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Abstract

This paper explains the cyclical behavior of the fluctuations in unemployment and vacancies by

demand externalities. Adding such externalities to an otherwise standard search and matching

model reduces the need for exogenous shocks in explaining these fluctuations. Under plausible

parameter values, the equilibrium dynamics include a stable limit cycle that resembles the

empirically observed counterclockwise cycles around the Beveridge curve. Calibrated to the

duration of the business cycle, these endogenous ‘Beveridge cycles’ are as persistent as the

data, without losing any of the amplification of the standard model.
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1 Introduction

The dynamic relation between vacancies and unemployment is characterized by counterclockwise

cycles in the unemployment, vacancy rate-plane. After removing any long-term trends with an

HP-filter, the cycles for the United States are presented in Figure 1(a). It shows that the cycles

mostly consist of movements parallel to an almost perfectly inverse relationship between vacancies

and unemployment - the Beveridge curve - where downturns trace out a lower path than recoveries.

The figure also shows that vacancies are about as volatile and persistent as unemployment.
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(a) United States, 1951-2014.
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(b) Simulation of Shimer (2005).

Figure 1: Cyclical component of the Beveridge curve.

Notes: The seasonally adjusted unemployment rate u is constructed by the Bureau of Labor Statistics (BLS) from

the Current Population Survey (CPS). The seasonally adjusted vacancy rate v is obtained by dividing a measure of

vacancies by the labor force from the CPS. Following Daly et al. (2012), the former is the Composite Help-Wanted

Index constructed by Barnichon (2010) for the 1951-2000 period, rescaled to equal the JOLTS in December 2000,

which is used from that month onwards. I thank Bart Hobijn for providing me with these data. The data are

quarterly averages of a monthly series. The simulation is a representative realization with productivity shocks only.

Both data and simulation are expressed in logs as deviations from an HP trend with smoothing parameter 105.

These observations are confirmed in the summary statistics of the unemployment and vacancy

rate. Table 1 reports standard deviations, autocorrelations, and cross-correlations of these and

other variables: market tightness v/u, the job finding rate f , the destruction rate δ, and labor
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productivity y. The standard deviations of the unemployment and vacancy rate v are similar,

their autocorrelations are about 0.95, and their correlation is almost −0.9. Note also that the

standard deviation of productivity is almost ten times smaller than that of the unemployment

and vacancy rate. Finally, the average (unfiltered) unemployment and quarterly job finding and

destruction rates are 0.0587, 1.738, and 0.100 respectively.

u v v/u f δ y

Standard deviation 0.195 0.178 0.362 0.175 0.073 0.02
Quarterly autocorr. 0.946 0.946 0.948 0.926 0.735 0.894

u 1 −0.888 −0.974 −0.962 0.64 −0.35
v 1 0.969 0.887 −0.647 0.327

Correlation matrix v/u 1 0.953 −0.662 0.349
h 1 −0.522 0.333
s 1 −0.504
y 1

Table 1: Summary statistics, quarterly US data, 1951-2014.

Notes: Labor market tightness v/u is the ratio of the seasonally adjusted quarterly unemployment rate u and

vacancy rate v, both described below Figure 1. Appendix A.1 describes the construction of the job finding rate f and

destruction rate δ from the monthly seasonally adjusted employment, unemployment, and short-term unemployment

rate as provided by the BLS from the CPS. Average labor productivity y is seasonally adjusted real average output

per person in the non-farm business sector constructed by the BLS from the National Income and Product Accounts

and the Current Employment Statistics. All variables are reported in logs as deviations from an HP trend with

smoothing parameter 105.

In the canonical search and matching model of Pissarides (1985), unemployment is a state

variable while vacancies respond to shocks immediately. As a result, the model captures the

counterclockwise direction of the cycles along the Beveridge curve. However, the model fails to

describe these cycles in at least two dimensions. First, as is well-known, the model lacks sufficient

amplification to generate the observed volatility in unemployment and vacancies in response to

realistic exogenous shocks in productivity and/or the destruction rate (Shimer, 2005). Second, the

model lacks cyclical responses, as can be seen comparing the panels of Figure 1. Panel 1(b) plots

a realization of a detrended Beveridge curve as simulated by Shimer (2005), in his calibration with

productivity shocks only. The simulation not only lacks unemployment volatility (note the scaling

differences across the panels), but it also mainly features near vertical dynamics, in contrast to

the data in Panel 1(a). As a result, vacancies in the model are neither as persistent as in the data,
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nor as persistent as unemployment.2

