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1 Introduction

Since Markowitz (1952) laid the foundation of modern portfolio theory, theoretical research

in portfolio theory has mainly centered around the first two predictive moments of portfolio

returns, which are determined by the expected returns on the constituting assets and their

conditional variance-covariance structure. See e.g. Merton (1992) for the economic theory

behind portfolio selection and Elton and Gruber (1997) and Elton et al. (2009) for a detailed

review of modern portfolio analysis.

However, as Granger (2003) pointed out, “. . . it is most natural to consider the whole condi-

tional distribution . . . particularly in many dimensions.” Ever-increasing computational power

and memory now actually enable the estimation of complicated multivariate models; mul-

tivariate GARCH models with various distributional assumptions on the error terms are now

commonly used to describe and forecast the temporal dependence of several assets and markets.

A comprehensive survey of multivariate GARCH models is provided by Bauwens et al. (2006).

Along with the prosperity of multivariate modeling of financial returns, portfolio managers

are now weaponed with various tools to estimate and forecast the distribution of asset returns,

which forms the basis for risk measurement and position adjustment. In portfolio decision and

risk assessment, density forecasts form the basis for risk measures such as Value-at-Risk (VaR)

and Expected Shortfall (ES); see Alexander (2009) for recent applications. Risk management

and portfolio selection involve the assessment of expected returns and risk of portfolios. In this

paper we focus on the latter: assessing the (short-term) risk associated with a given portfo-

lio. Dynamic portfolio selection strategies (trading strategies) and their associated (long-term)

returns and risk are also important in practice, but go beyond the more modest aim of this

paper, which is to discuss some caveats of comparing density forecasts for the returns of a given

portfolio.

Nowadays many alternative density forecasts for financial returns are available, and a natural

question both researchers and practitioners face for any given portfolio therefore is: Among a

number of competing density forecasts for a portfolio, which most accurately describes the

distribution of losses (the left tail of the return distribution)?

Traditionally multivariate normality has been taken for granted in portfolio theory research;

see, e.g., Kandel and Stambaugh (1996), Guidolin and Timmermann (2007) for asset allocation

under multivariate normal distributions. However, over the past two decades it has become

clear that financial multivariate time series are typically non-normally distributed, exhibiting

fat tails, skewness and nonlinear co-movements or asymmetric dependence structure; see, for

instance, Harvey and Siddique (1999), Brooks et al. (2005) and Patton (2004). Patton (2004)

and Boubaker and Sghaier (2013) studied portfolio optimization with dependence measured
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by competing copula densities; in fact in both studies the Gumbel copula turned out to be

preferred. Giot and Laurent (2003) showed that a model with skew t innovations outperforms

those with symmetric distributions in VaR estimation; Huang et al. (2015) suggested that

better portfolio performance is achieved with a time-varying copula, particularly the Clayton

copula. Diks et al. (2010) and Diks et al. (2014) found that for daily exchange rate returns,

the t copula is favored over its counterparts, while in the government bond market, a mixture

of t and Clayton copulas performs best for the daily changes of yields on government bonds of

the G7 countries.

Tests for the relative accuracy of two or more competing density forecasts can be based

on loss functions measuring the distance between predicted density and the (unknown) true

density. Possible loss functions include the integrated squared difference discussed by Sarno and

Valente (2004) and the mean squared error (MSE) considered by Corradi and Swanson (2005)

and Giacomini and White (2006). Amisano and Giacomini (2007) proposed a so-called weighted

logarithmic scoring rule, with a weight function allowing predictive accuracy comparison in a

particular region of the distribution, which is a desirable property for testing in tails. A score-

based approach is mathematically convenient as it leads to simple pseudo-likelihood ratio type

t-tests.

An important restriction we wish to impose on weighted scoring rules is properness (Matheson

and Winkler, 1976). Intuitively, a scoring rule is proper if it never assigns a higher expected

score to any density forecast than to the true conditional density. Gneiting and Raftery (2007)

suggested that apart from the logarithmic score, the continuous ranked probability score (crsp)

is proper. Gneiting and Ranjan (2011) pointed out that the weighted logarithmic scoring rule

by Amisano and Giacomini (2007) is improper and introduced a proper weighted csrp rule

to compare density forecasts. Diks et al. (2011) also noted the problem of weighted likelihood

tests, and came up with two proper related scoring rules: the conditional likelihood (cl) and the

censored likelihood (csl) scoring rule. Like the log-likelihood scoring rule, these are based on

the Kullback-Leibler Information Criterion (KLIC), a well-known and widely-used measure of

divergence between two probability distributions; see, e.g., Vuong (1989); Giacomini and White

(2006) and Diks et al. (2011). Motivated by desirable properties of weighted scoring rules,

Pelenis (2014) also proposed two alternative scoring rules: the penalized weighted likelihood

(pwl) scoring rule and the incremental weighted crsp rule. Since the extension of the csrp

scoring rules to the multivariate setting is not straightforward, we restrict ourselves to the

KLIC-based scoring rules, cl, csl and pwl, which can be readily applied to multivariate density

forecasts.

When the dimension (number of assets) increases, the tests for predictive accuracy of density

forecasts based on alternative multivariate models will become increasingly demanding compu-
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tationally. Hence it then becomes attractive to calculate scores based on a univariate density

forecasts for the portfolio return. This leads to the second question this paper wishes to invest-

igate: Given a portfolio, should density forecast selection be based on comparing scores for (i)

multivariate density forecasts of the joint asset returns distribution, (ii) univariate projections

of these multivariate density forecasts onto the portfolio return, or (iii) direct univariate density

forecasts for the portfolio return?

Common practice is to follow approach (i), that is, to construct a (usually model-based)

multivariate density forecast first, and then use the implied univariate portfolio density forecast

to assess portfolio risk. The problem of this routine is that the forecast that is better according

to the multivariate evaluation needs not correspond to a better portfolio return forecast. Even

worse, high-dimensional information could be misleading. Section 2.1 provides a simple example

to illustrate this.

When comparing approach (i), the evaluation of multivariate density forecasts, with (ii),

the evaluation of the corresponding univariate projections, we focus on density forecasts within

(skew) elliptical families of distributions. These families of elliptical distributions are introduced

here for mathematical convenience since they are closed under linear affine transformations.

Typical elliptical families of distributions are the Normal and t-distributions. Besides these

symmetric elliptical distributions, two more flexible families of distributions, the skew normal

and skew t-distributions defined by Azzalini and Dalla Valle (1996) and Azzalini and Capitanio

(2003), respectively, are considered as well.

The contribution of this paper is three-fold. First, we introduce skew elliptical distributions in

financial returns modeling and provide comprehensive comparisons between candidate densities,

both across dimensions and across families of distributions, using proper scoring rules. Second,

we shed some light on the pitfalls of multivariate modeling in portfolio risk assessment. Third,

the time-varying nature of which family of forecast densities performs best is demonstrated

empirically and further confirmed by the superior performance of dynamically selected densities

in VaR estimation.

The remainder of this paper is organized as follows. Section 2 describes the methodology,

including the testing environment, the score rules, test statistics and the distributional assump-

tions. Section 3 provides Monte Carlo simulation experiments to study the empirical size and

power of the tests. In Section 4 we apply the tests to returns on a portfolio and on its under-

lying stocks. Section 5 develops a simple technique to dynamically select the distribution for

VaR forecasts. The final section summarizes and concludes.
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2 Methodology

2.1 Density Comparison within Elliptical Families

We are concerned with the evaluation of the predictive accuracy of two competing multivariate

density forecasts versus evaluating their corresponding univariate projections. From a portfolio

perspective, the forecasted densities of a portfolio consisting of some assets could be evaluated

in multivariate space, or in the univariate space of the portfolio return. The implied distribution

of the portfolio return, if explicitly available, will be directly relevant to the assessment of the

portfolio risk. Indeed, there are some circumstances in which the higher dimensional inform-

ation is irrelevant, or even misleading. When we perform a statistical test on two competing

density forecasts f̂ and ĝ, it may happen that the multivariate scoring rule favors distribution f̂

over ĝ, while the univariate scoring rule suggests the opposite. The following example illustrates

this paradox.

Example 1. Suppose we intend to compare the accuracy of two competing density forecasts,

where the true density follows a standard bivariate Normal distribution Y = (Y1, Y2) ∼N (0, I).

Suppose the two forecasts are

f̂ : Y ∼N (µ1,Σ1), with µ1 =

 −1

1

 and Σ1 =

 1 0.2

0.2 1


ĝ : Y ∼N (µ2,Σ2), with µ2 =

 0.2

0.2

 and Σ2 =

 1 −0.2

−0.2 1

 .

Contour plots of the density of the DGP and two density forecasts are shown in Fig. 1(a). The

dotted circles correspond to N (0, I), the true distribution from the DGP, while the solid and

dashed lines give the contours of ‘forecasts’ 1 and 2, respectively. Clearly forecast 2 is closer to

the true distribution, and a reasonable test for the predictive ability of the bivariate densities

should be in favor of ĝ over f̂ . However, if we construct a portfolio defined as Z = b1Y1 + b2Y2,

the order of the predictive ability of the forecasts may change. Consider the simple case where

b1 = b2 = 1. Fig. 1(b) gives the univariate densities of the DGP (dotted line), forecast 1 (solid

line) and forecast 2 (dashed line). In contrast with the previous conclusion, the density of

forecast 1 clearly is more close to the DGP now.

[Figure 1 about here.]

Therefore, even though density forecast ĝ is more close to the true distribution in the bivariate

space, for the portfolio risk evaluation it makes more sense to make decisions based on the

distribution of f̂ . Even without a formal test, this plausible example illustrates the dilemma
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faced by academia as well as industry; when the true distribution is unknown and with a linear

combination of some marginal elements in hand, what is the basis for portfolio analysis, the

high-dimensional information or the univariate distribution after aggregation?

In general, the comparison of density forecast evaluation across different dimensions is com-

plicated by the fact that not many distributions are analytically tractable upon aggregation by

taking linear combinations. In this paper we therefore deliberately limit ourselves to distribu-

tions from the elliptical class (ED class) of distributions for both mathematical convenience and

numerical accuracy. Elliptical distributions, which are closed under affine transformations and

linear aggregation, provide a tool by which we can analytically trace closed-form expressions

for the densities. Specifically, the property of the ED family which facilitates our analysis is

the following.

Property 1. If the d-variate random variable Y ∼ ED(∆,Ω), given any ` × d matrix A of

rank ` ≤ d, the random vector Z = AY ∼ ED(A∆, AΩA′).

