−1
divided by the corresponding i-th diagonal element of matrix ΣΣΣxxx∗ .

Note that in the special case ΣvvvΣvvvΣvvv = 000 and the first-order autocorrelation of the i-

element ui of uuu is equal to ρ, the persistence of the i-th variable x∗

i in the REE coincides

exactly with the persistence of the exogenous driving force ui,t. That is, in this case the

persistence in the REE only inherits from the exogenous driving force.

3.2 Existence of BLE

Now assume that agents are boundedly rational and do not believe or do not recognize

that the economy is driven by an exogenous VAR(1) process uuut, but use a simple univariate

5Note that ρρρ is a matrix while ρ is a scalar number throughout the paper.
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linear rule to forecast the state xxxt of the economy. Given that agents’ perceived law of

motion is a special VAR(1) process as shown in(2.2), the actual law of motion becomes

xxxt = bbb0 + bbb1[ααα + βββ2(xxxt−1 −ααα)] + bbb2uuut + vvvt, (3.13)

with uuut given in (3.2). If all the eigenvalues of bbb1βββ
2 for each βi ∈ [−1, 1](i = 1, 2, · · · , n)

lie inside the unit circle, then the system of xxxt is stationary and hence its mean xxx and

first-order autocorrelation GGG exist.

The mean of xxxt in (3.13) is computed as

xxx = (III − bbb1βββ
2)−1[bbb0 + bbb1ααα− bbb1βββ

2ααα + bbb2(III − ρρρ)−1aaa]. (3.14)

Imposing the first consistency requirement of a BLE on the mean, i.e. xxx = ααα, and solving

for ααα yields

ααα∗ = (III − bbb1)
−1[bbb0 + bbb2(I − ρρρ)−1a(I − ρρρ)−1a(I − ρρρ)−1a]. (3.15)

Comparing with (3.8), we conclude that in a BLE the unconditional mean ααα∗ coincides

with the REE mean. That is to say, in a BLE the state of the economy xxxt fluctuates on

average around its RE fundamental value xxx∗.

Consider the second consistency requirement of a BLE on the first-order autocorrela-

tion coefficient matrix βββ of the PLM. The second consistency requirement yields

GGG(βββ) = βββ. (3.16)

Recall from Section 2, both GGG and βββ are diagonal matrices. For convenience let Gi

denote the i-th diagonal element of the matrix GGG in (2.5). Under the assumption that

all of the eigenvalues of bbb1βββ
2 for each βi ∈ [−1, 1](i = 1, 2, · · · , n) lie inside the unit

circle, from the theory of stationary linear time series, Gi(β1, β2, · · · , βn) ∈ [−1, 1] and

is a smooth function with respect to (β1, β2, · · · , βn) and other model parameters, see

Appendix B6. Based on Brouwer’s fixed-point theorem for (G1, G2, · · · , Gn), there exists

βββ∗ = (β∗

1 , β
2
2 , · · · , β

∗

n) with each β∗

i ∈ [−1, 1], such that GGG(βββ) = βββ. We conclude:

Proposition 1 If all the eigenvalues of ρρρ and bbb1βββ
2 for each βi ∈ [−1, 1] are inside the

6For example, refer to the expression (3.9) in Hommes and Zhu (2014) for the special 1-dimensional

case n = 1. In Section 4 we consider the two-dimensional New Keynesian model and will compute the

(complicated) expressions of G1(β1, β2) and G2(β1, β2).
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unit circle7, there exists at least one behavioral learning equilibrium (BLE) (ααα∗,βββ∗) for

the economic system (3.13) with ααα∗ = (III − bbb1)
−1[bbb0 + bbb2(I − ρρρ)−1a(I − ρρρ)−1a(I − ρρρ)−1a] = xxx∗.

3.3 Stability under SAC-learning

In this subsection we study the stability of BLE under SAC-learning. The ALM of

the economy under SAC-learning is given by




xxxt = bbb0 + bbb1[αααt−1 + βββ2
t−1(xxxt−1 −αααt−1)] + bbb2uuut + vvvt,

uuut = aaa + ρρρuuut−1 + εεεt.
(3.17)

with αααt,βββt updated based upon realized sample average and sample autocorrelation as in

(2.8). Appendix C shows that the E-stability principle applies and that the stability under

SAC-learning is determined by the associated ordinary differential equation (ODE)8





dααα

dτ
= xxx(ααα,βββ)−ααα = (III − bbb1βββ

2)−1[bbb0 + b1ααα− b1βββ
2ααα + b2(III − ρρρ)−1a]−ααα,

dβββ

dτ
= GGG(βββ)− βββ,

(3.18)

where xxx(ααα,βββ) is the mean given by (3.14) and GGG(βββ) is the diagonal first-order autocorre-

lation matrix. A BLE (ααα∗,βββ∗) corresponds to a fixed point of the ODE (3.18). Moreover,

a BLE (ααα∗,βββ∗) is locally stable under SAC-learning, if it is a stable fixed point of the

ODE (3.18). Therefore, we have the following property of SAC-learning stability.

Proposition 2 A BLE (ααα∗,βββ∗) is locally stable under SAC-learning if

(i) all the eigenvalues of (III − bbb1βββ
∗2)−1(bbb1 − III) have negative real parts9, and

(ii) all the eigenvalues of DDDGGGβββ(βββ
∗) have real parts less than 1, where DDDGGGβββ is a Jacobian

matrix with the (i, j)-th entry ∂Gi

∂βj
.

Proof. See Appendix C.

Recall from Subsection 3.2 that Gi(β1, β2, · · · , βn) ∈ (−1, 1) so that at least one BLE

exists. If the BLE is unique, the BLE may be (locally) stable under SAC-learning. In the

next section, we study BLE in a two-dimensional New Keynesian model.

7The Schur-Cohn criterion theorem provides necessary and sufficient conditions for all eigenvalues to

lie inside the unit circle, see Elaydi (1999). For specific models, one may find sufficient conditions to

guarantee all eigenvalues of bbb1βββ
2 for each βi ∈ [−1, 1] are inside the unit circle, as shown below for the

NK model.
8See Evans and Honkapohja (2001) for discussion and a mathematical treatment of E-stability.
9The Routh-Hurwitz criterion theorem provides sufficient and necessary conditions for all the n eigen-

values having negative real parts, see Brock and Malliaris (1989).
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4 Application: a New Keynesian model

4.1 A baseline model

Now apply these results within the framework of a standard New Keynesian model

along the lines of Woodford (2003) and Gaĺı (2008). Consider a simple version, linearized

around the zero inflation steady state, given by




yt = yet+1 − ϕ(it − πe
t+1) + uy,t,

πt = λπe
t+1 + γyt + uπ,t,

(4.1)

where yt is the aggregate output gap, πt is the inflation rate, yet+1 and πe
t+1 are expected

output gap and expected inflation. Following Bullard and Mitra (2002) and Bullard et

al. (2008) we study the NK-model (4.1) with adaptive learning. The terms uy,t, uπ,t are

stochastic shocks and are assumed to follow AR(1) processes

uy,t = ρ1uy,t−1 + ε1,t, (4.2)

uπ,t = ρ2uπ,t−1 + ε2,t, (4.3)

where ρi ∈ [0, 1) and {εi,t} (i = 1, 2) are two uncorrelated i.i.d. stochastic processes with

zero mean and finite absolute moments with corresponding variances σ2
i .

The first equation in (4.1) is an IS curve that describes the demand side of the economy.

In an economy of rational or boundedly rational agents, it is a linear approximation to

a representative agent’s Euler equation. The parameter ϕ > 0 is related to the elasticity

of intertemporal substitution in consumption of a representative household. The second

equation in (4.1) is the New Keynesian Phillips curve which describes the aggregate supply

relation. This is obtained by averaging each firm’s pricing decisions, while the parameter

γ is related to the degree of price stickiness in the economy and the parameter λ ∈ [0, 1)

is the discount factor of a representative household.

We supplement the equations in (4.1) with a policy rule, which represents the behavior

of the monetary authority in setting the interest rate. In this section we assume a Taylor-

type policy rule setting the nominal interest rate

it = φππt + φyyt, (4.4)

where it is the deviation of the nominal interest rate from the value that is consistent

with inflation at target and output at potential and the parameters φπ, φy, measuring

the response of it to the deviation of inflation and output from long run steady states,
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are assumed to be nonnegative. The policy rule (4.4) is a contemporaneous Taylor rule,

responding to current inflation and output, πt, yt. In the next sections we will also discuss

lagged and forward-looking Taylor rules.

Substituting the Taylor-type policy rule in equation (4.4) into the equations in (4.1)

and writing the model in matrix form gives



xxxt = BBBxxxe
t+1 +CCCuuut,

uuut = ρρρuuut−1 + εεεt,
(4.5)

where xxxt = [yt, πt]
′,uuut = [uy,t, uπ,t]

′, εεεt = [ε1,t, ε2,t]
′,BBB = 1

1+γϕφπ+ϕφy


 1 ϕ(1− λφπ)

γ γϕ+ λ(1 + ϕφy)


 ,

CCC = 1
1+γϕφπ+ϕφy


 1 −ϕφπ

γ 1 + ϕφy


 , ρρρ =


 ρ1 0

0 ρ2


 .

Before turning to BLE, we consider rational expectations equilibrium first.

4.1.1 Theoretical results

Comparing the NK model (4.5) with the general framework (3.1), we note that aaa = 000

and bbb0 = 000. The rational expectation equilibrium (REE) fixed point in (3.6-3.7) then

simplifies to

(III −BBB)ξξξ = 000 (4.6)

ηηη = Bηηηρρρ+C. (4.7)

Bullard and Mitra (2002) show that the REE is unique (determinate) if and only if

γ(φπ − 1) + (1− λ)φy > 0. The REE is then the stable stationary process with mean

x∗ = 0. (4.8)

In the symmetric case ρi = ρ for i = 1, 2, · · · , n, the REE x∗

t satisfies

x∗

t = (I− ρB)−1Cut. (4.9)

Thus its covariance is

ΣΣΣx∗ = E(x∗

t
− x∗)(x∗

t
− x∗)

′

= (1− ρ2)−1(I− ρB)−1CΣεεεΣεεεΣεεε[(I− ρB)−1C]
′

. (4.10)

Furthermore, the first-order autocorrelation of the i-element xi of x is equal to ρ. That

is, in this case the persistence of the REE coincides exactly with the persistence of the

exogenous driving force ut and the first-order autocorrelations of output gap and inflation

are the same, i.e. symmetric, equal to the autocorrelation in the driving force. Inflation

and output gap only inherit the persistence of the shocks.
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Behavioral learning equilibria

Bullard and Mitra (2002) study adaptive learning in this NK setting. They consider

a PLM which coincides with the minimum state variable solution (MSV) of the form

xxxt = D̃DD + ẼEExxxe
t+1 + F̃FFuuut, (4.11)

where D̃DD, ẼEE and F̃FF are conformable matrices. We will consider learning with misspecifica-

tion. As in the general setup in Section 3, we assume that agents are boundedly rational

and use simple univariate linear rules to forecast the output gap yt and inflation πt of the

economy. We therefore deviate from Bullard and Mitra (2002) in two important ways:

(i) our agents can not observe or do not use the exogenous shocks uuut, and (ii) agents

do not fully understand the linear stochastic structure and do not take into account the

cross-correlation between inflation and output. Rather our agents learn a simple AR(1)

univariate forecasting rule for each variable as shown in (2.2). This AR(1) rule however

indirectly, in a boundedly rational way, takes exogenous shocks and cross-correlations of

endogenous variables into account as agents learn the two parameters of each AR(1) rule

consistent with the observable sample averages and first-order autocorrelations. The use

of simple AR(1) rules is supported by evidence from the learning-to-forecast laboratory

experiments in the NK framework in Adam (2007), Assenza et al. (2014) and Pfajfar and

Zakelj (2016). The actual law of motion (4.5) becomes





xxxt = BBB[ααα + βββ2(xxxt−1 −ααα)] +CuCuCut,

uuut = ρρρut−1 + εεεt.
(4.12)

For the actual law of motion (ALM) (4.12), the REE determinacy condition γ(φπ −

1) + (1− λ)φy > 0 implies the ALM is stationary, see Appendix D. Thus the means and

first-order autocorrelations are

xxx = (III −BBBβββ2)−1(BBBααα−BBBβββ2ααα),

GGG(ααα,βββ) =


 G1(β1, β2) 0

0 G2(β1, β2)


 =


 corr(yt, yt−1) 0

0 corr(πt, πt−1))


 .

In order to obtain analytic expressions for G1(β1, β2) and G2(β1, β2) we focus on the

symmetric case with ρ1 = ρ2 = ρ. The first-order autocorrelations of output gap and
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inflation are obtained through complicated calculations (see Appendix E)10:

G1(β1, β2) =
f̃1
g̃1

(4.13)

G2(β1, β2) =
f̃2
g̃2

(4.14)

where

f̃1 = σ2
1

{
(ρ+ λ1 + λ2 − λβ2

2)[1− λβ2
2(ρ+ λ1 + λ2)] + [λβ2

2(ρλ1 + ρλ2 + λ1λ2)−

ρλ1λ2][(ρλ1 + ρλ2 + λ1λ2)− λβ2
2ρλ1λ2]

}
+ σ2

2

{
(ϕφπ(ρ+ λ1 + λ2)− ϕβ2

2))

[ϕφπ − ϕβ2
2(ρ+ λ1 + λ2)] + [ϕβ2

2(ρλ1 + ρλ2 + λ1λ2)− ϕφπρλ1λ2]

[ϕφπ(ρλ1 + ρλ2 + λ1λ2)− ϕβ2
2ρλ1λ2]

}
,

g̃1 = σ2
1

{
[(1 + λ2β4

2)− 2λβ2
2(ρ+ λ1 + λ2) + (1 + λ2β4

2)(ρλ1 + ρλ2 + λ1λ2)]

−ρλ1λ2[(1 + λ2β4
2)(ρ+ λ1 + λ2)− 2λβ2

2(ρλ1 + ρλ2 + λ1λ2) + (1 + λ2β4
2)ρλ1λ2]

}

+σ2
2

{
[((ϕφπ)

2 + ϕ2β4
2)− 2ϕφπϕβ

2
2(ρ+ λ1 + λ2) + ((ϕφπ)

2 + ϕ2β4
2)(ρλ1 + ρλ2 + λ1λ2)]

−ρλ1λ2[((ϕφπ)
2 + ϕ2β4

2)(ρ+ λ1 + λ2)− 2ϕφπϕβ
2
2(ρλ1 + ρλ2 + λ1λ2)

+((ϕφπ)
2 + ϕ2β4

2)ρλ1λ2]
}
,

f̃2 = σ2
1

{
γ2[(ρ+ λ1 + λ2)− ρλ1λ2(ρλ1 + ρλ2 + λ1λ2)]

}
+ σ2

2

{
[(1 + ϕφy)(ρ+ λ1 + λ2)− β2

1 ] ·

[(1 + ϕφy)− β2
1(ρ+ λ1 + λ2)] + [β2

1(ρλ1 + ρλ2 + λ1λ2)− (1 + ϕφy)ρλ1λ2] ·

[(1 + ϕφy)(ρλ1 + ρλ2 + λ1λ2)− β2
1ρλ1λ2]

}
,

g̃2 = σ2
1

{
γ2[1 + ρλ1 + ρλ2 + λ1λ2 − ρλ1λ2(ρ+ λ1 + λ2)− (ρλ1λ2)

2]
}

+σ2
2

{
[((1 + ϕφy)

2 + β4
1)− 2(1 + ϕφy)β

2
1(ρ+ λ1 + λ2) + ((1 + ϕφy)

2 + β4
1)

(ρλ1 + ρλ2 + λ1λ2)]− ρλ1λ2[((1 + ϕφy)
2 + β4

1)(ρ+ λ1 + λ2)− 2(1 + ϕφy)β
2
1 ·

(ρλ1 + ρλ2 + λ1λ2) + ((1 + ϕφy)
2 + β4

1)ρλ1λ2]
}
,

λ1 + λ2 =
β2
1 + (γϕ+ λ+ λϕφy)β

2
2

1 + γϕφπ + ϕφy

,

λ1λ2 =
λβ2

1β
2
2

1 + γϕφπ + ϕφy

.

10Numerical computations of the first-order autocorrelation coefficients of output gap and inflation are

easily obtained from simulated time series generated by the system (4.12), and confirm the complicated

expressions (4.13-4.14).
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From these expressions, it is easy to see G1(β1, β2) and G2(β1, β2) are analytic functions

with respect to β1 and β2, independent of ααα.

