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Abstract

We study a dynamic oligopoly market model where quantity setting �rms can choose

one of two production technologies. We �nd that boundedly rationality in production

(best-reply dynamics) and technology choice (evolutionary selection of better performing

technologies) as sources of market dynamics, can generate endogenous instability and

complicated dynamics, including chaotic �uctuations and co-existing attractors with

fractal basins of attraction. By studying successively more complex versions of our model

we analyze these two di�erent sources of instability separately and also investigate their

interaction. We �nd that boundedly rational production decisions amplify technological

instability whereas boundedly rational technology decisions do not contribute to the

production-driven destabilization of the Nash equilibrium. In any case, whenever the

two types of decisions interfere in an endogenously unstable market, �uctuations follow

a visibly di�erent pattern compared to the �uctuations of a market with only one source

of instability. Finally, we show that an innovation policy that aims to alter the market

equilibrium without taking into account o�-equilibrium dynamics may, in an intrinsically

dynamic world, generate welfare losses by destabilizing a stable equilibrium and/or by

raising the amplitude of market �uctuations.
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1 Introduction

Corporate control is usually a complex, dynamic and multidimensional problem. Companies

typically adopt a segmented management structure with specialized departments handling

production, sales, marketing, HR, R&D, �nance, etc. The fact that these departments in-

tensively communicate with each-other indicates that managers clearly know that decisions

taken on one dimension interfere with the actions performed by their colleagues in another

department. Abstracting away from all fronts of decision-making other than production and

R&D, our paper formally studies their e�ects on market dynamics and equilibria. We in-

troduce a model where �rms may take adaptively rational decisions on either production,

innovation, or both, and show how these decisions and their interaction in a dynamic en-

vironment relate to market equilibrium stability, emerging endogenous �uctuations and the

welfare e�ects of innovation policy.

Our approach allows us to identify two potential sources of market instability. The �rst

one is operational in nature and is driven through adaptive quantity-setting by �rms en-

dowed with imperfect expectations of what their competitors will do. Given its source, we

will call this phenomenon 'production instability' throughout the paper. The second type

of instability in our model stems from adaptive choices of �rms over two alternative pro-

duction technologies. This choice, we show, can generate 'technological instability'. Our

analysis reveals that these two types of decisions can together generate bounded endogenous

market �uctuations. We �nd that market instability associated to bounded rationality in

the production decision-making dimension is una�ected by boundedly rational technological

choices. This is not the case for technological instability: boundedly rational production

decisions will amplify it compared to the case of perfectly rational production decisions. For

a policy maker, our model tells a cautionary tale: when the market is unstable, innovation

policy that would optimize social welfare at equilibrium can generate large welfare losses

compared to no interference.

Our �rst line of inquiry, relating to production instability, follows from the seminal pa-

per of Theocharis (1960). He showed the Cournot-Nash equilibrium in a quantity-setting

oligopoly to be dynamically unstable when more than three �rms compete by supplying,

in each period, naive best-response quantities to the output produced by competitors one

period before. The importance of this result was re�ected by the quick emergence of work

extending, qualifying and containing it, Fisher (1961); McManus and Quandt (1961); Hahn

(1962). With the development of chaos and bifurcation theory and the wide acknowledgment

of their relevance for economic theory due to Grandmont (1985) and Brock and Hommes
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(1997), Theocharis' inquiries were revisited in work celebrating endogenous cycle formation

and chaotic dynamics in oligopoly markets, see Agliari et al. (2000); Droste et al. (2002);

Bischi and Lamantia (2004); Hommes et al. (2011); Bischi and Lamantia (2012); Kopel et al.

(2014); De Giovanni and Lamantia (2015). A frequent feature in these models is the introduc-

tion of behavioral heterogeneity - be it in terms of expectations, Droste et al. (2002); Hommes

et al. (2011) or of the objective functions, Kopel et al. (2014); De Giovanni and Lamantia

(2015). Our model also focuses on �rm heterogeneity, but here it is of a technological nature.

As such, our analysis of technological instability also relates our paper to the work of Nel-

son and Winter (1982). From their perspective, bounded rationality and �rms' technological

heterogeneity - both central to our analysis - are crucial for understanding industrial dynam-

ics and economic growth, particularly when aiming to explicitly integrate innovation and

technological progress. Their approach inspired a rich literature of Agent-Based simulation

models. Some of its highlights are surveyed in Dawid (2006).

Also inspired by Nelson and Winter (1982), Hommes and Zeppini (2014) and Diks et al.

(2013) analyzed models where �rms choose between alternative R&D strategies: innovation

and imitation. Much like their analysis the work presented here employs a simpler formulation

of the technological dimension, one that allows for a more general analysis of the model

combining the classical tools of game theory and dynamic system analysis with bifurcation

theory and numerical simulation. Despite di�erences in the naming of the two competing

technologies1, our market-setup closely resembles the one used in Hommes and Zeppini (2014)

and Diks et al. (2013). The model analyzed here is di�erent in two respects. Firstly, we

consider a setting where �rms strategically compete in an oligopoly market whereas Hommes

and Zeppini (2014) assume an in�nite �rm population with no market power. Secondly, the

work presented here relaxes the assumption of optimal quantity setting and investigates the

evolutionary competition between a new and an old technology acknowledging that �rms

may also be boundedly rational in their production decisions, not only in their technology

choices. Our work is also related to Ding et al. (2014) and Ding et al. (2015), where �rms

learn how to invest based on realizations of pro�t margins while, as in Hommes and Zeppini

(2014), the market clears for Nash quantities every period. In contrast, our model draws a

clear line of separation between technological choices and production decisions. This allows

us to disentangle two di�erent sources of instability as well as to study their interaction.

The paper is organized as follows. In Section 2 we begin by deriving some preliminary

results for a market setup where �rms choose production technology and are engaged in static

1Where they speak of innovation versus imitation we contrast between an innovative strategy and a
standard strategy.
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Cournot competition. We characterize the Nash equilibrium of the model and show that,

depending on model parameters - in particular, the cost of using the innovative technology -

we can either obtain an equilibrium with all �rms employing the same technology - innova-

tive or standard - or a mixed equilibrium where fractions of the �rm population use di�erent

technologies. This is summed up in Proposition 1. Casting our static model in a suite of

dynamic settings we then move on to investigate the stability properties of the market equi-

librium when �rms make boundedly rational decisions, illustrating our results with numerical

simulations. We consider three separate cases: (i) technology distribution is exogenous and

production is determined by Cournot adjustment (i.e. best-response dynamics) - Section 3;

(ii) output is always at the Cournot-Nash equilibrium but �rms switch technologies based

on average pro�tability - Section 4; (iii) output follows Cournot dynamics and technology

is chosen based on pro�tability - Section 5. For all three scenarios we establish necessary

and su�cient conditions for stability in the steady state, in Propositions 2, 3 and 4. Finally,

in Proposition 5 of Section 6, we characterize an optimal innovation policy tailored on the

Nash equilibrium of the model. We numerically illustrate its e�ects on the equilibrium out-

come, contrasting them to its economic impact when the equilibrium it aims to adjust is

dynamically unstable.

2 An in�nite population Cournot oligopoly game with

technological choice

Consider a �rm population of unit size producing a homogeneous good. Firms play a two

stage sequential game. In the �rst stage, all �rms simultaneously choose one of two available

production technologies. In the second stage, which takes place after technology decisions

become public knowledge as the fractions of the population using each technology, �rms

simultaneously decide on an output level, q. Because we consider only two technological

alternatives this means that, in the second stage, a share of the �rm population, z, will

produce with the standard technology, s, while the remaining 1− z �rms use the innovative

technology, i. Cost functions associated with these two technologies are given by

cs(q) =
1

2
dsq

2,

for standard �rms and
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ci(q) = K +
1

2
diq

2

for innovative �rms. We assume ds > di ≥ 0, with ds − di representing the marginal cost

advantage of innovative �rms and K > 0 the �xed investment required for using the innova-

tive production technology. The amount K is payed before production and will be treated

throughout our analysis as a sunk cost.

Market competition is set-up to translate the classical Cournot oligopoly game to an

in�nite and heterogeneous population. Each �rm is randomly matched to N − 1 other �rms

in the population and their joint second-stage output clears a linear (inverse) demand:

P (QN) = 1−QN ,

where QN is the sum of quantities produced by the N �rms that are matched together.

The game is solved by backward induction. We begin by determining the competitively

optimal output decisions in stage two for any given population shares. Then, by compar-

ing the realized pro�ts of the two technological strategies, we can establish what the Nash

equilibrium regarding both choices is.

Depending on the production technology used, the expected average pro�t of a �rm who

knows the population shares of standard and innovating �rms, z and 1 − z, is computed as

the probability weighted sum, over all possible market compositions, of the pro�ts realized in

each particular scenario, with k standard competitors and N − 1−k innovating competitors:

πs (z) =
∑N−1

k=0

(
N − 1

k

)
zk (1− z)N−1−k [

1− qs − [kqs + (N − 1− k) qi]− 1
2
dsqs

]
qs

πi (z) =
∑N−1

k=0

(
N − 1

k

)
zk (1− z)N−1−k [

1− qi − [kqs + (N − 1− k) qi]− 1
2
diqi
]
qi −K.

The only term in the above expression that depends on the summation index, k, accounts

for the possible output of competitors in each possible market composition, [kqs + (N − 1− k) qi].

Simplifying accordingly we obtain:

πs (z) =
[
1− qs − Q̄N−1 (z)− 1

2
dsqs

]
qs

πi (z) =
[
1− qi − Q̄N−1 (z)− 1

2
diqi
]
qi −K, .

(1)
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where Q̄N−1 (z) =
∑N−1

k=0

(
N − 1

k

)
zk (1− z)N−1−k [kqs + (N − 1− k) qi] is the average

competing output that a �rm expects to face from the �rms with which it will be matched,

given population shares z and 1− z. As we are assuming an in�nite population, this expec-

tation will be the same for both a standard or innovating �rm. Restricting our attention to

the quasi-symmetric equilibrium, where all �rms of one type produce the same output, we

can compute:

Q̄N−1 (z) =
N−1∑
k=0

(
N − 1

k

)
zk (1− z)N−1−k [kqs + (N − 1− k) qi]

= (N − 1) [zqs + (1− z) qi]

(2)

Plugging (2) into (1) and maximizing with respect to own quantities we obtain the reaction

functions:

qj (z) = Rj

(
Q̄N−1 (z)

)
= max

{
1− (N − 1) [zqs + (1− z) qi]

2 + dj
, 0

}
; j ∈ {i, s} . (3)

Solving for quantities and denoting, Z = z
2+ds

+ 1−z
2+di

, we �nd the quasi-symmetric Cournot-

Nash quantities as a function of z:

qNs (z) =
1

2 + ds

1

Z (N − 1) + 1
and qNi (z) =

1

2 + di

1

Z (N − 1) + 1
. (4)

Notice that qNi (z) = 2+ds
2+di

qNs (z) > qNs (z): innovators will always produce more than standard

�rms.

Plugging Nash quantities back into (1) we obtain the expected average Cournot-Nash

pro�ts:

πNs (z) = 1
2

(
1

Z(N−1)+1

)2
1

2+ds

πNi (z) = 1
2

(
1

Z(N−1)+1

)2
1

2+di
−K

(5)

The choice of production technology in the �rst stage of the game will depend on the

relation between the pro�t functions given in equation (5). Proposition 1, proven in Appendix

A, is based on a comparison of the two pro�t functions in (5) depending on z and on model

parameters. It allows identifying the quasi-symmetric Nash equilibria of the game in terms

of output qs and population-wide technology distribution, z. Because there are only two

6



available technologies and, according to equation (4), the quantities produced by the two

types of �rms are linearly dependent, qNi (z) = 2+ds
2+di

qNs (z), the Nash equilibrium of the two-

stage game is fully characterized by a pair, (q∗s , z
∗), of standard �rm output and population

share. While the model has four parameters, it is convenient to focus on the cost of innovation

parameter, K. The results outlined below will serve as a benchmark for the dynamic analysis

of Sections 4 and 5.

Proposition 1. For all N ≥ 2, ds > di > 0, and K0 ≡ (2+di)(ds−di)
2(2+ds)(N+1+di)

2 > 0 , K1 ≡
(2+ds)(ds−di)

2(2+di)(N+1+ds)2
> K0 one the following three cases applies:

(a) (q∗s , z
∗) =

(
2+di

(2+di)(1+di+N)
, 0
)
i�. K < K0;

(b) (q∗s , z
∗) =

(√
2(2+di)K

(ds−di)(2+ds)
, 2+ds
ds−di −

(2+di)
(N−1)(ds−di)

[√
(ds−di)(2+ds)

2(2+di)K
− (2 + ds)

])
i�. K0 ≤

K ≤ K1;

(c) (q∗s , z
∗) =

(
1

(1+ds+N)
, 1
)
i�. K > K1.