The current paper explains the cyclical behavior of unemployment and vacancies with an

endogenous cycle driven by demand externalities. Demand externalities result from spillovers

across a monopolistic goods market and a labor market with search frictions, in which high

aggregate unemployment feeds back to low demand for output and thus a low revenue per

worker-firm match. Combined with the delay in matching and the congestion externality that

are standard in search models of the labor market, such feedback can give rise to equilibrium

paths in vacancies and unemployment that never converge to a steady state, but converge to a

deterministic periodic closed path. I refer to these rational expectations limit cycles in vacancies

and unemployment as Beveridge cycles. Expectations of high revenue per match are self-fulfilling

because such expectations make firms open vacancies, resulting in higher employment and - via

demand externalities - higher revenue per match in the future. However, congestion in a tight

labor market may make hiring so costly that firms may reduce vacancies before reaching a steady

state. In that case, the equilibrium path turns and job destruction takes over from job creation,

unemployment increases and revenue per match falls. Hiring picks up again when the labor market

becomes sufficiently slack.

Rather than modeling the goods market explicitly, I assume that revenue per match is a

function of aggregate employment. I add this reduced-form relationship to a Pissarides (2000)

search and matching model with variable search intensity and analyze the global dynamics of

the model. Theoretically, the occurrence of a Bogdanov-Takens bifurcation shows that Beveridge

cycles exist and are stable for a range of parameter values. This implies that a small perturbation

to a parameter, or introducing a small amount of risk aversion, would not eliminate cycles.

Quantitatively, I investigate whether these cycles can match the empirically observed standard

deviation and autocorrelation of unemployment and vacancies. Calibrating the cycle to the

average duration of the business cycle, the simulated autocorrelations of both unemployment and

vacancies closely match their observed autocorrelations. Persistence is an endogenous feature of

the Beveridge cycle, and results from the neighborhood of a steady state with saddle-path stability.

In particular, it is not a result of a persistent stochastic process for productivity, and it does not

2The lack of propagation in Shimer (2005) can also be understood from a univariate regression of labor market

tightness (or the job finding rate) on productivity, which results in an R2 of 1.00.
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compromise volatility. Indeed, the model is subject to the same (lack of) amplification mechanisms

as the standard model, but generates its volatility in revenue per match endogenously, reducing

the need for exogenous shocks. Variable search intensity and a high positive value of leisure are

important for the empirical performance of the model. The flow value of unemployment does not

only contribute to amplification, but also brings the size of the required demand externalities in

line with the literature. The existence of limit cycles does not rely on variable search intensity or

a positive value of leisure.

My model is formally equivalent to the model of Mortensen (1999), who shows the existence of

limit cycles in employment and the surplus of a match. He gives the intuition of the counterclockwise

cycles along the Beveridge curve, but does not perform a calibration. I present the model in the

standard search and matching variables - unemployment and labor market tightness - and add a

positive value of leisure, which has a non-trivial impact on the existence and characteristics of

equilibria in this nonlinear model. In Mortensen (1999), following Mortensen (1989), the feedback

from aggregate employment on revenue per match results from increasing returns in production.

Alternatively, this feedback can result from increasing returns in the matching function for the

goods market as in Diamond (1982) and Howitt and McAfee (1987). Diamond and Fudenberg

(1989) and Boldrin et al. (1993) show that such increasing returns can result in endogenous cycles,

but their models do not contain vacancies. In a reduced form, however, the three interpretations of

the relationship between aggregate employment and revenue per match are equivalent, and capture

the three examples of Cooper and John (1988) that can result in strategic complementarities:

production technology, matching technology, and agents’ demands.

With respect to the latter, Heller (1986) and Roberts (1987) show that demand externalities

can generate multiple equilibria. Exploiting equilibrium multiplicity, Howitt and McAfee (1992)

propose belief shocks to switch from one equilibrium path to another. Drazen (1988) shows that

demand externalities can generate endogenous cycles in firm match value and unemployment.

However, he assumes an equal number of vacancies and unemployed and thus rules out cycles in the

two. Recently, novel interactions between frictional labor and product markets have been proposed

to generate endogenous cycles or multiplicity. Beaudry et al. (2015) obtain demand externalities

from unemployment risk and precautionary savings, and embed the resulting limit cycle in a

model with exogenous disturbances. They estimate this model and show that the endogenous cycle
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can explain U.S. business cycle fluctuations in output and employment well, provided that the

productivity shocks make the cycle sufficiently irregular. They do not investigate the dynamics of

vacancies. Kaplan and Menzio (2016) argue that the unemployed do not only spend less, but are

also more likely to pay low prices for the same goods. They use the combination of these effects -

referred to as shopping externalities - to explain the outward shift of the Beveridge curve since

the Great Recession. In particular, this shift results from the transitional dynamics after a belief

shock switches coordination to an equilibrium with higher unemployment and smaller markups.