The actual law of motion (4.5) depends on eight parameters ϕ, λ, γ, φy, φπ, ρ, σ
2
1 and

σ2
2 . Only the ratio σ2

1/σ
2
2 of noise terms matters for the persistence Gi(β1, β2) in (4.13)

and (4.14). Hence, the existence of BLE (ααα∗,βββ∗) depends on seven structural parameters

ϕ, λ, γ, ρ, φy, φπ and σ2
1/σ

2
2 of the NK-model.

Using Proposition 1 and Proposition 2 we have the following properties for the New

Keynesian model:

Corollary 1 Under the contemporaneous interest rate rule, if γ(φπ − 1)+ (1− λ)φy > 0,

then there exists at least one BLE (ααα∗,βββ∗), where ααα∗ = 000 = xxx∗.

Corollary 2 Under the contemporaneous interest rate rule and the condition γ(φπ−1)+

(1 − λ)φy > 0, a BLE (ααα∗,βββ∗) is locally stable under SAC-learning if all eigenvalues of

DDDGGGβββ(βββ
∗) =

(
∂Gi

∂βj

)
βββ=βββ∗

have real parts less than 1.

Proof. See Appendix F.

It is useful to discuss the special case in which shocks are not persistent, that is, ρ = 0

(no autocorrelation in the shocks). It is easy to see that

G1(0, 0)
∣∣
ρ=0

= 0, G2(0, 0)
∣∣
ρ=0

= 0.

That is to say (000,000) is a BLE for ρ = 0. Hence, when there is no persistence in the

exogenous shocks, the BLE coincides with the rational expectation equilibrium.

It is also useful to discuss the non-stationary case, that is, when the coefficient matrix

BBB for expectations xxxe
t+1 in (4.5) has at least one eigenvalue outside the unit circle. In that

case, SAC-learning of an AR(1) rule typically leads to explosive dynamics with αt → ±∞

and βt → 1. In the non-stationary case, learning of BLE thus typically leads to explosive

time paths of inflation and output.

4.1.2 Persistence amplification

We illustrate these results by some typical numerical calculations for empirically plau-

sible parameter values. We calibrate the parameters in order to match the stylized facts

of autocorrelation functions of output gap and inflation. As in the Clarida et al. (1999)

calibration we fix ϕ = 1, λ = 0.99. We fix γ = 0.04, which lies between the calibrations

γ = 0.3 in Clarida et al. (1999) and γ = 0.024 in Woodford (2003). For the exogenous
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shocks, we set the ratio of shocks σ2

σ1
= 0.5, which is within the possible range suggested

in Fuhrer (2006). We consider the symmetric case ρ1 = ρ2 = ρ = 0.5, with weak persis-

tence in the shocks. The baseline parameters on the policy response to inflation deviation

and output gap follow a broad literature, φπ = 1.5, φy = 0.5, see for example Fuhrer

(2006, 2009). The numerical results shown below are robust across a range of plausible

parameter values.

Figure 1 illustrates the existence of a unique BLE (β∗

1 , β
∗

2) = (0.9, 0.9592)11. In or-

der to obtain (β∗

1 , β
∗

2), we numerically compute the corresponding fixed point β∗

2(β1)

satisfying G2(β1, β
∗

2) = β∗

2 for each β1 and the corresponding fixed point β∗

1(β2) satis-

fying G1(β
∗

1 , β2) = β∗

1 for each β2 as illustrated in Figure 1. Hence their intersection

point (β∗

1 , β
∗

2) satisfies G1(β
∗

1 , β
∗

2) = β∗

1 and G2(β
∗

1 , β
∗

2) = β∗

2 . A striking feature of

the BLE is that the first-order autocorrelation coefficients of output gap and inflation

(β∗

1 , β
∗

2) = (0.9, 0.9592) are substantially higher than those at the REE, that is, persis-

tence is much higher than the persistence ρ(= 0.5) of the exogenous shocks. We refer

to this phenomenon as persistence amplification. Agents fail to recognize the complete

linear structure of the economy, but rather learn to coordinate on a simple AR(1) rule

consistent with simple observable statistics, the mean and the first-order autocorrelation.

As a result of this self-fulfilling mistake, shocks to the economy are strongly amplified.

To illustrate the persistence amplification more clearly, Figure 2 shows the autocor-

relation functions of output gap and inflation at the BLE and the REE. Compared with

REE, both the autocorrelation functions (ACF) of output gap and inflation at the BLE

decay considerably slower. The autocorrelation functions of output gap and inflation are

similar to empirical data. Along the BLE, the first-order autocorrelation coefficients of

output gap is about 0.9, while after about 5 periods its values decay to about 0.5, which

is consistent with empirical work, see for example Fuhrer (2006, 2009). Furthermore,

the autocorrelation function of inflation with very high persistence is also close to em-

pirical work for inflation data. That is, for plausible parameters the BLE are capable of

reproducing a data-consistent degree of inertia.

Figure 3 illustrates how these results depend on the persistence ρ of the exogenous

shocks. The figure shows the BLE, i.e. the first-order autocorrelations β∗

1 of output

gap and β∗

2 of inflation, as a function of the parameter ρ. This figure clearly shows the

persistence amplification along BLE, with much higher ACF than under RE, for all values

11Note that (α∗

1, α
∗

2) = (0, 0).
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Figure 1: A unique BLE (β∗

1 , β
∗

2) = (0.9, 0.9592) obtained as the intersection point of the

fixed point curves β∗

2(β1) and β∗

1(β2). The BLE exhibits strong persistence amplification

compared to REE (red dot, with ρ = 0.5). Parameters are: λ = 0.99, ϕ = 1, γ = 0.04, ρ =

0.5, φπ = 1.5, φy = 0.5, σ2

σ1
= 0.5.
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Figure 2: Autocorrelation functions of output gap y and inflation π for contemporaneous

Taylor rule at the BLE (β∗

1 , β
∗

2) = (0.9, 0.9592) (blue plot) and at the REE (β∗

1 , β
∗

2) =

(0.5, 0.5) (red plot, dotted line). Parameters are: λ = 0.99, ϕ = 1, γ = 0.04, ρ = 0.5, φπ =

1.5, φy = 0.5, σ2

σ1

= 0.5.
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Figure 3: BLE (β∗

1 , β
∗

2) as a function of the persistence ρ of the exogenous shocks, for the

contemporaneous Taylor rule. (a) β∗

i (i = 1, 2) with respect to ρ; (b) the ratio of variances

(σ2
y/σ

2
y∗ , σ

2
π/σ

2
π∗) of the BLE (β∗

1 , β
∗

2) w.r.t. the REE. Parameters are: λ = 0.99, ϕ =

1, γ = 0.04, φπ = 1.5, φy = 0.5, σ2

σ1

= 0.5.
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Figure 4: Time series of β1,t and β2,t under SAC-learning converging to the BLE (β∗

1 , β
∗

2) =

(0.9, 0.9592). Parameters are: λ = 0.99, ϕ = 1, γ = 0.04, ρ = 0.5, φπ = 1.5, φy = 0.5, σ2

σ1

=

0.5.

22



of 0 < ρ < 1. Especially for ρ ≥ 0.5 we have β∗

1 ≥ 0.9 and β∗

2 > 0.95, implying that

output gap and inflation have significantly higher persistence than the exogenous driving

forces. Moreover, Figure 3 also indicates an asymmetry, namely that the persistence of

inflation is always larger than the persistence of output gap, which is consistent with

empirical data. Figure 3 (right plot) also illustrates the volatility amplification under

BLE compared to REE. For output gap the ratio of variances σ2
y/σ

2
y∗ reaches a peak of

about 2.5 for ρ ≈ 0.75, while for inlfation the ratio of variances σ2
π/σ

2
π∗ reaches its peak

of about 3.5 for ρ ≈ 0.65.

Finally, Figure 4 shows that the BLE is stable under SAC-learning, with β1 → β∗

1 ≈ 0.9

and β2 → β∗

2 ≈ 0.9592. In fact, based on our calculation, the two eigenvalues of the

Jacobian matrix DDDGGGβββ(βββ
∗) are 0.5012± 0.7348i (the real parts less than 1), which shows

the stability of the BLE under SAC-learning based on our theoretical results.

5 Monetary policy

BLE are characterized by persistence amplification, with much higher persistence in

output and inflation than in the exogenous driving forces. This leaves an important role

for monetary policy to stabilize inflation and output. In this section we study the effects

of monetary policies on the persistence of inflation and output gap in the New Keynesian

model for the same benchmark parameter values as before. Figure 5 shows how the BLE

depend on the policy parameters φπ and φy, measuring how strongly the interest rate

responds to deviations of inflation and output from target.

Figure 5a shows that the first-order autocorrelation of output gap β∗

1 becomes smaller

as policy-makers respond more aggressively to output deviations (i.e. the curve shifts

down as φy increases), while Figure 5b suggests that the first-order autocorrelation of

inflation β∗

2 becomes smaller as policy-makers more aggressively respond to inflation devi-

ations (i.e. the curves are decreasing in φπ). This illustrates the direct stabilizing effects of

monetary policy: persistence of output (inflation) decreases in response to more aggressive

output (inflation) targeting. This is in line e.g. with the results in Fuhrer (2009): when

policy is more aggressive to adjust inflation to targets, the inflation tends to fluctuate

more frequently and thus becomes less persistent. Furthermore, we find that if φy = 0,

that is, policy makers only care about inflation, the effects of adjustment are relatively

large (the decrease of β∗

2 is relatively large for φy = 0 compared to φy = 0.5; Figure 5b).

A similar result holds for the direct effect on output. If φπ = 1, that is, policy makers
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Figure 5: Effects of monetary policy with contemporaneous Taylor rule on BLE persistence

of output β∗

1 (a) and persistence of inflation β∗

2 (b). Parameters are: λ = 0.99, ϕ = 1, γ =

0.04, ρ = 0.5, σ2

σ1

= 0.5.

mainly care about output, not inflation, the effects of increasing φy are relatively large;

for φπ = 1 the decline of β∗

1 is relatively large when φy increases compared to φπ = 2

(Figure 5a).

We provide some further intuitive explanations of these effects. Since monetary au-

thorities are usually more concerned about inflation, we first discuss some intuitive ex-

planations of the effects of policy parameters on the persistence of inflation. Using the

model (4.1), (4.4) and (4.12), inflation dynamics is governed by

πt =
β2
2 [γϕ+ λ(1 + ϕφy)]

1 + γϕφπ + ϕφy

πt−1+
β2
1γ

1 + γϕφπ + ϕφy

yt−1+
γ

1 + γϕφπ + ϕφy

uy,t+
1 + ϕφy

1 + γϕφπ + ϕφy

uπ,t.

(5.1)

This equation is similar to the New Keynesian Philips curve with inflation driven by an

exogenous AR(1) process for output gap (or marginal costs) as in Hommes & Zhu (2014),

where the persistence of inflation increases as one of the coefficients (except for the white

noise term) increases. But different from that case, here in (5.1) the persistence of the

driving process yt is not exogenous and constant, but rather output gap yt is endogenous

and its persistence varies with policy parameters. In fact there exists intricate interaction

between y and π and all the four coefficients might change simultaneously, but with

different directions as one policy parameter varies. The overall effect is a balance of

various effects with different magnitude, as discussed below.

It is easy to see that all four coefficients in (5.1) are positive and decrease as φπ
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β2

2
[γϕ+λ(1+ϕφy)]

1+γϕφπ+ϕφy

β2

1
γ

1+γϕφπ+ϕφy

γ

1+γϕφπ+ϕφy

1+ϕφy

1+γϕφπ+ϕφy

φπ
−β2

2
γϕ[γϕ+λ(1+ϕφy)]

(1+γϕφπ+ϕφy)2
−β2

1
γ2ϕ

(1+γϕφπ+ϕφy)2
−γ2ϕ

(1+γϕφπ+ϕφy)2
−γϕ(1+ϕφy)

(1+γϕφπ+ϕφy)2

φy
β2

2
γϕ2(λφπ−1)

(1+γϕφπ+ϕφy)2
−β2

1
γϕ

(1+γϕφπ+ϕφy)2
−γϕ

(1+γϕφπ+ϕφy)2
γϕ2φπ

(1+γϕφπ+ϕφy)2

Table 1: The derivatives of the coefficients in (5.1) with respect to φπ and φy and given

λ = 0.99, ϕ = 1, γ = 0.04, ρ = 0.5, σ2

σ1
= 0.5, β2

1 = β2
2 = 1.

γϕ+λ(1+ϕφy)

1+γϕφπ+ϕφy

γ

1+γϕφπ+ϕφy

γ

1+γϕφπ+ϕφy

1+ϕφy

1+γϕφπ+ϕφy

φy = 0 [0.9904,ց, 0.9537] [0.0385,ց, 0.0370] [0.0385,ց, 0.0370] [0.9615,ց, 0.9259]

φy = 0.5 [0.9903,ց, 0.9652] [0.0260,ց, 0.0253] [0.0260,ց, 0.0253] [0.9740,ց, 0.9494]

Table 2: The changing ranges of the coefficients of π in (5.1) with φπ increasing from 1

to 2 and given λ = 0.99, ϕ = 1, γ = 0.04, ρ = 0.5, σ2

σ1
= 0.5, β2

1 = β2
2 = 1.

increases, as summarized in Table 1. To simplify the discussion below, we fix β2
1 =

β2
2 = 1 at their upperbounds. Table 2 summarizes the ranges of the decrease of the four

coefficients for the benchmark parameters λ = 0.99, ϕ = 1, γ = 0.04, ρ = 0.5, σ2

σ1
= 0.5,

as φπ increases from 1 to 2. The dominating coefficient is the coefficient of πt−1, which

decreases from 0.9904 to 0.9537 (for φy = 0), and all other coefficients are relatively small.

This explains why the persistence of inflation decreases as φπ increases from 1 to 2, as in

Figure 5b. Furthermore, the changing range of the coefficient of πt−1 for φy = 0 is larger

than that for φy = 0.5 as φπ grows from 1 to 2.

In addition, from Table 3 it can be seen that for φπ = 1, or φπ very close to one,

the coefficient of πt−1 is also very close to one and decreases from 0.9904 to 0.9903 for

φy ∈ [0, 0.5], which plays a dominant role in determining the persistence of π. This may

explain why in Figure 5b for φπ very close to one, the persistence of π for φy = 0 is larger

than for φy = 0.5 while for large φπ (e.g. φπ = 2) the persistence of π for φy = 0 is smaller

than for φy = 0.5.

Similar intuition may be provided for the persistence of output gap. Using (4.1), (4.4)

and (4.12), output dynamics becomes

yt =
β2
1

1 + γϕφπ + ϕφy

yt−1+
β2
2ϕ(1− λφπ)

1 + γϕφπ + ϕφy

πt−1+
1

1 + γϕφπ + ϕφy

uy,t−
ϕφπ

1 + γϕφπ + ϕφy

uπ,t.

(5.2)

The following Table 4 indicates the derivatives of the coefficients in (4.12) with respect to

φy and φπ. For given φy(= 0 or 0.5), all coefficients decrease within some ranges as shown
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γϕ+λ(1+ϕφy)
1+γϕφπ+ϕφy

γ

1+γϕφπ+ϕφy

γ

1+γϕφπ+ϕφy

1+ϕφy

1+γϕφπ+ϕφy

φπ = 1 [0.9904,ց, 0.9903] [0.0385,ց, 0.0260] [0.0385,ց, 0.0260] [0.9615,ր, 0.9740]

φπ = 2 [0.9537,ր, 0.9652] [0.0370,ց, 0.0253] [0.0370,ց, 0.0253] [0.9259,ր, 0.9494]

Table 3: The changing ranges of the coefficients of π in (5.1) with φy increasing from 0

to 0.5 and given λ = 0.99, ϕ = 1, γ = 0.04, ρ = 0.5, σ2

σ1
= 0.5, β2

1 = β2
2 = 1.