Typical families of distributions in the elliptical class include Normal, t and Cauchy. We

refer to Kelker (1970), Cambanis et al. (1981), Fang et al. (1990), Arellano-Valle and Bolfarine

(1995) for developments in the multivariate ED distribution theory.

Here we apply the Normal and t-distributions as these two better appear to fit financial data

than the Cauchy distribution. Property 1 is crucial to our study in the sense that a linear

combination of elliptically distributed assets remains in the ED family. Hence compared to

the corresponding multivariate density forecast, which is usually costly to estimate, the density

forecast of the portfolio return is easier to handle. Some handy properties and analytical ex-

pressions for multivariate t-distributions are summarized in Appendix A.1 for ease of reference.

Naturally, the next question is whether the class of ED models is rich enough to describe the

random variables involving risk management and asset allocation accurately. To answer that,

we wish to consider more families of elliptical distributions than just the symmetric Normal

and t-distributions. Section 2.4 introduces skew normal and skew t-distributions developed in a

number of papers by Azzalini and co-authors (1996, 2003, 2005, 2013). The merit of using these

two skew families of distributions is that they allow for additional asymmetry while remaining

closed under affine transformations.

2.2 Testing Approach

Consider a stochastic vector {(Y ′t ,Xt)}, t = 1, 2, ..., T , where Yt = (Y1,t, ..., Yd,t)
′ represents the

d−dimensional vector the density of which is of interest, and where Xt is a vector of exogenous

or observable predictor variables. In the context of time series data it is natural to consider
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the conditional distribution FYt+1(y|Ft), where Ft denotes the information available at time

t. For simplicity we restrict ourselves to one-step-ahead density forecasts; generalizations to

multi-step-ahead forecasts are straightforward but would provide little extra insight.

Following Giacomini and White (2006), we compare forecast methods rather than forecast

models. By forecast method, we mean the model on which the forecast is based, along with

estimation methods, applied observation weights and all other choices one makes at the time

of the prediction. The only restriction is that the density forecasts depend on a finite number

m of most recent observations. The advantage of this framework is that it allows for treating

parameter estimation uncertainty as an integral part of the density forecasts. A fixed rolling

window of length m is used for estimation. As shown by Giacomini and White (2006), this

limited memory scheme affords considerable analytical convenience for asymptotic theory of

the test of equal predictive accuracy of two competing density forecasts f̂t and ĝt.

A prevalent approach to comparing the relative performance of density forecasts is based on

scoring rules, which are loss functions whose arguments are the density forecast and the actual

outcome of the variable; see Diebold and Lopez (1996). In the current context, the scoring rule

for one-step-ahead forecasts is of the form S(f̂t;yt+1), depending on the density forecast f̂t of

Yt+1 given Ft and the actually observed value yt+1, such that a ‘better’ prediction receives a

higher score on average.

Given a scoring rule S∗(.), two competing density forecasts f̂t and ĝt and the corresponding

realizations of the d-dimensional variable yt+1 for t = m, ..., T − 1, we may compare f̂t and

ĝt based on their mean scores. The test we perform in this paper, following Giacomini and

White (2006), is an unconditional predictive ability test (although the density forecasts are

made conditional on m in-sample observations). Under the moving window scheme, n = T −m
out-of-sample observations are available, and a formal test for whether f̂t and ĝt are significantly

different is performed. Defining the score differences as

d∗t+1 = S∗(f̂t;yt+1)− S∗(ĝt;yt+1),

the null hypothesis of equal predictive ability is given by

H0 : E(d∗t+1) = 0, for t = m, ..., T − 1,

which is tested against the alternative hypothesis H1 : E(d∗t+1) 6= 0 (or > 0 or < 0 for a one-

sided test). Let d̄∗m,n denote the out-of-sample average score difference: d̄∗m,n = n−1
∑T−1

t=m d
∗
t , a
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Diebold and Mariano (1995) type statistic is given by

tm,n =
d̄∗m,n√
σ̂2
m,n/n

, (1)

where σ̂2
m,n is a heteroskedasticity and autocorrelation-consistent(HAC) variance estimator for

the long-run variance σ2
m,n = Var(

√
nd̄∗m,n) given by σ̂2

m,n ≡ γ̂2
0 + 2

∑K−1
k=1 akγ̂k, in which γ̂k

denotes the sample covariance of sequence {d∗t+1} at lag k and the Bartlett weight ak = 1−k/K
with the truncated length K = bn1/4c.
Under the assumptions of a fixed estimation window size m and mild mixing conditions

on the sequence of score differences {d∗t+1}, the test statistic tm,n is asymptotically standard

normally distributed by Theorem 4 in Giacomini and White (2006). A test of (asymptotic)

significance level α therefore rejects the null hypothesis of equal performance when |tm,n| > zα/2

for two-sided test, where α/2 is the 1 − α/2 quantile of standard normal distribution N(0, 1).

Note that the sign of the test statistic tm,n indicates which of the two density forecasts f̂t and

ĝt performs better, as scores will be defined such that a higher average score is preferred.

2.3 Weighted Logarithmic Scoring Rules

In this paper we focus on three different logarithmic scoring rules as they can be applied

regardless of the dimension of Y . A typical logarithmic scoring rule is of the form S(f̂t;yt+1) =

log f̂t(yt+1), and testing for equality of the average scores of f̂t and ĝt leads to the pseudo-

likelihood ratio test originally developed by Vuong (1989). It has been shown in many studies

that the pseudo-likelihood ratio test is closely related to the Kullback-Leibler Information

Criterion (KLIC), an information theoretical goodness-of-fit measure of divergence between

two probability distributions; see Vuong (1989), Mitchell and Hall (2005) and Bao et al. (2004).

KLIC-based scores therefore quantify the divergence between a candidate density forecast f̂t and

the true density pt. For our purpose of comparing candidate density f̂t and ĝt on a particular

region such as the left tail, a weighted scoring rule is used, with a weight function w(yt+1)

emphasizing the region of interest.

It is a natural requirement that the true density pt is rewarded with the highest average score,

otherwise the associated test might suggest that some wrong density forecast is significantly

better than the true predictive density. To avoid such situations, we focus on proper scoring

rules, which imply that no density forecast f̂t receives a higher score, on average, than the true

(unknown) density pt, that is,

Et(S(f̂t;yt+1)) ≤ Et(S(pt;yt+1)), for all t.
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As mentioned above, Matheson and Winkler (1976) and Gneiting and Raftery (2007) sugges-

ted many suitable proper scoring rules, but these can not be readily extended to a multivariate

context. We therefore restrict ourselves to KLIC-based scoring rules, which are practically con-

venient and closely related to pseudo-likelihood tests. Particularly, we consider the following

three scoring rules, the first two of which were suggested by Diks et al. (2011), and the last by

Pelenis (2014).

1. The conditional likelihood scoring rule (cl)

Scl(f̂t;yt+1) = wt(yt+1) log

(
f̂t(yt+1)∫
wt(s)f̂t(s)ds

)
; (2)

2. The censored likelihood scoring rule (csl)

Scsl(f̂t;yt+1) = wt(yt+1) log(f̂t(yt+1)) + (1− wt(yt+1)) log

(
1−

∫
wt(s)f̂t(s)ds

)
; (3)

3. The penalized weighted likelihood scoring rule (pwl)

Spwl(f̂t;yt+1) = wt(yt+1)log(f̂t(yt+1))−
∫
wt(s)f̂t(s)ds+ w(yt+1) + wt(yt). (4)

At this point, we make the following assumptions.

Assumption 1. The density forecasts f̂t and ĝt satisfy KLIC(f̂t) < ∞ and KLIC(ĝt) < ∞,

where KLIC(ht) =
∫
pt(y) log(pt(y)/ht(y))dy is the Kullback-Leibler divergence between the

density forecast ht and the true conditional density pt.

Assumption 2. The weight function wt(y) is such that (a) it is determined by the information

available at time t, and hence a function of Ft, (b) 0 ≤ wt(y) ≤ 1, and (c)
∫
wt(y)pt(y)dy > 0.

Under Assumptions 1 and 2, the cl scoring rule (2) and the csl scoring rule (3) are proper, as

established by Lemma 1 in Diks et al. (2011). In a similar manner, Appendix A.2 shows that

the pwl scoring rule (4) is proper in terms of Kullback-Leibler divergences between weighted

density forecast and the true density.

To illustrate the usage of the above-mentioned weighted scoring rules, we revisit Example 1

focusing on the left tail of the distributions by adopting the threshold weight function w(z) =

I(z ≤ r), where I(·) denotes the indicator function taking the value 1 if its argument is true,

and 0 otherwise, and where z = b1y1+b2y2. In order to make the rejection rate more comparable

for different threshold values r, we let the sample size n be determined by the threshold value

9



as n = c/P (Z ≤ r), for some c > 0, so that the expected number of observations in the region

of interest, is fixed at c.

Example 2. We generate 10, 000 independent observations from the bivariate vector Y ∼
N (0, I) for c = 40 and compare the performance of the two forecast candidates f̂ and ĝ defined

in Example 1. Again we take b1 = b2 = 1 as the portfolio weights. Fig. 2 shows the observed

one-sided rejection rates of the csl scoring rule for r ∈ [−2.5, 2.5], evaluated in both bivariate

space and univariate space, denoted by the solid and dashed lines, respectively. The rejection

rates for the cl and pwl scoring rule behave similarly, and are available from the authors upon

request.

[Figure 2 about here.]

Several interesting conclusions can be drawn from Fig. 2. First, the test based on the bivariate

csl scoring rule significantly rejects the null hypothesis of equal predictive accuracy and favors ĝ,

while the test based on the univariate csl scoring rule suggests the other way around. Especially

for the left tail, when r ≤ −2, the power of this one-sided test against the alternative that f̂

is better, is higher than 0.5. This result is quite robust, even for c = 20 observations in the

region of interest (on average), the rejection rate for the univariate scoring rule against superior

predictive ability of f̂ tends to 0.4 in the left tail.

Second, when comparing Figs 1 and 2, the apparently conflicting conclusions from the

Diebold-Mariano type tests are not surprising after all. When constructing the linear com-

bination Z = b1Y1 + b2Y2, essentially we project the bivariate vector Y from the plane R2

onto the real line R. During this projection, the relative distance between the density forecasts

and the true distribution changes. Fig. 1 suggests that the univariate projection of f̂ is more

accurate than ĝ, even though f̂ is in fact the worse multivariate forecast.