The literature on the outward shift of the Beveridge curve is growing. In Ravn and Sterk (2012),

lower aggregate demand results from precautionary savings in the wake of higher unemployment,

and further reduces job finding prospects. Heterogeneity in search efficiency introduces negative

duration dependence and an outward shift in the Beveridge curve. In Eeckhout and Lindenlaub

(2015), sorting makes on-the-job search improve the composition of job searchers, boosting labor

demand and justifying on-the-job search. The shift in the Beveridge curve results from a switch

from an equilibrium without to an equilibrium with on-the-job search. Consistent with my model

and suggested by Figure 1(a), Diamond and Sahin (2015) show that outward shifts in the Beveridge

curve after a trough are common in U.S. historical data, and not likely to be persistent.

My paper is also related to the large literature that proposes mechanisms that increase the

amplification of the standard search and matching model. Mortensen and Nagypal (2007) provide

an overview. Recently, Gomme and Lkhagvasuren (2015) have shown that procyclical search

intensity increases amplification by making the net flow value of leisure countercyclical, and as

the result of a strategic complementarity in search and recruiting activity. My model features

procyclical search intensity, but, given the elasticity of the matching function, constrains its effect

to the estimated elasticity of the job finding rate with respect to labor market tightness. A few

other papers address the persistence of the standard model. Fujita and Ramey (2007) show that

cyclical responses can be generated by the introduction of sunk costs of vacancy creation. They

show, however, that spreading out the impact of a shock in such a way results in a counterfactually

high cross correlation between labor market variables and productivity across time. Coles and

Kelishomi (2011) achieve persistence of vacancies by replacing the free entry condition by search

for business opportunities and time to build an identified opportunity into a vacancy. Dromel et al.

(2010) and Petrosky-Nadeau (2014) address propagation by credit frictions, and therefore follow
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Fujita and Ramey in focusing on the costs of vacancy creation. In contrast, persistence in my

model results from a self-reinforcing effect on the benefits of vacancy creation, while maintaining

free entry of vacancies.

The calibration of Chéron and Decreuse (2016) is most closely related to mine. They show that

phantoms - traders that are still present in the market but that are no longer available for trade -

can result in a labor market matching function with increasing returns to scale in the short run and

constant returns in the long run, which results in excess volatility and self-fulfilling fluctuations.

They also calibrate a deterministic limit cycle, and can explain the persistence of unemployment

and labor market tightness if wages are rigid, if phantoms mostly consist of vacancies, and if they

‘haunt’ the market for a long time. Note that the demand externalities in my model are similar

to decreasing, not increasing, returns to scale in the labor market. Ellison et al. (2014) show

that such locally decreasing returns to scale in labor market matching can increase amplification

and persistence. However, with respect to their quantitative results, they focus on saddle-path

dynamics. Sterk (2016) shows that skill losses upon unemployment can result in multiple steady

states, and slower dynamics in their neighborhoods result in more persistence. Technically, the

same mechanism delivers persistence for the Beveridge cycle, but the model of Sterk (2016)

features a unique equilibrium. Only Chéron and Decreuse (2016) calibrate a deterministic model

to quantify its performance in explaining labor market dynamics, while Beaudry et al. (2015) show

that fundamental shocks on top of a deterministic cycle can reproduce the spectrum of the data.

Finally, my paper is related to applications of the Bogdanov-Takens bifurcation in economics.

Using this bifurcation, Benhabib et al. (2001) show that an active monetary policy rule in the

presence of a zero lower bound results in indeterminacy and can direct an economy into a liquidity

trap. In models with search frictions, phase diagrams in Howitt and McAfee (1988), Coles and

Wright (1998), and Kaplan and Menzio (2016) also suggest the occurrence of a Bogdanov-Takens

bifurcation, although these authors do not explore this possibility.

2 A model of unemployment and tightness

This section presents a Pissarides (2000) equilibrium search and matching model with variable

search intensity and feedback from employment to revenue per match. Time is continuous and

lasts forever, and there is no aggregate uncertainty.
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2.1 Preferences, markets, and choices

The economy consists of a measure one of infinitely lived workers and an endogenous measure

of firms owned by workers. All firms have access to the same technology. They maximize

expected profits and discount future profits at rate r. Workers are endowed with an indivisible

unit of homogeneous labor every period. They are risk-neutral too and maximize lifetime utility,

discounted at the same rate r. At time t, an endogenous measure nt of workers is employed, and

the remainder ut = 1− nt is unemployed. Unemployed workers receive a flow utility z > 0 that is

independent of labor market conditions. It captures the combination of the unemployment benefit,

the stigma of unemployment, the value of home production and the pure value of leisure that

come with unemployment.