β2

1

1+γϕφπ+ϕφy

β2

2
ϕ(1−λφπ)

1+γϕφπ+ϕφy

1
1+γϕφπ+ϕφy

−ϕφπ

1+γϕφπ+ϕφy

φy
−β2

1
ϕ

(1+γϕφπ+ϕφy)2
−β2

2
ϕ2(1−λφπ)

(1+γϕφπ+ϕφy)2
−ϕ

(1+γϕφπ+ϕφy)2
ϕ2φπ

(1+γϕφπ+ϕφy)2

φπ
−β2

1
γϕ

(1+γϕφπ+ϕφy)2
−β2

2
ϕ[λ(1+ϕφy)+γϕ]

(1+γϕφπ+ϕφy)2
−γϕ

(1+γϕφπ+ϕφy)2
−ϕ(1+ϕφy)

(1+γϕφπ+ϕφy)2

Table 4: The derivatives of the coefficients in (5.2) with respect to φy and φπ and given

λ = 0.99, ϕ = 1, γ = 0.04, ρ = 0.5, σ2

σ1
= 0.5, β2

1 = β2
2 = 1.

in Tables 4 and 5. However, different from the coefficients of π, here the coefficients of

πt−1 and uπ,t may become negative as φπ grows from 1 to 2, as shown in Table 5. As φπ

grows from 1 to 2, in fact, the absolute value of the coefficient of πt−1 decreases first and

then increase and the absolute value of the coefficient of uπ,t increases
12. Hence here the

persistence of y is determined by complex interactions. It is possible that in some cases

(e.g. φy = 0) the persistence of y changes little (basically slightly decreasing for increasing

φπ), while in some other cases (e.g. φy = 0.5) the persistence of y increases much as φπ

grows from 1 to 2, as shown in Figure 5a. Although the effect of φπ on the persistence

of y is complex, the direct effect of φy is rather clear. From Tables 5 and 6 it is easy to

see that the absolute values of the four coefficient decreases as φy grows from 0 to 0.5 for

given φπ. For φπ = 1, not only all the absolute values of the four coefficients decreases as

φy grows from 0 to 0.5, but also the persistence of πt−1 decreases, as shown in the above

paragraph. Hence for φπ = 1 and other given parameters, the persistence of y decreases

much from about 0.96 to 0.71, as shown in Figure 5a. However, for φπ = 2 although all

absolute values of the four coefficients decreases as φy grows from 0 to 0.5, the persistence

of the driving process of πt−1 increases, as shown in the above paragraph. In view of this

and the changes of the coefficients, the persistence of y for φπ = 2 decreases less than that

for φπ = 1, consistent with Figure 5a.

12Note that in the model of Hommes & Zhu (2014), from the expression of first-order autocorrelation

coefficient of Eq.(4.16) on p.795, it can be seen that the first-order autocorrelation coefficient in fact

depends on the absolute value of the coefficient.
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1
1+γϕφπ+ϕφy

ϕ(1−λφπ)
1+γϕφπ+ϕφy

1
1+γϕφπ+ϕφy

−ϕφπ

1+γϕφπ+ϕφy

φy = 0 [0.9615,ց, 0.9259] [0.0096,ց,−0.9074] [0.9615,ց, 0.9259] [−0.9615,ց,−1.8519]

φy = 0.5 [0.6494,ց, 0.6329] [0.0065,ց,−0.6203] [0.6494,ց, 0.6329] [−0.6494,ց,−1.2658]

Table 5: The changing ranges of the coefficients of y in (5.2) with φπ increasing from 1 to

2 and given λ = 0.99, ϕ = 1, γ = 0.04, ρ = 0.5, σ2

σ1
= 0.5, β2

1 = β2
2 = 1.

1
1+γϕφπ+ϕφy

ϕ(1−λφπ)
1+γϕφπ+ϕφy

1
1+γϕφπ+ϕφy

−ϕφπ

1+γϕφπ+ϕφy

φπ = 1 [0.9615,ց, 0.6494] [0.0096,ց, 0.0065] [0.9615,ց, 0.6494] [−0.9615,ր,−0.6494]

φπ = 2 [0.9259,ց, 0.6329] [−0.9074,ր,−0.6203] [0.9259,ց, 0.6329] [−1.8519,ց,−1.2658]

Table 6: The changing ranges of the coefficients of y in (5.2) with φy increasing from 0 to

0.5 and given λ = 0.99, ϕ = 1, γ = 0.04, ρ = 0.5, σ2

σ1
= 0.5, β2

1 = β2
2 = 1.

Therefore, for the contemporaneous Taylor rule monetary policy can mitigate persis-

tence amplification in inflation (output), when the policy maker is more aggressive to

adjust inflation to its target (output to potential output). While the direct effects of

monetary policy upon the persistence of inflation or output are clear, the indirect effects

are more subtle. Stabilizing both inflation and output requires careful balancing of the

direct and indirect effects and depends upon the relative importance of inflation versus

output stabilization. In the following we will check if there exist the similar effects for

different Taylor-type interest rules

5.1 Alternative specifications for setting interest rates

The monetary policy Taylor rule (4.4) sets the interest rate in response to contem-

poraneous output gap yt and inflation πt. This contemporaneous rule assumes that the

monetary authority observes current output gap and inflation. Here we consider two alter-

native specifications for setting interest rates, widely used in the literature, and perhaps

under more realistic informational assumptions of either forward looking expectations

(e.g. through survey data) or observing lagged variables.
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5.1.1 A forward-looking monetary policy rule

As shown in Bullard and Mitra (2002) and Bullard et al. (2008), another Taylor-

type interest rate rule is to assume that the monetary authorities set their interest rate

instrument in response to the forecasts of output and inflation deviations. This leads

to the forward expectations specification for the interest rate equation, where (4.4) is

replaced with

it = φπÊtπt+1 + φyÊtyt+1. (5.3)

Thus the system (4.5) becomes





xt = BÊtxt+1 +Cut,

ut = ρρρut−1 + εεεt,
(5.4)

where B =


 1− ϕφy ϕ(1− φπ)

γ(1− ϕφy) γϕ(1− φπ) + λ


 , C =


 1 0

γ 1


 .

Similar to the above contemporaneous data interest rate rules, if the actual law of

motion with the PLM in (2.2) is stationary, the first-order autocorrelations (4.13) and

(4.14) become13

G1(β1, β2) =
f̃1
g̃1

(5.5)

G2(β1, β2) =
f̃2
g̃2

(5.6)

where

f̃1 = σ2
1

{
(ρ+ λ1 + λ2 − λβ2

2)[1− λβ2
2(ρ+ λ1 + λ2)] + [λβ2

2(ρλ1 + ρλ2 + λ1λ2)−

ρλ1λ2][(ρλ1 + ρλ2 + λ1λ2)− λβ2
2ρλ1λ2]

}
+ σ2

2

{
(ϕ(1− φπ)β

2
2)

2[(ρ+ λ1 + λ2)

−ρλ1λ2(ρλ1 + ρλ2 + λ1λ2)]
}
,

g̃1 = σ2
1

{
[(1 + λ2β4

2)− 2λβ2
2(ρ+ λ1 + λ2) + (1 + λ2β4

2)(ρλ1 + ρλ2 + λ1λ2)]

−ρλ1λ2[(1 + λ2β4
2)(ρ+ λ1 + λ2)− 2λβ2

2(ρλ1 + ρλ2 + λ1λ2) + (1 + λ2β4
2)ρλ1λ2]

}

+σ2
2

{
(ϕ(1− φπ)β

2
2)

2[1 + ρλ1 + ρλ2 + λ1λ2 − ρλ1λ2(ρ+ λ1 + λ2)− (ρλ1λ2)
2]
}
,

13As in the baseline model above, the first -order sample autocorrelations of output gap and inflation

computed based on the time series generated by the model are consistent with the complicated expression

for G1 and G2 in Eqs. (5.5-5.6).
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f̃2 = σ2
1

{
γ2[(ρ+ λ1 + λ2)− ρλ1λ2(ρλ1 + ρλ2 + λ1λ2)]

}
+ σ2

2

{
[(ρ+ λ1 + λ2)− (1− ϕφy)β

2
1 ] ·

[1− (1− ϕφy)β
2
1(ρ+ λ1 + λ2)] + [(1− ϕφy)β

2
1(ρλ1 + ρλ2 + λ1λ2)− ρλ1λ2] ·

[(ρλ1 + ρλ2 + λ1λ2)− (1− ϕφy)β
2
1ρλ1λ2]

}
,

g̃2 = σ2
1

{
γ2[1 + ρλ1 + ρλ2 + λ1λ2 − ρλ1λ2(ρ+ λ1 + λ2)− (ρλ1λ2)

2]
}

+σ2
2

{
[1 + ((1− ϕφy)β

2
1)

2 − 2(1− ϕφy)β
2
1(ρ+ λ1 + λ2) + (1 + ((1− ϕφy)β

2
1)

2) ·

(ρλ1 + ρλ2 + λ1λ2)]− ρλ1λ2[(1 + ((1− ϕφy)β
2
1)

2)(ρ+ λ1 + λ2)− 2(1− ϕφy)β
2
1 ·

(ρλ1 + ρλ2 + λ1λ2) + (1 + ((1− ϕφy)β
2
1)

2)ρλ1λ2]
}
,

λ1 + λ2 = (1− ϕφy)β
2
1 + (γϕ(1− φπ) + λ)β2

2 ,

λ1λ2 = λ(1− ϕφy)β
2
1β

2
2 .

In this case we have some similar results on the existence and stability as in the baseline

model. Since the coefficients matrices are different, the corresponding sufficient conditions

change.

Corollary 3 Under the forward looking interest rate rule, if φy < 1
ϕ

and 1 < φπ <

1 + λ
γϕ
, then there exists at least one BLE (ααα∗,βββ∗), where ααα∗ = 0 = x∗. Furthermore,

the BLE (ααα∗,βββ∗) is locally stable under SAC-learning if all the eigenvalues of DDDGGGβββ(βββ
∗) =(

∂Gi

∂βj

)
βββ=βββ∗

have real parts less than 1.

Proof. See Appendix G.

For the same benchmark parameter values as before, the system has a BLE (β∗

1 , β
∗

2) =

(0.8326, 0.9605), with output and inflation much more persistent than the REE bench-

mark (with ρ = 0.5), as illustrated in Figure 6. Figure 7a illustrates how these results

depend on the parameter ρ, the persistence of the exogenous shocks. As before, for the

forward looking Taylor rule, the system also displays persistence amplification, with the

persistence of inflation and output gap along BLE much higher than the persistence ρ of

the exogenous shocks. Similarly, Figure 7b illustrates the excess volatility of inflation and

output compared to the REE benchmark.

We also find similar results concerning the effects of monetary policy. Figure 8 illus-

trates how the BLE depend upon the the monetary policy parameters φπ and φy under

the forward-looking Taylor-type interest rule. The direct effects are similar as before: an

increase of φy strongly reduces the persistence of output gap (i.e. the curve in Figure 8a

shifts down as φy increases from 0 to 0.5), while an increase of φπ strongly reduces the
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Figure 6: Autocorrelation functions of output gap y and inflation π with forward looking

Taylor rule at the BLE (β∗

1 , β
∗

2) = (0.8326, 0.9605). Parameters are: λ = 0.99, ϕ = 1, γ =

0.04, ρ = 0.5, φπ = 1.5, φy = 0.5, σ2/σ1 = 0.5.
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Figure 7: BLE (β∗

1 , β
∗

2) as a function of the persistence ρ of the exogenous shocks with

forward-looking Taylor rule a) β∗

i (i = 1, 2) with respect to ρ; b) the ratio of variances

(σ2
y/σ

2
y∗ , σ

2
π/σ

2
π∗) with respect to ρ at the corresponding BLE (β∗

1 , β
∗

2). Parameters are:

λ = 0.99, ϕ = 1, γ = 0.04, φπ = 1.5, φy = 0.5, σ2

σ1
= 0.5.
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(1− ϕφy)β
2
1 ϕ(1− φπ)β

2
2 1 0

φy −ϕβ2
1 0 0 0

φπ 0 −ϕβ2
2 0 0

Table 7: The derivatives of the coefficients in (5.7) with respect to φy and φπ for forward-

looking Taylor rule.

persistence of inflation (i.e. the curves in Figure 8b are decreasing as φπ increases from

1 to 2). The cross effects are smaller and ambiguous. As φπ increases, the persistence

in output may either decrease somewhat (for φy = 0) or may increase (for φy = 0.5 in

Figure 8a); as φy increases, the persistence in inflation may either decrease somewhat (for

φπ = 1) or may increase (for φπ = 2 in Figure 8b).

These graphical illustrations may be explained intuitively by looking at the output-

inflation dynamics for the forward-looking Taylor rule, given by

yt = (1− ϕφy)β
2
1yt−1 + ϕ(1− φπ)β

2
2πt−1 + uy,t, (5.7)

πt = (γϕ(1− φπ) + λ)β2
2πt−1 + γ(1− ϕφy)β

2
1yt−1 + γuy,t + uπ,t. (5.8)

Similar to the contemporaneous case, consider β1 = β2 = 1 and λ = 0.99, ϕ = 1, γ =

0.04, ρ = 0.5, σ2

σ1
= 0.5. Tables 7 and 8 show the partial derivatives of y and π w.r.t. the

parameters φy and φπ. From Table 7 it is easy to see that for the equation (5.7) of yt,

the coefficient of yt−1 decreases from 1 to 0.5 as φy grows from 0 to 0.5 and the coefficient

of πt−1 equals 0 if φπ = 1 and −1 if φπ = 2. Also at φπ = 2, the persistence increases

a little as φy grows from 0 to 0.5. Therefore as φy grows, the persistence of y decreases

and the decreasing range becomes smaller as φπ grows from 1 to 2, as shown in Figure

8a. Furthermore, for the equation (5.8) of πt, the coefficient of πt−1 decreases from 0.99

to 0.95 and the coefficient of yt−1 equals 0.04 if φy = 0 and 0.02 if φy = 0.5. Thus as φπ

grows from 1 to 2, the persistence of π decreases. Note that for φy = 0 the persistence of

y decreases and for φy = 0.5 the persistence of y increases as φπ grows as shown in Figure

8a. Hence the decreasing range for φy = 0.5 is smaller than φy = 0, as shown in Figure

8b.
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(γϕ(1− φπ) + λ)β2
2 γ(1− ϕφy)β

2
1 γ 1

φπ −γϕβ2
2 0 0 0

φy 0 −γϕβ2
1 0 0

Table 8: The derivatives of the coefficients in (5.8) with respect to φπ and φy for forward-

looking Taylor rule.
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Figure 8: Effects of monetary policy with forward looking Taylor rule on BLE persistence

of output β∗

1 (a) and persistence of inflation β∗

2 (b). Parameters are: λ = 0.99, ϕ = 1, γ =

0.04, ρ = 0.5, σ2/σ1 = 0.5.
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5.1.2 A lagged monetary policy rule

As argued e.g. in Bullard and Mitra (2002), it may be viewed as realistic for central

bank practice to posit that the monetary authorities must react to last quarter’s obser-

vations on inflation and the output gap as contemporaneous values are not known yet.

This leads to the lagged data specification for the interest rate equation, where (4.4) is

replaced by

it = φππt−1 + φyyt−1. (5.9)

Due to the lagged monetary policy rule the system (4.5) includes an additional lagged

term xt−1 and becomes





xxxt = AAAxxxt−1 +BBBxxxe
t+1 +CCCuuut,

uuut = ρρρuuut−1 + εεεt,
(5.10)

where AAA =


 −ϕφy −ϕφπ

−γϕφy −γϕφπ


 , BBB =


 1 ϕ

γ γϕ+ λ


 , CCC =


 1 0

γ 1


 .

Similar to the above two interest rate rules, if the actual law of motion with the PLM

in (2.2) is stationary, the first-order autocorrelations (4.13) and (4.14) become

G1(β1, β2) =
f̃1
g̃1

(5.11)

G2(β1, β2) =
f̃2
g̃2

(5.12)

where

f̃1 = σ2
1

{
(ρ+ λ1 + λ2 − λβ2

2)[1− λβ2
2(ρ+ λ1 + λ2)] + [λβ2

2(ρλ1 + ρλ2 + λ1λ2)−

ρλ1λ2][(ρλ1 + ρλ2 + λ1λ2)− λβ2
2ρλ1λ2]

}
+ σ2

2

{
(ϕφπ − ϕβ2

2)
2[(ρ+ λ1 + λ2)

−ρλ1λ2(ρλ1 + ρλ2 + λ1λ2)]
}
,

g̃1 = σ2
1

{
[(1 + λ2β4

2)− 2λβ2
2(ρ+ λ1 + λ2) + (1 + λ2β4

2)(ρλ1 + ρλ2 + λ1λ2)]

−ρλ1λ2[(1 + λ2β4
2)(ρ+ λ1 + λ2)− 2λβ2

2(ρλ1 + ρλ2 + λ1λ2) + (1 + λ2β4
2)ρλ1λ2]

}

+σ2
2

{
(ϕφπ − ϕβ2

2)
2[1 + ρλ1 + ρλ2 + λ1λ2 − ρλ1λ2(ρ+ λ1 + λ2)− (ρλ1λ2)

2]
}
,
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f̃2 = σ2
1

{
γ2[(ρ+ λ1 + λ2)− ρλ1λ2(ρλ1 + ρλ2 + λ1λ2)]

}
+ σ2

2

{
[(ρ+ λ1 + λ2)− (β2

1 − ϕφy)] ·

[1− (β2
1 − ϕφy)(ρ+ λ1 + λ2)] + [(β2

1 − ϕφy)(ρλ1 + ρλ2 + λ1λ2)− ρλ1λ2] ·

[(ρλ1 + ρλ2 + λ1λ2)− (β2
1 − ϕφy)ρλ1λ2]

}
,

g̃2 = σ2
1

{
γ2[1 + ρλ1 + ρλ2 + λ1λ2 − ρλ1λ2(ρ+ λ1 + λ2)− (ρλ1λ2)

2]
}

+σ2
2

{
[(1 + (β2

1 − ϕφy)
2)− 2(β2

1 − ϕφy)(ρ+ λ1 + λ2) + (1 + (β2
1 − ϕφy)

2) ·

(ρλ1 + ρλ2 + λ1λ2)]− ρλ1λ2[(1 + (β2
1 − ϕφy)

2)(ρ+ λ1 + λ2)− 2(β2
1 − ϕφy) ·

(ρλ1 + ρλ2 + λ1λ2) + (1 + (β2
1 − ϕφy)

2)ρλ1λ2]
}
,

λ1 + λ2 = β2
1 − ϕφy − γϕφπ + (γϕ+ λ)β2

2 ,

λ1λ2 = λ(β2
1 − ϕφy)β

2
2 .