Third, in this simple example it is not hard to see that it would be a mistake for a risk

manager to believe that ĝ is more appropriate based on the bivariate scores. Since the projected

distribution of ĝ is thinner-tailed than that of the DGP in the left tail (see Fig. 1(b)), the

estimated VaR and ES will be insufficient to reflect the real risk level and large losses might be

incurred.

Examples 1 and 2 illustrate the fact that a better forecast in Rd space may not lead to

a better risk assessment from a portfolio perspective. Note that if one forecast, say f̂ , is

perfect in the sense that f̂ ≡ p, where p is the true conditional density implied by the DGP,

we will not be in such a dilemma because the perfect forecast f̂ will dominate ĝ in both the

univariate space and the bivariate space. However, the issue of evaluating competing densities

with multivariate scoring rule concerns us because in reality p is never reached; f̂ and ĝ are
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always based on a misspecified model and therefore always incorrect to some extent. Even

when one of the models would be correctly specified, parameter estimation uncertainty would

prevent its associated density forecast from being perfect.

Hence, we observe that decisions based on the multivariate scoring rule need not coincide

with that based on the corresponding univariate scoring rule. Arguably, from a portfolio risk

assessment perspective, good univariate density forecasts are needed for portfolio returns, and

these may not necessarily be the projected multivariate optimal forecasts.

2.4 Skew Elliptical Distributions

As Bauwens and Laurent (2005) noted, one well-established stylized fact of financial returns

is that they often exhibit fat tails and skewness, and a more suitable distribution than the

multivariate normal is of primary importance in modeling and inference. A general class of

multidimensional distributions which allow for heavy tails and skewness will be useful to mod-

eling multivariate random variables. Applications from Bauwens and Laurent (2005) and Giot

and Laurent (2003) show that the skew t-distribution, when fully taking into account skewness

and fat tails, provides a better fit for the value-at risk of portfolios.

However, the density defined by Bauwens and Laurent (2005), which was derived using a non-

linear transformation of a symmetric density function, is inspiring, yet complicated. Moreover,

their method is difficult to apply in the present context, where the aim is to compare the

predictive distributions in different spaces. As we are unable to show that their family of

distributions is closed under affine transformations, the distribution of a linear combination of

marginal variables remains unknown. Jones and Faddy (2003) also considered a skew generaliz-

ation of the t-distribution which is tractable for all moments, but which is difficult to generalize

to the multivariate case.

Alternatively, skewness can be modeled by perturbing a symmetric distribution to gener-

ate asymmetric densities. This method was introduced by Azzalini and Dalla Valle (1996) to

construct a multivariate skew-normal distribution. Later, Azzalini and Capitanio (2003) gen-

eralized the approach to distributions of elliptical families. A coincident result of multivariate

skew-elliptical distributions is given by Branco and Dey (2001), although a different method

is used. According to Azzalini and Capitanio (2003), there are at least two avenues to con-

struct a skew-distributed random variable, first, the conditioning method, as used by Branco

and Dey (2001), and second, the transformation method (e.g. Azzalini and Dalla Valle, 1996).

We will not cover the mathematical details in this paper, but instead refer to Azzalini (2005)

and Azzalini (2013) for the intensive development of distribution theory in this direction.

Before introducing the density and some properties of skew t-distributions, we first intro-

duce the simpler skew normal distributions. Following Azzalini and Capitanio (2003), given

11



a d × d variance-covariance matrix Σ, define the square root of the main diagonal elements

matrix ω = (diag(Σ))1/2 such that Σ̄ = ω−1Σω−1 is the associated correlation matrix. A

d-dimensional random vector Y has a skew normal distribution, denoted by Y ∼ SNd(µ,Σ,α)

if it is continuous with density function of the type

f(y) = 2φ(y,µ,Σ)Φ
(
αTω−1(y − µ)

)
, (5)

referring to µ, Σ and α as the location, scale and skewness parameters, respectively. Here

φ(y,µ,Σ) is the density function of a d-dimensional normal variate with mean µ and variance-

covariance matrix Σ, and Φ
(
αTω−1(y − µ)

)
represents the standard univariate normal distri-

bution function. The construction approach of our skew normal distribution is closely linked

to the elliptical family of distributions, as a consequence, the distribution in (5) shares various

properties of the elliptical family. Among these, particularly two are of major interest to us,

namely, the properties related to moments and affine transformations given in Property 2.

Property 2. (a) Moments: If Y ∼ SNd(µ,Σ,α), E(Y ) = µ + ωµS and Cov(Y ) =

Σ − ωµSµ
T
Sω, where µS = bδ is the expectation of standard skew normal variate (i.e. S ∼

SNd(0, Σ̄,α)) with a correlation matrix Σ̄ such that Σ = ωΣ̄ω, with b and δ defined as

b =
√

2/π

δ = (1 +αT Σ̄α)−1/2Σ̄α.

(b) Affine transformation: If Y ∼ SNd(µ,Σ,α), given Z = c + AY , with ` × d matrix A of

rank ` ≤ d and c ∈ Rr, we have Z ∼ SN`(µZ ,ΣZ ,αZ) where

µZ = c+ Aµ,

ΣZ = AΣA′,

αZ = (1− δTωATΣ−1
Z Aωδ)−1/2ωZΣ−1

Z Aωδ.

(6)

We adopt the skew normal and t-distribution defined by Azzalini and Capitanio (2003) based on

two considerations, (i) the closed-form expression of the multidimensional density is available

and straightforward for likelihood inference; (ii) the skew t-distribution is a special case of skew

elliptical densities which possesses the properties of the distributions from the elliptical family,

particularly the closure under affine transformations that allow us to project the multidimen-

sional distribution to the real line. Next we provide the density of the skew t-distribution. We

say that Y follows a skew t-distribution, denoted by Y ∼ Std(µ,Σ,α, ν), if Y is a d-variate

skew t-distribution with location and scale parameter µ and Σ respectively, defined as above;

ν is the number of degrees of freedom and α ∈ Rd is the shape or skewness parameter. When
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α = 0, the td(µ,Σ, ν) density is obtained again. The density function of Y ∼ Std(µ,Σ,α, ν)

is

f(y) = 2td(µ,Σ, ν)T1

(
αTω−1(y − µ)(

ν + d

Qy + ν
)1/2; ν + d

)
, (7)

where td(µ,Σ, ν) is the density function of a d−dimensional t-variate with ν degrees of freedom,

T1(y; ν + d) represents the standard univariate t-distribution function with ν + d degrees of

freedom, and ω, the diagonal matrix formed by standard deviations within Σ, Qy are defined

as
ω = diag(Σ)1/2,

Qy = (y − µ)TΣ−1(y − µ).

Fig. 3 gives a graphical illustration of the skew t-distribution for univariate density in the upper

two panels and contour plots in the lower panels. The above two panels show how α and ν

may change the density function of the skew t-distribution. When α = 0, we are back in the

symmetric situation, i.e. the density for the standard t-distribution; and St1(y; ν) will converge

to a skew normal distribution as ν goes to infinity. Panel (c) shows that when the degrees of

freedom parameter ν increases, the contours of the skew t-distribution converge to those of the

skew normal distribution with the same skewness and correlation. In panel (d), we see how the

correlation ρ and the skewness vector α alter the appearance of the skew t contours.

[Figure 3 about here.]

Analogous to Property 2 for the skew normal distribution, we have corresponding properties

for the skew t-distribution, summarized in Property 3.

Property 3. (a) Moments: If Y ∼ Std(µ,Σ,α, ν), E(Y) = µ+ωµS for ν > 1 and Cov(Y) =

ν
ν−2

Σ− ωµSµ
T
Sω for ν > 2, where µS = bνδ is the expectation of standard skew t-variate (i.e.

S ∼ Std(0,ΣS,α, ν) with the correlation matrix ΣS, hence Σ = ωΣSω), with δ defined as in

(6) and

bν =
(ν
π

)1/2 Γ{1
2
(ν − 1)}

Γ(1
2
ν)

, for ν > 1. (8)

(b) Affine transformation: If Y ∼ Std(µ,Σ,α, ν), given Z = c + AY, with ` × d matrix D

of rank ` ≤ d and c ∈ Rr, we have Z ∼ St`(µZ,ΣZ,αZ, ν), where µ,Σ,α are the same as in

Eq. (6).

Note that when d = 1 in Eqs (5) and (7), we obtain the special cases of the univariate

skew normal distribution SN(µ,Σ, α) and skew t-distribution St(µ,Σ, α, ν), respectively, with

δ = α/
√

1 + α2 and ω =
√

Σ.
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3 Monte Carlo Simulations

In this section we will examine some finite-sample properties of our test of equal predictive

ability. In the first two simulation experiments we illustrate the fact that the skew t assumption

is more flexible in the sense that it incorporates skewness and fat tails simultaneously, even

when the two competing density forecasts are both misspecified. Since we are more interested

in comparing density forecasts in tails, we adopt a simple weight function w(Y ) = I(Y ≤ r).

To make the rejection rates obtained for different values of r more comparable, we determine

the sample size n = c/P (Y ≤ r) based on the threshold value in such a way that the expected

number of observations in the region of interest is fixed at c across all selected values of r.

Besides, we standardize all forecast distributions to the same mean (zero) and variance (one)

for a fair comparison. Appendix A.3 presents the standardized skew Normal and t-distributions.

To be realistic, we limit ourselves to small values of c. Fig. 4 shows the observed rejection

frequency at the 5% significance level for c = 20, based on 10,000 replications. The data are

drawn from the standardized skew t(5)-distribution for the upper panels and the standardized

skew normal in the lower panels. In Fig. 4, the null hypothesis is equal predictive accuracy of

skew t(5) with 5 degrees of freedom and skewness parameter α = −2 and skew normal with the

same α. Thus the left (right) column reports rejection rates against better prediction of skew

t density (skew normal) as a function of the threshold value r.

[Figure 4 about here.]

In a similar manner, Fig. 5 presents rejection rates of equal predictive accuracy against better

performance of the skew t(5) distribution with α = −2 (left column) and the t(5) distribution

(right column) based on 10,000 replications, when for the upper (lower) two panels data are

generated from the skew t(5) (standardized t(5)) distribution, respectively.

[Figure 5 about here.]