Matches of a single worker and firm produce consumption goods that are sold for a one-period

IOU in a goods market. A firm’s receipts are split in a wage wt and profits, are immediately

transferred to its employee and owners respectively, and must be spent in the same period on

consumption goods produced by other worker-firm matches. Rather than modeling the goods

market explicitly, I propose a reduced-form relationship between the flow revenue yt of a worker-

firm match and aggregate employment. Assuming a constant elasticity, yt = φ (nt) = φ (1− ut) =

φ0 (1− ut)α. I normalize φ0 to one and assume that α > 0, so that revenue is increasing in

aggregate employment. As explained in the introduction, several interpretations can be given

to the effect of aggregate employment on revenue per match, but throughout this paper I refer

to this effect as a demand externality. In this interpretation the goods market is characterized

by imperfect competition. Revenue per match increases in aggregate employment because when

employment is high, customers spend more, possibly also in any given trade.

The labor market is characterized by search frictions, so that the formation of worker-firm

matches takes both time and resources. The total measure of matches mt formed in a certain

period is given by the common Cobb-Douglas matching function m (vt, stut) = m0v
η
t (stut)

1−η,

with 0 < η < 1. Inputs of this function are aggregate recruiting activity represented by the vacancy

rate vt (scaled by the labor force), and aggregate search effort given by the unemployment rate ut,

times the search intensity st of the unemployed. Normalize m0 to one and define labor market
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tightness θt as the ratio of the inputs of the matching function: θt ≡ vt/ (stut).
3 An individual

unemployed worker finds a job at the Poisson rate vηt (stut)
1−η /ut = stθ

η
t . Similarly, individual

vacancies are filled at a rate vηt (stut)
1−η /vt = θηt /θt. Matches are destroyed at an exogenous rate

δ > 0. The surplus of a match is divided by Nash bargaining.

There are two choices to be made in this economy. First, at any moment in time t, unemployed

workers choose the intensity st at which they search for jobs. Search intensity comes at increasing

and strictly convex costs c (st) = c0s
γ
t , with γ > 1. Simply scaling search intensity, I normalize c0

to one.4 The discouraged worker effect - unemployed workers stop looking for a job if the prospect

of finding one is very bad - is modeled by st, because the labor force is fixed while search intensity

will be seen to increase with labor market tightness. Combined with the gross value of leisure z,

the net flow utility of the unemployed is z − sγt .5 Second, at any moment in time, potential firms

freely decide whether to enter the labor market by opening a single vacancy at a flow cost k > 0.

Simultaneously any existing firm decides freely whether to withdraw its (unfilled) vacancy from

the market.

2.2 Asset values of workers and firms

Free entry of vacancies implies that in equilibrium the value of opening an additional vacancy

cannot be positive. As described above, an individual vacancy costs k per period and is filled at a

rate θηt /θt. Defining Jt as the value of a worker to a firm, it must hold that

(1) k ≥ θηt
θt
Jt,

and θt ≥ 0 with complementary slackness. The value of opening an additional vacancy is therefore

only negative if the stock of vacancies is zero. In the remainder of this paper I focus on equilibria

with economic activity, i.e. with a positive level of labor market tightness.

An unemployed worker enjoys a flow utility z− sγt and finds a job at the Poisson rate stθ
η
t . The

3In this paper I only study the cases where st, ut > 0, so that θ is always defined.

4The model allows for normalization of m0 and c0, because the level of the ratio of vacancies to unemployment

vt/ut and the value of search intensity st are intrinsically meaningless.

5Note that z does not affect c (st), which seems a reasonable assumption for risk-neutral agents. This assumption

highlights the effect of the value of leisure on vacancy creation rather than labor supply.
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value Ut of unemployment to an individual worker is therefore described by

(2) rUt = z − sγt + stθ
η
t (Wt − Ut) + U̇t,

where Wt is the value of a job to a worker.