The results of Proposition 1 can be intuitively grasped by inspecting Figure 1. The pro�ts

of innovative �rms always slope steeper in z than they do for standard �rms.2 Changing

K results only in a vertical shift of the innovative �rms' pro�t curve. Therefore, if the two

pro�t curves intersect, they will do so for a unique value, z∗. For K < K0 innovative �rms

make strictly higher pro�ts than standard �rms, for any z, therefore all �rms will innovate in

the Nash equilibrium. For K > K1 standard �rms always make higher pro�ts and the Nash

equilibrium has all �rms using the standard strategy. Otherwise, for a value of K in between

the two bounds, there will be a unique interior point of intersection, z∗, where the two

strategies generate equal pro�ts. Any population shares with a smaller fraction of standard

�rms than z∗ cannot be a Nash equilibrium since innovative �rms will have an incentive to

switch to the standard strategy (leading to an increase in z). Likewise, we cannot have a

Nash equilibrium with more than z∗ standard �rms since in such a population a standard

�rm would want to switch to the innovative strategy (resulting in a decrease in z). From the

expressions of z∗ and q∗s in Proposition 1 we can also immediately derive the comparative

statics of the equilibrium with respect to innovation costs: equilibrium quantities (for both

types of �rms) are increasing in K and so is the equilibrium share of standard �rms, z∗. Also,

the interior equilibrium fraction of standard �rms, z∗, is a strictly concave function of K.

2Because Z = −z ds−di
(2+ds)(2+di)

− 1
2+di

appears only in the denominator of 5 and is decreasing in z, both

pro�ts will be increasing in z. Furthermore, the slope of πNi (z) is always 2+ds
2+di

times larger than that of

πNs (z).
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Figure 1: Second-stage Nash pro�ts as a function of z for ds = 1.5, di = 0.5, N = 4 and
di�erent levels of K. The (�rst-stage) equilibrium share of standard �rms is found at the
intersection between πs (z) and πi (z).

At �rst glance, it may seem surprising that equilibrium output for both technologi-

cal strategies increases in K, particularly given that quantities are strategic substitutes in

Cournot oligopoly games. Inspecting the best-response functions for quantities, equation (3),

we notice that they are identical safe for the denominator which tells us that standard �rms

will react less aggressively to whatever the expected output by competitors is. While own

output is strategically decreasing in the expected output of the competitors, it is not clear

how competitors' output would react to changes in innovation costs, K. Intuitively, raising

K would lead to a drop in the share of the more generously producing innovators. This, in

turn, would leave a gap in the supply. This gap leaves room for extra production by both

the (now fewer) innovators and standard �rms. Intuitively, this is how equilibrium output

increases for both types when �xed innovation costs, K, increase.

The e�ect of innovation costs on equilibrium �rm output is best explained when we

inspect the e�ect of K on total output at equilibrium, Q̄∗N which, regarding K, behaves

exactly like the output by a �rm's competitors at equilibrium, since Q̄∗N = N
N−1

Q̄∗N−1. As

both z∗ and q∗s are increasing in K, the e�ect of �xed innovation costs on the average industry

quantity produced in equilibrium is a priori ambiguous: higher K means higher production

by the standard �rms but also less innovative �rms who, at any given parameter combination,

produce more than the standard ones. According to Corollary 1 it is the latter e�ect that is

stronger overall. Therefore even if both types of �rms would produce more when there are
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less innovators - as a consequence of the innovative strategy being more expensive - overall

the population mix e�ect is stronger, leading to lower average total industry output when

innovation costs are higher.

Corollary 1. In a mixed population equilibrium, average total industry output is given by:

Q̄∗N =
N

N − 1
[1− (2 + ds) q

∗
s ]

and decreases in K. Average total industry pro�ts are:

TIP = N
2 + di
ds − di

K.

Quite remarkably, once �rst-stage decisions on technology are internalized, the equilibrium

quantity produced by an individual �rm - no matter its technology - will not depend on the

number of oligopoly �rms, N , nor will its average equilibrium pro�t. The equilibrium share of

standard �rms, z∗, is however increasing in N .3 This means that an increase in the intensity

of competition will lead, in our model, to less innovation, a result which has a Schumpeter

mark II �avor4, with more intensive competition having a sti�ing e�ect on innovation. Indeed,

given z, second stage pro�ts are decreasing in N , see equation (5). As N increases, the part

of the pro�t function that does not depend on �xed innovation costs decreases for both types

of �rms, but this decrease will be 2+ds
2+di

times stronger for innovative �rms. In other words,

moving from N to N + 1 �rms will lead to a �attening of the second stage pro�t curves given

in (5), but the �attening will be more pronounced for πNi (z) than for πNs (z). This means

that the pro�t functions will cross - if at all - for a higher z as shown in Figure 2. So, in

the �rst stage more �rms will choose the standard technology when the number of oligopoly

�rms increases.

The comparative statics of the equilibrium share of standard �rms with regard to marginal

production costs are not always monotonic. We can show that the share of standard �rms is

3It is clear from Proposition (1)(b) that z∗ depends on N only through the denominator of the fraction
multiplying the expression in square brackets, E = (2 + ds) − 1

q∗s
. Even though this expression does not

depend itself on N , we cannot immediately determine its sign. However, we notice that, through q∗s , it is
monotonic in K. More precisely, as long as there is a z∗ ∈ [0, 1] we have 2+ds− 1

q∗s (K0) < E < 2+ds− 1
q∗s (K1)

which simpli�es to 2+ds
2+di

(1−N) < E < 1−N , meaning that E is always negative. Therefore z∗ is increasing

in N . Notice also that E = (2 + ds)− 1
q∗s

= − 1−(2+ds)q∗s
q∗s

= − Q̄
∗
N−1

q∗s
.

4Schumpeter's �rst conjecture, Schumpeter (1934), is that higher intensity of market competition between
�rms spurs innovation. This conjecture is often referred to as 'mark I'. He later stated, in Schumpeter (1942),
in what is also called Schumpter's mark II conjecture, that less acute competition gives �rms the slack they
need in order to divert resources to innovation.

9



always decreasing in ds, as expected, but its relation to di depends on the relation between

parameters ds, di and N . Speci�cally z∗ will be always increasing in di when the standard

technology is not excessively more ine�cient than the innovative technology, or, if the e�-

ciency gap between the two technologies is high, when the number of oligopoly �rms, N , is

not too large; see also Appendix E for details.

Figure 2: The e�ects of increasing N on the equilibrium share of standard �rms. K = 0.012,
ds = 1.5, di = 0.5.

To illustrate our results in such a way that allows comparisons between di�erent model

versions we will use one leading numerical example throughout the paper. Occasionally, we

will examine the robustness of the insights o�ered by this numerical example by making

variations of some key parameters.

Leading numerical example: N = 4, ds = 3
2
and di = 1

2
. From Proposition 1:

z∗ =
77

12
− 1

3

√
35

8K
,

with K0 = 10
847

= 0.0118 and K1 = 14
845
≈ 0.0166.

Proposition 1 gives a characterization of the full range of equilibria that our model can

have in a static setting, with cases (a) and (c) corresponding to Nash equilibria with only

one type of �rm, standard or innovative, respectively. Case (b) corresponds to parameter

combinations where both types of �rms are present in equilibrium. Figure 3 provides a

graphical illustration of these results for a particular choice for the number of �rms N = 4.

In accordance with the expressions for K0 and K1, provided by Proposition 1, when N
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increases we observe only an upward shift of the subset of the (ds, di, K) parameter space

where the mixed equilibrium exists, while its shape remains qualitatively the same.

Figure 3: Type of Nash equilibria in (di, ds, K) space for N = 4 in (a) and (b), N = 3 in (c),
N = 5 in (d)

Having characterized the Nash equilibrium of the static game, we turn our attention to the

dynamic features of the model, analyzing what happens when �rms repeatedly take decisions

on which technology to use and/or on what quantity to produce. These decisions can be

either fully rational or adaptive. In the next section, we �rst consider a version of the model

where technology is exogenous (i.e. z is �xed) thus quantities produced are the only source

of economic dynamics - forming naive expectations of the quantity supplied by competitors,

each �rm maximizes pro�ts with respect to the quantity they produce. Next, in Section 4,

we endogenize technological choice, but constrain the production behavior of the �rms to

supplying the Nash equilibrium quantities corresponding to the current shares of standard

and innovative �rms. Finally, we investigate the dynamic system where quantity follows the

best-response dynamics and �rms can also switch between production technologies.
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3 Non-evolutionary best-response quantity dynamics

In this section we assume that the population shares are �xed and known to the �rms

before they make their production decisions. Quantity decisions follow a Cournot adjustment

process where, before producing for period t, �rms make a naive forecast, Q̄N−1,t, of how much

their competitors will produce. The forecast will be based on known population shares, z and

1− z, and past production behavior qs,t−1 and qi,t−1, Given these expectations, each �rm will

produce a pro�t maximizing quantity, qj,t, j ∈ {s, i}that is given by the same best response

functions in 3 adapted here for a dynamic setting:

qj,t = Rj

(
Q̄N−1,t (z)

)
= max

{
1− (N − 1) [zqs,t−1 + [1− z] qi,t−1]

2 + dj
, 0

}
; j ∈ {i, s}

Notice that again qi,t = qs,t
2+ds
2+di

- the relation we found in our static analysis between

Nash quantities holds in this dynamic set-up as well. Thus the dynamic model can be entirely

characterized by a one-dimensional map. Speci�cally, the quantity dynamics expressed in qs

become:

qs,t = Rs

(
Q̄N−1,t (z)

)
= max

1− (N − 1)
[
z + (1− z) 2+ds

2+di

]
qs,t−1

2 + ds
, 0


= max

{
1

2 + ds
− (N − 1)

[
z

2 + ds
+

1− z
2 + di

]
qs,t−1, 0

} (6)

So, for any �xed level of z ∈ [0, 1], solving for the steady state quantity q∗s gives:

q̄∗s =
1

2 + ds

1(
z

2+ds
+ 1−z

2+di

)
(N − 1) + 1

and q̄∗i =
1

2 + di

1(
z

2+ds
+ 1−z

2+di

)
(N − 1) + 1

, (7)

the same values as the Cournot-Nash quantities derived in (4). Proposition 2, which goes

without proof, describes the stability properties of this equilibrium.

Proposition 2. The steady state of the dynamic system in (6) is the Cournot-Nash equilib-

rium of the static game and it is globally stable i�.:
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N < N̂ (z) = 1 +
(2 + di)(2 + ds)

2 + (1− z)ds + zdi
(8)

otherwise the dynamics converge to a two cycle .

Given that the map in (6) is linear, the price and quantity time-series generated by this

model will either converge to the Nash Equilibrium or diverge and hit the non-negativity

constraint on production settling into a two cycle oscillating between 0 and 1
2+ds

. In a

subspace of the parameter space de�ned by (N − 1)
[

z
2+ds

+ 1−z
2+di

]
= 1 there will be a bounded

two-cycle with quantity oscillating between any initial value q0 and
1

2+ds
− q0.

Proposition 2 also provides insight into the e�ects of model parameters on the stability

of the system. It implies that increases in marginal costs, ds and di will have a stabilizing

e�ect on market dynamics whereas an increase in the share of �rms that use the innovative

technology will (weakly) reduce the stability of the system. The proposition also generalizes

the Theocharis result: for ds = di = 0 we will only have stability for N − 1 < 2 or N = 2.

Clearly, when ds and di are su�ciently high the equilibrium is stable regardless of z.

Likewise, for su�ciently high N and low enough ds the equilibrium will always be unstable

for all z. In between these two extremes, there exists an interesting section of the parameter

space where the equilibrium is stable for large z (few innovators) and unstable for low z

(many innovators) .

An interesting parameter region is obtained when ds and di are such that the equilibrium

is stable for z = 1 and unstable for z = 0. This requires N̂(1) = 3 + ds > N > 3 + di = N̂(0)

which is the case in our leading numerical example. Obviously, if N̂(0) < N < N̂(1) there

exists a ẑ ∈ ]0, 1[ such that the �xed point q̄∗s is unstable for z ∈ [0, ẑ[ and stable for z ∈ ]ẑ, 1],

where:

ẑ =
(2 + ds) (N − 3− di)

(ds − di) (N − 1)
∈ ]0, 1[ (9)

4 Evolutionary dynamics with Nash players

In this section, we assume that agents always play the Nash equilibrium strategy in terms

of the quantity they supply, but switch production technologies based on their past perfor-

mance. The adjustment of the share of �rms employing a given technology will be governed

by a replicator equation and provide the only source of dynamic behavior for the model an-

alyzed in this section. We �rst describe the model set-up in general terms and then analyze
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two alternative speci�cations for the replicator equation: a sluggish replicator where only a

fraction of �rms can change strategy in each period and a noisy replicator where all �rms

switch at once except for a share of �rms that randomly and equiprobably mutate to one of

the two technological strategies.