Two conclusions can be drawn from Figs. 4 and 5. First, in both experiments the three

scoring rules all give satisfactory powers, and the power of pwl is close to that of csl all the

time. They both outperform the cl rule when the threshold r takes very negative values, which

is not strange as the cl rule does not take into account the probability of the region of interest,

as noted by Diks et al. (2011). As r →∞, the three scoring rules behave even more similarly.

Second, it is quite straightforward that if the number of degrees of freedom ν increases, the

power curve in Fig. 4 will decrease as St(ν) converges to SN in the limit; similarly, when α→ 0,

St(5) will become indistinguishable from t(5). This is observed in simulations (not included in

this paper due to space considerations).
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Next, we illustrate the idea of density comparison under a linear projection of a density

from higher-dimensional space into one-dimensional space, in the framework of the skew el-

liptical distributions. Fig. 6 shows the rejection rates of test on equal predictive accuracy of

St4(µ,Σ,α, ν) and skew normal SN4(µ,Σ,α) and their corresponding univariate projections

with the equal-weight mapping vector (1/4, 1/4, 1/4, 1/4) over the whole support, where ν = 5,

α = (−2, 1,−1,−1). We assume a strong correlation ρij = 0.7 with i = 1, ..., 4 and j 6= i.

We standardize the distribution in such a way that the data are centered around the origin

and each marginal distribution has unit variance. After the affine transformation (projection),

the data are standardized again to have mean zero and variance one. The sample size n takes

values 100, 200, 300, 500, 800, 1, 000, 2, 000, 3, 000, 5, 000 and 8, 000.

[Figure 6 about here.]

The first and last panels in Fig. 6 clearly show that the null hypothesis of equal predictive

ability is rejected. In both panels, it can be observed that the test based on the univariate

density is less powerful than the test based on the four-dimensional density forecasts as the

dashed power curve lies below the real line, especially for small sample sizes. However the

power of the test based on the univariate density increases rapidly with the sample size. As

seen in the two off-diagonal panels, neither test has spurious power.

Fig. 6 suggests that the test based on the univariate scoring rule after projection to the port-

folio linear combination is as reliable as the test based on the multivariate distribution, although

the former suffers from lack of power for small samples, which is caused by information loss

during the affine transformation. The relative lack of power, however, is not necessarily a bad

thing. It only means that the two competing densities after projection are not distinguishable.

The high rejection rates seen from the multivariate scoring rule might be just ‘spurious’ power

in the sense that the strongly favored density forecast in the high-dimensional space may not be

a better forecast for the portfolio density. Recall that for Example 2 we obtained contradicting

test results based on the univariate scoring rule and the bivariate scoring rule.

A final comment concerns the number of degrees of freedom parameter ν. Although not

presented in detail in this paper, simulations show that when ν = 20 the power of the test

deteriorates; since the two competing densities become very similar, the power based on the

univariate densities drops, and spurious power can be observed in the off-diagonal panels.

4 Empirical Application

In this section, we present the comparison of out-of-sample density forecasts for a daily portfo-

lio consisting of three asset returns using the parametric univariate and multivariate model of
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the GARCH family. The comparison is twofold: a comparison between using forecasted mul-

tivariate densities versus their univariate projections, and a comparison between the univariate

projections and directly forecasted portfolio densities.

We consider daily data for three US stocks (Source: Yahoo Finance): the Alcoa Stock (AA),

the McDonald’s stock (MCD) and the Merck stock (MRK) over the period from April 2, 1984

until May 14, 2015. For these stock prices, daily log-returns defined as yt = log(Pt/Pt−1) are

examined, with the adjusted closing price Pt at day t.1 This yields a total of 7, 845 valid

observations. A weighted portfolio with fixed weights allocated for 70% to AA, 20% to MCD

and 10% to MRK is studied.2

Our work is similar to that of Giot and Laurent (2003) in the following respects: first, both

papers look at the same portfolio of daily asset returns with fixed weights. Secondly, they

also provide a comparison of the performance of the assumed distributions that the innovation

terms follow; there normal, standardized t and skew t are considered, although the expression

of the skew t-distribution differs from ours. Thirdly, a ‘stability window’ of 50 days is applied

there for parameter updating, which looks similar to our moving window scheme at first glance.

However, a moving window is used in the present paper to satisfy a condition for the asymptotic

distribution of the test statistic to be normal. Besides, their estimation sample is augmented

as time moves forward, in contrast to the fixed estimation window of observations used here.

More importantly, our paper shifts focus from finding a better VaR measure to testing the

more suitable distribution of the given portfolio return. Put differently, this paper confronts

a comparison based on multivariate densities with that based on the corresponding univariate

projections.

Instead of back-testing the in-sample density, the out-of-sample forecasts are of more practical

interest. As Bao et al. (2007) found, the specification of the standardized innovations has

a larger impact on density forecast accuracy than the volatility specification. Therefore, to

illustrate the idea of comparing density forecasts under projections, we define four forecast

methods which differ only in the prior assumption of the family of distributions from which

the standardized innovations are drawn, namely Standard normal, t, skew normal and skew

t. Parametric GARCH(1, 1) models, jointly with DCC(1, 1) updating of the correlations in

the multivariate case, are used to estimate based on past returns and make one-step-ahead
1Strictly speaking the portfolio return is a linear combination of individual stock returns only for simple

returns (Pt − Pt−1)/Pt−1. However, for daily returns the differences between the two types of returns are
small, and since the return distributions proposed in the literature commonly are defined for (joint) log-returns
between −∞ to ∞, it is more natural to work with log-returns in the applications.

2We also performed the same procedure on two other portfolios, namely with the equal allocation weights
(1/3, 1/3, 1/3) and the reverse weights on AA and MRK, (0.1, 0.2, 0.7), than the that discussed in the main text.
It turns out that the choice of portfolio weight may lead to slightly different evaluation results, which confirms
our initial conjecture that the projection vector plays a role when we generate the univariate portfolio density
from the combination of multivariate marginals.
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forecasts. The log-returns series are treated as having conditional mean zero, and conditional

variance-covariance matrix, following Engle (2002), given by

Yt|Ft−1 ∼ Dist.(0,Ht).

The covariance matrix Ht can be decomposed as

Ht = DtRtDt,

whereDt is the d×d diagonal matrix of time-dependent standard deviations from the univariate

GARCH(1,1) models with
√
hi,t the i−th diagonal element andRt is the estimated time-varying

correlation matrix. The evolution of individual conditional variances hi,t, i = 1, . . . , d, and the

correlations is determined by

hi,t = ωi + αiε
2
i,t−1 + βihi,t−1, (9)

Qt = (1− a− b)Q̄+ aεt−1ε
′
t−1 + bQt−1, (10)

Rt = Q∗−1
t QtQ

∗−1
t , (11)

where εt = (ε1,t, ..., εd,t)
′ is the vector of the standardized residuals εi,t = yi,t/

√
hi,t and where

Q̄ = E(εtε
′
t) represent the conditional correlation matrix. Last, Q∗ is a diagonal matrix with

the square root of the i− th diagonal element of Q on its i− th diagonal position. Once each

individual GARCH(1, 1) model (9) has been estimated, εt is stored to estimate the dynamics

of the correlation (10)-(11).

We use a moving-window scheme to predict the one-day-ahead density. The estimation win-

dow is set to m = 1, 000, and the remaining observations are used for out-of-sample evaluation.

The Diebold-Mariano test defined in (1) is applied, with scoring rules (2)-(4). As mentioned

earlier, the left tail of the distribution of the portfolio return is of interest. Given the portfo-

lio return series {rt} with the fixed individual weights, we use the truncated weight function

wt(rt) = I(rt ≤ r̂qt ). The time-varying threshold r̂qt is calculated as the empirical qth quantile

of all return observations in the most recent estimation window, where q = 0.01, 0.05, 0.1, 0.15

are considered.

Table 1 gives the average score differences and the test result for the censored likelihood

scoring rule (3). Similar results from the conditional likelihood rule (2) and penalized weighted

likelihood rule (4) are shown in Table 2 and Table 3. The four sub-panels in Table 1 present

results based on different choices for the threshold quantile q. The numbers in parentheses

under the score differences are the values of the corresponding Diebold-Mariano test statistics,

where those with an asterisk are significant at the 5% significance level. The test statistics
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are calculated based on the average score differences d̄ with the HAC estimator adjusted for

serial dependence. As mentioned before, we want to compare the evaluation of the density

forecasts in both high-dimensional space and in the projected univariate space. The label

cslmulti denotes test results based on trivariate density evaluation, and cslproj uses the projected

parameter values for density evaluation in one-dimensional space, where the asset allocation

weight (0.7, 0.2, 0.1) plays the role of the projection vector. The test results for csl1d in the last

row is obtained using portfolio return series {rt} for estimation and prediction directly.

[Table 1 about here.]

[Table 2 about here.]

[Table 3 about here.]

Table 1 indicates that, firstly, the scores of the t and skew t forecasts overwhelm those of

the standard Normal and skew Normal in most comparisons, which is not surprising, as stock

returns are often characterized by fat tails. Secondly, the order of priority among the other

two pairs is hard to assess. The signs of the score differences suggest that the standard Normal

and t forecasts outperform the skew Normal and skew t forecasts. However, significant test

statistics are rarely seen.

Thirdly, test results from cslproj do not always lead to the same conclusion as cslmulti. For

example, for q = 0.05, cslmulti suggests that the t forecast is significantly better than the skew t

forecast, while only insignificant score difference are witnessed by cslproj. The divergence is even

larger for the comparison between standard Normal and skew Normal for q = 0.05, where cslmulti
favors the skew Normal since it delivers negative score difference; on the contrary, cslproj prefers

the standard Normal. The contradictive results from different dimensional spaces illustrates the

idea of Example 1 and 2 again; the better forecasts for the multivariate distribution may not

yield better forecasts for the univariate projection. Therefore, from the portfolio risk assessment

point of view, it seems better to consider with the univariate portfolio returns rather than the

underlying multivariate returns.

Fourthly, when comparing the test results of cslproj and csluni, only two differences are

observed. From the pair comparison t-SN at q = 1% and t-St at q = 15%, both scoring rules

favor the t forecasts. However cslproj delivers a sharp conclusion at the 5% level, while csluni
shows less significant results. Apart from that, the results from cslproj and csluni are highly

in agreement. This is numerical support for univariate rather than multivariate modelling,

avoiding excessive computations for multivariate density forecast evaluation, without losing

crucial information.