The flows to a firm are revenues (1− ut)α minus wage wt, which is the periodical income to the

worker. The asset price equations of a job Jt and Wt, to a firm and a worker respectively, are then

rJt = (1− ut)α − wt − δJt + J̇t,(3)

rWt = wt − δ (Wt − Ut) + Ẇt.(4)

The wage is determined by Nash bargaining over the surplus of a match pt ≡ Jt + Wt − Ut,

with worker’s bargaining power equal to β ∈ (0, 1) and separation (Ut, 0) as threat point. The

firm’s rent is therefore equal to its share of the surplus:

(5) Jt = (1− β) (Jt +Wt − Ut) , and J̇t = (1− β)
(
J̇t + Ẇt − V̇t

)
,

where the latter follows because wages are continuously renegotiated.6

As in (2), an unemployed worker’s net expected income from search activity gt is stθ
η
t (Wt − Ut)−

sγt . He optimally chooses his search intensity st, taking into account that the surplus of a match

will be divided by Nash bargaining. Using (1) with equality, net expected income from search

activity can be expressed in terms of labor market tightness:

(6) g (θt) = max
st

[
β

1− β
stkθt − sγt

]
.

Finally, add (3) to (4), subtract (2), and substitute g (θt), to obtain the law of motion for match

6Pissarides (2009) shows that the crucial assumption for job creation is that wages of new matches are given

by this rule. How rents in ongoing jobs are split is inconsequential for job creation, and thus for the dynamics in

this model. Coles and Wright (1998) have shown that outside a steady state, Nash bargaining no longer necessarily

corresponds to the outcome of strategic bargaining with appropriately defined threat points as the time between

offers goes to zero, as it would in a stationary environment (Binmore et al., 1986). Consequently, the division rule in

this paper should not be interpreted as the outcome of strategic bargaining, but as an axiomatic solution.
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surplus

(7) ṗt = (r + δ)pt − (1− ut)α + z − g (θt) .

2.3 Equilibrium behavior and dynamics

Unemployed workers choose the intensity st at which they search for jobs. Balancing the benefits

of search with the costs, from (6) optimal search intensity s∗ (θt) is given by

(8) s∗ (θt) =

(
β

1− β
k

γ
θt

) 1
γ−1

.

As referred to above, optimal intensity increases in tightness, and is positive for θ > 0. Together

with the stocks of vacancies and unemployed workers, it determines the measure of matches formed

at any instant. Combined with the destruction of existing jobs, unemployment evolves according

to a differential equation in unemployment and tightness:

(9) u̇t = δ (1− ut)− s∗ (θt) θ
η
t ut.

By opening or closing vacancies, firms translate changes in expectations about the value of a

worker to the firm in changes in labor market tightness with perfect foresight. Indeed, for any

positive level of tightness, (1) implies

(10) Jt =
kθt
θηt
.

Differentiating with respect to time, the value of a worker to a firm and labor market tightness

move in tandem:

(11) J̇t =
kθ̇t(1− η)

θηt
.

Substituting (5) and (10) into (7), the value of a worker to a firm evolves according to

(12) J̇t = (r + δ)
kθt
θηt
− (1− β) [(1− ut)α − z + g (θt)] .
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Finally, combine (11) and (12) into a second differential equation in unemployment and tightness:

(13) θ̇t = (r + δ)
θt

1− η
+ (1− β)

θηt
k(1− η)

[g (θt) + z − (1− ut)α] .

Equilibrium can now be defined as in:

Definition 1. A perfect foresight equilibrium with economic activity is a pair of functions {ut, θt}

such that:

1. For all t ≥ 0, unemployment ut ∈ [0, 1] evolves according to (9);

2. For all t ≥ 0, labor market tightness θt > 0 evolves according to (13);

3. limt→∞ θt is finite and u0 is given.

In the presence of search frictions, an equilibrium is not necessarily efficient. Positive externalities

of search and recruiting activity occur for trading partners for whom matching is more likely

because of the availability of more (effective) trading partners. Negative externalities of search and

recruiting activity occur for searchers of the same type, for whom matching is less likely because

of increased congestion for trading partners. These externalities only cancel once the net private

returns from search and recruiting activity equal the net social returns. Proposition 2 states this

happens if the familiar Hosios (1990) condition is satisfied. Note that the Hosios condition only

concerns the search externalities, not the demand externalities. The proof in Appendix B.1 extends

the efficiency results of the Pissarides (2000) model with variable search intensity to out-of-steady

state dynamics.

Proposition 2. Suppose revenue per match is independent of unemployment and constant, i.e.

yt = y. Then search intensity st and labor market tightness θt are efficient if and only if the

bargaining power of firms 1− β is equal to the elasticity of the matching function η.

Thus, 1 − β = η is the efficient sharing rule for a social planner that takes the demand

externalities as given, just as firms and workers do, but does internalize search externalities. In fact,

the demand externalities result in multiple equilibria for the same fundamentals, and Mortensen

(1999) shows that these equilibria can be Pareto-ranked. The next section presents steady-state

equilibria, whereas the section after that presents the non-stationary equilibrium of the Beveridge

cycle that encloses one of these steady states.
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3 Steady state equilibria

In this section, I present the steady-state equilibria of the model economy, and study their stability.