Note that, because of the additional lagged term xt−1, the rational expectations equi-

librium is different compared to the system without this lagged term xxxt−1 in the previous

two cases. The proofs concerning existence and stability of BLE, however, are straight-

forward extensions of the proofs without the additional term xxxt−1
14. In this case we have

similar results on the existence and stability on BLE as in the baseline model.

Corollary 4 Under the lagged interest rate rule, if φy < 1
ϕ
and 1 < φπ < 1−ϕφy

γϕ
, then

there exists at least one BLE (ααα∗,βββ∗). Furthermore, the BLE (ααα∗,βββ∗) is locally stable

under SAC-learning if all the eigenvalues of DDDGGGβββ(βββ
∗) =

(
∂Gi

∂βj

)
βββ=βββ∗

have real parts less

than 1.

Proof. See Appendix H.

Figure 9 illustrates the ACF of output and inflation along the BLE and shows that

they are much more persistent as the autocorrelations in the exogenous shocks. Figure 10

illustrates that the model with a lagged Taylor rule also exhibits persistence amplification.

Figure 11 suggests similar results for monetary policy with the lagged Taylor-type

interest rule. There are strong direct effects, with the persistence of output (inflation)

declining when φy (φπ) increases. The indirect effects are again ambiguous.

14In particular, the system (5.10) can be rewritten in the form of Eq. (E.1) in appendix E, when

BLE is considered. The difference from the baseline case lies in different coefficient matrices zt =

(A+Bβ2)(A+Bβ2)(A+Bβ2)zt−1 +CεCεCεt +CρIεCρIεCρIεt−1 + · · · with matrices A,B,C as in the system (5.10). Then following the

same idea of the proof, the first-order autocorrelations for the lagged monetary policy rule in (5.11) and

(5.12) are obtained. Similar proofs of propositions 1 and 2, concerning existence and stability of BLE,

can then be obtained.
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Figure 9: Autocorrelation functions of output gap y and inflation π with lagged Taylor

rule at the BLE (β∗

1 , β
∗

2) = (0.7746, 0.9628). Parameters are: λ = 0.99, ϕ = 1, γ =

0.04, ρ = 0.5, φπ = 1.5, φy = 0.5, σ2/σ1 = 0.5.
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Figure 10: Effects of ρ with lagged Taylor rule, i.e. β∗

i (i = 1, 2) with respect to ρ.

Parameters are: λ = 0.99, ϕ = 1, γ = 0.04, φπ = 1.5, φy = 0.5, σ2

σ1
= 0.5.
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Figure 11: Effects of monetary policy with lagged Taylor rule. Parameters are: λ =

0.99, ϕ = 1, γ = 0.04, ρ = 0.5, σ2/σ1 = 0.5.

−ϕφy + β2
1 −ϕφπ + ϕβ2

2 1 0

φy −ϕ 0 0 0

φπ 0 −ϕ 0 0

Table 9: The derivatives of the coefficients in (5.13) with respect to φy and φπ for forward-

looking Taylor rule.

For the lagged monetary policy rule, output-inflation dynamics is given by

yt = (−ϕφy + β2
1)yt−1 + (−ϕφπ + ϕβ2

2)πt−1 + uy,t, (5.13)

πt = (−γϕφπ + (γϕ+ λ)β2
2)πt−1 + (−γϕφy + γβ2

1)yt−1 + γuy,t + uπ,t. (5.14)

From Tables 9 and 10, it can be seen that the monetary policy parameters φy and φπ have

similar effects as in the forward-looking case.

−γϕφπ + (γϕ+ λ)β2
2 −γϕφy + γβ2

1 γ 1

φπ −γϕ 0 0 0

φy 0 −γϕ 0 0

Table 10: The derivatives of the coefficients in (5.14) with respect to φπ and φy for

forward-looking Taylor rule.
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6 Concluding remarks

We have generalized the behavioral learning equilibrium concept to a general n-

dimensional linear framework and applied it to the two-dimensional New Keynesian model.

Boundedly rational agents use univariate AR(1) forecasting rules for all endogenous vari-

ables. Along a BLE the two parameters of each rule are pinned down by two observable

statistics: the unconditional mean and the first-order autocorrelations. Hence, to a first-

order approximation the simple linear forecasting rule is consistent with observed market

realizations. Agents gradually update the two coefficients –sample mean and first-order

autocorrelation– of their linear rule through sample autocorrelation learning. In the long

run, agents thus learn to coordinate on the best univariate linear forecasting rule, without

fully recognizing the more complex structure of the economy. In higher-dimensional sys-

tem BLE exist under fairly general conditions and we provide simple stability conditions

under learning. Coordination on a simple, parsimonious BLE is self-fulfilling and seems a

plausible outcome of the coordination process of individual expectations in large complex

socio-economic systems.

A striking feature of BLE is the strong persistence amplification: the persistence of

output and inflation along a BLE is much higher, often near unit root, than the persistence

in the exogenous shocks driving the economy. This leaves an important role for monetary

policy with the goal of stabilizing inflation and output. We study monetary policies with

a Taylor interest rate rule. There are strong direct effects: more aggressive inflation

(output) targeting weakens the persistence in inflation (output). Indirect effects may

be destabilizing however: more aggressive inflation (output) targeting may lead to more

persistent output (inflation). To stabilize both inflation and output, monetary policy

must therefore carefully balance between inflation and output targeting. More generally,

to check the robustness of policy analysis under RE future work should study policy under

more plausible behavioural learning equilibria.
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Appendix

A Mean of the rational expectations equilibrium

Using (3.1-3.2) and (3.6-3.7) the mean satisfies

x∗ = ξ + ηuξ + ηuξ + ηu

= (I− b1)
−1b0 + (I− b1)

−1b1ηηηa+ η(I − ρρρ)−1aη(I − ρρρ)−1aη(I − ρρρ)−1a

= (I− b1)
−1b0 + (I− b1)

−1[b1ηηη(I− ρρρ) + (I− b1)ηηη](I− ρρρ)−1a

= (I− b1)
−1[b0 + b2(I− ρρρ)−1a].

B Autocorrelation in the n-dimensional case

We rewrite model (3.13) as




xxxt − xxx = bbb1βββ
2(xxxt−1 − xxx) + bbb2(uuut − uuu) + vvvt,

uuut − uuu = ρρρ(uuut−1 − uuu) + εεεt.
(B.1)

That is,





xxxt − xxx = bbb1βββ
2(xxxt−1 − xxx) + bbb2ρρρ(uuut−1 − uuu) + bbb2εεεt + vvvt,

uuut − uuu = ρρρ(uuut−1 − uuu) + εεεt.
(B.2)

ΓΓΓ(−1) = E[(xxxt − xxx)(xxxt−1 − xxx)′]

= E
[
bbb1βββ

2(xxxt−1 − xxx)(xxxt−1 − xxx)′ + bbb2ρρρ(uuut−1 − uuu)(xxxt−1 − xxx)′ + bbb2εεεt(xxxt−1 − xxx)′ + vvvt(xxxt−1 − xxx)′
]

= bbb1βββ
2ΓΓΓ(0) + bbb2ρρρE[(uuut−1 − uuu)(xxxt−1 − xxx)′]

= bbb1βββ
2ΓΓΓ(0) + bbb2ρρρE[(uuut − uuu)(xxxt − xxx)′]. (B.3)

ΓΓΓ(0) = E[(xxxt − xxx)(xxxt − xxx)′]

= E
[
bbb1βββ

2(xxxt−1 − xxx)(xxxt − xxx)′ + bbb2ρρρ(uuut−1 − uuu)(xxxt − xxx)′ + bbb2εεεt(xxxt − xxx)′ + vvvt(xxxt − xxx)′
]

= bbb1βββ
2ΓΓΓ(1) + bbb2ρρρE[(uuut−1 − uuu)(xxxt − xxx)′] + bbb2E[εεεt(xxxt − xxx)′] + E[vvvt(xxxt − xxx)′]

= bbb1βββ
2ΓΓΓ(1) + bbb2ρρρE[(uuut−1 − uuu)(xxxt − xxx)′] + bbb2ΣΣΣεεεbbb

′

2 +ΣΣΣvvv. (B.4)

Note that E[εεεt(xxxt−xxx)′] = E
[
εεεt(bbb1βββ

2(xxxt−1−xxx))′+εεεt(bbb2ρρρ(uuut−1−uuu))′+εεεt(bbb2εεεt)
′+εεεt(vvvt)

′

]
=

ΣΣΣεεεbbb
′

2 and E[vvvt(xxxt−xxx)′] = E
[
vvvt(bbb1βββ

2(xxxt−1−xxx))′+vvvt(bbb2ρρρ(uuut−1−uuu))′+vvvt(bbb2εεεt)
′+vvvt(vvvt)

′

]
= ΣΣΣvvv.
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Based on (B.3), (B.4) and ΓΓΓ(−1) = ΓΓΓ(1)′,

ΓΓΓ(0) = bbb1βββ
2ΓΓΓ(0)(bbb1βββ

2)′ + bbb1βββ
2E[(xxxt − xxx)(uuut − uuu)′](bbb2ρρρ)

′

+bbb2ρρρE[(uuut−1 − uuu)(xxxt − xxx)′] + bbb2ΣΣΣεεεbbb
′

2 +ΣΣΣvvv.

In order to obtain the expression of ΓΓΓ(0), we use column stacks of matrices. Suppose

vec(KKK) is the vectorization of a matrix KKK and ⊗ is the Kronecker product15. Under the

assumption that all the eigenvalues of bbb1βββ
2 are inside the unit circle, based on the property

of Kronecker product16, it is easy to see all the eigenvalues of (bbb1βββ
2) ⊗ (bbb1βββ

2) lie inside

the unit circle and hence [III − (bbb1βββ
2)⊗ (bbb1βββ

2)]−1 exist. Therefore,

vec(ΓΓΓ(0)) = [III − (bbb1βββ
2)⊗ (bbb1βββ

2)]−1[((bbb2ρρρ)⊗ (bbb1βββ
2))vec(E[(xxxt − xxx)(uuut − uuu)′])

+(III ⊗ (bbb2ρρρ))vec(E[(uuut−1 − uuu)(xxxt − xxx)′]) + vec(bbb2ΣΣΣεεεbbb
′

2 +ΣΣΣvvv)]. (B.5)

Thus in order to obtain ΓΓΓ(1) and ΓΓΓ(0), we need calculate E[(xxxt−xxx)(uuut−uuu)′] and E[(uuut−1−

uuu)(xxxt − xxx)′].

E[(xxxt − xxx)(uuut − uuu)′]

= E
[
bbb1βββ

2(xxxt−1 − xxx)(uuut − uuu)′ + bbb2ρρρ(uuut−1 − uuu)(uuut − uuu)′ + bbb2εεεt(uuut − uuu)′ + vvvt(uuut − uuu)′
]

= E
[
bbb1βββ

2(xxxt−1 − xxx)[(uuut−1 − uuu)′ρρρ′ + εεε′t] + bbb2ρρρ(uuut−1 − uuu)[(uuut−1 − uuu)′ρρρ′ + εεε′t]

+bbb2εεεt[(uuut−1 − uuu)′ρρρ′ + εεε′t] + vvvt[(uuut−1 − uuu)′ρρρ′ + εεε′t]
]

= bbb1βββ
2E[(xxxt−1 − xxx)(uuut−1 − uuu)′]ρρρ′ + bbb2ρρρE[(uuut − uuu)(uuut − uuu)′]ρρρ′ + bbb2ΣΣΣε.

Correspondingly,

vec(E[(xxxt − xxx)(uuut − uuu)′])

= [III − ρρρ⊗ (bbb1βββ
2)]−1[vec(bbb2ρρρE[(uuut − uuu)(uuut − uuu)′]ρρρ′) + vec(bbb2ΣΣΣε)]

= [III − ρρρ⊗ (bbb1βββ
2)]−1[(ρρρ⊗ (bbb2ρρρ))vec(E[(uuut − uuu)(uuut − uuu)′]) + (III ⊗ bbb2)vecΣΣΣε)]

= [III − ρρρ⊗ (bbb1βββ
2)]−1[(ρρρ⊗ (bbb2ρρρ))[III − ρρρ⊗ ρρρ]−1 + (III ⊗ bbb2)]vec(ΣΣΣε). (B.6)

15One property of column stacks is that the column stack of a product of three matrices is vec(ABC) =

(C′⊗A)vec(B). For more details on this and related properties, see Magnus and Neudecker(1988, Chapter

2) and Evans and Honkapohja (2001, Section 5.7).
16The eigenvalues of Â⊗ B̂ are the mn numbers λrµs, r = 1, 2, · · · ,m, s = 1, 2, · · · , n where λ1, · · · , λm

are the eigenvalues of m×m matrix Â and µ1, · · · , µn are the eigenvalues of n×n matrix B̂; see Lancaster

and Tismenetsky (1985).
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Furthermore,

E[(xxxt − xxx)(uuut−1 − uuu)′]

= E
[
bbb1βββ

2(xxxt−1 − xxx)(uuut−1 − uuu)′ + bbb2ρρρ(uuut−1 − uuu)(uuut−1 − uuu)′ + bbb2εεεt(uuut−1 − uuu)′ + vvvt(uuut−1 − uuu)′
]

= bbb1βββ
2E[(xxxt − xxx)(uuut − uuu)′] + bbb2ρρρE[(uuut − uuu)(uuut − uuu)′].

Thus based on (B.6),

vec(E[(xxxt − xxx)(uuut−1 − uuu)′])

= (III ⊗ (bbb1βββ
2))vec(E[(xxxt − xxx)(uuut − uuu)′]) + (III ⊗ (bbb2ρρρ))vec(E[(uuut − uuu)(uuut − uuu)′])

= (III ⊗ (bbb1βββ
2))[III − ρρρ⊗ (bbb1βββ

2)]−1[(ρρρ⊗ (bbb2ρρρ))[III − ρρρ⊗ ρρρ]−1 + (III ⊗ bbb2)]vec(ΣΣΣε)

+(III ⊗ (bbb2ρρρ))[III − ρρρ⊗ ρρρ]−1vec(ΣΣΣε). (B.7)

Therefore based on (B.7), the expression of matrix E[(xxxt − xxx)(uuut−1 − uuu)′ can be ob-

tained. Then by transposing the matrix E[(xxxt−xxx)(uuut−1−uuu)′, we can obtain vec(E[(uuut−1−

uuu)(xxxt − xxx)′]). Furthermore, combining this with (B.6), we obtain the variance-covariance

matrix ΓΓΓ(0) from (B.5) and further ΓΓΓ(1) from (B.3). Based on the properties of ma-

trices operations, it is easy to see that the entries of matrices ΓΓΓ(0) and ΓΓΓ(1) are smooth

functions with respect to (β1, β2, · · · , βn) and the other related parameters. Thus the first-

order autocorrelation coefficients of the nontrivial stochastic stationary system (3.13) are

continuous functions with respect to (β1, β2, · · · , βn) and the other related parameters.