Further investigation of the projected densities and univariate densities is carried out by direct

pairwise comparison of the corresponding univariate density forecast accuracies. Table 4 reports

18



the average score difference and the associated test statistics for the univariate model-based

densities against their rivaling projected densities, based on scoring rules (2)-(4). From there, we

see very robust result, especially for the csl and pwl rules. The t and skew t forecasts strongly

outperform those of the normal and skew normal, regardless of whether these forecasts are

generated using univariate modeling or projected multivariate modeling. Besides, all diagonal

statistics in each sub-panel are insignificant, which indicates again that the test results based

on the projected densities are in line with the results from testing univariate densities.

[Table 4 about here.]

4.1 Dynamic selection of forecast distribution families

So far, the results provided in Tables 1-4 made use of the full sample, yielding the conclusion

that the skew t and t forecasts are best over the entire sample. However, assuming a fixed

family of distributions for stock returns across the entire historical sample is not very realistic,

especially for a sample over the last thirty years, which witnessed a number of severe crises.

A more practically relevant question is, what is the underlying distribution of the portfolio

returns within shorter sub-periods? The remaining part of this section will seek to provide

insights into the time-varying nature of the conditional densities by using the test statistic

dynamically within sub-samples.

We apply an iterative procedure on the univariate daily return series, namely, the portfolio

consisting of 70% investment in an aluminum producer AA, 20% in service industry for MCD

and the last 10% in medicine manufacturer MRK. Each sub-sample consists of an estimation

window of length m = 1, 000, the same as before, and an out-of-sample evaluation window.

The length of the evaluation window is also fixed at 1, 000, which corresponds to about four

years. At each iteration, the univariate GARCH(1,1) model is estimated using the portfolio

return data available in the sample, and a one-step-ahead forecast is calculated and stored for

later evaluation. As the estimation window rolls forward until all data except the last in the

evaluation sample are consumed, we calculate the test statistic. For example, in Figs 7-9 the

first estimation window and the first evaluation window are denoted by a light blue rectangle

(labeled I) and a cyan rectangle (labeled II), respectively. The iteration procedure takes steps

of 25 days, which means that after every sub-sample of length 2, 000 the model parameters are

estimated and the forecasts evaluated; this procedure repeats itself every 25 trading days. In

total 234 sequential test statistics are calculated across time, and plotted.

[Figure 7 about here.]

Fig. 7 reports the dynamics of the test statistics for six pair-wise comparisons, based on

scoring rules (2)-(4) at empirical quantile level q = 0.05 and Fig. 8 compares the dynamics
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of the test statistics of censored likelihood rule for the same competing densities of different

quantile levels. The area between the two black dashed lines represents a (point-wise) 5%

forecast interval. Whenever the upper boundary is reached by the test statistic the former

distribution from that pair comparison is preferred significantly, and vice versa. Even without

significant results, since we have many sequential test statistics, the signs of these test statistics

may be indicative of the relative predictive ability under the different distribution assumptions.

For example, in the first sub-panel of Fig. 7, the standard Normal distribution is tested against

the t-distribution; the statistics almost lie below zero all the time except for a short period in

the 1990s, suggesting that the Normal distribution is more suitable.

The dynamical graphs enable us to see which of the two competing innovation distributions

is more appropriate during different periods. Figs 7 and 8 show rather consistent results across

different scoring rules and different quantiles qs. Some are in accord with our findings in Table 1.

For example, t innovations all along outperform standard Normal and skew Normal innovations,

and the superiority of the standard Normal or skew Normal densities varies mostly within the

significance bands. Interesting dynamics can be observed for the other three pairs, where more

violent patterns occur as a sign of regime switching from time to time. Another eye-catching

phenomenon is the relatively stable regime of the statistics in the late 90s.

[Figure 8 about here.]

In the remaining part of this section we try to provide some insights into these phenomena.

We take the S&P500 Index as a barometer of the stock market. The blue line in Fig. 9

corresponds to the S&P price index labeled on the left y axis while the right y axis denotes

test statistic values. The red dash-dotted line is the csl statistic for equal predictive ability of

t and skew t innovations, while the green dashed line corresponds to the test of skew Normal

against skew t, both replicated from Fig. 7. The first period of interest runs from November

1997 to October 2001, the test statistics stay quite steady for all pair-comparisons, denoted by

the green rectangle (labeled III) in Fig. 9.

[Figure 9 about here.]

To understand this, recall that we use an estimation window of length 1, 000 to generate

one-step-ahead forecasts and another 1, 000 day data window to evaluate the two competing

densities. Within this framework, the first statistic in the green region is based on a set of

out-of-sample density forecasts roughly between December 1993 and October 1997. In other

words, almost 8 years of out-of-sample forecasts are used to generate the dynamics inside the

green area. Therefore, during the US stock market boom period of 1994–2001 before 9/11, all

six pair comparisons of our test show stable, near constant, results, among which t innovations

are suggested to perform better than their counterparts for the given portfolio.
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Next, the pink rectangle (labeled IV) in Fig. 9 witnesses a striking decline of the csl statistics

of the t against the skew t from 2.83 in October, 2002 to −4.78 in August, 2009, which starts

right after the dot-com bubble burst and ends by the bear market rally during the recent

financial crisis. The stock market experienced a wild fluctuation in the first decade of this

century, reflected by frequent ups and downs of S&P500 Index. In this period, t innovations

give way to the skew t assumption gradually, suggesting that the symmetric t-distribution is

unable to model drastic negative shocks in a volatile market.

In this period we also observe an increase in the test statistics of the skew Normal against skew

t before it drops to the negative significance boundary. A potential reason for the superiority of

skew Normal innovations at the beginning could be the fact that the rolling estimation window

does not incorporate enough negative return observations up to April 2000, when the market

bubble did not burst yet. As the iterative procedure moves forward, more and more extreme

shocks are included for estimation, giving rise to better model estimation and prediction using

skew t innovations.

5 Value-at-Risk(VaR) Forecasts and Evaluation

This section illustrates how time-varying score averages can be used in an application of dynamic

one-step-ahead VaR forecasting in the context of both the univariate portfolio modeling and the

multivariate modeling, based on different distributional choices. With the findings from the last

subsection that the relative performances of four density assumptions are time-varying, apart

from generating the VaR forecasts from the four density candidates, we may use the scoring

rules (2)-(4) to daily select the recently ‘best’ performing distribution to base the out-of-sample

VaR forecast on.

Intuitively, for a fixed estimation window up to and including time t, we estimate a parametric

GARCH model. With the observed returns we can compute the scores based on (2)-(4) and

select the density with the highest score for one-day-ahead VaR calculation.

Under the rolling window scheme, the parametric GARCH(1,1) and GARCH(1,1)-DCC(1,1)

model are estimated and updated for every trading day for the univariate modeling and mul-

tivariate modeling, respectively. In the next step, the one-step-ahead VaR forecasts are gen-

erated under different distributional assumptions. Apart from the four fixed densities, the

dynamically selected density by both the univariate and trivariate scoring rules for three differ-

ent modeling methods, i.e. univariate modeling, multivaiate modeling and the projection of the

latter, are also used in forecasting the VaR. The estimation window is set equal to m = 1, 000,

yielding 6844 out-of-sample VaR forecasts.

Conceptually, the VaR is nothing but a time-varying conditional quantile, and our goal is to
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provide the evolution of the quantile forecast over time. In this sense, our technique and the

CAViaR model proposed by Engle and Manganelli (2004) are alike, though we seek to select

the highest scoring density for quantile forecasting indirectly while a direct quantile regression

is performed by Engle and Manganelli (2004). One may also think of this adaptive selection

technique as an analogue of the regime switching model proposed by Pelletier (2006) and Garcia

and Tsafack (2011) for time-varying dependence structure. Chollete et al. (2009) constructed

a multivariate regime switching copula model for VaR forecasting. This section is similar to

their model not only in dynamically updating conditional dependence for outperforming fixed

distributions in VaR forecasts, but also in the two-step estimation methodology for multivariate

modeling. However, our technique is more parsimonious than regime switching models since no

latent variable or transition probabilities are involved. Another advantage of our technique is

that more than two ‘regimes’ can be easily accommodated with scoring rules, whereas regime

switching models typically assume two regimes, e.g. a symmetric and asymmetric regime for

normal and extreme situations, respectively. It is also noteworthy that our methodology of

density selection is in line with Opschoor et al. (2014), where a technique of combining densities

based on scoring rules is applied to obtain VaR forecasts.

To test the accuracy of the VaR forecasts from different distributions, namely four fixed

families of densities N , t, SN , St and the dynamically selected densities based on (2)-(4), we

first compute the coverage rates for 1%, 5%, 10% and 15% VaR forecasts, e.g. the percentages of

the observations such that yt+1 ≤ VaRt+1, then consider three different types of tests. The first

two tests only keep track on the statistical accuracy of the VaR values by checking the violation

frequency of the VaR forecasts with the correct unconditional coverage (CUC) of Kupiec (1995)

and the correct conditional coverage (CCC) of Christoffersen (1998).

In addition, we compare two competing VaR forecasting models in the style of Diebold and

Mariano (1995) by using a loss function which measures the distance between the observed

returns and forecasted VaR values. The linear asymmetric linear loss function, defined by

Giacomini and Komunjer (2005), is given by

Lq(et+1) = (q − I(et+1 < 0))et+1, (12)

where et+1 = yt+1 − VaRq
t+1 and q ∈ {0.01, 0.05, 0.1, 0.15} is the quantile considered. Let

dAB = LqA−LqB, where LqA and LqB are the loss functions for distributions A and B, respectively.

A negative value of dAB indicates that the forecast based on A is superior to that on B.

A comparison is made for the univariate modeling of the portfolio return directly, the pro-

jected multivariate modeling with the allocation vector, and the multivariate modeling over

the three individual stock returns. The results, reported in Table 5, summarize the coverage
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rates, the p-values for the CUC test, the p-values for the CCC test and the t-statistic of the

Diebold-Mariano test for the equal conditional predictive ability of two VaR models. In all

three modeling frameworks, we choose the VaR based on the csl rule selected density as the

benchmark, and compare the other six models against it. A negative statistic suggests that the

VaRcsl
t+1 is preferred and vice versa.

[Table 5 about here.]

Several conclusions can be drawn from Table 5. First, the empirical VaR violation rates

using the dynamically selected density based on pwl and csl rules are closer to the nominal

frequencies than the VaR forecasts based on the fixed families of distributions for the 5%, 10%

and 15% quantiles, independent of the modeling method. However this advantage is not seen

from the cl rule. For small quantiles the pwl and csl rule-based VaR forecasts deliver identical

results, which is consistent with the finding before that the performance of the two scoring rules

is very similar.