I show that if there exists a steady state with economic activity for z > 0, then there are generically

multiple of them. Knowledge of the stability of these steady states helps to understand the

Beveridge cycle that ultimately explains the data.

3.1 Nullclines

A steady state is a pair of functions (ut, θt) in which both unemployment and labor market

tightness are constant. Unemployment is constant on the u̇t = 0-locus or unemployment nullcline,

where (9) is equal to zero:

(14) ut =
δ

δ + s∗ (θt) θ
η
t

,

with s∗ (θt) as given in (8). One can see that in steady state all workers are unemployed if tightness

is zero, and that steady-state unemployment decreases in tightness via the job finding rate.

Tightness is constant on the θ̇t = 0-locus or tightness nullcline. Equalizing (13) to zero, the

tightness nullcline for equilibria with economic activity can also be expressed as unemployment in

terms of tightness:

(15) ut = 1−
[
(r + δ)

kθt
(1− β)θηt

+ g (θt) + z

] 1
α

.

Again unemployment decreases in tightness: at a lower level of unemployment, revenue will be

higher, and therefore in equilibrium firms open more vacancies. From (15) with θt = 0, we can see

that the nullcline crosses the θ = 0-axis at

(16) uθ=0 = 1− z1/α.

At this level of unemployment, revenue per worker-firm match equals the gross value of leisure, and

firms do not want to open any vacancies. For smaller values of leisure, wages are lower. As a result,

there is more surplus of a match, and firms open more vacancies. Figure 2 shows representative
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unemployment and tightness nullclines, and indicates the location of uθ=0 for some z > 0.7
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Figure 2: Nullclines of unemployment (dashed) and labor market tightness, resulting in the three steady

states N , L, and H.

Notes: Parameters are k = 0.55, δ = 0.1, r = 0.012, η = 0.5, γ = 1.29, α = 0.3, β = 0.5, and z = 0.71.

3.2 Existence of steady states

A steady state with economic activity exists where the two downward-sloping nullclines intersect.

Figure 2 shows two steady states with activity: a steady state L with a relatively low but positive

employment and labor market tightness, and a steady state H with high employment and tightness.

Due to the complementary slackness condition, there is also always a steady state N without

economic activity at θ = 0 and u = 1. However, it is not generally possible to give explicit solutions

for steady states with economic activity, and they may not always exist. In particular, for z > 0

there are only steady states with economic activity if recruiting costs k are small enough. If not,

the unemployment nullcline will lie entirely above the tightness nullcline, and the steady state

7Since unemployment can be expressed more easily as a function of tightness than the reverse, I plot unemployment

on the vertical axis and tightness on the horizontal. Once I later plot vacancies to unemployment, unemployment

will be on the horizontal axis as is common in the literature. With these conventions, counterclockwise cycles in

unemployment and vacancies thus correspond to clockwise cycles in unemployment and tightness.
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without activity is the only steady state.8

As soon as recruiting costs become small enough, the two nullclines touch and a saddle-node

bifurcation occurs. In a bifurcation the qualitative properties of a dynamical system change as the

result of a change in one or more parameters, k in this case.9 Bifurcations are of interest because

regions in the parameter space delimited by bifurcations are therefore structurally stable, i.e. the

qualitative dynamics are invariant to small perturbations of the parameters. The qualitative

change as the result of a saddle-node bifurcation is the emergence of two additional steady states:

a saddlepoint and an antisaddle (node or focus).10 Depending on the shape of the nullclines,

saddle-node bifurcations can happen multiple times. As a result, if any steady state with economic

activity exists for z > 0, there is generically an even number of them. Focusing on this empirically

relevant case, Proposition 3 states a sufficient condition for the existence of exactly two steady

states with economic activity. The proof is in Appendix B.2.

Proposition 3. Suppose k is small enough to guarantee the existence of a steady state with

economic activity. Then if α ≤ 1 and z >
(

1− δ
δ+(r+δ)(1−η)η(γ−1)

)α
, exactly two of them exist.

The sufficient condition in Proposition 3 ensures that the unemployment nullcline is convex

and the tightness nullcline is concave on the relevant sections, but my calibrations as presented in

Subsection 5.1 shows that this condition is not necessary. In the next subsection I characterize the

stability of the set of steady-state equilibria with activity.