4.1 General set-up

To be more precise on the structure of the problem faced by �rms and the timing of decision-

making, in time period t, the following steps happen in order:

1. Firms pay any �xed costs associated to their newly chosen production technology (i.e.

innovators pay K).

2. Firms �nd out the current population shares, they know zt.

3. Firms produce the Nash equilibrium quantities corresponding to the current population

shares, qNs (zt) and q
N
i (zt). Firms are randomly matched in groups of N . The market

clears and average pro�ts πNs (zt) and π
N
i (zt) are realized.

4. Update technological strategy: each �rm randomly samples another �rm from the �rm

population, if the selected �rm obtained a higher pro�t, the updating �rm imitates its

R&D strategy with probability proportional to the pro�t di�erence. This determines

the population shares in the next period, zt+1.

A strategy revision protocol like the one described in the fourth step of the setup above

can be approximated by an aggregate replicator equation describing how, for every current

population state, zt, average realized pro�ts π
N
s (zt) and π

N
i (zt) will determine the population

state in next period, zt+1, see Schlag (1998); Lahkar and Sandholm (2008); Hofbauer and

Sandholm (2009). Because we will explore two variants of the replicator equation, at this

phase, we generically refer to it by G
(
πNs (zt) , π

N
s (zt) , zt

)
.

Formally, the dynamic system de�ned above is a one-dimensional map and is fully de-

scribed by the following equations:

πNs (zt) =
1

2

(
1

Zt (N − 1) + 1

)2
1

2 + ds

πNi (zt) =
1

2

(
1

Zt (N − 1) + 1

)2
1

2 + di
−K

zt+1 = G
(
πNs (zt) , π

N
s (zt) , zt

)
,

(10)
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where Zt = zt
2+ds

+ 1−zt
2+di

.

Each �rm knows the current fraction of standard �rms, zt, and sets the Nash equilibrium

quantities corresponding to the current population shares and its own technology, expecting

all competitors to do likewise. In this sense, �rms have rational expectations because their

expectation of competitors' quantity is based on the actual population shares and the realized

Nash quantities. An alternative interpretation would be that the quantity and technology

adjustment processes take place on di�erent time scales with technology being updated less

often while quantities have su�cient time to converge to the Nash equilibrium between sub-

sequent technology decisions.

In the standard replicator speci�cation the updated strategy shares depend linearly upon

payo�s normalized by average population �tness. An alternative speci�cation is the Adjusted

Logit Dynamics derived in Dindo and Tuinstra (2011). While maintaining the same desirable

behavioral properties, it has the advantage of generating smoother dynamics and working

equally well when payo�s are negative - as may well be the case in our model. Applied to

our model with only two alternative strategies, the Adjusted Logit replicator is given by:

G
[
πNs (zt) , π

N
s (zt) , zt

]
=

zt exp
(
θπNs (zt)

)
zt exp (θπNs (zt)) + (1− zt) exp (θπNi (zt))

. (11)

In the following subsections we explore the dynamic properties of the one-dimensional

model described at the beginning of this section when the evolution of population shares is

driven by one of two possible extensions of the above replicator equation.

4.2 Dynamics with sluggish replicator

We now consider a particular form of the dynamic system in (10) with a sluggish replicator

equation, meaning that only a share 1 − δ of the �rm population updates their production

technology:

zt+1 = Gδ(zt)

= δzt + (1− δ)
zt exp

(
θπNs (zt)

)
zt exp (θπNs (zt)) + (1− zt) exp (θπNi (zt))

.
(12)

This speci�cation boils down to the Adjusted Logit Replicator for δ = 0.

In the analysis that follows it will be handy to denote the di�erence between the average
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pro�ts realized by the two types of �rms setting Nash quantities by:

ψ(z) = πNs (z)− πNi (z) = K − (2 + di)(ds − di)(2 + ds)

2 [(2 + ds)(1 + di +N)− (ds − di)(N − 1)z] 2
. (13)

Proposition 3 sums up the dynamic properties of the evolutionary model where �rms set

Nash equilibrium quantities and update their production technology based on past perfor-

mance. In conjunction with Proposition 1, it allows us to identify the steady state and make

a global analysis of its stability.

Proposition 3. Depending on the cost of using the innovative technology K, the dynamic

system speci�ed by equations (10) and (12) can have the following steady states and corre-

sponding stability properties governed by the intensity of choice parameter, θ, and K:

(a) z0 = 0, ∀K > 0, which is globally stable for K < K0 and unstable for K > K0, ∀θ;

(b) z1 = 1, ∀K > 0, which is unstable for K < K1 and globally stable for K > K1, ∀θ;

(c) z∗ ∈ ]0, 1[ , for K0 < K < K1, which is globally stable for θ < θ̂ and unstable for θ > θ̂,

where:

θ̂ = − 2

(1− z∗)z∗ψ′(z∗)(1− δ)
.

Notice that the instability threshold, θ̂, for the interior equilibrium, z∗, as de�ned in Proposi-

tion 3, depends on z∗ and therefore also depends on the value of K whenever K0 < K < K1.

While z0 = 0 and z1 = 1 are always steady states of the system, they are (globally) stable if

and only if they are also Nash equilibria of the static game, see Proposition 1.

Interestingly, the stability properties of the Nash equilibrium change smoothly as we

increaseK, while its nature qualitatively shifts from a homogeneous to a mixed and then again

to a homogenous population equilibrium. Figure 4 illustrates a nonlinear relation between

on the one hand, the instability thresholds θ̂ and θ̃ - which is the equivalent of θ̂ for the

model with technological switching and best-response quantity dynamics, see Proposition 4 on

page 32 - and the �xed cost of innovation on the other. WhenK ∈ ]K0, K1[ approaches either

of the interval boundaries, θ̂ tends to in�nity. This feature is a direct result of the updating

mechanism described by the replicator in (11).5 When only few �rms of either one type are

5If, for instance, we would have used the standard logit updating equation which is based on best-response
behavior rather than imitation of better performing strategies and, as a consequence, the exponentiated
payo�s are not weighted by population shares, then we would not have had the same result of increased
stability of the mixed equilibrium close to the boundaries.
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present in the equilibrium population, the probability that, following a perturbation, a �rm

of the predominant type will encounter a more pro�table �rm of the scarce type to imitate

its strategy is smaller compared to a situation when strategies are evenly distributed at

equilibrium. This means that around an equilibrium that is closer to the boundary there will

be comparatively less switching of strategies and therefore smoother readjustment towards

the equilibrium following a shock. The bifurcation diagrams in Figure 6 con�rm that the

interior steady state, z∗, tends to be more stable when K is close to K0 or K1 and unstable

for values of K located towards the center of the interval.

Notice also that the instability threshold, θ̂, is increasing in δ. Quite intuitively, the

smaller the share of �rms, 1−δ, that update their strategy the less likely will be the emergence

of overshooting behavior. Therefore, we �nd the standard Adjusted Logit replicator to be

more unstable than its sluggish extension.

Figure 4: Instability thresholds θ̂ and θ̃ as a function of K for N = 4, ds = 3
2
, di = 1

2

Numerical analysis6 con�rms the analytical results above showing the market can be

destabilized by overshooting in strategy adjustment, for high θ. Although all market vari-

ables, quantity, pro�ts and strategy shares, alternate above and below the steady state, they

never manage to converge to it. Inspecting the time-series plotted in Figure 5 we see that

6With the exception of the numerical analysis in Section 6 and the bifurcation diagrams with randomized
initial conditions in Figures 17, 23 and 24, all numerical simulation results presented in this paper were
powered by the unmatched speed of execution of the E&F Chaos, the user-friendly software for nonlinear
dynamic analysis developed at CeNDEF, University of Amsterdam. For a presentation of its capabilities see
Diks et al. (2008).
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the economic mechanics of this result is fairly simple. When zt is below its steady state

value, as is the case in period 1000, both types of �rms will underproduce compared to

the mixed equilibrium output. This happens because quantities are strategic substitutes in

Cournot games and expected average competing output is decreasing in z. Therefore, �rms

will expect competitors to produce more than Q̄∗N−1 when zt < z∗ and react accordingly by

producing too little. This means that second-stage Nash pro�ts in (10) will both be below

the steady state value, but more so for innovators who will not be able to compensate their

�xed innovation costs by selling a large enough output: as shown in Section 2, we will have

πNs (zt) > πNi (zt). This determines a switch towards the standard strategy, but because the

intensity of choice is too high, the steady state z∗ is overshot and now the opposite is true,

with πNs (zt) < πNi (zt) determining another overzealous switch towards innovation.
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Figure 5: Evolutionary strategy switching by sluggish Adjusted Logit replicator and Nash
quantity setting: chaotic time series after a relaxation time of 1000 periods for the share of
standard �rms, zt, standard �rm output, qs,t, and pro�ts of standard and innovating �rms,
πs,t and πi,t. Parameters are based on the leading numerical example, with K = 0.016 with
N = 4, ds = 3

2
, di = 1

2
, θ = 10, 000, and δ = 0.25.

Interestingly, when starting close to the steady state, successive �uctuations increase in

amplitude, this is to be expected, since the further away we are from the steady state, the

higher the pro�t di�erence, see also Figure 1. However, once zt moves further away from the

19



steady state7, �uctuations will undergo a strong dampening, and although still overshooting

z∗, zt will come very close to it before again starting to oscillate away.8

Comparing results for di�erent choices of the sluggishness parameter, δ, outlines a remark-

able di�erence between the model dynamics with the standard Adjusted Logit compared to

the sluggish replicator. Figures 6 and 7 show how only a small amount of sluggishness is

enough to tame the system into a less complicated pattern. According to the results depicted

in Figure 8 the small pocket of unruly dynamics generated by the Adjusted Logit replica-

tor disappear for δ > 0.05. As we further increase δ, we can have, for su�ciently high θ,

qualitatively di�erent types of dynamics. This is illustrated by Figures 6, 7 and especially

8. For low levels of δ, an over-shooting two-cycle exists for a considerable range of values of

K ∈ ]K0, K1[ provided the intensity of choice, θ, is high-enough. As δ increases, cycles of

higher order as well as chaotic dynamics - as displayed in Figure 5 - become possible while at

the same time the range of the �uctuations becomes smaller.9 As δ approaches 1, stability is

eventually restored. This parallels the result of Diks et al. (2013) where introducing memory

in the �tness function used for strategy updating in an evolutionary model of innovation and

imitation quantitatively reduced system instability (lower amplitude of �uctuations) while

also increasing it in a qualitative sense (creating a bifurcation route to chaos). Although our

model di�ers in the exact speci�cation of �tness and of the evolutionary dynamics10, increas-

ing δ in our model has very similar e�ects on the shape of the dynamic map as increasing the

weight of past pro�ts has on the one-dimensional map analyzed by Diks et al. (2013, p. 812):

it simply shifts weight towards the linear increasing component of a map that, as in their

paper, is �a convex combination of a linear increasing and a non-linear decreasing map�, see

also Figure 12 for a graphical representation of the map for various parameter combinations.

7When the steady state is below 1
2 a mirroring scenario ensues with larger overshooting above the steady

state followed by a return to small but increasingly ample oscillations around the steady state.
8It is hard to give a convincing economic interpretation to this observation, but inspection of the dynamic

map, see representation in the lower right corner of Figure 12, hints that what we observe is generated by
its asymmetric tent-like shape with a �at-sloping, increasing linear component given by δzt and the locally

decreasing nonlinear component (1− δ) zt exp(θπN
s (zt))

zt exp(θπN
s (zt))+(1−zt) exp(θπN

i (zt))
.

9Inspection of Figure 8 shows a fairly large parameter range where the system converges to a stable three-
cycle, for su�ciently high θ. According to Li and Yorke (1975) this is su�cient grounds to infer that our
one-dimensional system exhibits chaotic �uctuations.

10Here, a fraction δ of the population does not update its strategy whereas in their model the �tness
function which evaluates the performance of a strategy is a weighted average of past pro�ts. Translated to
our notation, the evolutionary dynamics used by Diks et al. (2013) would read:

zt+1 =
exp (θUs,t)

exp (θUs(zt)) + exp (θUi(zt))

with Uj,t = ωUj,t−1 + (1− ω)πNj (zt).