C Proof of Proposition 2 (stability under SAC-learning)

Set γt = (1 + t)−1. For the state dynamics equations in (3.17) and (2.8)17, since all

functions are smooth, the SAC-learning rule satisfies the conditions (A.1-A.3) of Section

6.2.1 in Evans and Honkapohja (2001, p.124).

In order to check the conditions (B.1-B.2) of Section 6.2.1 in Evans and Honkapohja

(2001, p.125), we rewrite the system in matrix form by

XXX t = ÃAA(θθθt−1)XXX t−1 + B̃BB(θθθt−1)WWW t,

17For convenience of theoretical analysis, one can set St−1 = Rt.
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where θθθ′t = (αααt,βββt,RRRt),XXX
′

t = (1,xxx′

t,xxx
′

t−1,uuu
′

t) and WWW ′

t = (1, vvv′t, εεε
′

t),

ÃAA(θθθ) =




0 0 0 0

b0 + b1(I − β2)α + b2ab0 + b1(I − β2)α + b2ab0 + b1(I − β2)α + b2a b1βb1βb1β
2 0 b2ρb2ρb2ρ

0 I 0 0

a 0 0 ρρρ




,

B̃BB(θθθ) =




1 0 0

0 I b2

0 0 0

0 0 I




.

Based on the properties of eigenvalues, see e.g. Evans and Honkapohja (2001, p.117), all

the eigenvalues of ÃAA(θθθ) include 0 (multiple n + 1), the eigenvalues of ρρρ and b1βb1βb1β
2. Thus

based on the assumptions, all the eigenvalues of ÃAA(θθθ) lie inside the unit circle. Moreover,

it is easy to see all the other conditions for Section 6.2.1 of Chapter 6 in Evans and

Honkapohja (2001) are also satisfied.

Since xxxt is stationary, then the limits

σ2
i := lim

t→∞

E(xi,t − αi)
2, σ2

xixi,−1
:= lim

t→∞

E(xi,t − αi)(xi,t−1 − αi)

exist and are finite. Hence according to Section 6.2.1 of Chapter 6 in Evans and Honkapo-

hja (2001, p.126), the associated ODE is




dααα

dτ
= xxx(ααα,βββ)−ααα,

dβββ

dτ
= RRR−1[EEE − βΩβΩβΩ] = RRR−1ΩΩΩ[EEEΩΩΩ−1 − βββ],

dRRR

dτ
= ΩΩΩ−RRR,

(C.1)

where RRR is a diagonal matrix with the i-th diagonal entry Ri and ΩΩΩ, EEE are also diagonal

matrices as defined in Section 2. As shown in Evans and Honkapohja (2001), a BLE

corresponds to a fixed point of the following ODE (C.2).




dααα

dτ
= xxx(ααα,βββ)−ααα,

dβββ

dτ
= GGG− βββ.

(C.2)

Note that βββ and GGG are both diagonal matrices. The Jacobian matrix of C.2 is, in fact,

equivalent to 
 (III − bbb1βββ

∗2)−1(bbb1 − III) ̺̺̺

000 DDDGGGβββ(βββ
∗)− III


 ,
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where DDDGGGβββ is a Jacobian matrix with the (i, j)-th entry ∂Gi

∂βj
and the form of matrix

̺̺̺ is omitted since it is not needed in the proof. Therefore, if all the eigenvalues of

(III − bbb1βββ
∗2)−1(bbb1 − III) have negative real parts, and all the eigenvalues of DDDGGGβββ(βββ

∗) have

real parts less than 1, the SAC-learning (αααt,βββt) converges to the BLE (ααα∗,βββ∗) as time t

tends to ∞.

D Eigenvalues of matrix BBBβββ2

The characteristic polynomial of Bβββ2 is given by h(ν) = ν2 + c1ν + c2, where

c1 = −
β2
1 + [γϕ+ λ(1 + ϕφy)]β

2
2

1 + γϕφπ + ϕφy

, c2 =
λβ2

1β
2
2

1 + γϕφπ + ϕφy

.

Both of the eigenvalues of Bβββ2 are inside the unit circle if and only if both of the following

conditions hold (see Elaydi, 1999):

h(1) > 0, h(−1) > 0, |h(0)| < 1.

It is easy to see h(−1) > 0, |h(0)| < 1 for any βi ∈ [−1, 1]. Note that

h(1) =
(1− β2

1)(1− λβ2
2) + γϕφπ + ϕφy − (γϕ+ λϕφy)β

2
2

1 + γϕφπ + ϕφy

,

≥
ϕ[γ(φπ − 1) + (1− λ)φy]

1 + γϕφπ + ϕφy

.

Thus if γ(φπ − 1) + (1− λ)φy > 0, then h(1) > 0. Therefore, both eigenvalues of Bβββ2 lie

inside the unit circle.

E First-order autocorrelation coefficients of output

gap and inflation

Now we calculate GGG(ααα,βββ). Define zzzt = xxxt −EEExt. Then in order to obtain GGG(ααα,βββ), we

first calculate EEE(ztz
′

t−1) and EEE(ztz
′

t). Rewrite model (4.12) into

zzzt = Bβ2zBβ2zBβ2zt−1 +CεCεCεt +CρIεCρIεCρIεt−1 + · · · . (E.1)
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Thus

zzzt = Bβ2zt−1 + Cεt + CρIεt−1 + · · ·Bβ2zt−1 + Cεt + CρIεt−1 + · · ·Bβ2zt−1 + Cεt + CρIεt−1 + · · ·

= (Bβ2)2zt−2 +Bβ2(Cεt−1 + CρIεt−2 + · · · ) + Cεt + CρIεt−1 + · · ·(Bβ2)2zt−2 +Bβ2(Cεt−1 + CρIεt−2 + · · · ) + Cεt + CρIεt−1 + · · ·(Bβ2)2zt−2 +Bβ2(Cεt−1 + CρIεt−2 + · · · ) + Cεt + CρIεt−1 + · · ·

= Cεt + [CρI +Bβ2C]εt−1 + [Cρ2I +Bβ2CρI + (Bβ2)2C]εt−2 + · · ·Cεt + [CρI +Bβ2C]εt−1 + [Cρ2I +Bβ2CρI + (Bβ2)2C]εt−2 + · · ·Cεt + [CρI +Bβ2C]εt−1 + [Cρ2I +Bβ2CρI + (Bβ2)2C]εt−2 + · · ·

+[CρnI +Bβ2Cρn−1I + · · ·+ (Bβ2)n−1CρI + (Bβ2)nC]εt−n + · · ·+[CρnI +Bβ2Cρn−1I + · · ·+ (Bβ2)n−1CρI + (Bβ2)nC]εt−n + · · ·+[CρnI +Bβ2Cρn−1I + · · ·+ (Bβ2)n−1CρI + (Bβ2)nC]εt−n + · · ·

= Cεt + C[ρI − C−1Bβ2C]−1[ρ2I − C−1(Bβ2)2C]εt−1Cεt + C[ρI − C−1Bβ2C]−1[ρ2I − C−1(Bβ2)2C]εt−1Cεt + C[ρI − C−1Bβ2C]−1[ρ2I − C−1(Bβ2)2C]εt−1

+C[ρI − C−1Bβ2C]−1[ρ3I − C−1(Bβ2)3C]εt−2 + · · ·+C[ρI − C−1Bβ2C]−1[ρ3I − C−1(Bβ2)3C]εt−2 + · · ·+C[ρI − C−1Bβ2C]−1[ρ3I − C−1(Bβ2)3C]εt−2 + · · ·

+C[ρI − C−1Bβ2C]−1[ρn+1I − C−1(Bβ2)n+1C]εt−n + · · ·+C[ρI − C−1Bβ2C]−1[ρn+1I − C−1(Bβ2)n+1C]εt−n + · · ·+C[ρI − C−1Bβ2C]−1[ρn+1I − C−1(Bβ2)n+1C]εt−n + · · ·.

Note ρ is a scalar number and III is a 2× 2 identity matrix. Based on i.i.d. assumption of

εεεt,

EEEztzzz
′

t = E{Cεt + · · ·+ C[ρI − C−1Bβ2C]−1[ρn+1I − C−1(Bβ2)n+1C]εt−n + · · · }·E{Cεt + · · ·+ C[ρI − C−1Bβ2C]−1[ρn+1I − C−1(Bβ2)n+1C]εt−n + · · · }·E{Cεt + · · ·+ C[ρI − C−1Bβ2C]−1[ρn+1I − C−1(Bβ2)n+1C]εt−n + · · · }·

{ε′tC
′ + · · ·+ ε′t−n[ρ

n+1I − (C−1(Bβ2)n+1C)′][ρI − (C−1Bβ2C)′]−1C
′

+ · · · }{ε′tC
′ + · · ·+ ε′t−n[ρ

n+1I − (C−1(Bβ2)n+1C)′][ρI − (C−1Bβ2C)′]−1C
′

+ · · · }{ε′tC
′ + · · ·+ ε′t−n[ρ

n+1I − (C−1(Bβ2)n+1C)′][ρI − (C−1Bβ2C)′]−1C
′

+ · · · }

= CΣC ′ + · · ·+ C[ρI − C−1Bβ2C]−1[ρn+1I − C−1(Bβ2)n+1C]ΣCΣC ′ + · · ·+ C[ρI − C−1Bβ2C]−1[ρn+1I − C−1(Bβ2)n+1C]ΣCΣC ′ + · · ·+ C[ρI − C−1Bβ2C]−1[ρn+1I − C−1(Bβ2)n+1C]Σ

[ρn+1I − (C−1(Bβ2)n+1C)′][ρI − (C−1Bβ2C)′]−1C ′ + · · ·[ρn+1I − (C−1(Bβ2)n+1C)′][ρI − (C−1Bβ2C)′]−1C ′ + · · ·[ρn+1I − (C−1(Bβ2)n+1C)′][ρI − (C−1Bβ2C)′]−1C ′ + · · ·

= C[ρI − C−1Bβ2C]−1

∞∑

n=0

[ρn+1I − C−1(Bβ2)n+1C]Σ[ρn+1I − (C−1(Bβ2)n+1C)′]C[ρI − C−1Bβ2C]−1
∞∑

n=0

[ρn+1I − C−1(Bβ2)n+1C]Σ[ρn+1I − (C−1(Bβ2)n+1C)′]C[ρI − C−1Bβ2C]−1

∞∑

n=0

[ρn+1I − C−1(Bβ2)n+1C]Σ[ρn+1I − (C−1(Bβ2)n+1C)′] ·

[ρI − (C−1Bβ2C)′]−1C ′[ρI − (C−1Bβ2C)′]−1C ′[ρI − (C−1Bβ2C)′]−1C ′,

where ΣΣΣ =


 σ2

1 0

0 σ2
2


 .

In the following we try to obtain the expression of the matrix EEEztzzz
′

t and hence we first

calculate the matrix
∑

∞

n=0[ρ
n+1I − C−1(Bβ2)n+1C]Σ[ρn+1I − (C−1(Bβ2)n+1C)′]

∑
∞

n=0[ρ
n+1I − C−1(Bβ2)n+1C]Σ[ρn+1I − (C−1(Bβ2)n+1C)′]

∑
∞

n=0[ρ
n+1I − C−1(Bβ2)n+1C]Σ[ρn+1I − (C−1(Bβ2)n+1C)′]. Note

that

BβBβBβ2 =
1

1 + γϕφπ + ϕφy


 β2

1 ϕ(1− λφπ)β
2
2

γβ2
1 (γϕ+ λ(1 + ϕφy))β

2
2


 .

BβBβBβ2 has two eigenvalues18

λ1 =
[β2

1 + (γϕ+ λ+ λϕφy)β
2
2 ] +

√
[β2

1 + (γϕ+ λ+ λϕφy)β2
2 ]

2 − 4λβ2
1β

2
2(1 + γϕφπ + ϕφy)

2(1 + γϕφπ + ϕφy)
,

λ2 =
[β2

1 + (γϕ+ λ+ λϕφy)β
2
2 ]−

√
[β2

1 + (γϕ+ λ+ λϕφy)β2
2 ]

2 − 4λβ2
1β

2
2(1 + γϕφπ + ϕφy)

2(1 + γϕφπ + ϕφy)
.

18In the special case λ1 = λ2, although BβBβBβ2 is not diagonalizable, the expressions of first-order auto-

correlations (4.13) and (4.14) still hold based on the Jordan normal form of matrix BβBβBβ2. Without loss

of generality, in the following we assume λ1 6= λ2.
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Their corresponding eigenvectors are

P1 =
[ ϕ(1− λφπ)β

2
2

1 + γϕφπ + ϕφy

, λ1 −
β2
1

1 + γϕφπ + ϕφy

]
′

,

P2 =
[ ϕ(1− λφπ)β

2
2

1 + γϕφπ + ϕφy

, λ2 −
β2
1

1 + γϕφπ + ϕφy

]
′

.

Let PPP = [P1, P2]. Then

C−1Bβ2CC−1Bβ2CC−1Bβ2C = C−1PC−1PC−1P


 λ1 0

0 λ2


 (((C

−1
PPP )−1,

where

C−1PC−1PC−1P

=




(1+ϕφy)ϕ(1−λφπ)β2

2

1+γϕφπ+ϕφy
+ ϕφπ

(
λ1 −

β2

1

1+γϕφπ+ϕφy

)
(1+ϕφy)ϕ(1−λφπ)β2

2

1+γϕφπ+ϕφy
+ ϕφπ

(
λ2 −

β2

1

1+γϕφπ+ϕφy

)

−γϕ(1−λφπ)β2

2

1+γϕφπ+ϕφy
+
(
λ1 −

β2

1

1+γϕφπ+ϕφy

)
−γϕ(1−λφπ)β2

2

1+γϕφπ+ϕφy
+
(
λ2 −

β2

1

1+γϕφπ+ϕφy

)



=:


 d1 d2

d3 d4


 .

Correspondingly

(((C
−1
PPP )−1 =

1

d1d4 − d2d3


 d4 −d2

−d3 d1


 ,

where

d1d4 − d2d3 = det(CCC−1P ) = ϕ(1− λφπ)β
2
2(λ2 − λ1).

Hence

C−1(Bβ2)n+1CC−1(Bβ2)n+1CC−1(Bβ2)n+1C = C−1PC−1PC−1P


 λn+1

1 0

0 λn+1
2


 (C−1P )−1(C−1P )−1(C−1P )−1

=
1

d1d4 − d2d3


 d1d4λ

n+1
1 − d2d3λ

n+1
2 d1d2(λ

n+1
2 − λn+1

1 )

d3d4(λ
n+1
1 − λn+1

2 ) d1d4λ
n+1
2 − d2d3λ

n+1
1


 .

Thus

ρn+1I − C−1(Bβ2)n+1Cρn+1I − C−1(Bβ2)n+1Cρn+1I − C−1(Bβ2)n+1C =

1

d1d4 − d2d3


 d1d4(ρ

n+1 − λn+1
1 )− d2d3(ρ

n+1 − λn+1
2 ) −d1d2(λ

n+1
2 − λn+1

1 )

−d3d4(λ
n+1
1 − λn+1

2 ) d1d4(ρ
n+1 − λn+1

2 )− d2d3(ρ
n+1 − λn+1

1 )


 .
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Therefore

[ρn+1I − C−1(Bβ2)n+1C]Σ[ρn+1I − (C−1(Bβ2)n+1C)′][ρn+1I − C−1(Bβ2)n+1C]Σ[ρn+1I − (C−1(Bβ2)n+1C)′][ρn+1I − C−1(Bβ2)n+1C]Σ[ρn+1I − (C−1(Bβ2)n+1C)′] =
1

(d1d4 − d2d3)2


 s1(n+ 1) s2(n+ 1)

s2(n+ 1) s3(n+ 1)


 ,

where

s1(n+ 1) = σ2
1[d1d4(ρ

n+1 − λn+1
1 )− d2d3(ρ

n+1 − λn+1
2 )]2 + σ2

2[d1d2(λ
n+1
2 − λn+1

1 )]2,

s2(n+ 1) = σ2
1d3d4(λ

n+1
2 − λn+1

1 )[d1d4(ρ
n+1 − λn+1

1 )− d2d3(ρ
n+1 − λn+1

2 )] +

σ2
2d1d2(λ

n+1
1 − λn+1

2 )[d1d4(ρ
n+1 − λn+1

2 )− d2d3(ρ
n+1 − λn+1

1 )],

s3(n+ 1) = σ2
1[d3d4(λ

n+1
2 − λn+1

1 )]2 + σ2
2[d1d4(ρ

n+1 − λn+1
2 )− d2d3(ρ

n+1 − λn+1
1 )]2.