3.3 Stability of steady states

The local stability of the steady states with economic activity can be studied by linearizing the

dynamical system given by (9) and (13). In a steady state with economic activity, the Jacobian

matrix is ∂θ̇t
∂θt

∂θ̇t
∂ut

∂u̇t
∂θt

∂u̇t
∂ut


∣∣∣∣∣∣∣
θ̇,u̇=0

=

 r + δ + s∗ (θt) θ
η
t

β
(1−η) (1− β)

θηt
k(1−η)α (1− ut)α−1

−s′ (θt) θηt ut − s∗ (θt) ηθ
η−1
t ut −δ − s∗ (θt) θ

η
t

 ,(17)

8If z = 0, at least one steady state with activity exists if η + (γ − 1)−1 < 1, independent of other parameters.

9Alternatively, for a given k and α, the gross value of leisure z must be small enough. See e.g. Kuznetsov (2004)

for more on bifurcation theory.

10An antisaddle is a focus if its eigenvalues are complex, thus if tr2 < 4 det, and a node otherwise.
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with

s′ (θt) =
1

θt(γ − 1)

(
β

1− β
k

γ
θt

) 1
γ−1

.

We see that ∂θ̇t/∂θt > 0, ∂θ̇t/∂ut > 0, ∂u̇t/∂θt < 0, and ∂u̇t/∂ut < 0 in steady state.

Depending on whether the product of the diagonal elements (∂θ̇t/∂θt)(∂u̇t/∂ut) or the product of

the cross-diagonal elements (∂θ̇t/∂ut)(∂u̇t/∂θt) is more negative, the determinant is negative or

positive respectively. If and only if the determinant of the Jacobian matrix at a steady state is

negative, it has eigenvalues of different signs and thus saddle path dynamics (see e.g. Kuznetsov

(2004, p. 49)). If and only if the determinant is positive, the eigenvalues are of equal sign and

the steady state is an antisaddle. Since only an antisaddle can feature surrounding oscillatory

dynamics, Proposition 4 states a necessary condition for endogenous cycles.

Proposition 4. A steady state with economic activity is an antisaddle if and only if the unem-

ployment nullcline crosses the tightness nullcline from above.

Proof. The slopes of the nullclines in any of the steady states with economic activity are given by

dut
dθt
|u̇t=0 = −∂u̇t

∂θt
/
∂u̇t
∂ut

and
dut
dθt
|θ̇t=0 = −∂θ̇t

∂θt
/
∂θ̇t
∂ut

.

Now we see that

∂θ̇t
∂θt

∂u̇t
∂ut

>
∂θ̇t
∂ut

∂u̇t
∂θt

if and only if the former is steeper than the latter. Since both terms are negative by the sign

restrictions, this corresponds to the unemployment nullcline crossing the tightness nullcline from

above.

As can be seen in Figure 2, steady state L is the intersection of the unemployment nullcline

crossing the tightness nullcline from above. As a result, only this steady state can feature

endogenous oscillatory dynamics enclosing the steady state. Steady state H is a saddlepoint, so

that there is an equilibrium saddlepath leading to it.

The trace of the Jacobian matrix in the antisaddle indicates whether the dynamics locally

converge to it (the trace is negative and the antisaddle is a sink), diverge from it (positive trace;

source), or neither (zero trace; center). The trace is given by the sum of the diagonal elements of
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the Jacobian matrix (17), and is thus

(18)
∂θ̇t
∂θt

+
∂u̇t
∂ut

= r + s∗ (θt) θ
η
t

(
β

1− η
− 1

)
.

We see that the trace is exactly r > 0 if β = 1− η, thus if the Hosios condition is satisfied. The

trace is also always positive for β > 1− η. As a result, the antisaddle is unstable in these cases.

However, as we will again see in the next section, the trace can take either sign for β < 1− η.

4 Beveridge cycle equilibria

In this section I show that the steady states and equilibrium paths leading to them are not the

only equilibria. In particular, I show that there exists a stable limit cycle for a range of values for

workers’ bargaining power. A limit cycle is a periodic orbit enclosing an antisaddle such that at

least one other path converges to it as time approaches positive infinity (the cycle is stable) or

negative infinity (the cycle is unstable). Since the limit cycle in this paper results in enduring

endogenous fluctuations in vacancies and unemployment, I refer to it as a Beveridge cycle.

The existence of a stable Beveridge cycle follows from the occurrence of a Bogdanov-Takens

bifurcation. This bifurcation generically occurs in a system of two or more parameters, in which a

Hopf bifurcation, a saddle-loop bifurcation, and a saddle-node bifurcation occur in a single point in

the parameter space. This Bogdanov-Takens point is important because it is an organizing center

for the dynamics: it characterizes the qualitative dynamics of the system in the neighborhood of

this point. The next subsection presents examples of the relevant kinds of qualitative dynamics,

as demarcated by a Hopf and a saddle-loop bifurcation respectively. These examples also show

the existence of multiple equilibria for the same initial unemployment rate. Next, I show the

occurrence of the bifurcations more formally. Finally, I describe the economics of the Beveridge

cycle.