Second, the CUC and the CCC tests reject the null hypothesis of a correct coverage rate for

the fixed density based VaR more than the dynamically selected density-based VaR, indicating

again that it is more reasonable to assume that the underlying portfolio return distribution

is time-varying rather than fixed. Among the four distributional assumptions, the t and skew

t-distributions perform as good as, if not better than, the other two distributions in the sense

that the null hypothesis is rejected less often, which is not surprising given the fact that t and

skew t forecasts in general gain a higher score in the density forecast comparisons than the

Normal and skew Normal forecasts.

Third, the last column for each modeling method reports the t-value for the Diebold-Mariano

test. It is suggested that the csl rule based VaR forecast consistently outperforms the fixed

distribution based VaR forecasts since the t-statistics are negative almost everywhere. The

Normal density and the skew Normal density based VaR estimates are significantly dominated

by the benchmark for univariate modeling, projected modeling and direct multivariate modeling

for quantiles 5%, 10% and 15%. Regarding the comparison among different dynamic-selected

densities, the conclusion is less sharp. The pwl rule based VaR forecasts tend to be superior

to the csl rule based ones in the univariate modeling, but not in the projected or multivariate

models.

Finally, we compare the VaR forecast results across the different modeling methods in Tables 6

and 7 by using the loss function (12) again. Table 6 reports results of the Diebold-Mariano test

for univariate modeling and projected modeling against the multivariate modeling with four

fixed densities and three dynamic-selected densities. A negative test statistic suggests that the

VaR forecasts from multivariate modeling are better. Similarly, Table 7 presents the results for
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tests on the equal VaR accuracy between the univariate modeling or projected modeling and

projected modeling with different density assumptions.

[Table 6 about here.]

[Table 7 about here.]

From Table 6 it can be seen that multivariate modeling does not improve the VaR accuracy.

Although the dynamic-selection of densities based on trivariate scoring rules (2)-(4) end up

with negative t-statistics almost all the time, especially when compared with the VaR estimates

generated by fixed univariate densities, the test of equal predictive accuracy of the trivariate

scoring rule-based VaR and univariate scoring rules-based VaR is not conclusive. Besides, the

diagonal statistics in each quantile sub-panel for univariate modeling seem to suggest that the

VaR based on the parsimonious GARCH(1,1) model is at least as good as the forecasts from

the involved DCC(1,1)-GARCH(1,1) model when comparing identical distribution families with

different dimensions.

To summarize, with the foresight of the time-varying distribution for the given portfolio, we

may come up with a simple selection method for the underlying distribution to be assumed

for the VaR estimation based on scoring rules (2)-(4), evaluated for both univariate densities

and multivariate densities. It turns out that this dynamically-selected distribution based VaR

forecast outperforms the fixed distributions. Consistent results are observed. For example, the

Normal density and the skew Normal density perform worse, and the multivariate modeling

method does not deliver better VaR forecasts than the univariate modeling method.

6 Summary and Conclusions

To evaluate the risk of a given portfolio of assets, one can evaluate and select competing density

forecasts for the relevant future random variables. The traditional way is to focus on forecasting

the multivariate distribution of the composing assets first, and then assess the downside risk

of the portfolio. However, as we showed in a simple example, information in high-dimensional

space can be irrelevant or even misleading for portfolio risk measurement.

In this paper, we developed a testing framework for comparing the accuracy of competing

density forecasts in a selected part of the support across different dimensions. Based on the

Kullback-Leibler information criterion, three proper scoring rules including conditional like-

lihood, censored likelihood and penalized weighted likelihood were used for evaluating the

predictive ability of (out-of-sample) densities. We focused on distributions from skew ellipt-

ical families since these distributions are closed under affine transformations. The merits are

that we may explicitly trace the distribution function of the aggregate portfolio return. Monte
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Carlo simulations indicate that the test in higher-dimensional space could deliver a similar or

opposite conclusion as the univariate test, depending on the shape and location of the projected

densities.

Our empirical application to daily return series of a fixed portfolio consisting of three S&P500

stocks indicates that the t-distribution outperforms the Normal, Skew t and Skew Normal

distributions in the left tail of the support over a thirty years time horizon. The parametric

GARCH(1,1) model, jointly with DCC updating for correlation in the multivariate setting,

is used to successively generate one-step-ahead density forecasts. Given the fact that the

dependence structure may vary with respect to sign and/or magnitude, we iteratively perform

our test on portfolio return forecasts in a moving sub-sample to generate the dynamics of test

statistics. The changes in the test statistics are visualized, from which it can be observed that

the t-distribution overwhelms during the booming period, while the skew t-distribution is more

appropriate in a declining market. The dynamical results show that the optimal family of

distributions changes more than once in the sample period.

To further investigate the time-varying nature of the conditional distributions, a natural

extension to the univariate and multivariate VaR estimation is proposed; a scoring rule-based

technique to choose the distribution for VaR forecasts is applied, allowing dynamically selected

forecast distributions for VaR forecasts. The empirical VaR forecasts based on this approach

show improvements, confirming the time-varying nature of the underlying distribution.

The method discussed in this paper can also be used to compare multi-step ahead density

forecasts, or to compare non-parametrically estimated densities. It may be possible to improve

the forecasts by considering more general distributions, but this is left for future research.

Besides, given the potential dynamics of the underlying distribution, more advanced techniques

could be developed for density forecasting and VaR estimation. Lastly, dynamic portfolio

optimization driven by time-varying density forecasts form another topic for further research.
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A Appendix

A.1 Density Function for Multivariate t-distribution

There are many different candidates for the multivariate generalization of Student’s t-distribution;

Kotz and Nadarajah (2004) provide an extensive survey. The multivariate t-distribution is

defined as an extension of the classical univariate t-distribution. For example, the probability

density function of a d-dimensional t-distributed vector Y = {Y1, ..., Yd} is defined by Kotz and

Nadarajah (2004) as

f(y) =
Γ(ν+d

2
)|R|− 1

2

Γd(1
2
)Γ(ν

2
)ν

d
2

(
1 +

1

ν
(y− µ)TR−1(y− µ)

)− ν+d
2

, (A.1)

with mean vector µ, correlation matrix R and degrees of freedom ν, provided R is positive

definite. When µ = 0, we render the standard d−dimensional form

f(y) =
Γ(ν+d

2
)|R|− 1

2

Γd(1
2
)Γ(ν

2
)ν

d
2

(
1 +

1

ν
yTR−1y

)− ν+d
2

.

If d = 1, together with R = 1, we have the univariate probability density function

f(y) =
Γ(ν+1

2
)√

πνΓ(ν
2
)

(
1 +

y2

ν

)− ν+1
2

.

The generalization of the multivariate t-distribution in Eq. (A.1) indeed uses the elliptical

methodology, by which we mean the distribution theory for elliptical distributions (ED) and

for the distributions obtained from elliptical distributions by introducing a location vector

and a scale matrix, i.e. µ and R used above. Shaw and Lee (2008) pointed out a difficulty

with the standard ED representation of the multivariate t-distribution, which is that the joint

distribution in the form of Eq. (A.1), does not factorize into the product of the d marginal

one-dimensional densities. However, we stick with the traditional ED representation for the

multivariate t-distribution based on the desirable properties of ED family distributions. Indeed,

since Chamberlain (1983) and Owen and Rabinovitch (1983), elliptical distributions are widely

applied to characterize the distribution of portfolio returns. For example, Landsman and Valdez

(2003) decomposed the portfolio risk into individual components under multivariate elliptical

distribution setting. See Gupta et al. (2013) for a detailed discussion with the application of

elliptical models in portfolio theory.

In this paper, we consider a generalized form of Eq. (A.1) for the multivariate t-distribution,
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with location vector µ and scale matrix Σ and degrees of freedom ν. The density is defined as

f(y) =
Γ(ν+d

2
)|Σ|− 1

2

Γd(1
2
)Γ(ν

2
)ν

d
2

(
1 +

1

ν
(y− µ)TΣ−1(y− µ)

)− ν+d
2

. (A.2)

It is worth mentioning that in Eq. (A.2), Σ is not correlation matrix anymore, but a pos-

itive definite matrix which is proportional to the covariance matrix. Here we show two useful

properties particularly for multivariate t-distribution defined in Eq. (A.2):

1. Moments

If Y ∼ td(µ,Σ, ν), then E(y) = µ and Cov(y) = νΣ/(ν − 2), provided with ν > 2.

2. Affine Transformation

Given any (`×d) matrix A of rank ` ≤ d, the random vector Z = AY ∼ td(Aµ, AΣA′, ν).

Notice that the second property is a special case of Property 1 summarized in Section 2.1.

Next, we intend to show the density of ‘standardized’ t-distribution, i.e. the contour is

centered around the origin and the covariance is an identity matrix, or for the univariate

scenario, the variance equals one. Following Theorems 2.1.5 and 3.5.6 in Casella and Berger

(2002), suppose Y ∼ td(µ,Σ, ν) with the density function as Eq. (A.2), we may construct

Z =
√

ν−2
ν

Σ−1/2(Y − µ), which follows td(0, ν−2
ν
I, ν), then the density function of Z and

relationship between Y and Z are

fZ(z) =
Γ(ν+d

2
)

Γd(1
2
)Γ(ν

2
)(ν − 2)

d
2

(
1 +

1

ν − 2
zTz

)− ν+d
2

,

fY(y) =

√
ν − 2

ν
|Σ|− 1

2fZ(

√
ν − 2

ν
Σ−1/2(y − µ)). (A.3)

The density of aggregated marginal variables from the multivariate distribution is also of

interest. The linear combination of two arguments from a bivariate t-distributed random vector

Y = (Y1, Y2)′ is derived for simplicity. Assuming the weighting vector A = (d1, d2), we could

partition µ and Σ into µ = (µY1 , µY2)
′, Σ = (σ2

Y1
, σY1,Y2 ;σY1,Y2 , σ

2
Y2

) and derive the portfolio

distribution of Z = AY , with location parameter µY and scale parameter σ2
Y :

µZ = d1µY1 + d2µY2

σ2
Z = d2

1σ
2
Y1

+ d2
2σ

2
Y2

+ 2d1d2σY1,Y2 .