20



Figure 6: Evolutionary strategy switching by sluggish Adjusted Logit replicator with Nash
quantity setting: bifurcation diagrams for the share of standard �rms, zt, over parameter K,
for N = 4, ds = 3

2
, di = 1

2
, θ = 10, 000, for various levels of sluggishness (a)δ = 0 (b)δ = 0.05;

(c) δ = 0.25; (d) δ = 0.5; (e) δ = 0.75.
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Figure 7: Evolutionary strategy switching by sluggish Adjusted Logit replicator and Nash
quantity setting: bifurcation diagram in (θ,K) space for N = 4, ds = 3

2
, di = 1

2
, z0 = 0.5 and

(a) δ = 0, (b) δ = 0.01, (c) δ = 0.10, (d) δ = 0.5.
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Figure 8: Evolutionary strategy switching by sluggish Adjusted Logit replicator and Nash
quantity setting: bifurcation diagram in (δ, θ) space for, N = 4, ds = 3

2
, di = 1

2
, z0 = 0.5 and

(a) K = 0.012, (b) K = 0.013, (c) K = 0.014, (d) K = 0.015, (e) K = 0.016,
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In examining Figure 7(a) one may be surprised to notice the upper right portion of the

parameter space that seems to converge to a stable steady state according to our numerical

results. This may seem even more surprising if we take into account that this apparent

convergence tends to happen for higher intensity of choice, (θ >∼ 10000). However, on closer

inspection, we �nd that the system does not actually converge to the mixed Nash equilibrium

steady state there, but instead it becomes �stuck� in the steady state with standard �rms

only, z = 1. As argued above, this state cannot be a stable steady state of the system as long

as it is not the Nash equilibrium. What we actually observe in Figure 7(a) is a numerical

issue that the standard Adjusted Logit Replicator is prone to fall prey to. When, as far

as machine precision can distinguish, zt becomes equal to 1 the replicator equation in (11)

becomes a trivial equality and the system can no longer change its state. It is useful to note

that while the sluggish extension to the replicator equation in (14) also becomes a trivial

equality for zt = 1, the fact that a portion of the �rms, δ, does not update their strategy, is

enough to keep the system far enough from the border so that it does not become stuck in

the same way.

4.3 Dynamics with noisy replicator

An alternative to the sluggish replicator dynamic analyzed in the previous subsection is the

following speci�cation:

Gρ

(
πNs (zt) , π

N
s (zt) , zt

)
= ρ+ (1− 2ρ)

zt exp (θπ∗s(zt))

zt exp (θπ∗s(zt)) + (1− zt) exp (θπ∗i (zt))
(14)

This speci�cation also reduces to the Adjusted Logit replicator when we set ρ = 0.

Here the whole population can change strategy in every period, however only a share

1 − 2ρ does so according to the pro�tability of each strategy. The remaining, 2ρ �rms take

up a strategy at random, which results in the fact that there will be at least ρ �rms in

every period employing each strategy. This means that zi = ρ and zs = 1 − ρ are the two

extreme values that zt can take, but they can only be asymptotically approached for very

high intensity of choice when one of the pure strategies is dominant, that is when θ → ∞.

For π∗s (z) > π∗i (z) , ∀z (i.e. K < K0) we have z → ρ and conversely for K > K1 we will

have z → 1− ρ.
Computing the �xed points of the map can no longer be done analytically, since it would

involve solving for z in:
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z = ρ+ (1− 2ρ)
z exp (θπ∗s(z))

z exp (θπ∗s(z)) + (1− z) exp (θπ∗i (z))
.

Notice also, that the interior equilibrium point where both types of �rm make the same

pro�ts for K0 < K < K1, z∗, as de�ned in Proposition 1 is no longer a steady state of the

dynamic system. This is obvious when either z∗ < ρ or z∗ > 1 − ρ. For ρ < z∗ < 1 − ρ,
whenever zt = z∗ the map in (14) boils down to:

zt+1 = z∗ + ρ(1− 2z∗)

meaning that only when z∗ = 1
2
will the dynamic map also be at a steady state. Otherwise,

the steady state will be above z∗ when z∗ < 1
2
and below z∗when z∗ > 1

2
. Exactly how far

z∗ is from the steady state of the noisy replicator will also depend on the size of the noise

parameter ρ.

Figure 9: Evolutionary strategy switching and Nash quantity setting: comparison of the �xed
point of the noisy Adjusted Logit replicator (intersection of dashed line with the horizontal
axis) against the Quantal Response Equilibrium (intersection of the dotted line with the
horizontal axis). Both intersections are found between the Nash equilibrium with mixed
population, z∗ and 1

2
. Parameters: N = 4, ds = 3

2
, di = 1

2
, K = 0.013 in panel (a) and

K = 0.016 in panel (b); ρ = 0.05, θ = 100, λ = 100.

In this sense, the noisy Adjusted Logit replicator relates to the Quantal Response Equilib-

rium of McKelvey and Palfrey (1993). In both cases, the �xed point is shifted from the mixed
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Nash equilibrium towards towards 1
2
, see Figure 9. Moreover, the extreme case where the

noise parameter, ρ = 1
2
, leads the same outcome of random choice between the two strategies

as setting the rationality parameter of their speci�cation, λ, to zero.

In Figure 10 and 11 we can see bifurcation diagrams of the system with noisy replicator.

A two-cycle typically occurs for large enough θ and when noise is very small we can also

observe higher order cycles and chaotic �uctuations11, however increasing ρ greatly reduces

the complexity of the dynamics generated by the system in general, as well as it reduces the

range of K for which the interior �xed point is unstable.

Figure 10: Evolutionary strategy switching by noisy Adjusted Logit replicator and Nash
quantity setting: bifurcation diagrams over parameter K, for N = 4, ds = 3

2
, di = 1

2
,

θ = 5, 000, for various levels of noise (a)ρ = 0.001; (b) ρ = 0.01; (c) ρ = 0.05; (d) ρ = 0.35.
The variable represented is zt after T = 1000 iterations.

11This is most likely a legacy of the standard Adjusted Logit replicator, see also Figure 6(a).
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Figure 11: Evolutionary strategy switching by noisy Adjusted Logit replicator and Nash
quantity setting: bifurcation diagram in (θ,K) space for N = 4, ds = 3

2
, di = 1

2
, z0 = 0.5 and

(a) ρ = 0, (b) ρ = 0.005, (c) ρ = 0.01, (d) δ = 0.35.
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Figure 12: Evolutionary strategy switching with Nash quantities: comparing the replicator
maps for N = 4, ds = 3

2
, di = 1

2
and various combinations of parameters K, θ, δ and ρ. Noisy

replicator in black, sluggish replicator in gray.
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Even though the maps of the two evolutionary processes, the noisy replicator and the

sluggish replicator, bear a striking analytical and graphical resemblance, see Figure 12, the

dynamics generated by them are visibly di�erent. Most importantly, while decreasing the

amplitude of �uctuations, raising the parameter ρ does not increase the complexity of the

dynamics as an increase in δ does for the sluggish replicator. This is because increasing δ also

a�ects the slope of the exterior segments of the map, located before the �rst in�ection point

and after the third in�ection point. Contrarily, increasing ρ leaves these segments parallel to

the horizontal axis and increases their size, making it easier for the system to converge to a

stable two-cycle. In both cases, increasing δ and ρ seem to reduce the absolute value of the

slope of the map at the intersection with the �rst diagonal - making the mixed steady state

more stable - but this e�ect is stronger for the noisy replicator map than for the sluggish

replicator one.

5 Evolutionary dynamics with best reply quantities

In this subsection, we assume that agents play the best response to the quantity they expect

their competitors will supply and switch production technologies based on their past perfor-

mance. Firm behavior, in time period t, can be broken down into four steps that take place

in the following order:

1. Firms pay any �xed costs associated with their newly chosen production technology

(i.e. innovators pay K).

2. Firms �nd out the average output in the previous period:

Q̄N,t−1 = N (zt−1qs,t−1 + (1− zt−1) qi,t−1)

and, based on it, they construct their myopic expectations of how much their competi-

tors will produce in t, Q̄e
N−1,t = N−1

N
Q̄N,t−1.

3. Firms produce the best response quantity qs,t = Rs

(
Q̄e
N−1,t

)
and qi,t = Ri

(
Q̄e
N−1,t

)
.

They are randomly matched in groups of N . Market clearing for each group leads to

the realization of �rm pro�ts in time period t.

4. Firms update their technological strategy: each �rm randomly samples another from

the �rm population, if the selected �rm obtained a higher pro�t, the updating �rm

imitates its R&D strategy with probability proportional to the pro�t di�erence.
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Notice that, compared to the event sequencing in Section 4 step 2 di�ers in what infor-

mation is known. Whereas in the model with Nash quantities �rms know current period, t,

population shares and produce the corresponding �second-stage� Nash quantities, here �rms

only know the output in the past period, t− 1, which incorporates information on past pop-

ulation shares, zt−1 instead of current population shares zt. In this sense the �rms of this

section are not only lacking the Nash �formula� for competitively optimum production, but

they also lack some of the information on which the utilization of one such formula rests.

The best reply quantity dynamics are given by:

qj,t = Rj

(
Q̄e
N−1,t (zt−1, qs,t−1)

)
= max

{
1− (N − 1) [zt−1qs,t−1 + (1− zt−1) qi,t−1]

2 + dj
, 0

}
; j ∈ {i, s}

As in the previous sections, the above equation implies that qi,t = qs,t
2+ds
2+di

, and again, we

have qi,t > qs,t; innovators always produce more than standard �rms. The dynamics can

therefore be modeled by a two-dimensional map specifying best-response quantity dynamics

and evolutionary dynamics for the population shares.

In explicit term, the dynamical system under investigation is given by:


qs,t = Rs

(
Q̄e
N−1,t (zt−1, qs,t−1)

)
= max

{
1

2 + ds
− (N − 1)

[
zt−1

2 + ds
+

1− zt−1

2 + di

]
qs,t−1, 0

}
zt = G (πs,t−1, πs,t−1; zt−1)

(15)

where

πs,t−1 (zt−1, qs,t−1) =

[
1− qs,t−1 − (N − 1)

[
zt−1 + (1− zt−1)

2 + ds
2 + di

]
qs,t−1 −

1

2
dsqs,t−1

]
qs,t−1

(16)

and

πi,t−1 (zt−1, qs,t−1) =

[
1− qi,t−1 − (N − 1)

[
zt−1 + (1− zt−1)

2 + ds
2 + di

]
qs,t−1 −

1

2
diqi,t−1

]
qi,t−1−K

(17)

are �rm pro�ts realized in t − 1 and G (πs,t−1, πs,t−1; zt−1) generically speci�es how current

population shares depend on past pro�ts.
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As we did in the previous section, it is convenient to denote the pro�t di�erential of the

two strategies by:

Ψ (z, q) = πs (z, q)− πi (z, q) . (18)

Notice that, in contrast to ψ (z) from (13), Ψ (z, q) is now a function of two variables that

drive the dynamics of our model.

5.1 Dynamics with sluggish Replicator

We �rst investigate the steady states of (15) and their stability when:

Gδ (πs,t, πs,t, zt) = δzt + (1− δ) zt exp (θπs,t)

zt exp (θπs,t) + (1− zt) exp (θπi,t)
. (19)

As in the previous section, see Proposition 3, the population structures with homoge-

nous technology, z0 and z1 - with corresponding values for qs are steady states of the two-

dimensional system as well. Therefore for all K0 < K < K1 we have three steady states:

(zSS, qSS) ∈
{(

0,
2 + di

(2 + ds) (1 + di +N)

)
,

(
1,

1

(1 + ds +N)

)
, {z∗, q∗}

}
,

where z∗ is de�ned by Proposition 1. When there is no mixed population Nash equilibrium,

{z∗, q∗}, the dynamic system will have only two steady states.

As long as they do not coincide with the Nash equilibrium, the border steady states with

homogenous population cannot be stable. The homogeneous populations states are �xed

points of the map only due to the population weighted speci�cation of the replicator, while

pro�ts of the two types of �rms are unequal with πs

(
0, 2+di

(2+ds)(1+di+N)

)
> πi

(
0, 2+di

(2+ds)(1+di+N)

)
and πs

(
1, 1

(1+ds+N)

)
< πi

(
1, 1

(1+ds+N)

)
. Therefore, for any small perturbation in population

shares the replicator equation will drive the system away from the border.

As for the stability of the steady state with a mixed population, we can establish necessary

and su�cient conditions for stability. The interior equilibrium where both types of �rms

are present loses stability either for a su�ciently high intensity of choice - technological

instability, or may never be stable when the quantity best-reply function is unstable due to

high N - production instability. Proposition 4 establishes necessary and su�cient conditions

for technological instability as long as the system is not production unstable.
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Figure 13: Contour Plot of θ̃ in (N,K) space with 3D representation below. Parameters:
ds = 1.5, di = 0.5 , δ = 0.25.