Thus in order to obtain
∑

∞

n=0[ρ
n+1I − C−1(Bβ2)n+1C]Σ[ρn+1I − (C−1(Bβ2)n+1C)′]

∑
∞

n=0[ρ
n+1I − C−1(Bβ2)n+1C]Σ[ρn+1I − (C−1(Bβ2)n+1C)′]

∑
∞

n=0[ρ
n+1I − C−1(Bβ2)n+1C]Σ[ρn+1I − (C−1(Bβ2)n+1C)′], in

the following we first try to calculate the values of
∑

∞

n=0 si(n+ 1), (i = 1, 2, 3).

Since

∞∑

n=0

[d1d4(ρ
n+1 − λn+1

1 )− d2d3(ρ
n+1 − λn+1

2 )]2,

=
∞∑

n=0

[(d1d4 − d2d3)
2ρ2(n+1) − 2d1d4(d1d4 − d2d3)(ρλ1)

n+1 + (d1d4)
2λ

2(n+1)
1

+2d2d3(d1d4 − d2d3)(ρλ2)
n+1 − 2d1d2d3d4(λ1λ2)

n+1 + (d2d3)
2λ

2(n+1)
2 ]

= (d1d4 − d2d3)
2
( 1

1− ρ2
− 1

)
− 2d1d4(d1d4 − d2d3)

( 1

1− ρλ1

− 1
)
+ (d1d4)

2
( 1

1− λ2
1

− 1
)

+2d2d3(d1d4 − d2d3)
( 1

1− ρλ2
− 1

)
− 2d1d2d3d4

( 1

1− λ1λ2
− 1

)
+ (d2d3)

2
( 1

1− λ2
2

− 1
)

= (d1d4 − d2d3)
2 1

1− ρ2
− 2d1d4(d1d4 − d2d3)

1

1− ρλ1

+ (d1d4)
2 1

1− λ2
1

+2d2d3(d1d4 − d2d3)
1

1− ρλ2
− 2d1d2d3d4

1

1− λ1λ2
+ (d2d3)

2 1

1− λ2
2

,

similarly,

∞∑

n=0

d3d4(λ
n+1
2 − λn+1

1 )[d1d4(ρ
n+1 − λn+1

1 )− d2d3(ρ
n+1 − λn+1

2 )]

= d3d4

{
(d1d4 − d2d3)

( 1

1− ρλ2
−

1

1− ρλ1

)
+

d1d4
1− λ2

1

−
d1d4 + d2d3
1− λ1λ2

+
d2d3
1− λ2

2

}
,

∞∑

n=0

[d3d4(λ
n+1
2 − λn+1

1 )]2 = (d3d4)
2
[ 1

1− λ2
2

−
2

1− λ1λ2

+
1

1− λ2
1

]
,
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then

∞∑

n=0

s1(n+ 1) = σ2
1

[
(d1d4 − d2d3)

2 1

1− ρ2
− 2d1d4(d1d4 − d2d3)

1

1− ρλ1

+ (d1d4)
2 1

1− λ2
1

+2d2d3(d1d4 − d2d3)
1

1− ρλ2
− 2d1d2d3d4

1

1− λ1λ2
+ (d2d3)

2 1

1− λ2
2

]

+σ2
2

[
(d1d2)

2
( 1

1− λ2
2

−
2

1− λ1λ2

+
1

1− λ2
1

)]
=: s∗1 (E.2)

∞∑

n=0

s2(n+ 1) = σ2
1

[
d3d4

{
(d1d4 − d2d3)

( 1

1− ρλ2

−
1

1− ρλ1

)
+

d1d4
1− λ2

1

−
d1d4 + d2d3
1− λ1λ2

+
d2d3
1− λ2

2

}]

+σ2
2

[
d1d2

{
(d1d4 − d2d3)

( 1

1− ρλ1
−

1

1− ρλ2

)
+

d1d4
1− λ2

2

−
d1d4 + d2d3
1− λ1λ2

+
d2d3
1− λ2

1

}]

=: s∗2, (E.3)
∞∑

n=0

s3(n+ 1) = σ2
1

[
(d3d4)

2
( 1

1− λ2
2

−
2

1− λ1λ2

+
1

1− λ2
1

)]

+σ2
2

[
(d1d4 − d2d3)

2 1

1− ρ2
− 2d1d4(d1d4 − d2d3)

1

1− ρλ2
+ (d1d4)

2 1

1− λ2
2

+2d2d3(d1d4 − d2d3)
1

1− ρλ1

− 2d1d2d3d4
1

1− λ1λ2

+ (d2d3)
2 1

1− λ2
1

]
=: s∗3. (E.4)

Therefore it is natural to have

∞∑

n=0

[ρn+1I − C−1(Bβ2)n+1C]Σ[ρn+1I − (C−1(Bβ2)n+1C)′]

∞∑

n=0

[ρn+1I − C−1(Bβ2)n+1C]Σ[ρn+1I − (C−1(Bβ2)n+1C)′]
∞∑

n=0

[ρn+1I − C−1(Bβ2)n+1C]Σ[ρn+1I − (C−1(Bβ2)n+1C)′]

=
1

(d1d4 − d2d3)2




∑
∞

n=0 s1(n + 1)
∑

∞

n=0 s2(n+ 1)
∑

∞

n=0 s2(n + 1)
∑

∞

n=0 s3(n+ 1)




=
1

(d1d4 − d2d3)2


 s∗1 s∗2

s∗2 s∗3


 .

where s∗i (i = 1, 2, 3) is shown in (E.2)-(E.4). Based on this, thus we can further obtain

the expression of EEEztzzz
′

t.

Since

ρI − C−1(Bβ2)CρI − C−1(Bβ2)CρI − C−1(Bβ2)C

=
1

d1d4 − d2d3


 d1d4(ρ− λ1)− d2d3(ρ− λ2) −d1d2(λ2 − λ1)

−d3d4(λ1 − λ2) d1d4(ρ− λ2)− d2d3(ρ− λ1)


 ,

then

[ρI − C−1(Bβ2)C]−1[ρI − C−1(Bβ2)C]−1[ρI − C−1(Bβ2)C]−1 =
1

m̃


 d1d4(ρ− λ2)− d2d3(ρ− λ1) d1d2(λ2 − λ1)

d3d4(λ1 − λ2) d1d4(ρ− λ1)− d2d3(ρ− λ2)


 ,
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where m̃ = (d1d4 − d2d3)(ρ− λ1)(ρ− λ2). Furthermore,

C[ρI − C−1(Bβ2)C]−1C[ρI − C−1(Bβ2)C]−1C[ρI − C−1(Bβ2)C]−1 =
1

m̃(1 + γϕφπ + ϕφy)


 k1 k2

k3 k4


 ,

where

k1 = d1d4(ρ− λ2)− d2d3(ρ− λ1)− ϕφπd3d4(λ1 − λ2), (E.5)

k2 = d1d2(λ2 − λ1)− ϕφπ[d1d4(ρ− λ1)− d2d3(ρ− λ2)], (E.6)

k3 = γ[d1d4(ρ− λ2)− d2d3(ρ− λ1)] + (1 + ϕφy)d3d4(λ1 − λ2), (E.7)

k4 = γd1d2(λ2 − λ1) + (1 + ϕφy)[d1d4(ρ− λ1)− d2d3(ρ− λ2)]. (E.8)

Therefore,

EEEztzzz
′

t

= C[ρI − C−1(Bβ2)C]−1
{ ∞∑

n=0

[ρn+1I − C−1(Bβ2)n+1C]Σ[ρn+1I − (C−1(Bβ2)n+1C)′]
}

C[ρI − C−1(Bβ2)C]−1
{ ∞∑

n=0

[ρn+1I − C−1(Bβ2)n+1C]Σ[ρn+1I − (C−1(Bβ2)n+1C)′]
}

C[ρI − C−1(Bβ2)C]−1
{ ∞∑

n=0

[ρn+1I − C−1(Bβ2)n+1C]Σ[ρn+1I − (C−1(Bβ2)n+1C)′]
}
·

[ρI − (C−1(Bβ2)C)′]−1C ′[ρI − (C−1(Bβ2)C)′]−1C ′[ρI − (C−1(Bβ2)C)′]−1C ′

= k̃


 k1 k2

k3 k4




 s∗1 s∗2

s∗2 s∗3




 k1 k3

k2 k4




= k̃


 k2

1s
∗

1 + 2k1k2s
∗

2 + k2
2s

∗

3 k1k3s
∗

1 + (k1k4 + k2k3)s
∗

2 + k2k4s
∗

3

k1k3s
∗

1 + (k1k4 + k2k3)s
∗

2 + k2k4s
∗

3 k2
3s

∗

1 + 2k3k4s
∗

2 + k2
4s

∗

3


 ,

where k̃ = 1
m̃2(1+γϕφπ+ϕφy)2(d1d4−d2d3)2

, s∗i is given in (E.2)-(E.4) and ki is given in (E.5)-

(E.8).

With the expression of covariance matrix EEEztzzz
′

t, in order to obtain the expression of

first-order autocorrelation coefficient of output and inflation, we need to further calculate

the first-order autocovariance EEEztzzz
′

t−1.

Similar to the calculation of EEEztzzz
′

t, we have

EEEztzzz
′

t−1 = E{Cεt + · · ·+ C[ρI − C−1Bβ2C]−1[ρn+1I − C−1(Bβ2)n+1C]εt−n + · · · }·E{Cεt + · · ·+ C[ρI − C−1Bβ2C]−1[ρn+1I − C−1(Bβ2)n+1C]εt−n + · · · }·E{Cεt + · · ·+ C[ρI − C−1Bβ2C]−1[ρn+1I − C−1(Bβ2)n+1C]εt−n + · · · }·

{ε′tC
′ + · · ·+ ε′t−n[ρ

nI − (C−1(Bβ2)nC)′][ρI − (C−1Bβ2C)′]−1C
′

+ · · · }{ε′tC
′ + · · ·+ ε′t−n[ρ

nI − (C−1(Bβ2)nC)′][ρI − (C−1Bβ2C)′]−1C
′

+ · · · }{ε′tC
′ + · · ·+ ε′t−n[ρ

nI − (C−1(Bβ2)nC)′][ρI − (C−1Bβ2C)′]−1C
′

+ · · · }

= C[ρI − C−1Bβ2C]−1
∞∑

n=1

[ρn+1I − C−1(Bβ2)n+1C]Σ[ρnI − (C−1(Bβ2)nC)′]C[ρI − C−1Bβ2C]−1
∞∑

n=1

[ρn+1I − C−1(Bβ2)n+1C]Σ[ρnI − (C−1(Bβ2)nC)′]C[ρI − C−1Bβ2C]−1
∞∑

n=1

[ρn+1I − C−1(Bβ2)n+1C]Σ[ρnI − (C−1(Bβ2)nC)′] ·

[ρI − (C−1Bβ2C)′]−1C ′[ρI − (C−1Bβ2C)′]−1C ′[ρI − (C−1Bβ2C)′]−1C ′,

and

[ρn+1I − C−1(Bβ2)n+1C]Σ[ρnI − (C−1(Bβ2)nC)′][ρn+1I − C−1(Bβ2)n+1C]Σ[ρnI − (C−1(Bβ2)nC)′][ρn+1I − C−1(Bβ2)n+1C]Σ[ρnI − (C−1(Bβ2)nC)′] =
1

(d1d4 − d2d3)2
·


 w1(n) w2(n)

w3(n) w4(n)


 ,
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where

w1(n) = σ2
1

{
[d1d4(ρ

n+1 − λn+1
1 )− d2d3(ρ

n+1 − λn+1
2 )][d1d4(ρ

n − λn
1 )− d2d3(ρ

n − λn
2)]

}

+σ2
2(d1d2)

2(λn+1
2 − λn+1

1 )(λn
2 − λn

1 ),

w2(n) = σ2
1

{
d3d4(λ

n
2 − λn

1)[d1d4(ρ
n+1 − λn+1

1 )− d2d3(ρ
n+1 − λn+1

2 )]
}

+σ2
2

{
d1d2(λ

n+1
1 − λn+1

2 )[d1d4(ρ
n − λn

2 )− d2d3(ρ
n − λn

1 )]
}
,

w3(n) = σ2
1

{
d3d4(λ

n+1
2 − λn+1

1 )[d1d4(ρ
n − λn

1 )− d2d3(ρ
n − λn

2 )]
}

+σ2
2

{
d1d2(λ

n
1 − λn

2 )[d1d4(ρ
n+1 − λn+1

2 )− d2d3(ρ
n+1 − λn+1

1 )]
}
,

w4(n) = σ2
1

{
(d3d4)

2(λn+1
2 − λn+1

1 )(λn
2 − λn

1)
}

σ2
2

{
[d1d4(ρ

n+1 − λn+1
2 )− d2d3(ρ

n+1 − λn+1
1 )][d1d4(ρ

n − λn
2 )− d2d3(ρ

n − λn
1)]

}
.

Since
∞∑

n=1

w1(n) = σ2
1

{
(d1d4 − d2d3)

2 ρ

1− ρ2
− d1d4(d1d4 − d2d3)

ρ+ λ1

1− ρλ1
+ (d1d4)

2 λ1

1− λ2
1

+d2d3(d1d4 − d2d3)
ρ+ λ2

1− ρλ2
− d1d2d3d4

λ1 + λ2

1− λ1λ2
+ (d2d3)

2 λ2

1− λ2
2

}

+σ2
2(d1d2)

2
[ λ2

1− λ2
2

−
λ1 + λ2

1− λ1λ2
+

λ1

1− λ2
1

]
=: w∗

1, (E.9)

∞∑

n=1

w2(n) = σ2
1d3d4

{
(d1d4 − d2d3)

[ ρ

1− ρλ2
−

ρ

1− ρλ1

]
+

d1d4λ1

1− λ2
1

−
d1d4λ1 + d2d3λ2

1− λ1λ2
+

d2d3λ2

1− λ2
2

}

+σ2
2d1d2

{
(d1d4 − d2d3)

[ λ1

1− ρλ1
−

λ2

1− ρλ2

]
+

d2d3λ1

1− λ2
1

−
d1d4λ1 + d2d3λ2

1− λ1λ2
+

d1d4λ2

1− λ2
2

}

=: w∗

2, (E.10)
∞∑

n=1

w3(n) = σ2
1d3d4

{
(d1d4 − d2d3)

[ λ2

1− ρλ2
−

λ1

1− ρλ1

]
+

d1d4λ1

1− λ2
1

−
d1d4λ2 + d2d3λ1

1− λ1λ2
+

d2d3λ2

1− λ2
2

}

+σ2
2d1d2

{
(d1d4 − d2d3)

[ ρ

1− ρλ1
−

ρ

1− ρλ2

]
+

d1d4λ2

1− λ2
2

−
d1d4λ2 + d2d3λ1

1− λ1λ2
+

d2d3λ1

1− λ2
1

}

=: w∗

3, (E.11)
∞∑

n=1

w4(n) = σ2
1(d3d4)

2
[ λ2

1− λ2
2

−
λ1 + λ2

1− λ1λ2
+

λ1

1− λ2
1

]
+ σ2

2

{
(d1d4 − d2d3)

2 ρ

1− ρ2

−d1d4(d1d4 − d2d3)
ρ+ λ2

1− ρλ2
+ (d1d4)

2 λ2

1− λ2
2

+ d2d3(d1d4 − d2d3)
ρ+ λ1

1− ρλ1

−d1d2d3d4
λ1 + λ2

1− λ1λ2
+ (d2d3)

2 λ1

1− λ2
1

}
=: w∗

4, (E.12)

then

∞∑

n=1

[ρn+1I − C−1(Bβ2)n+1C]Σ[ρnI − (C−1(Bβ2)nC)′]

∞∑

n=1

[ρn+1I − C−1(Bβ2)n+1C]Σ[ρnI − (C−1(Bβ2)nC)′]
∞∑

n=1

[ρn+1I − C−1(Bβ2)n+1C]Σ[ρnI − (C−1(Bβ2)nC)′] =
1

(d1d4 − d2d3)2


 w∗

1 w∗

2

w∗

3 w∗

4


 .
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Therefore,

EEEztzzz
′

t−1

= C[ρI − C−1(Bβ2)C]−1
{ ∞∑

n=1

[ρn+1I − C−1(Bβ2)n+1C]Σ[ρnI − (C−1(Bβ2)nC)′]
}

C[ρI − C−1(Bβ2)C]−1
{ ∞∑

n=1

[ρn+1I − C−1(Bβ2)n+1C]Σ[ρnI − (C−1(Bβ2)nC)′]
}

C[ρI − C−1(Bβ2)C]−1
{ ∞∑

n=1

[ρn+1I − C−1(Bβ2)n+1C]Σ[ρnI − (C−1(Bβ2)nC)′]
}

= k̃


 k2

1w
∗

1 + k1k2(w
∗

2 + w∗

3) + k2
2w

∗

4 k1k3w
∗

1 + k1k4w
∗

2 + k2k3w
∗

3 + k2k4w
∗

4

k1k3w
∗

1 + k2k3w
∗

2 + k1k4w
∗

3 + k2k4w
∗

4 k2
3w

∗

1 + k3k4(w
∗

2 + w∗

3) + k2
4w

∗

4


 ,

where k̃ = 1
m̃2(1+γϕφπ+ϕφy)2(d1d4−d2d3)2

, w∗

i is given in (E.9)-(E.11) and ki is given in (E.5)-

(E.8).