Note that σ2
Z is not the variance of Z; the variance of Z is defined by V ar(Z) = νσ2

Z/(ν − 2)
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as Property 1 states. The density function of Z ∼ t(µZ , σ
2
Z , ν) is defined as

f(z) =
Γ(ν+1

2
)√

νπσ2
ZΓ(ν

2
)

(
1 +

(z − µZ)2

νσ2
Z

)− ν+1
2

. (A.4)

Finally, we provide the ‘standardized’ univariate t-distribution for a fair comparison with stand-

ard normal distribution N(0, 1). Given Z ∼ t(0, ν−2
ν
, ν), which is a t-distributed random vari-

able with mean 0 and variance 1, we have Z = Y−µY√
ν
ν−2

σ2
Y

and

fZ(z) =
Γ(ν+1

2
)√

(ν − 2)πΓ(ν
2
)

(
1 +

z2

ν − 2

)− ν+1
2

,

fY (y) =

√
ν − 2

νσ2
Y

fZ(
Y − µY√

ν
ν−2

σ2
Y

). (A.5)

A.2 Proof of the Properness of PWL

Define Pt =
∫
wt(s)pt(s)ds, and similarly F̂t =

∫
wt(s)f̂t(s)ds. Assumption 2(b), scaling wt(y)

between 0 and 1, implies that Pt and F̂t can be interpreted as the corresponding probabil-

ity distribution functions for the true conditional density pt(s) and forecasted density f̂t(s),

respectively.

It is to be proven that Et(S(pt;yt+1)−S(f̂t;yt+1)) ≥ 0. Denote the conditional score difference

for density forecast pt and f̂t as dpwlt+1(pt, f̂t) = S(pt;yt+1)− S(f̂t;yt+1), then

Et

(
dpwlt+1(pt, f̂t)

)
=

∫
pt(y)

(
wt(y)log(pt(y))− Pt − wt(y)log(f̂t(y)) + F̂t

)
dy

=

∫
wt(y)pt(y)log

(
pt(y)

f̂t(y)

)
dy + F̂t − Pt

=

∫ (
wt(y)pt(y)log

(
pt(y)/Pt

f̂t(y)/F̂t

)
+ wt(y)pt(y)log

(
Pt

F̂t

))
dy + F̂t − Pt

= Pt

∫
wt(y)pt(y)

Pt
log

(
wt(y)pt(y)/Pt

wt(y)f̂t(y)/F̂t

)
dy + Ptlog

(
Pt

F̂t

)
+ F̂t − Pt

= Pt

∫
wt(y)pt(y)

Pt
log

(
wt(y)pt(y)/Pt

wt(y)f̂t(y)/F̂t

)
dy + Ptlog(Pt)− Ptlog(F̂t) + F̂t − Pt

= PtK

(
wt(y)pt(y)

Pt
,
wt(y)f̂t(y)

F̂t

)
+ Ptlog(Pt)− Ptlog(F̂t) + F̂t − Pt, (A.6)
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where K(., .) is the Kullback-Leibler divergence, which measures the difference between two

probability distributions. According to Assumptions 1 and 2(c), wt(y)pt(y)/Pt and wt(y)f̂t(y)/F̂t

can be treated as pdfs, and Assumption 2(a) makes sure that the weighting function wt(y) is

a given function of y conditional on Ft. Thus the first term in the last line of (A.6), as a

distance measurement of its arguments, is non-negative and finite. The remaining terms reach

the minimum value zero if and only if F̂t = Pt, provided with the positive semidefinite Hessian

matrix except for the trivial situation where Pt = 0.

A.3 Standardization of Skew Elliptical Distributions

In this subsection, we give the density expressions for the ‘standardized’ skew Normal and

‘standardized’ t-distributions. We consider this problem because the way we form skew Normal

and t-distributions does not assign location and scale parameter µ and Σ as the expectation and

variance, respectively. When we assume the value of µ and Σ, the expectation and covariance

are pinned down according to Properties 2 and 3. To make the wto competing densities more

comparable, we adjust the parameters such that the two competing densities are centerd around

the origin and of unit variance, i.e. the ‘standardized’ covariance matrix coincides with the

correlation matrix.

First consider the skew Normal distribution. Given Y ∼ SNn(µ,Σ,α), and the pdf of the

form in Eq. (5), the expectation and covariance of Y are defined by Property 2 as E(Y ) =

µ + ωµS and Cov(Y ) = Σ − ωµSµ
T
Sω, with µS =

√
2/π(1 + αT Σ̄α)−1/2Σ̄α. Note that

Σ = ωΣ̄ω, where ω is defined as ω = (diag(Σ))1/2. Thus to standardize Y we may express the

covariance of Y as

Cov(Y ) = ωΣ̄ω − ωµSµ
T
Sω ≡ Σ̄. (A.7)

Eq. (A.7) gives the solution to ω. For n-dimensional variate, ω is a diagonal matrix of the form

ω =


ω1

. . .

ωn

 ,

where ωi is the standard deviation for the ith component. Using the Hadamard product instead
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of the inner product, we may rewrite Eq. (A.7) as

Cov(Y ) = Σ̄

= ω(Σ̄− µSµ
T
S)ω

= ω2 ◦ (Σ̄− µSµ
T
S).

Given the standardized ω, µ = −ωµS and Σ = ωΣ̄ω will deliver the standardized skew

Normal distribution.

For Y ∼ Stn(µ,Σ,α, ν), the only difference is now µS = ( ν
π
)1/2 Γ{ 1

2
(ν−1)}

Γ( 1
2
ν)

(1 +αT Σ̄α)−1/2Σ̄α,

and Eq. (A.7) still holds. Similar as before, we could solve for the standardizing parameter µ

and Σ.

When we project a multivariate distribution onto the real line, we must do the standardization

again for the univariate distribution. Following the previous notation, if Y ∼ SNn(µ,Σ,α),

Z = AY ∼ SN(µZ ,ΣZ , αZ , ν) with (1 × n) matrix A and the scalar parameter µZ , ΣZ and

αZ are defined same as Eq. (7) (see Propety 2(b)). Recall Y is already standardized centered

around zero, hence E(Z) = E(AY ) = 0 and we only need to consider re-scale variance to be

unit, which requires

Var(Z) = Σ′Z − ω′Zµ2
sω
′
Z ≡ 1, (A.8)

where µs =
√

2αZ/
√
π(1 + α2

Z) and ω′Z =
√

Σ′Z . From Eq. (A.8), it is easy to show that

Σ′Z = 1/(1−µ2
s). The derivation for standardizing the skew t-distribution is similar, apart from

the definition of µs =
√

ν
π

Γ{(ν−1)/2}
Γ(ν/2)

and the requirement for the variance becomes

Var(Z) =
ν

π
Σ′Z − ω′Zµ2

sω
′
Z ≡ 1.

Solving Var(Z) = 1 gives the scalar parameter Σ′Z .
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Figure 2: One-sided rejection rates (at nominal size 5%) of Diebold-Mariano type test statistic
of equal predictive accuracy under the threshold weight function w(z) = I(z ≤ r) for c = 40
expected observations in the left tail, based on 10,000 replications. The DGP is i.i.d. standard
bivariate normal. Panel (a) shows high rejection rates against superior predictive ability of f̂
as a function of r, while rejection in panel (b) suggests ĝ is more accurate.
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Figure 3: Graphical illustration of skew t-distribution. The top two panels presents the uni-
variate skew t-density functions for α = 3 in the left and α = 10 in the right column, for
different values of ν. The bottom panels show contour plots for the standardized bivariate
skew t-distribution. In the lower-left panel, given skewness vector α = (2, 6) and correlation
ρ = 0.5, the contours of the skew t and skew normal distributions are shown; the lower-right
panel illustrates changes in the contour plot when correlation and skewness are introduced.
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Figure 4: One-sided rejection rates (at nominal size 5%) of Diebold-Mariano type test statistic
of equal predictive accuracy under the threshold weight function w(y) = I(y ≤ r) for c = 20
expected observations in the left tail, based on 10,000 replications. The DGP is i.i.d. skew t(5)
(skew normal) with α = −2 for the upper (lower) two panels. The left (right) column shows
rejection rates against superior predictive ability of skew t(5) (skew normal) with α = −2 as a
function of the threshold parameter r.
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Figure 5: One-sided rejection rates (at nominal size 5%) of Diebold-Mariano type test statistic
of equal predictive accuracy under the threshold weight function w(z) = I(z ≤ r) for c = 20
expected observations in the left tail, based on 10,000 replications. The DGP is i.i.d. skew t(5)
with α = −2 (t(5)) in upper (lower) two panels. The left(right) column shows rejection rates
against superior predictive ability of skew t(5) with α = −2 (t(5)) as a function of the threshold
parameter r.
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Figure 6: One-sided rejection rates (at nominal size 5%) of Diebold-Mariano type test statistic
of equal predictive accuracy, based on 10,000 replications. The DGP is i.i.d St4(5) (SN4) for the
upper (lower) two panels, with α = (−2, 1,−1,−1). The left (right) column shows rejection
rates against superior predictive ability of St4(5) (SN4) as a function of sample size. wl denotes
the test of weighted likelihood scoring rule directly on four-dimensional density, while wlu is
the test based on the univariate density projected by vector (1/4, 1/4, 1/4, 1/4).
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Figure 7: Dynamics of the two-sided Diebold-Mariano type test statistic (at nominal size 5%)
of equal predictive accuracy, based on the cl, csl and pwl scoring rules. Empirical quantile
q = 0.05 in the indicator weight function wt(rt) = I(rt ≤ r̂qt ) is applied for selecting the left tail
region. The light blue (I) and cyan (II) rectangles represent the first estimation and evaluation
window.
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Figure 8: Dynamics of the two-sided Diebold-Mariano type test statistic (at nominal size 5%) of
equal predictive accuracy, based on the csl scoring rule. Empirical quantile q = 0.05, 0.10, 0.15
in the indicator weight function wt(rt) = I(rt ≤ r̂qt ) are applied for selecting the left tail region.
The light blue (I) and cyan (II) rectangles represent the first estimation and evaluation window.
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Figure 9: S&P500 Index and the dynamics of the two-sided Diebold-Mariano type test statistic
(at nominal size 5%) of equal predictive accuracy for t against skew t, and skew Normal against
skew t, based on the csl scoring rule. Empirical quantile q = 0.05 in the indicator weight
function wt(rt) = I(rt ≤ r̂qt ) is applied for selecting the left tail region. The light blue (I) and
cyan (II) rectangles represent the first estimation and evaluation windows, respectively. The
green (III) and pink (IV) regions indicate two periods discussed in the main text.
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Table 1: Average score differences and test statistics based on the csl rule