Proposition 4. If a Nash equilibrium with mixed �rm population, (z∗, q∗), exists, it is a

stable steady state of the system in (15) with replicator speci�cation (19) i�. θ < θ̃ =
2(N−1)(2+di)(2q

∗
s (2+ds)−1)

(1−δ)(2+ds)q∗s [(2+ds)(1+di+N)q∗s−2−di][1−(1+ds+N)q∗s ]

As θ is an intensity of choice parameter, it should be constrained to θ > 0, otherwise

�rms will switch towards the less pro�table strategy. Notice that from the expression of θ̃, we
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cannot be certain it is always positive. It is arranged to display only positive factors with the

exception of the expression 2q∗s (2 + ds)−1, which is of ambiguous sign. On closer inspection

we obtain the following corollary which is essentially a study of whether the threshold θ̃ is

positive or negative.

Corollary 2. Depending on the relation between parameters, N , K, ds and di the stability

of the equilibrium with mixed �rm population fall in one of the following three cases:

(a) When N > 3 + ds, the mixed equilibrium is never stable (θ̃ < 0);

(b) When N < 3 + di, the mixed equilibrium can be stable for a su�ciently low, but positive,

intensity of choice, 0 < θ < θ̃;

(c) When 3 + di < N < 3 + ds, there is a threshold, K̂ (θ) such that the mixed equilibrium

will be stable for a su�ciently low intensity of choice, 0 ≤ θ < θ̃ if K > K̂ and never

stable for K < K̂. For the limit case θ = 0 we have K̂ (θ) = ds−di
8(2+ds)(2+di)

Figures 13, 14 and 15 illustrate Proposition 4 and Corollary 2 focusing on our leading nu-

merical example. In Figures 15 and 14 we use both numerical simulation and the analytical

results derived above for veri�cation. Notice that our leading numerical example falls under

case (c) of Corollary 2. In inspecting Figure 13 one should keep in mind that only the region

between the curves K0 (N) = (2+di)(ds−di)
2(2+ds)(N+1+di)

2 and K1 (N) = (2+ds)(ds−di)
2(2+di)(N+1+ds)2

characterizes the

stability of the mixed equilibrium. Below K0 (N) the unique Nash equilibrium consists of

innovative �rms only while above K1 (N) we only have standard �rms. The boundaries N0

and N1 in Figure 15 refer to the positive inverses with respect to N of K0 (N) and K1 (N)

respectively.

The results summarized by Corollary 2 above correspond to Proposition 2 discussed in

Section 3. It is interesting to compare the threshold K̂ with the threshold ẑ that we identi�ed

in Section 3, where the only source of dynamics was production best-reply, by comparing to

ẑ de�ned in equation (9), It turns out that we have precisely:

z∗
(
K̂
)

= ẑ. (20)

Comparing Corollary 2 against Proposition 2 we can conclude that technology choices do

not alter the stability properties of the system on the dimension capturing production insta-

bility via parameter N. The boundary case of no technological instability, θ = 0, corresponds

exactly to the model with exogenously given population shares. This is not surprising, since
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Figure 14: Bifurcation diagram in (K, θ) space with θ̃ superimposed. Parameters: ds = 1.5,
di = 0.5 , N = 4, δ = 0.25. The bifurcation diagram separates regions of the parameter space
converging to a stable steady state (white) from regions converging to a two cycle (gray) after
10000 iterations from system initialization very close to the steady state: (qs,t=0, zt=0) =
(q∗s ± 10−5, z∗ ± 10−5).

(15) collapses to only one equation for quantity dynamics with constant zt = zt=0, when the

sluggish Adjusted Logit replicator with θ = 0 is plugged in for G (πs,t−1, πs,t−1; zt−1).

By comparing θ̃ de�ned in the above Proposition and θ̂, derived in Proposition 3 we

obtain the following corollary result:

Corollary 3. It always holds that θ̂ > θ̃.

This means that technological instability of the mixed equilibrium is always ampli�ed

when �rms set best response quantities compared to when they set Nash quantities. This is

illustrated in Figure 4 for our leading numerical example.
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Figure 15: Bifurcation diagram in (N, θ) space with θ̃ superimposed . Parameters: ds = 1.5,
di = 0.5 , K = 0.016, δ = 0.25. The bifurcation diagram displays system convergence after
10000 iterations from system initialization very close to the steady state: (qs,t=0, zt=0) =
(q∗s ± 10−5, z∗ ± 10−5).

5.2 Noisy Replicator

The two dimensional system under consideration here is: qs,t+1 = Rs(Q
e
t+1) = max

{
1

2+ds
− (N − 1)

[
zt

2+ds
+ 1−zt

2+di

]
qs,t, 0

}
zt+1 = ρ+ (1− 2ρ)z(t) exp(θπs,t)

z(t) exp(θπs,t)+(1−zt) exp(θπi,t)

(21)

Much like in Section 4.3 we cannot solve analytically for the steady states of the system

when the evolution of population shares is governed by the noisy replicator equation, nor can

we make any formal statements about their stability. However, numerical simulations of the

above equations can provide a robustness check, at least in qualitative terms, of the results

obtained for the sluggish replicator.
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5.3 Numerical Analysis

5.3.1 Sluggish Replicator

Figure 17 shows bifurcation diagrams of the sluggish replicator model over parameter K for

di�erent values of δ. We notice that this time around, the amount of sluggishness in strategy

adjustment has an ambiguous e�ect on the complexity of the dynamics. An increase from

δ = 0.05 to δ = 0.25 eliminates all cycles of higher period than 4, but a further increase to

δ = 0.5 supports even chaotic dynamics. Also, δ seems to no longer have an impact on the

range of �uctuations as it did in the model with Nash quantities.

Inspecting the time series generated by the model in Figure 16 we �rst notice that market

variables no longer gravitate around the steady state, as was the case with Nash output in

Section 4. Comparing the times-series of pro�ts with those of quantities and share of standard

�rms respectively we notice that quantity variation seems to account for much more of the

pro�t variation than does the dynamics of the share of standard �rms. Still, the role of

population shares is not negligible: it is through the dynamics of zt that quantity dynamics,

in contrast to the results of pure best-reply dynamics of Section 3, are bounded away from the

two-cycle generated by the non-negativity constraint we imposed on the best-reply function,

yet without converging to the steady state. According to Corollary 2 we are in a parameter

region where, in the absence of technological switching, the market would converge to the

steady state mixed equilibrium. We actually do observe a dampening of the �uctuations of

qs,t for the �rst four periods plotted, but, because the intensity of choice is so high, as soon

the pro�t of being an innovator becomes even slightly higher than the pro�ts of the standard

strategy, as is the case in t = 1002, the share of standard �rms subsequently plummets below

the threshold12 ẑ in t = 1003. This then leads to the wider �uctuation in qs,t in period

t = 1004. This pattern then repeats over the next four periods with only slight variation in

the exact values of market variables.

Comparing, Figure 18 with Figure 11 we �rst notice that the upper and lower bounds on

�xed innovation costs, K1 and K0 no longer play the same clear cut role in distinguishing

between unstable regions and parameter combinations converging to a homogenous popula-

tion equilibrium. We are not surprised to see this for K < K0 since our analytical results

already clari�ed that the steady state with only innovating �rms cannot be stable, even when

it coincides with the Nash equilibrium because of production instability. Even for K > K1

the diagrams often show non-convergence to the steady state in spite of the fact that we

know the steady state with standard �rms is locally stable. What we �nd instead, as we

12See equation(20).

36



show in more detail below, is that initial conditions are important in determining whether

or not the system will converge to this steady state.

Figure 16: Best-response dynamics with evolutionary switching given by sluggish Adjusted
Logit replicator: eight-cycle time series after a relaxation time of 1000 periods for the share
of standard �rms, zt, standard �rm output, qs,t, and pro�ts of standard and innovating �rms,
πs,t and πi,t. Parameters are based on the leading numerical example, with K = 0.016 with
N = 4, ds = 3

2
, di = 1

2
, θ = 3200, and δ = 0.25.

When population dynamics are driven by the standard Adjusted Logit Replicator, δ = 0,

the model has the same problem we saw in the previous section: it becomes stuck in the
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homogeneous population state with standard �rms because zt moves too close to its upper

bound for machine precision to be able to distinguish it from 1. The di�erence here is that

this can happens for much smaller θ. This is because quantity �uctuations can create much

larger gaps between the pro�ts of the two strategies, especially in favor of the standard �rms.

Another remarkable di�erence is the presence of a limit cycle for small δ and θ, see the

smaller yellow region that slashes into the gray two-cycle area in panels (b) and (c) of Figure

18. This cycle is similar to the limit cycle that separates the two-cycle from the region that

converges to the steady state with standard �rms only in panel (a) of Figure 18.

Figure 19 displays phase diagrams of the system in the (qs, z) space, for di�erent values

of K. When the innovative technology is cheap (e.g. K = 0.005), qs runs a 4-cycle that

hits the lower boundary13 of 0 output every 4 periods. As we increase K, a period-doubling

bifurcation occurs, then a strange attractor with fractal structure appears, see Figure 20, on

and o�, until at K = 0.01248 it breaks o� into a 12-cycle and then a 6-cycle at K = 0.01412.

At K = 0.0162 the same complicated attractor emerges again and for K = 0.01748

the attractor settles back into an 8-cycle which goes through consecutive period halving

bifurcations at K = 0.0175 and K = 0.01795. At K = 0.0194 the two-cycle loses stability

and the only attractor left is the stable steady state that had emerged at K = K1.

In Figure 17, the initial values for z and qs are random draws, so multiple attractors can

be present in each diagram. This in indeed the case for both δ = 0.05 and δ = 0.25 when

K > K1. While (z∗, q∗) = (1, 0.1538) becomes a stable steady state14 it is only locally stable

and most initial conditions actually converge to the complex attractor, see Figure 21(a).

Moreover, for δ = 0.05 a second complex attractor appears for 0.0181 < K < 0.0183 as can

be better seen from the zoom-in in panel (b) of Figure 17 and in Figure 21(b). Interestingly,

when the two complex attractors coexist their basins of attraction are fractal. Two complex

attractors with fractal basins also coexist at K = 0.01624 one is a 6-cycle the other is a

higher order cycle, see Figures 19 and 22.

13Up to K = 0.0112, the attractors constantly hit the 0 output bound we impose on the best-reply
function in (15). For higher K this no longer happens and the quantity dynamics generated by system 15
are intrinsically bounded. Encouragingly, whether or not the extra restriction qs ≥ 0 is binding the attractor
or limit cycle looks very similar.

14The best-response dynamics is locally stable for a population consisting of only standard �rms and
standard �rms make higher pro�ts than innovative �rms for K > K1.
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Figure 17: Best-response dynamics with evolutionary switching given by sluggish Adjusted
Logit replicator: bifurcation diagrams for qs over parameter K, for N = 4, ds = 3

2
, di = 1

2
,

θ = 2, 000. δ = 0.05, (a) and (b) panels δ = 0.25 in panel (c) and δ = 0.5 in panel (d) and.
Initial values (zt=0, qs,t=0) are drawn from a bivariate uniform distribution with support on
[0, 1]× [0, 0.3].
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Figure 18: Best-response dynamics with evolutionary switching given by sluggish Adjusted
Logit replicator: bifurcation diagram in (θ,K) space forN = 4, ds = 3

2
, di = 1

2
, (zt=0, qs,t=0) =

(0.5, 0.15) and (a) δ = 0, (b) δ = 0.01, (c) δ = 0.1, (d) δ = 0.25, (e) δ = 0.5.
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Figure 19: Best-response dynamics with evolutionary switching given by sluggish Adjusted
Logit replicator: phase diagrams for (qs (t) , z (t)) with quantity on the horizontal axis and
share of standard �rms on the vertical axis. N = 4, ds = 3

2
, di = 1

2
, θ = 2, 000. δ = 0.05
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Figure 20: Best-response dynamics with evolutionary switching given by sluggish Adjusted
Logit replicator: zoom-in reveals fractal structure of strange attractor. Phase diagram for
(qs (t) , z (t)) with quantity on the horizontal axis and share of standard �rms on the vertical
axis. N = 4, ds = 3

2
, di = 1

2
, θ = 2, 000. δ = 0.05, K = 0.01234

5.3.2 Noisy Replicator

Figures 23 and 24 show bifurcation diagrams for the two dimensional system with mutation

in (21). Compared to the system with sluggish adjustment, the dynamics seem more tame.