Therefore based on the expressions of the first-order autocovariance EEEztzzz
′

t−1 and co-

variance EEEztzzz
′

t, we can obtain the first-order autocorrelation coefficients G1(β1, β2) and

G2(β1, β2) of output gap and inflation, i.e.,

G1(β1, β2) =
k2
1w

∗

1 + k1k2(w
∗

2 + w∗

3) + k2
2w

∗

4

k2
1s

∗

1 + 2k1k2s∗2 + k2
2s

∗

3

,

G2(β1, β2) =
k2
3w

∗

1 + k3k4(w
∗

2 + w∗

3) + k2
4w

∗

4

k2
3s

∗

1 + 2k3k4s∗2 + k2
4s

∗

3

,

where s∗i is given in (E.2)-(E.4), ki is given in (E.5)-(E.8) and w∗

i is given in (E.9)-(E.11).

From the expressions of s∗i and w∗

i , it can be seen that G1(β1, β2) and G2(β1, β2)

are extremely complicated. Hence in the following we try to simplify the expressions of

G1(β1, β2) and G2(β1, β2) so that the separate expressions of λ1 and λ2 are not needed

(i.e. G1 and G2 just depend on λ1 + λ2 and λ1 · λ2). We first simplify the expression of

the first-order autocorrelation G1(β1, β2) of output gap.
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k2
1w

∗

1 + k1k2(w
∗

2 + w∗

3) + k2
2w

∗

4

= σ2
1

[
k2
1(d1d4 − d2d3)

2 ρ

1− ρ2
− k1(d1d4 − d2d3)(k1d1d4 + k2d3d4)

ρ+ λ1

1− ρλ1

+(k1d1d4 + k2d3d4)
2 λ1

1− λ2
1

+ k1(d1d4 − d2d3)(k1d2d3 + k2d3d4)
ρ+ λ2

1− ρλ2

+(k1d2d3 + k2d3d4)
2 λ2

1− λ2
2

− (k1d1d4 + k2d3d4)(k1d2d3 + k2d3d4)
λ1 + λ2

1− λ1λ2

]

+σ2
2

[
k2
2(d1d4 − d2d3)

2 ρ

1− ρ2
− k2(d1d4 − d2d3)(k2d1d4 + k1d1d2)

ρ+ λ2

1− ρλ2

+(k2d1d4 + k1d1d2)
2 λ2

1− λ2
2

+ k2(d1d4 − d2d3)(k2d2d3 + k1d1d2)
ρ+ λ1

1− ρλ1

+(k2d2d3 + k1d1d2)
2 λ1

1− λ2
1

− (k2d1d4 + k1d1d2)(k2d2d3 + k1d1d2)
λ1 + λ2

1− λ1λ2

]

=
1

(1− ρ2)(1− ρλ1)(1− λ2
1)(1− ρλ2)(1− λ2

2)(1− λ1λ2)
·

{
σ2
1

[
k1(d1d4 − d2d3)ρ(1− λ2

1)(1− λ2
2)(1− λ1λ2)

[
k1(d1d4 − d2d3)(1− ρλ1)(1− ρλ2)

−(k1d1d4 + k2d3d4)(1− ρ2)(1− ρλ2) + (k1d2d3 + k2d3d4)(1− ρ2)(1− ρλ1)
]

−(k1d1d4 + k2d3d4)λ1(1− ρ2)(1− ρλ2)(1− λ2
2)
[
k1(d1d4 − d2d3)(1− λ2

1)(1− λ1λ2)

−(k1d1d4 + k2d3d4)(1− ρλ1)(1− λ1λ2) + (k1d2d3 + k2d3d4)(1− ρλ1)(1− λ2
1)
]

+(k1d2d3 + k2d3d4)λ2(1− ρ2)(1− ρλ1)(1− λ2
1)
[
k1(d1d4 − d2d3)(1− λ2

2)(1− λ1λ2)

−(k1d1d4 + k2d3d4)(1− ρλ2)(1− λ2
2) + (k1d2d3 + k2d3d4)(1− ρλ2)(1− λ1λ2)

]]

+σ2
2

[
k2(d1d4 − d2d3)ρ(1− λ2

1)(1− λ2
2)(1− λ1λ2)

[
k2(d1d4 − d2d3)(1− ρλ1)(1− ρλ2)

−(k2d1d4 + k1d1d2)(1− ρ2)(1− ρλ1) + (k2d2d3 + k1d1d2)(1− ρ2)(1− ρλ2)
]

−(k2d1d4 + k1d1d2)λ2(1− ρ2)(1− ρλ1)(1− λ2
1)
[
k2(d1d4 − d2d3)(1− λ2

2)(1− λ1λ2)

−(k2d1d4 + k1d1d2)(1− ρλ2)(1− λ1λ2) + (k2d2d3 + k1d1d2)(1− ρλ2)(1− λ2
2)
]

+(k2d2d3 + k1d1d2)λ1(1− ρ2)(1− ρλ2)(1− λ2
2)
[
k2(d1d4 − d2d3)(1− λ2

1)(1− λ1λ2)

−(k2d1d4 + k1d1d2)(1− ρλ1)(1− λ2
1) + (k2d2d3 + k1d1d2)(1− ρλ1)(1− λ1λ2)

]]}
.

50



Since

k1(d1d4 − d2d3)(1− ρλ1)(1− ρλ2)− (k1d1d4 + k2d3d4)(1− ρ2)(1− ρλ2)

+(k1d2d3 + k2d3d4)(1− ρ2)(1− ρλ1)

= k1(d1d4 − d2d3)ρ
2 − (k1d1d4 + k2d3d4)ρλ1 + (k1d2d3 + k2d3d4)ρλ2

+k1(d1d4 − d2d3)ρ
2λ1λ2 − (k1d1d4 + k2d3d4)ρ

3λ2 + (k1d2d3 + k2d3d4)ρ
3λ1

= ρ
[
k1(d1d4 − d2d3)ρ− (k1d1d4 + k2d3d4)λ1 + (k1d2d3 + k2d3d4)λ2

]

+ρ2
[
k1(d1d4 − d2d3)λ1λ2 − (k1d1d4 + k2d3d4)ρλ2 + (k1d2d3 + k2d3d4)ρλ1

]
,

k1(d1d4 − d2d3)(1− λ2
1)(1− λ1λ2)− (k1d1d4 + k2d3d4)(1− ρλ1)(1− λ1λ2)

+(k1d2d3 + k2d3d4)(1− ρλ1)(1− λ2
1)

= λ1

[
k1(d1d4 − d2d3)ρ− (k1d1d4 + k2d3d4)λ1 + (k1d2d3 + k2d3d4)λ2

]

+λ2
1

[
k1(d1d4 − d2d3)λ1λ2 − (k1d1d4 + k2d3d4)ρλ2 + (k1d2d3 + k2d3d4)ρλ1

]
,

k1(d1d4 − d2d3)(1− λ2
2)(1− λ1λ2)− (k1d1d4 + k2d3d4)(1− ρλ2)(1− λ2

2)

+(k1d2d3 + k2d3d4)(1− ρλ2)(1− λ1λ2)

= λ2

[
k1(d1d4 − d2d3)ρ− (k1d1d4 + k2d3d4)λ1 + (k1d2d3 + k2d3d4)λ2

]

+λ2
2

[
k1(d1d4 − d2d3)λ1λ2 − (k1d1d4 + k2d3d4)ρλ2 + (k1d2d3 + k2d3d4)ρλ1

]
,

then

k2
1w

∗

1 + k1k2(w
∗

2 + w∗

3) + k2
2w

∗

4

=
1

(1− ρ2)(1− ρλ1)(1− λ2
1)(1− ρλ2)(1− λ2

2)(1− λ1λ2)
·

{
σ2
1

[[
k1(d1d4 − d2d3)ρ− (k1d1d4 + k2d3d4)λ1 + (k1d2d3 + k2d3d4)λ2

][
k1(d1d4 − d2d3)ρ

2(1− λ2
1)

(1− λ2
2)(1− λ1λ2)− (k1d1d4 + k2d3d4)λ

2
1(1− ρ2)(1− ρλ2)(1− λ2

2) + (k1d2d3 + k2d3d4)λ
2
2

(1− ρ2)(1− ρλ1)(1− λ2
1)
]
+
[
k1(d1d4 − d2d3)λ1λ2 − (k1d1d4 + k2d3d4)ρλ2 + (k1d2d3 + k2d3d4)

ρλ1

][
k1(d1d4 − d2d3)ρ

3(1− λ2
1)(1− λ2

2)(1− λ1λ2)− (k1d1d4 + k2d3d4)λ
3
1(1− ρ2)

(1− ρλ2)(1− λ2
2) + (k1d2d3 + k2d3d4)λ

3
2(1− ρ2)(1− ρλ1)(1− λ2

1)
]]

+

σ2
2

[[
k2(d1d4 − d2d3)ρ− (k2d1d4 + k1d1d2)λ2 + (k2d2d3 + k1d1d2)λ1

][
k2(d1d4 − d2d3)ρ

2(1− λ2
2)

(1− λ2
1)(1− λ1λ2)− (k2d1d4 + k1d1d2)λ

2
2(1− ρ2)(1− ρλ1)(1− λ2

1) + (k2d2d3 + k1d1d2)λ
2
1

(1− ρ2)(1− ρλ2)(1− λ2
2)
]
+
[
k2(d1d4 − d2d3)λ1λ2 − (k2d1d4 + k1d1d2)ρλ1 + (k2d2d3 + k1d1d2)

ρλ2

][
k2(d1d4 − d2d3)ρ

3(1− λ2
2)(1− λ2

1)(1− λ1λ2)− (k2d1d4 + k1d1d2)λ
3
2(1− ρ2)

(1− ρλ1)(1− λ2
1) + (k2d2d3 + k1d1d2)λ

3
1(1− ρ2)(1− ρλ2)(1− λ2

2)
]]}

.
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Note that

k1(d1d4 − d2d3)ρ
2(1− λ2

1)(1− λ2
2)(1− λ1λ2)− (k1d1d4 + k2d3d4)λ

2
1(1− ρ2)(1− ρλ2)(1− λ2

2)

+(k1d2d3 + k2d3d4)λ
2
2(1− ρ2)(1− ρλ1)(1− λ2

1)

= [k1(d1d4 − d2d3)ρ
2 − (k1d1d4 + k2d3d4)λ

2
1 + (k1d2d3 + k2d3d4)λ

2
2]− [k1(d1d4 − d2d3)ρ

2

(λ2
1 + λ1λ2 + λ2

2)− (k1d1d4 + k2d3d4)λ
2
1(ρ

2 + ρλ2 + λ2
2) + (k1d2d3 + k2d3d4)λ

2
2(ρ

2 + ρλ1 + λ2
1)]

+ρλ1λ2[k1(d1d4 − d2d3)ρ(λ
2
1 + λ2

2)− (k1d1d4 + k2d3d4)λ1(ρ
2 + λ2

2)

+(k1d2d3 + k2d3d4)λ2(ρ
2 + λ2

1)]− ρ2λ2
1λ

2
2[k1(d1d4 − d2d3)λ1λ2 − (k1d1d4 + k2d3d4)ρλ2

+(k1d2d3 + k2d3d4)ρλ1],

and

k1(d1d4 − d2d3)ρ
3(1− λ2

1)(1− λ2
2)(1− λ1λ2)− (k1d1d4 + k2d3d4)λ

3
1(1− ρ2)(1− ρλ2)(1− λ3

2)

+(k1d2d3 + k2d3d4)λ
3
2(1− ρ2)(1− ρλ1)(1− λ2

1)

= [k1(d1d4 − d2d3)ρ
3 − (k1d1d4 + k2d3d4)λ

3
1 + (k1d2d3 + k2d3d4)λ

3
2]− [k1(d1d4 − d2d3)ρ

3

(λ2
1 + λ1λ2 + λ2

2)− (k1d1d4 + k2d3d4)λ
3
1(ρ

2 + ρλ2 + λ2
2) + (k1d2d3 + k2d3d4)λ

3
2(ρ

2 + ρλ1 + λ2
1)]

+ρλ1λ2[k1(d1d4 − d2d3)ρ
2(λ2

1 + λ1λ2 + λ2
2)− (k1d1d4 + k2d3d4)λ

2
1(ρ

2 + ρλ2 + λ2
2)

+(k1d2d3 + k2d3d4)λ
2
2(ρ

2 + ρλ1 + λ2
1)].

Because k1 = d1d4(ρ − λ2) − d2d3(ρ − λ1) − ϕφπd3d4(λ1 − λ2), k2 = d1d2(λ2 − λ1) −

ϕφπ[d1d4(ρ− λ1)− d2d3(ρ− λ2)], we can obtain

k1d1d4 + k2d3d4 = (d21d4 + ϕφπd2d
2
3 − d1d2d3 − ϕφπd1d3d4)d4(ρ− λ2)

= (d1d4 − d2d3)(d1d4 − ϕφπd3d4)(ρ− λ2),

k1d2d3 + k2d3d4 = (d1d4 − d2d3)(d2d3 − ϕφπd3d4)(ρ− λ1),

k2d1d4 + k1d1d2 = (d1d4 − d2d3)(d1d2 − ϕφπd1d4)(ρ− λ1),

k2d2d3 + k1d1d2 = (d1d4 − d2d3)(d1d2 − ϕφπd2d3)(ρ− λ2).
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Thus

k1(d1d4 − d2d3)ρ− (k1d1d4 + k2d3d4)λ1 + (k1d2d3 + k2d3d4)λ2

= (d1d4 − d2d3)[d1d4(ρ− λ2)− d2d3(ρ− λ1)− ϕφπd3d4(λ1 − λ2)]ρ− (d1d4 − d2d3) ·

(d1d4 − ϕφπd3d4)(ρ− λ2)λ1 + (d1d4 − d2d3)(d2d3 − ϕφπd3d4)(ρ− λ1)λ2

= (d1d4 − d2d3)(d1d4 − ϕφπd3d4)(ρ− λ2)ρ− (d1d4 − d2d3)(d2d3 − ϕφπd3d4)(ρ− λ1)ρ

−(d1d4 − d2d3)(d1d4 − ϕφπd3d4)(ρ− λ2)λ1 + (d1d4 − d2d3)(d2d3 − ϕφπd3d4)(ρ− λ1)λ2

= (d1d4 − d2d3)(d1d4 − ϕφπd3d4)(ρ− λ2)(ρ− λ1)− (d1d4 − d2d3)(d2d3 − ϕφπd3d4)(ρ− λ1)(ρ− λ2)

= (d1d4 − d2d3)
2(ρ− λ2)(ρ− λ1)

= (ϕ(1− λφπ)β
2
2)

2(λ2 − λ1)
2(ρ− λ2)(ρ− λ1),

k1(d1d4 − d2d3)λ1λ2 − (k1d1d4 + k2d3d4)ρλ2 + (k1d2d3 + k2d3d4)ρλ1

= (d1d4 − d2d3)[d1d4(ρ− λ2)− d2d3(ρ− λ1)− ϕφπd3d4(λ1 − λ2)]λ1λ2 − (d1d4 − d2d3)

(d1d4 − ϕφπd3d4)(ρ− λ2)ρλ2 + (d1d4 − d2d3)(d2d3 − ϕφπd3d4)(ρ− λ1)ρλ1

= (d1d4 − d2d3)(d1d4 − ϕφπd3d4)(ρ− λ2)λ1λ2 − (d1d4 − d2d3)(d2d3 − ϕφπd3d4)(ρ− λ1)λ1λ2

−(d1d4 − d2d3)(d1d4 − ϕφπd3d4)(ρ− λ2)ρλ2 + (d1d4 − d2d3)(d2d3 − ϕφπd3d4)(ρ− λ1)ρλ1

= −(d1d4 − d2d3)[(d1d4 − ϕφπd3d4)(ρ− λ2)(ρ− λ1)λ2 − (d2d3 − ϕφπd3d4)(ρ− λ1)(ρ− λ2)λ1]