scoring rule
q = 0.01

N− t N− SN N− St t− SN t− St SN− St

cslmulti
-0.0104 0.0017 -0.0089 0.0122 0.0016 -0.0106

(-2.7627*) (0.7224) (-2.6501*) (3.3909*) (1.2037) (-3.2392*)

cslproj
-0.0067 0.0001 -0.0061 0.0068 0.0005 -0.0063

(-2.4209*) (0.0736) (-2.5974*) (3.2254*) (0.6275) (-3.3745*)

csluni
-0.0057 0.0003 -0.0048 0.0060 0.0009 -0.0051

(-2.1393*) (0.2811) (-2.0449*) (1.8565) (1.4043) (-1.7973*)
q = 0.05

N− t N− SN N− St t− SN t− St SN− St

cslmulti
-0.0216 0.0069 -0.0174 0.0285 0.0042 -0.0243

(-4.3507*) (1.9909*) (-3.7816*) (5.5157*) (2.5909*) (-5.0617*)

cslproj
-0.0089 0.0016 -0.0074 0.0105 0.0015 -0.0090

(-3.0321*) (0.6765) (-2.7956*) (4.1646*) (1.5886) (-3.7488*)

csluni
-0.0076 0.0003 -0.0062 0.0079 0.0014 -0.0065

(-2.6652*) (0.2676) ( -2.3725*) (2.3920*) (1.8705) (-2.2157*)
q = 0.10

N− t N− SN N− St t− SN t− St SN− St

cslmulti
-0.0283 0.0099 -0.0223 0.0382 0.0060 -0.0322

(-5.4127*) (2.5551*) (-4.5035*) (7.0949*) (3.3665*) (-6.4189*)

cslproj
-0.0103 0.0019 -0.0084 0.0122 0.0019 -0.0103

(-3.4735*) (0.7644) (-3.0973*) (4.5199*) (1.9493) (-3.9436*)

csluni
-0.0086 0.0003 -0.0073 0.0089 0.0013 -0.0076

(-3.0036*) (0.2705) (-2.7583*) (2.6935*) (1.7593) ( -2.5736*)
q = 0.15

N− t N− SN N− St t− SN t− St SN− St

cslmulti
-0.1244 -0.0183 -0.1167 0.1061 0.0077 -0.0984
(-1.4249) (-0.5578) (-1.3356) (1.9351) (4.1372*) (-1.7933)

cslproj
-0.0114 0.0020 -0.0090 0.0135 0.0025 -0.0110

(-3.8191*) (0.8007) (-3.3008*) (4.8685*) (2.3632*) (-4.1300*)

csluni
-0.0095 0.0002 -0.0082 0.0097 0.0013 -0.0085

(-3.2908*) (0.2128) (-3.0791*) (2.9310*) (1.6951) (-2.8520*)
Note: This table presents the average score difference d̄ and the corresponding test statistic (the number in
parentheses) for the censored likelihood scoring rule (3) for different empirical quantiles q in the indicator weight
function wt(rt) = I(rt ≤ r̂qt ), where for the four sub-panels, q = 0.01, 0.05, 0.1, 0.15 respectively. The superscript
* denotes that the test statistic is significant at the 5% level of significance. There are six pair-comparisons
since we have four distributional assumptions about the innovations. The test result in the first row of each
sub-panel is based on multivariate regression model, and the corresponding projection onto one-dimensional
space yields the outcome in the second row. The bottom row of each sub-panel gives test results based on the
univariate regression model of portfolio return series.
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Table 2: Average score differences and test statistics based on the cl rule

scoring rule
q = 0.01

N− t N− SN N− St t− SN t− St SN− St

clmulti
-0.0084 -0.0010 -0.0068 0.0074 0.0015 -0.0059

(-2.5060*) (-0.5256) (-2.3475*) (2.0735*) (1.5836) (-1.8065)

clproj
-0.0046 -0.0025 -0.0041 0.0021 0.0005 -0.0016

(-2.0268*) (-2.9047*) (-2.2145*) (1.2272) (0.9889) (-1.2484)

cluni
-0.0043 0.0006 -0.0032 0.0049 0.0010 -0.0039
(-1.8019) (0.8646) (-1.5998) (1.6195) (1.9506) (-1.4604)

q = 0.05
N− t N− SN N− St t− SN t− St SN− St

clmulti
-0.0204 0.0021 -0.0174 0.0225 0.0031 -0.0194

(-4.1319*) (0.6889) (-3.8511*) (4.3397*) (2.1550*) (-4.1049*)

clproj
-0.0077 -0.0033 -0.0074 0.0044 0.0003 -0.0041

(-2.7353*) (-2.3576*) (-3.0417*) (2.2436*) (0.4336) (-2.5451*)

cluni
-0.0066 -0.0000 -0.0056 0.0066 0.0011 -0.0055

(-2.4056*) (-0.0403) (-2.2393*) (2.0364*) (1.6494) (-1.9237)
q = 0.10

N− t N− SN N− St t− SN t− St SN− St

clmulti
-0.0263 0.0056 -0.0216 0.0319 0.0047 -0.0272

(-4.9598*) (1.5979) (-4.3784*) (5.8326*) (2.8460*) (-5.4410*)

clproj
-0.0083 -0.0024 -0.0077 0.0058 0.0006 -0.0052

(-2.8226*) (-1.5076) (-2.9940*) (2.8247*) (0.7479) (-2.9624*)

cluni
-0.0072 0.0001 -0.0060 0.0073 0.0012 -0.0061

(-2.5176*) (0.0944) (-2.3030*) (2.2104*) (1.6319) (-2.0855*)
q = 0.15

N− t N− SN N− St t− SN t− St SN− St

clmulti
-0.1215 -0.0224 -0.1152 0.0991 0.0063 -0.0928
(-1.3915) (-0.6834) (-1.3184) (1.8069) (3.5978*) (-1.6911)

clproj
-0.0085 -0.0021 -0.0074 0.0065 0.0011 -0.0054

(-2.8861*) (-1.1609) (-2.8563*) (3.0549*) (1.2834) (-2.8686*)

cluni
-0.0075 0.0003 -0.0062 0.0078 0.0013 -0.0065

(-2.6176*) (0.2855) (-2.3658*) (2.3603*) (1.6528) (-2.2245*)
Note: This table presents the average score difference d̄ and the corresponding test statistic (the number in
parentheses) for the conditional likelihood scoring rule (2) for different empirical quantiles q in the indicator
weight function wt(rt) = I(rt ≤ r̂qt ), where for the four sub-panels, q = 0.01, 0.05, 0.1, 0.15, respectively. The
superscript * denotes that the test statistic is significant at the 5% level of significance. There are six pair-
comparisons since we have four distributional assumptions about the innovations. The test result in the first
row of each sub-panel is based on multivariate regression model, and the corresponding projection onto one-
dimensional space yields the outcome in the second row. The bottom row of each sub-panel gives testing result
based on the univariate regression model of portfolio return series.
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Table 3: Average score differences and test statistics based on the pwl rule

scoring rule
q = 0.01

N− t N− SN N− St t− SN t− St SN− St

pwlmulti
-0.0104 0.0015 -0.0088 0.0119 0.0016 -0.0103

(-2.7584*) (0.6313) (-2.6425*) (3.3268*) (1.2167) (-3.1664*)

pwlproj
-0.0066 -0.0001 -0.0061 0.0065 0.0005 -0.0060

(-2.4172*) (-0.0606) (-2.5927*) (3.1492*) (0.6457) (-3.2981*)

pwluni
-0.0057 0.0003 -0.0048 0.0060 0.0009 -0.0050

(-2.1356*) (0.2768) (-2.0393*) (1.8519) (1.4161) (-1.7906)
q = 0.05

N− t N− SN N− St t− SN t− St SN− St

pwlmulti
-0.0215 0.0060 -0.0173 0.0275 0.0042 -0.0233

(-4.3302*) (1.7873) (-3.7774*) (5.3561*) (2.5726*) (-4.9076*)

pwlproj
-0.0088 0.0007 -0.0074 0.0095 0.0014 -0.0081

(-3.0078*) (0.3123) (-2.8031*) (3.9747*) (1.5495) (-3.5782*)

pwluni
-0.0074 0.0003 -0.0061 0.0077 0.0014 -0.0064

(-2.6340*) (0.2664) (-2.3442*) (2.3619*) (1.8647) (-2.1863)
q = 0.10

N− t N− SN N− St t− SN t− St SN− St

pwlmulti
-0.0281 0.0088 -0.0222 0.0369 0.0059 -0.0310

(-5.3676*) (2.3429*) (-4.4909*) (6.8909*) (3.3378*) (-6.2352*)

pwlproj
-0.0101 0.0008 -0.0083 0.0108 0.0018 -0.0090

(-3.4151*) (0.3408) (-3.0963*) (4.3593*) (1.8907) (-3.8081*)

pwluni
-0.0084 0.0003 -0.0071 0.0087 0.0013 -0.0074

(-2.9532*) (0.2873) (-2.7100*) (2.6515*) (1.7423) (-2.5323)
q = 0.15

N− t N− SN N− St t− SN t− St SN− St

pwlmulti
-0.1240 -0.0198 -0.1165 0.1043 0.0075 -0.0967
(-1.4199) (-0.6012) (-1.3332) (1.9015) (4.0886*) (-1.7636)

pwlproj
-0.0110 0.0006 -0.0087 0.0116 0.0023 -0.0094

(-3.7005*) (0.2699) (-3.2605*) (4.6087*) (2.2821*) (-3.8978*)

pwluni
-0.0092 0.0003 -0.0079 0.0095 0.0013 -0.0082

(-3.1992*) (0.2562) (-2.9819*) (2.8581*) (1.6820) (-2.7730*)
Note: This table presents the average score difference d̄ and the corresponding test statistic (the number
in parentheses) for the penalized weighted likelihood scoring rule (4) for different empirical quantiles q in the
indicator weight function wt(rt) = I(rt ≤ r̂qt ), where for the four sub-panels, q = 0.01, 0.05, 0.1, 0.15 respectively.
The superscript * denotes that the test statistic is significant at the 5% level of significance. There are six pair-
comparisons since we have four distributional assumptions about the innovations. The test result in the first
row of each sub-panel is based on multivariate regression model, and the corresponding projection onto one-
dimensional space yields the outcome in the second row. The bottom row of each sub-panel gives testing result
based on the univariate regression model of portfolio return series.
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