In particular there is no coexistence of complex attractors, but we do still observe, as shown

by Figure 25, the coexistence of a nontrivial attractor and the locally stable steady state

for K > K1 with basins of attraction very similar to those plotted in Figure 21. Instead

of the strange attractor observed with sluggish adjustment, the most complicated dynamics

generated with the noisy replicator is a limit cycle, see Figure 26.
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Figure 21: Best-response dynamics with evolutionary switching given by sluggish Adjusted
Logit replicator: co-existing attractors. Basins of attraction for N = 4, ds = 3

2
, di = 1

2
,

θ = 2, 000. δ = 0.05, (a) K = 0.018 and (b) K = 0.01815

Figure 22: Best-response dynamics with evolutionary switching given by sluggish Adjusted
Logit replicator: co-existing attractors. Basin of attraction for N = 4, ds = 3

2
, di = 1

2
,

θ = 2, 000. δ = 0.05, K = 0.01624
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Figure 23: Best-response dynamics with evolutionary switching given by noisy Adjusted
Logit replicator: bifurcation diagrams for qs over parameter K, for N = 4, ds = 3

2
, di = 1

2
,

θ = 2, 000. ρ = 0.05 in panel (a), ρ = 0.25 in panel (b). Initial values (zt=0, qs,t=0) are drawn
from a bivariate uniform distribution with support on [0, 1]× [0, 0.3].
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Figure 24: Best-response dynamics with evolutionary switching given by noisy Adjusted
Logit replicator: bifurcation diagrams for qs over parameter K, for N = 4, ds = 3

2
, di = 1

2
,

θ = 1, 000. ρ = 0.05 in panel (a), ρ = 0.25 in panel (b). Initial values (zt=0, qs,t=0) are drawn
from a bivariate uniform distribution with support on [0, 1]× [0, 0.3].
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Figure 25: Best-response dynamics with evolutionary switching given by noisy Adjusted Logit
replicator: co-existing attractors. Basins of attraction for N = 4, ds = 3

2
, di = 1

2
, θ = 2, 000.

ρ = 0.05, K = 0.018

Figure 26: Best-response dynamics with evolutionary switching given by noisy Adjusted
Logit replicator: limit cycle. Phase diagrams over parameter K, for N = 4, ds = 3

2
, di = 1

2
,

θ = 2, 000. ρ = 0.05 for di�erent values of K
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6 Welfare and innovation policy

We consider here a variation of the core model that includes innovation policy under the

form of a tax and/or a subsidy. In this context we compare welfare outcomes as a function of

policy at both the equilibrium and, when the equilibrium is not stable, along the trajectories

generated by the model.

With taxes (or subsidies) to standard �rms τs and to innovators, τi, the pro�t functions

for the two strategies become:

π̃s =
[
1− qs − Q̄N−1 (z)− 1

2
dsqs

]
qs + τs

π̃i =
[
1− qi − Q̄N−1 (z)− 1

2
diqi
]
qi −K + τi

(22)

Notice that �rms' best replies remain unchanged by the introduction of taxation, it is only

the average pro�ts for the two distinct technology strategies that change. This essentially

means our previous analysis around parameter K, established by Proposition 1, can be

applied to the pro�t functions de�ned above in (22) to obtain a similar result by simply

substituting K̃ = K − τi + τs for K. Likewise, we will extend the notation with a tilde for

all quantities pinned down by Proposition 1: by substituting K̃ for K in the expression of

the interior equilibrium fraction of �rms, z∗, we obtain the equilibrium share of standard

�rms in the presence of innovation policy: z̃∗ = 2+ds
ds−di + (2+di)

(N−1)(ds−di)

[
2 + ds − 1

q̃∗s

]
, where q̃∗s =√

2(2+di)K̃
(ds−di)(2+ds)

. As was the case without policy, the latter expression for z̃∗ only characterizes

the Nash equilibrium share of �rms as long as K0 ≤ K̃ ≤ K1, where K0 and K1 are the lower

and upper bounds for innovation costs de�ned in Proposition 1. When K0 > K̃, z̃∗ = 0 and

when K1 < K̃, z̃∗ = 1. Another implication of Proposition 1 is that, by setting taxes and/or

subsidies, the policy maker can change the nature of the market equilibrium between the

three possible cases: standard �rms only, mixed �rm population and innovative �rms only.

By evaluating Nash equilibrium pro�ts in (5) at z̃∗ and adding τs for standard �rms and

τi for innovators we obtain the average realized equilibrium pro�ts with policy for the two

types of �rms:

π̃s = πNs (z̃∗) + τs

π̃i = πNi (z̃∗) + τi.
(23)

Without the tax/subsidy component, the average pro�ts, πNs (z̃∗) and πNi (z̃∗) can be
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used15 for computing total industry pro�ts at an equilibrium given by z̃∗ ∈ [0, 1], :

TIP (z̃∗) = N
[
z̃∗πNs (z̃∗) + (1− z̃∗) πNi (z̃∗)

]
=
N

2

(2 + di) (2 + ds) (2 + ds (1− z̃∗) + diz̃
∗)

[(2 + ds) (N + 1 + di)− z̃∗ (ds − di) (N − 1)]2
−KN (1− z̃∗) .

(24)

Average consumer surplus can be computed as the average utility obtained by consumers

at equilibrium:

CS =
1

2

N∑
k=0

(
N

k

)
(z̃∗)k (1− z̃∗)N−k [kq̃∗s + (N − k) q̃∗i ]

2 .

Using Proposition 1 we can express q̃∗s as a function of z̃∗:

q̃∗s =
2 + di

(2 + ds) (N + 1 + di)− z̃∗ (ds − di) (N − 1)

and compute consumer surplus as a function of the equilibrium share of standard �rms:

CS (z̃∗) =
N

2

[
(ds − di)2 (1− z̃∗) z̃∗ +N (2 + ds (1− z̃∗) + diz̃

∗)2]
[(2 + ds) (N + 1 + di)− z̃∗ (ds − di) (N − 1)]2

. (25)

We denote by W (z̃∗) total welfare at a regulated equilibrium where:

W (z̃∗) = TIP (z̃∗) + CS (z̃∗) .

Unfortunately, the expressions for total industry pro�ts and consumer surplus de�ned

above are so complex that it is impossible to obtain a tractable analytical solution to wel-

fare maximization - a K̃ which maximizes W (z̃∗). Proposition 5 o�ers instead a generic

characterization of optimal policy in terms of the model parameters.

Proposition 5. Depending on innovation cost parameter K, a benevolent social planner will

optimally induce a Nash equilibrium by setting taxes and/or subsidies, τs and τi such that:

(a) Standard �rms are driven out of the market, when K < K̃0.

(b) No innovators are operating in the market, when K > K̃1.

15Alternatively we could compute welfare based on the expressions for equilibrium pro�ts and output as
functions of the model parameters given in Corollary 1. Using these leads to identifying K̃∗ from the solution

to a third order equation in
√
K̃. Unfortunately the expression is very complex and we prefer expressing

welfare as a function of z̃, which gives the advantage of easy inspection of the border scenarios in Proposition
5.
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(c) Firm population shares are driven to a unique z̃w = arg maxW (z̃∗) , z̃w ∈ ]0, 1[ when

K̃0 < K < K̃1.

The thresholds K̃0 < K̃1 are given by:

K̃0 =
(ds − di)

2 (2 + ds)
2 (N + 1 + di)

3 [(ds + di + dids) (N + 1 + di) + 2(2 + di)(3 + di + ds +N)]

K̃1 =
(ds − di)

2 (2 + di)
2 (N + 1 + ds)

3 [(ds + di + dids) (N + 1 + ds) + 2(2 + ds)(3 + di + ds +N)]

and it always holds that K̃1 > K1.

The results collected in the above proposition, which is proven in Appendix D, are based

on the strict concavity of W (z̃∗) and on the monotonic relation between K̃ and z̃∗. Because

z̃∗is a monotonically increasing function of K̃ = K+τs−τi, optimal policy will be represented

by any combination of τs and τi that achieves the K̃ which corresponds to the z̃∗ that

maximizes W (z̃∗). When case (a) of Proposition 5 applies, the policy maker will want to

set τs and τi such that K̃ ≤ K0, e�ectively driving standard �rms out of the market. If

innovation costs are in the intermediate range, K̃0 < K < K̃1 - as described by case (c)

- what the policy maker should do, depends on whether K̃w - the K̃ that corresponds to

the optimal z̃w - is greater or smaller than K. When K̃w < K, the policy maker favors the

innovative technology, τs < τi and conversely, he favors the standard technology by setting

τs > τs to achieve K̃w which corresponds to the equilibrium population shares, z̃w, where

welfare is maximized.

There are three possible rankings for the boundaries involved in establishing the results

of Proposition 5:

1. K0 < K̃0 < K1 < K̃1. In this situation, case (c) of Proposition 5 requires that the

regulator, whenever she intervenes, will do so in order to stimulate innovation, see also

Figure 27.

2. K̃0 < K0 < K1 < K̃1. In this situation, K̃, as a function of K, will cross the �rst

diagonal (i.e. K̃ = K )for some K ∈
[
K̃0, K̃1

]
, meaning that in case (c) of Proposition

5 the regulator intervenes to suppress innovation for small K, and stimulate innovation

for larger K, see also Figure 28.
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3. K0 < K1 < K̃0 < K̃1.In this situation, K̃ will never be equal to K for any K ∈[
K̃0, K̃1

]
. Whenever she intervenes, the regulator will stimulate innovation, setting

K̃ < K.

Figure 27 illustrates how these results apply to our leading numerical example. We assume

that the social planner takes minimal action: when the socially optimal population shares

are also achieved by the market with no intervention, she does nothing: τs = τi = 0 and

when the social optimum is attained with homogeneous population z̃w = 0 or z̃w = 1, she

sets τs and τi such that K̃ = K0 or K̃ = K1 respectively. For the parameter con�guration

in our leading numerical example we have: K0 < K̃0 < K1 < K̃1. For this con�guration

the optimal policy is always in support of the innovative �rms, τs < τi , for any K. For our

leading numerical example this is true because we have K0 < K̃0. However, as Proposition

5 suggests, this is not always the case. For instance, when N = 14, ds = 6.5 and di = 0.5, we

have K̃0 < K0 < K1 < K̃1 and the social planner will set τs > τi for smaller K and τs < τi

for larger K, see Figure 28.

Proposition 5 describes optimal innovation policy in a static environment or in a dynamic

environment where the Nash equilibrium is globally attractive. However, the actual e�ects of

policy on the economic trajectories observed in a market where agents are boundedly rational

may in fact di�er substantially from what is expected to obtain in equilibrium, speci�cally

when the equilibrium is not stable. Without the assumption of a stable equilibrium the

welfare along a dynamic trajectory of variables zt and qs,t can be computed by averaging over

the realized industry pro�ts and consumer surplus. For each period the expressions in (24)

and (25) become:

TIPt = N [ztπs,t + (1− zt) πi,t]

and

CSt =
Nq2

s,t [(ds − di)2(1− zt)zt +N(2 + ds + dizt − dszt)2]

2(2 + di)2
.
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Figure 27: (a) K̃ = K+τs−τi with optimal welfare policy; (b) Equilibrium share of standard
�rms; (c) Welfare in Equilibrium; as a function of �xed costs of innovation, K, for N = 4,
ds = 1.5, and di = 0.5.
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Figure 28: (a) K̃ = K+τs−τi with optimal welfare policy; (b) Equilibrium share of standard
�rms; (c) Welfare in Equilibrium; as a function of �xed costs of innovation, K, for N = 14,
ds = 6.5, and di = 0.5.
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Figure 29 shows that innovation policy tuned for the Nash equilibrium of the model is

not adequate when the model equilibrium is unstable. In fact we see that for most values of

K the economy su�ers a welfare loss. This happens because the Nash equilibrium tends to

be unstable for lower values of K and stable for higher values. By setting K̃ < K the policy

maker drives the market towards instability and/or wider �uctuations which generate lower

welfare outcomes than in equilibrium. The Nash equilibrium �rst becomes stable without

policy and later on the policy too sets K̃ high enough for stability to occur. This is why we

observe a small region where policy still results in an improvement of welfare when θ = 60.

This however occurs when θ = 2000 since the Nash equilibrium no longer stable at any z < 1.

Moreover, with higher technological instability the welfare loss due to an ill-calibrated policy

seems to be larger.

Comparing policy e�ects between the model version where both technology and quantity

are boundedly rationally set with the model where quantities are set at the Nash equilibrium

allows us to gouge the share of policy failure that is due to technological instability. In Figure

30 we see that equilibrium calibrated innovation policy can still be ill-suited but not by far as

harmful as it was under production instability. In fact, welfare in the regulated market comes

quite close to the optimal welfare the regulator thinks she is aiming for. Comparing time

series in Figures 5 and 16 as well as bifurcation diagrams in Figures 6 and 17 gives us a sense

that the regulatory failure is mostly due to production instability. Whereas �uctuations in

the model with Nash quantities are around the equilibrium this is no longer the case in the

two-dimensional model and we see that the range of �uctuations is strictly decreasing in K.