= (d1d4 − d2d3)(ρ− λ2)(ρ− λ1)[−(d1d4 − ϕφπd3d4)λ2 + (d2d3 − ϕφπd3d4)λ1]

= (d1d4 − d2d3)(ρ− λ2)(ρ− λ1)[−ϕ(1− λφπ)β
2
2d4λ2 + ϕ(1− λφπ)β

2
2d3λ1]

= (ϕ(1− λφπ)β
2
2)

2(λ2 − λ1)
2(ρ− λ2)(ρ− λ1)[−λβ2

2 ],

k1(d1d4 − d2d3)ρ
2 − (k1d1d4 + k2d3d4)λ

2
1 + (k1d2d3 + k2d3d4)λ

2
2

= (ϕ(1− λφπ)β
2
2)

2(λ2 − λ1)
2(ρ− λ2)(ρ− λ1)[ρ+ λ1 + λ2 − λβ2

2 ],

k1(d1d4 − d2d3)ρ
3 − (k1d1d4 + k2d3d4)λ

3
1 + (k1d2d3 + k2d3d4)λ

3
2

= (ϕ(1− λφπ)β
2
2)

2(λ2 − λ1)
2(ρ− λ2)(ρ− λ1)[ρ

2 + ρλ1 + ρλ2 + λ2
1 + λ1λ2 + λ2

2 − λβ2
2(ρ+ λ1 + λ2)],

k1(d1d4 − d2d3)ρ
2(λ2

1 + λ1λ2 + λ2
2)− (k1d1d4 + k2d3d4)λ

2
1(ρ

2 + ρλ2 + λ2
2)

+(k1d2d3 + k2d3d4)λ
2
2(ρ

2 + ρλ1 + λ2
1)

= (ϕ(1− λφπ)β
2
2)

2(λ2 − λ1)
2(ρ− λ2)(ρ− λ1)[λβ

2
2(ρλ1 + ρλ2 + λ1λ2)],
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k1(d1d4 − d2d3)ρ
3(λ2

1 + λ1λ2 + λ2
2)− (k1d1d4 + k2d3d4)λ

3
1(ρ

2 + ρλ2 + λ2
2)

+(k1d2d3 + k2d3d4)λ
3
2(ρ

2 + ρλ1 + λ2
1)

= (ϕ(1− λφπ)β
2
2)

2(λ2 − λ1)
2(ρ− λ2)(ρ− λ1)[ρ

2λ2
1 + ρ2λ1λ2 + ρ2λ2

2 + ρλ2
1λ2 + ρλ1λ

2
2 + λ2

1λ
2
2],

ρλ1λ2[k1(d1d4 − d2d3)ρ(λ
2
1 + λ2

2)− (k1d1d4 + k2d3d4)λ1(ρ
2 + λ2

2)

+(k1d2d3 + k2d3d4)λ2(ρ
2 + λ2

1)]

= (ϕ(1− λφπ)β
2
2)

2(λ2 − λ1)
2(ρ− λ2)(ρ− λ1)[λβ

2
2ρλ1λ2(ρ+ λ1 + λ2)− ρλ1λ2(λ1λ2 + ρλ1 + ρλ2)],

ρλ1λ2[k1(d1d4 − d2d3)ρ
2(λ2

1 + λ1λ2 + λ2
2)− (k1d1d4 + k2d3d4)λ

2
1(ρ

2 + ρλ2 + λ2
2)

+(k1d2d3 + k2d3d4)λ
2
2(ρ

2 + ρλ1 + λ2
1)]

= (ϕ(1− λφπ)β
2
2)

2(λ2 − λ1)
2(ρ− λ2)(ρ− λ1)[λβ

2
2ρλ1λ2(ρλ1 + ρλ2 + λ1λ2)],

(ρλ1λ2)
2[k1(d1d4 − d2d3)λ1λ2 − (k1d1d4 + k2d3d4)ρλ2 + (k1d2d3 + k2d3d4)ρλ1]

= (ϕ(1− λφπ)β
2
2)

2(λ2 − λ1)
2(ρ− λ2)(ρ− λ1)[−λβ2

2(ρλ1λ2)
2],

and

k2(d1d4 − d2d3)ρ− (k2d1d4 + k1d1d2)λ2 + (k2d2d3 + k1d1d2)λ1

= (ϕ(1− λφπ)β
2
2)

2(λ2 − λ1)
2(ρ− λ2)(ρ− λ1)(−ϕφπ),

k2(d1d4 − d2d3)λ1λ2 − (k2d1d4 + k1d1d2)ρλ1 + (k2d2d3 + k1d1d2)ρλ2

= (ϕ(1− λφπ)β
2
2)

2(λ2 − λ1)
2(ρ− λ2)(ρ− λ1)[ϕβ

2
2 ],

k2(d1d4 − d2d3)ρ
2 − (k2d1d4 + k1d1d2)λ

2
2 + (k2d2d3 + k1d1d2)λ

2
1

= (ϕ(1− λφπ)β
2
2)

2(λ2 − λ1)
2(ρ− λ2)(ρ− λ1)[−ϕφπ(ρ+ λ1 + λ2) + ϕβ2

2 ],

k2(d1d4 − d2d3)ρ
3 − (k2d1d4 + k1d1d2)λ

3
2 + (k2d2d3 + k1d1d2)λ

3
1

= (ϕ(1− λφπ)β
2
2)

2(λ2 − λ1)
2(ρ− λ2)(ρ− λ1)[−ϕφπ(ρ

2 + ρλ1 + ρλ2 + λ2
1 + λ1λ2 + λ2

2)

+ϕβ2
2(ρ+ λ1 + λ2)],

k2(d1d4 − d2d3)ρ
2(λ2

2 + λ1λ2 + λ2
1)− (k2d1d4 + k1d1d2)λ

2
2(ρ

2 + ρλ1 + λ2
1)

+(k2d2d3 + k1d1d2)λ
2
1(ρ

2 + ρλ2 + λ2
2)

= (ϕ(1− λφπ)β
2
2)

2(λ2 − λ1)
2(ρ− λ2)(ρ− λ1)[−ϕβ2

2(ρλ1 + ρλ2 + λ1λ2)],
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k2(d1d4 − d2d3)ρ
3(λ2

1 + λ1λ2 + λ2
2)− (k2d1d4 + k1d1d2)λ

3
2(ρ

2 + ρλ1 + λ2
1)

+(k2d2d3 + k1d1d2)λ
3
1(ρ

2 + ρλ2 + λ2
2)

= (ϕ(1− λφπ)β
2
2)

2(λ2 − λ1)
2(ρ− λ2)(ρ− λ1)[ρ

2λ2
1 + ρ2λ1λ2 + ρ2λ2

2 + ρλ2
1λ2

+ρλ1λ
2
2 + λ2

1λ
2
2](−ϕφπ),

ρλ1λ2[k2(d1d4 − d2d3)ρ(λ
2
1 + λ2

2)− (k2d1d4 + k1d1d2)λ2(ρ
2 + λ2

1)

+(k2d2d3 + k1d1d2)λ1(ρ
2 + λ2

2)]

= (ϕ(1− λφπ)β
2
2)

2(λ2 − λ1)
2(ρ− λ2)(ρ− λ1)[−ϕβ2

2ρλ1λ2(ρ+ λ1 + λ2) +

ϕφπρλ1λ2(λ1λ2 + ρλ1 + ρλ2)],

ρλ1λ2[k2(d1d4 − d2d3)ρ
2(λ2

1 + λ1λ2 + λ2
2)− (k2d1d4 + k1d1d2)λ

2
2(ρ

2 + ρλ1 + λ2
1)

+(k2d2d3 + k1d1d2)λ
2
1(ρ

2 + ρλ2 + λ2
2)]

= (ϕ(1− λφπ)β
2
2)

2(λ2 − λ1)
2(ρ− λ2)(ρ− λ1)[−ϕβ2

2ρλ1λ2(ρλ1 + ρλ2 + λ1λ2)],

(ρλ1λ2)
2[k2(d1d4 − d2d3)λ1λ2 − (k2d1d4 + k1d1d2)ρλ1 + (k2d2d3 + k1d1d2)ρλ2]

= (ϕ(1− λφπ)β
2
2)

2(λ2 − λ1)
2(ρ− λ2)(ρ− λ1)[ϕβ

2
2(ρλ1λ2)

2].

Hence

k2
1w

∗

1 + k1k2(w
∗

2 + w∗

3) + k2
2w

∗

4

=
(ϕ(1− λφπ)β

2
2)

4(λ2 − λ1)
4(ρ− λ2)

2(ρ− λ1)
2

(1− ρ2)(1− ρλ1)(1− λ2
1)(1− ρλ2)(1− λ2

2)(1− λ1λ2)

{
σ2
1

[
(ρ+ λ1 + λ2 − λβ2

2)[1− λβ2
2

(ρ+ λ1 + λ2)] + [λβ2
2(ρλ1 + ρλ2 + λ1λ2)− ρλ1λ2][(ρλ1 + ρλ2 + λ1λ2)− λβ2

2ρλ1λ2]
]
+ σ2

2 ·
[
(ϕφπ(ρ+ λ1 + λ2)− ϕβ2

2))[ϕφπ − ϕβ2
2(ρ+ λ1 + λ2)] + [ϕβ2

2(ρλ1 + ρλ2 + λ1λ2)

−ϕφπρλ1λ2][ϕφπ(ρλ1 + ρλ2 + λ1λ2)− ϕβ2
2ρλ1λ2]

]}
.

Following the similar procedures, we can obtain

k2
1s

∗

1 + 2k1k2s
∗

2 + k2
2s

∗

3

=
(ϕ(1− λφπ)β

2
2)

4(λ2 − λ1)
4(ρ− λ2)

2(ρ− λ1)
2

(1− ρ2)(1− ρλ1)(1− λ2
1)(1− ρλ2)(1− λ2

2)(1− λ1λ2){
σ2
1

[
[(1 + λ2β4

2)− 2λβ2
2(ρ+ λ1 + λ2) + (1 + λ2β4

2)(ρλ1 + ρλ2 + λ1λ2)]

−ρλ1λ2[(1 + λ2β4
2)(ρ+ λ1 + λ2)− 2λβ2

2(ρλ1 + ρλ2 + λ1λ2) + (1 + λ2β4
2)ρλ1λ2]

]

+σ2
2

[
[((ϕφπ)

2 + ϕ2β4
2)− 2ϕφπϕβ

2
2(ρ+ λ1 + λ2) + ((ϕφπ)

2 + ϕ2β4
2)(ρλ1 + ρλ2 + λ1λ2)]

−ρλ1λ2[((ϕφπ)
2 + ϕ2β4

2)(ρ+ λ1 + λ2)− 2ϕφπϕβ
2
2(ρλ1 + ρλ2 + λ1λ2)

+((ϕφπ)
2 + ϕ2β4

2)ρλ1λ2]
]}

.
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Therefor, from G1(β1, β2) =
k2
1
w∗

1
+k1k2(w∗

2
+w∗

3
)+k2

2
w∗

4

k2
1
s∗
1
+2k1k2s∗2+k2

2
s∗
3

, we can obtain the expression of

G1(β1, β2) as shown in (4.13). Similarly we can obtain the expression of G2(β1, β2) as

shown in (4.14).

F Stability for the contemporaneous Taylor rule

Based on Proposition 2, we only need to show that both of the eigenvalues of (III −

BBBβββ2)−1(BBB − III) have negative real parts if γ(φπ − 1) + (1− λ)φy > 0.

The characteristic polynomial of (III −BBBβββ2)−1(BBB−III) is given by h(ν) = ν2 − c1ν + c2,

where c1 is the trace and c2 is the determinant of matrix (III − BBBβββ2)−1(BBB − III). Direct

calculation shows that

c1 =
−(1 − λ)(1− β2

1)− 2ϕ(γφπ + φy) + ϕ(γ + λφy)(1 + β2
2)

△ (1 + γϕφπ + ϕφy)
, (F.1)

c2 =
ϕ[γ(φπ − 1) + (1− λ)φy]

△ (1 + γϕφπ + ϕφy)
, (F.2)

where △=
(1−β2

1
)(1−λβ2

2
)+γϕφπ+ϕφy−(γϕ+λϕφy)β2

2

1+γϕφπ+ϕφy
.

Both of the eigenvalues of (III −BBBβββ2)−1(BBB − III) have negative real parts if and only if

c1 < 0 and c2 > 0 (these conditions are obtained by applying the Routh-Hurwitz criterion

theorem; see Brock and Malliaris, 1989). If γ(φπ − 1) + (1− λ)φy > 0, from Appendix D

it is easy to see △> 0. Furthermore,

c1 ≤
−2ϕ[(γ(φπ − 1) + (1− λ)φy]

△ (1 + γϕφπ + ϕφy)
< 0, c2 > 0.

G Proof of Corollary 3

Under the forward looking expectations interest rate rule, the characteristic polynomial

of BBBβββ2 is given by h(ν) = ν2 + c1ν + c2, where

c1 = −[(1− ϕφy)β
2
1 + (γϕ(1− φπ) + λ)β2

2 ], c2 = λ(1− ϕφy)β
2
1β

2
2 .

Similarly, both of the eigenvalues of BBBβββ2 are inside the unit circle if and only if the

following conditions hold (see Elaydi, 1999): h(1) > 0, h(−1) > 0, |h(0)| < 1. Based

on our assumption φy <
1
ϕ
and 1 < φπ < 1+ λ

γϕ
, it is easy to see c1 ≤ 0 and 0 ≤ h(0) < 1,

and hence h(−1) > 0 for any βi ∈ [−1, 1]. Furthermore

h(1) = (1− β2
1)(1− λβ2

2) + γϕ(φπ − 1)β2
2 + ϕφyβ

2
1(1− λβ2

2) > 0. (G.1)
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In addition, for the stability of BLE, we need to show both eigenvalues of (III −

BBBβββ2)−1(BBB − III) have negative real parts if φy < 1
ϕ

and 1 < φπ < 1 + λ
γϕ
. The char-

acteristic polynomial of (III −BBBβββ2)−1(BBB − III) is given by h(ν) = ν2 − c1ν + c2, where

c1 =
1

h(1)
[−(1 − λ)(1− β2

1)− γϕ(φπ − 1)(1 + β2
2)− ϕφy(1 + β2

1) + λϕφy(β
2
1 + β2

2)],

≤
1

h(1)
[−γϕ(φπ − 1)(1 + β2

2)− ϕφy(1 + β2
1) + λϕφy(1 + β2

1)] < 0

c2 =
ϕ

h(1)
[γ(φπ − 1) + (1− λ)φy] > 0,

where here h(1) is given in (G.1). Therefore, based on the Routh-Hurwitz criterion theorem

(see Brock and Malliaris (1989)), both eigenvalues of (III −BBBβββ2)−1(BBB − III) have negative

real parts. Then following the same ideas of Propositions 1 and 2, we obtain Corollary 3

on the existence and stability of BLE under the forward looking interest rate rule.

H Proof of Corollary 4

Under the lagged interest rate rule, the characteristic polynomial of AAA+BBBβββ2 is given

by h(ν) = ν2 + c1ν + c2, where

c1 = −[−ϕφy + β2
1 − γϕφπ + (γϕ+ λ)β2

2 ], c2 = (−ϕφy + β2
1)λβ

2
2 .

Based on our assumption φy < 1
ϕ

and 1 < φπ < 1−ϕφy

γϕ
, it is easy to see h(−1) =

(1 − ϕφy − γϕφπ) + β2
1(1 + λβ2

2) + (γϕ + λ(1 − ϕφy))β
2
2 > 0 and |h(0)| < 1 for any

βi ∈ [−1, 1]. Furthermore

h(1) = (1− β2
1)(1− λβ2

2) + ϕφy(1− λβ2
2) + γϕ(φπ − β2

2) > 0. (H.1)

In addition, for the stability of BLE, direct computations suggest that we need both

eigenvalues of (III − AAA − BBBβββ2)−1(AAA + BBB − III) have negative real parts if φy < 1
ϕ

and

1 < φπ < 1−ϕφy

γϕ
. The characteristic polynomial of (III −AAA −BBBβββ2)−1(AAA +BBB − III) is given

by h(ν) = ν2 − c1ν + c2, where

c1 =
1

h(1)
[−(1− λ)(1− β2

1)− (2− λ(1 + β2
2))ϕφy − γϕ(2φπ − (1 + β2

2))] < 0,

c2 =
ϕ

h(1)
[γ(φπ − 1) + (1− λ)φy] > 0,

where here h(1) is given in (H.1).
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