Therefore, when K̃ < K as is the case in our leading numerical example, the policy maker,

whenever she intervenes, drives the industry towards more instability.
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Figure 29: Welfare e�ects of innovation policy in the dynamic two-dimensional model as a
function of �xed costs of innovation, K, for N = 4, ds = 1.5, and di = 0.5, (a) θ = 60; (b)
θ = 2000. Welfare is averaged over 3000 time-periods after a relaxation of a 1000 periods for
the realized values of qs,t and zt along their trajectories.
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Figure 30: Welfare e�ects of innovation policy in the dynamic two-dimensional model as a
function of �xed costs of innovation, K, for N = 4, ds = 1.5, and di = 0.5, δ = 0.25 and (a)
θ = 4000; (b) θ = 10000. Welfare is averaged over 3000 time-periods after a relaxation of a
1000 periods for the realized values of zt along its trajectory.
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7 Discussion and conclusion

Our model analyzed the role of both production decisions and R&D decisions in the generat-

ing endogenous market �uctuations. For speci�c parameter combinations, namely when in-

tensity of choice is high and there is a relatively large number of �rms competing in oligopoly,

the decision-making process may generate exotic dynamic phenomena such as chaotic �uctu-

ations and coexisting nontrivial attractors with fractal basins. Endogenous �uctuations have

important repercussions on the policy implications of our analysis: policy-making under the

assumption of a stable market equilibrium may have adverse e�ects if the stability assump-

tion does not hold or no longer holds. This result parallels the one obtained by Tuinstra et al.

(2014) showing that trade barriers that reduce welfare in equilibrium may have stabilizing ef-

fects on endogenous market �uctuations and therefore improve welfare when the equilibrium

is unstable. Moreover, when the instability of the market equilibrium is acknowledged by

the policy-maker, welfare improving policy may still remain a challenge. If multiple basins

of attraction co-exist and their frontiers are fractal, foreseeing the e�ects of policy remains

a daunting task because, in practice, one cannot expect to estimate the current state of the

system with su�cient accuracy to be able to tell in which basin it is located.

While Hommes et al. (2011) show that explosive best response dynamics can become

bounded when nested in an evolutionary heuristic switching model, we show that the same

can be obtained by a model with evolutionary switching between production technologies.

To the extent that technological heterogeneity is a more widely accepted feature of economic

reality than behavioral heuristic heterogeneity, our analysis has the potential to broadcast

to a broader if not only di�erent audience the argument that Theocharis' result on oligopoly

instability is still relevant.

On the technical side we o�er some insight into how di�erent versions of the Adjusted

Logit replicator compare by using both its sluggish extension with only a share of the popu-

lation updating strategies each period and its noisy version where each period a share of the

population switches strategy at random. We �nd that that the sluggish version has the ad-

vantage better tractability, by maintaining the property of having �xed-points that coincide

with the Nash-equilibria. While similar in terms of stability, the mutation replicator seems

to generate less complicated dynamics than its sluggish cousin. Another most important

lesson, however, is that in numerical simulation, the standard Adjusted Logit replicator can

get stuck at steady states that are not economically meaningful, while using its sluggish or

noisy extensions avoid such inconvenience.

A number of extensions to the present work can be envisaged. Innovation enters our
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model in a particular way that is mostly consistent with licensing of an external technology:

�rms have to pay a �xed cost each period in order to use the innovative technology. Kamien

and Tauman (1986) examined a static model where a patent holder licenses a cost-reducing

innovation to a an oligopolistic market. They �nd that the a �xed-fee licensing scheme is

pro�ered by the licensor compared to a royalty scheme. On the other hand, when auctioning

of the innovation is also possible, Kamien et al. (1992), �nd that an auction may be preferred

by the licensor, in particular, when the innovation is more substantive. Examining empirical

evidence, Vishwasrao (2007) �nds that in the presence of sales �uctuations �xed-fee licensing

is the preferred method. Therefore, our way of modeling innovation costs is adequate when

the cost advantage of the innovative technology is not extremely high and when quantity

dynamics are unstable, which, as we have shown, is consistent with our results. However,

the model used here cannot address long-term technological change. To have such power, we

would have to consider a scenario where the conditions by which innovation is brought to

the market change over time as a result of market outcomes. Such a scenario is investigated

by Hommes and Zeppini (2014) where repeated use of the innovative technology over time

can drive the associated production cost down. They �nd that depending on the elasticity

of demand and model parameters either, market breakdown (exclusion of the innovative

technology) or technological progress (exclusion of the standard technology) or balanced

technological change (change in the equilibrium share of innovators) can occur. It would

be perhaps interesting to test the robustness of their results in our setting with oligopoly

competing �rms.
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Appendix A - Proof of Proposition 1 and Corollary 1

Proof. Pro�ts are equal when πNs (z) = πNi (z). Solving for K we obtain

K∗ =
1

2

(
1

Z (N − 1) + 1

)2
1

2 + di
− 1

2

(
1

Z (N − 1) + 1

)2
1

2 + ds

=
1

2

(
1

Z (N − 1) + 1

)2 [
1

2 + di
− 1

2 + ds

]
=

1

2

(
1

Z (N − 1) + 1

)2 [
ds − di

(2 + di) (2 + ds)

]
,

which is positive ∀ds > di.

Expressing K∗ as a function of Z gives:

Z∗ =
1

N − 1

(√
ds − di

2 (2 + di) (2 + ds)K
− 1

)
We have thus:

z∗

2 + ds
+

1− z∗

2 + di
=

1

N − 1

(√
ds − di

2 (2 + di) (2 + ds)K
− 1

)
.

.Multiplying both sides by (2 + ds) (2 + di) we obtain

z∗ =
2 + ds
ds − di

− 1

N − 1

(√
(2 + di) (2 + ds)

2 (ds − di)K
− (2 + di) (2 + ds)

ds − di

)
(26)
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By using (26), we can compute the equilibrium quantity for a standard �rm when technologies

are equally pro�table as function of the model parameters (7):

q∗s =

√
2(2 + di)K

(ds − di)(2 + ds)
(27)

We can also rewrite z∗ as a function of q∗s :

z∗ =
2 + ds
ds − di

+
(2 + di)

(N − 1) (ds − di)
[
2 + ds − (q∗s)

−1]
Note that z∗ is increasing in K, as expected; the more expensive it is to use the innovative

technology, the smaller will be the equilibrium share of �rms using it.

Rewriting (5) in function of z, we can compute Nash equilibrium pro�ts for any given

population shares, z.

πNs (z) =
(2 + di)

2(2 + ds)

2((2 + ds)(1 + di +N)− (ds − di)(N − 1)z)2
(28)

πNi (z) =
(2 + di)(2 + ds)

2

2 [(2 + ds)(1 + di +N)− (ds − di)(N − 1)z] 2
−K (29)

Notice that average pro�ts, for both types of �rms will be strictly increasing and convex

in z. The share of standard �rms appears only in the denominator in the expression, (2 +

ds)(1 + di + N)− (ds − di)(N − 1)z = ds + (1 + di + N) + ((1− z) ds + zdi) (N − 1), which

is strictly positive ∀ 0 ≤ z ≤ 1, N ≥ 2 and ds < di and also decreasing in z as it linearly

depends on the population weighted average of marginal costs

Notice also that ∂πN
s (z)
∂z

= 2+di
2+ds

∂πN
i (z)

∂z
which means that the pro�t function of the innovative

�rms slopes steeper in z than the pro�t function of standard �rms. This implies that if the

pro�t functions cross for some z > 0 they will only do so once, assuring the uniqueness of z∗.

The interior point de�ned in part (b) of the proposition exists when the two pro�t function

cross for some z ∈ ]0, 1[. This is equivalent to imposing πNs (1)−πNi (1) < 0 < πNs (0)−πNi (0),

meaning that condition z∗ ∈ ]0, 1[ is equivalent to:

K0 =
(2 + di) (ds − di)

2(2 + ds) (N + 1 + di)
2 < K <

(2 + ds) (ds − di)
2(2 + di) (N + 1 + ds)

2 = K1 (30)

which correspond to the two threshold levels for the �xed cost of investing in the new tech-

nology that are de�ned by the proposition.
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Thus, when K0 < K < K1, for z ∈ (0, z∗), we have πNs (z) > πNi (z) and for z ∈ (z∗, 1) ,

it is πNs (z) < πNi (z).

Moreover condition πNs (1)−πNi (1) > 0 is equivalent to K > K1, standard �rms are always

better o� than innovators because of the high cost to innovate.

The opposite holds if πNs (0)−πNi (0) < 0, i.e. for 0 < K < K0, where innovating dominates

using the standard technology.

(Corollary 1)

By expressing equilibrium pro�ts as a function of q∗s as:

πNs (q∗s) =
1

2
(2 + ds) (q∗s)

2 (31)

πNi (z) =
1

2

(2 + ds)

(2 + di)
(2 + ds) (q∗s)

2 −K (32)

and substituting for q∗s =
√

2(2+di)K
(ds−di)(2+ds)

we �nd equilibrium pro�ts are linearly increasing in

K for both types of �rms:

πN∗s =
(2 + di)

(ds − di)
K (33)

πN∗i =
(2 + ds)

(ds − di)
K −K = πNi (q∗s) (34)

This means that average total industry pro�ts are given by:

TIP = N
(
z∗πN∗s + (1− z∗) πN∗i

)
= N

(2 + di)

(ds − di)
K

Average industry output is given by

Q̄∗N = N [z∗q∗s + (1− z∗) q∗i ]

= Nq∗s

[
2 + ds
2 + di

− z∗ds − di
2 + di

]
=

N

N − 1
[1− (2 + ds) q

∗
s ] ,
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Appendix B - Proof of Proposition 3

Proof. Obviously the points z0 = 0 and z1 = 1 are equilibria for the map (12). Moreover,

when a pure strategy (innovating or using the standard technology) dominates the other for

all z, then the evolutionary dynamics make the system converge to that dominating strategy.

For instance consider the system for 0 < K < K0 so that innovation always dominates the

standard strategy. From ψ(z0) < 0 and computing:

g′ (z0) = δ + (1− δ)eθψ(0) ∈ (0, 1) .

Also from ψ(z1) < 0 and

g′ (z1) = δ + (1− δ)e−θψ(1) ∈ (1,+∞)

we have that z0 = 0 is locally asymptotically stable and z1 = 1 is unstable (the reasoning

when innovating is dominated by going standard is analogous).

For any K0 < K < K1, according to Proposition 1, ψ(z0) > 0 → g′ (z0) > 1 and

ψ(z1) < 0→ g′ (z1) > 1.

Now let us consider the inner equilibrium z∗. First of all, there is only one such interior

equilibrium, as π∗i (z) = π∗s(z) has a unique solution for z > 0, if any at all - this is assured

by the monotonicity of ψ(z). The eigenvalue of the dynamic system at the interior steady

state is

g′(z∗) = 1 + (1− z∗)z∗θ(1− δ)ψ′(z∗)

and so z∗ always looses stability through a �ip bifurcation when the intensity of choice θ is

su�ciently high, as the loss of stability occurs at

θ̂ = − 2

(1− z∗)z∗ψ′(z∗)(1− δ)
> 0 (35)

due to overshooting around the equilibrium.

We have so far discussed the local stability of the equilibria, but we can also argue for

global stability. For z0 and z1 this is trivial since in cases (a) and (c) all trajectories will

monotonically converge to z0 and z1 respectively, because the pro�t of one type of �rm is

always larger regardless of z. In case (b) things will be only slightly more complicated, with

all trajectories starting below (above) z∗ being driven upwards (downwards) as case (b) of

Proposition 1 implies. As long as there is only mild overshooting around z∗, i.e. θ < θ̂ the
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oscillations will be dampened and the population share of standard �rms will converge to

z∗.

Appendix C - Proof of Proposition 4 and Corollaries 3 and

2

Proof. Consider the Jacobian matrix at the interior steady state, which, by taking into

account that pro�ts for the two strategies are equal at equilibrium, can be written as follows:

J =

(
−(N − 1)

(
1−z∗
2+di

+ z∗

2+ds

)
(N − 1)

(
1

2+di
− 1

2+ds

)
q∗s

(1− z∗)z∗(1− δ)θ ∂Ψ(q∗s ,z
∗)

∂qs
1 + (1− z∗)z∗(1− δ)θ ∂Ψ(q∗s ,z

∗)
∂z

)
(36)

We can write the Jacobian as a function of the basic model parameters and q∗s . This entails

substituting in for z∗ as a function of equilibrium quantity, z∗ = 2+ds
ds−di +

(2+di)
(N−1)(ds−di)

(
2 + ds − 1

q∗s

)
and working out the derivatives of the pro�t di�erential Ψ(qs,t, zt), as de�ned in (18), with

respect to qs,t and zt evaluated at q∗s and z
∗ into:

∂Ψ(q∗s , z
∗)

∂qs
=

(ds − di) (1− (2 + ds) q
∗
s)

2 + di

and

∂Ψ(q∗s , z
∗)

∂z
= −2 (ds − di) (N − 1)K

(2 + di) (2 + ds)
.

Making the above substitutions into (36) and simplifying yields:

J11 =− 1− (2 + ds) q
∗
s

(2 + ds) q∗s

J12 =(N − 1)

(
1

2 + di
− 1

2 + ds

)
q∗s =

2K (N − 1)

(2 + ds)
2 q∗s

J21 = (1− δ) θ [1− (2 + ds) q
∗
s ] [(2 + ds) (1 + di +N) q∗s − (2 + di)] [1− (1 + ds +N) q∗s ]

(ds − di) (N − 1)2 (q∗s)
2

J22 =1− (1− δ) θ2K [(2 + ds) (1 + di +N) q∗s − (2 + di)] [1− (1 + ds +N) q∗s ]

(2 + ds) (ds − di) (N − 1) (q∗s)
2 .

(37)

Where Jij is the element in the i-th row and j-th column of the Jacobian matrix. Notice

that although J12 was already in (36) an expression in model parameters and q∗s only in , we
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used that q∗s = (q∗s )2

q∗s
= 2(2+di)K

(2+ds)(ds−di)
1
q∗s

to bring it to a more compact form.

Denoting by E1 = 1 − (2 + ds) q
∗
s , E2 = [(2 + ds) (1 + di +N) q∗s − (2 + di)] and E3 =

[1− (1 + ds +N) q∗s ] the reoccurring patterns we can further simplify the terms of the Jaco-

bian Matrix to:

J11 = − E1

(2 + ds) q∗s

J12 =
2K (N − 1)

(2 + ds)
2 q∗s

J21 = (1− δ) θ E1E2E3

(ds − di) (N − 1)2 (q∗s)
2

J22 = 1− (1− δ) θ 2KE2E3

(2 + ds) (ds − di) (N − 1) (q∗s)
2 .

The expressions E1, E2 and E3 are all positive as long as we are talking about an interior

equilibrium as can be veri�ed by evaluating them at the boundary values K0 and K1:

E1 ≥ E1|K=K1 =1− 2 + ds
1 + ds +N

> 0

E2 ≥ E2|K=K0 =0

E2 ≥ E2|K=K1 =0.

This is convenient because it allows us to determine the sign of three of the Jacobian terms:

J11 < 0, J12 > 0, J21 > 0.

By further denoting E4 = E2E3

(ds−di)(N−1)(q∗s )2
we can conveniently rewrite the Jacobian matrix

in a compact and analytically tractable form:

J =

(
− E1

(2+ds)q∗s

2K(N−1)

(2+ds)2q∗s

(1− δ) θ E1E4

(N−1)
1− (1− δ) θ 2KE2E3

(2+ds)
.

)
. (38)

The determinant of the Jacobian matrix turns out to be equal to the �rst term on the

diagonal:

DetJ = − E1

(2 + ds) q∗s
= 1− 1

(2 + ds) q∗s
< 0

and its trace is:

TrJ = 1− E1

(2 + ds) q∗s
− (1− δ) θ2KE2E3

(2 + ds)
.
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The discriminant of the eigen vector polinomial, p (λ) = λ2 − trJ +DetJ , is

∆ =
4E1 (2 + ds) q

∗
s + [E1 − q∗s (2 + ds − 2 (1− δ) θKE4)]2

(2 + ds)
2 (q∗s)

2 > 0.

Therefore the eigenvalues of the Jacobian must be real always.

Finally, we can write the eigenvalues of the Jacobian matrix as:

λ1 = − 1

2 (2 + ds) q∗s

(√
(E1 − q∗s (2 + ds − 2 (1− δ) θKE4)2 + 4E1 (2 + ds) q∗s

+ [E1 − q∗s (2 + ds − 2 (1− δ) θKE4)])

λ2 =
1

2 (2 + ds) q∗s

(√
(E1 − q∗s (2 + ds − 2 (1− δ) θKE4)2 + 4E1 (2 + ds) q∗s

− [E1 − q∗s (2 + ds − 2 (1− δ) θKE4)])

The complexity of the above expressions make it hard to establish stability of the system

by comparing the eigenvalues to ±1 but they do o�er some valuable insight. To ease the

exposition we denote by E5 = [E1 − q∗s (2 + ds − 2 (1− δ) θKE4)] and E6 = 4E1 (2 + ds) q
∗
s .

While the sign of E5 is ambiguous, E6 is always positive.

First of all, it is clear that λ1 = − 1
2(2+ds)q∗s

(√
E2

5 + E6 + E5

)
is negative. When E5

is positive, the term in brackets is surely positive, when E5 is negative the term under the

square root will surely be large enough to o�set E5, so the term in brackets is always positive.

The same reasoning can be applied to determine that λ2 = 1
2(2+ds)q∗s

(√
E2

5 + E6 − E5

)
is

always positive.

Knowing that the eigenvalues are always real and of opposite sign is informative because,

having ruled out all other possible con�gurations, we can establish that the system will be

stable if and only if the characteristic polinomial is positive at both −1 and 1:{
1 + trJ + det J > 0

1− trJ + det J > 0
(39)

This is equivalent to {
2(2q∗s (2+ds)−q∗s (1−δ)θE4K−1)

(2+ds)q∗s
> 0

2(1−δ)E4θK
2+ds

≥ 0

This means that the positive eigenvalue is always stable whereas the negative eigenvalue

66



is stable if and only if:

2q∗s (2 + ds)− q∗s (1− δ) θE4K − 1 > 0,

or, expanding E4 and isolating θ to one side, when :

θ < θ̃ =
2 (N − 1) (2 + di) (2q∗s (2 + ds)− 1)

(1− δ) (2 + ds) q∗s [(2 + ds) (1 + di +N) q∗s − 2− di] [1− (1 + ds +N) q∗s ]
.

(Corollary 2)

Notice that θ̃ = (N−1)(ds−di)(2q∗s (2+ds)−1)q∗s
(1−δ)KE2E3

is not necessarily positive, its sign will be the

same as the sign of E7 = 2q∗s (2 + ds) − 1 which depends on the relation between model

parameters. E7 attains its maximum value when K = K1 so in order for the interior equi-

librium to be stable, at positive θ, for some K, we must have E7|K=K1 > 0, or 3 + ds > N .

Therefore the interior equilibrium is never stable for N > 3 + ds. The minimum value of E7

is attained at K = K0 allowing us to conclude that the interior equilibrium can always be

stable - for low enough θ - if E7|K=K0 > 0, or 3 + di > N .

When 3 + di < N < 3 + ds, provided that θ is su�ciently low for the equilibrium to be

stable at admissible value of K ∈ [K0, K1], there will be some K̂ such that for K < K̂ the

mixed equilibrium is unstable at any θ > 0 while for K > K̂ the mixed equilibrium can be

stable for some θ < θ̃. We can compute K̂ by solving for θ̃ = 0↔ 2q∗s (2 + ds)− 1 = 0:

K̂ =
ds − di

8 (2 + ds) (2 + di)

Note that K̂ does not depend on N .

(Corollary 3)

Expressing θ̂ as a function of q?s and using the same substitutions for E2 and E3 we obtain:

θ̂ =
2 (2 + di) (N − 1)

(1− δ) (2 + ds) q∗sE2E3

Computing the ratio of the two thresholds we obtain:

θ̂

θ̃
=

1

2 (2 + ds) q∗s − 1
> 1↔ 2E1 > 0,

which always holds.
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Appendix D - Proof of Proposition 5

Proof. Examining the �rst and second derivatives of W (z):

∂W (z)

∂z
=NK −N (ds − di)

{
(2 + di)(2 + ds)(3 + di + ds +N)

[(2 + ds) (N + 1 + di)− z (ds − di) (N − 1)]3

+
ds + di + dids

2 [(2 + ds) (N + 1 + di)− z (ds − di) (N − 1)]2

}
∂2W (z)

∂z2
=− (ds − di)2 (N − 1)N

{
3(2 + di)(2 + ds)(3 + di + ds +N)

[(2 + ds) (N + 1 + di)− z (ds − di) (N − 1)]4

+
(di + ds + dids) [(2 + ds) (N + 1 + di)− z (ds − di) (N − 1)]

[(2 + ds) (N + 1 + di)− z (ds − di) (N − 1)]4

}
,

we notice that the only increasing component of the welfare function with respect to the

equilibrium share of standard �rms, z̃∗, is given by the element that accounts for the �xed

costs of innovation paid by the innovative �rms, KN (1− z̃∗) . The remaining components

of the welfare function, consumer surplus and pro�ts (net of innovation costs) are strictly

decreasing in z. Furthermore, W (z̃∗) is strictly concave, therefore it will have a unique, local

maximum for z̃∗ ∈ [0, 1], which will be either at one of the boundaries of the unit interval

where:

W (0) = N

[
2 + di +N2

2 (1 + di +N)2 −K
]

W (1) = N
2 + ds +N2

2 (1 + ds +N)2

or at an interior point, W (zw).

Model parameters will determine which one of the above three possibilities actually char-

acterizes the model. Notice that concavity of W (z) implies that we always have W ′ (0) >

W ′ (1). We can further investigate the required relations for each case, focusing again on

parameter K. However, the analysis is hardly tractable:

(i) When maximum welfare obtains at z = 0 we will have W ′ (0) < 0 which requires that:

K <
(ds − di)

2 (2 + ds)
2 (N + 1 + di)

3 [(ds + di + dids) (N + 1 + di) + 2(2 + di)(3 + di + ds +N)] = K̂0

(ii) When maximum welfare obtains at z = 1 we must have W ′ (1) > 0 which requires
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that:

K >
(ds − di)

2 (2 + di)
2 (N + 1 + ds)

3 [(ds + di + dids) (N + 1 + ds) + 2(2 + ds)(3 + di + ds +N)] = K̂1

(iii) Finally, when W ′ (0) > 0 and W ′ (1) < 0 which is equivalent toK̂0 < K < K̂1 the

welfare optimum will be at some interior zw ∈ ]0, 1[.

Given that W (z) is concave, we can be sure that K̂0 < K̂1, but we may want to verify.

Because the expression in square brackets for K̂1 is visibly greater than its homologue for

K̂0, it all boils down to showing that the factors before the expressions in square brackets

satisfy:

(ds−di)
2(2+ds)2(N+1+di)

3 < (ds−di)
2(2+di)

2(N+1+ds)3
↔(

2+di
2+ds

)2

<
(
N+1+di
N+1+ds

)3

where the latter expression is always true for di < ds and N ≥ 2.

Finally, we may be interested to compare K̂0 and K̂1 with K0 and K1 de�ned in Propo-

sition 1. However, the only parameter-independent relation we can establish is:

K̂1 −K1 = (ds−di)[8+di(3+ds−N)+ds(5+ds+N)]

2(2+di)
2(N+1+ds)3

> 0 ↔ K̂1 > K1

We also have that K̃0 > K0 i�.

N <
8 + 5di + d2

i + 3ds + dids
ds − di

and that K1 > K̃0 i�.:

(2 + ds)
3 (1 + di +N)3 >

> (2 + di) (1 + ds +N)2 (d2
i (3 + ds) + 4 (3 +N) + ds (N + 5) + di [11 + 3N + ds (4 +N)]) .
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Appendix E - Comparative statics

Here we derive comparative statics of z∗ with respect to production costs, ds and di - one

would expect z∗ to be decreasing in ds and increasing in di. Straightforward di�erentiation

leads to complex formulae that do not provide a basis for determining the sign of the deriva-

tives, but notice that the derivatives of z∗ with respect to parameters ds and di are strictly

decreasing and increasing in K respectively:

∂2z∗

∂ds∂K
= − (2 + di)

2

4
√

2 (ds − di)2
√

(2+di)(2+ds)
2(ds−di)K K2 (N − 1)

< 0

∂2z∗

∂di∂K
=

(2 + ds)
2

4
√

2 (ds − di)2
√

(2+di)(2+ds)
2(ds−di)K K2 (N − 1)

> 0

Which means that evaluating the derivatives of z∗with respect to ds and di at some bound-

ary value of K will translate into boundary values for the derivatives of interest. Applying

this logic yields that ∂z∗

∂ds
< ∂z∗

∂ds
|K=K0 = − (2+di)(1+di+N)

2(ds−di)2(N−1)
< 0, as expected. Unfortunately,

∂2z∗

∂di
> ∂2z∗

∂di
|K=K0 = (2+ds)(3ds+dsdi+N(2+2di−ds)+2)

2(2+di)(ds−di)2(N−1)
≷ 0, is of ambiguous sign. We can only say

that, z? is increasing in di if (2 + 2di − ds) > 0, or, otherwise, if (2 + 2di − ds) < 0, when

N < 3ds+dsdi+2
−(2+2di−ds)

. This means z∗ is increasing in di when the standard technology is not

excessively more ine�cient than the innovative technology, or, if the latter is the case, when

the number of �rms competing in oligopoly is not too large.
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