4.1 Examples of oscillatory dynamics

Figure 3 plots phase diagrams for four different values of the workers’ bargaining power β. These

phase diagrams zoom in on the steady states with economic activity, and the nullclines are

dashed. Starting off from a small β in Panel 3(a), the antisaddle is a stable focus, so that it
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attracts oscillating paths from initial conditions for unemployment outside itself. Notice that the

equilibrium path towards the antisaddle is locally indeterminate, and that, in between the two

outer paths of the panel there must also be an equilibrium saddlepath leading to the saddlepoint.

Increasing β, at some critical value the eigenvalues of the Jacobian matrix at the antisaddle

become purely imaginary, and a Hopf bifurcation occurs. In a Hopf bifurcation, a periodic orbit

emerges out of an antisaddle, and inherits its stability. Because the antisaddle of Panel 3(a) is

stable, in this Hopf bifurcation it becomes unstable and gives rise to a stable limit cycle. Panel

3(b) presents this limit cycle. Equilibrium is still locally indeterminate and in between the two

depicted paths there is again a saddlepath.

The limit cycle grows for a larger and larger workers’ bargaining power until it coincides with

the stable and unstable manifolds of the saddlepoint. When this happens, a saddle-loop bifurcation

occurs, which is depicted in Panel 3(c). At this bifurcation the periodic orbit connects the

saddlepoint with itself, and is therefore called a homoclinic orbit. At the saddle-loop bifurcation

the basin of attraction outside the periodic orbit has disappeared, except for the remaining

saddlepath below the saddlepoint.

For larger values of β as in Panel 3(d), periodic orbits do not exist any longer. The antisaddle

remains unstable, but now the paths originating from its neighborhood will no longer be bounded,

except for the saddlepath. Equilibrium is, however, still locally indeterminate.

4.2 Hopf, saddle-loop and Bogdanov-Takens bifurcations

The phase diagrams suggest the occurrence of a Hopf and a saddle-loop bifurcation. In this

subsection I confirm the occurrence of these bifurcations. Moreover, I show that parameter

combinations for which these bifurcations occur come together in a Bogdanov-Takens point. As a

result, these bifurcations fully describe the behavior of the dynamical system in the neighborhood

of this point in the parameter space.

A Hopf bifurcation occurs when the eigenvalues of the Jacobian matrix at the antisaddle cross

the imaginary axis, so that the trace becomes zero. Remember from discussion of Equation 18

that the trace is always positive for β ≥ 1− η. Proposition 5 shows that it can become zero for a

sufficiently small workers’ bargaining power.

Proposition 5. Under the regularity condition that the job finding rate in the antisaddle exceeds
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Figure 3: Representative phase diagrams for different values for β: (a) Stable steady state; (b) Stable limit

cycle; (c) Homoclinic orbit of the saddle-loop bifurcation; (d) No closed orbits at efficient bargaining.

Notes: Nullclines are dashed, intersecting twice. k and c0 used to normalize steady state L tightness to 1. Other

parameter values from Table 2, first column. βHopf ≈ 0.89290.

the discount rate r > 0, there exists a βHopf ∈ (0, 1− η) for which the antisaddle undergoes a Hopf

bifurcation. As a result, there is a limit cycle in a one-sided neighborhood of βHopf .

Proof. In any antisaddle the real parts of the eigenvalues are of the same sign, so that if the trace

has a simple zero in the antisaddle, the eigenvalues cross the imaginary axis. From (18) we see that

the trace has a simple zero at βHopf = (1− η) (1− r/ (s∗ (θt) θ
η
t )) ∈ (0, 1− η) if s∗ (θt) θ

η
t > r > 0.

Therefore, for s∗ (θt) θ
η
t > r in the antisaddle there exists a 0 < βHopf < 1− η for which a Hopf

bifurcation occurs. As a result, a limit cycle exists in a one-sided neighborhood of βHopf .

Proposition 5 implies that the antisaddle is a sink for β < βHopf and a source for β > βHopf .

For only one of these inequalities there exists a limit cycle enclosing the antisaddle for β sufficiently
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close to βHopf , but the proposition does not tell in which case. If the limit cycle exists for the

left-sided neighborhood of βHopf it must be unstable, because the antisaddle is stable, and vice

versa for the right-sided neighborhood.

While the limit cycle coincides with the antisaddle and the period of the cycle approaches

zero as β → βHopf , in a so-called saddle-loop bifurcation the cycle assumes its maximal size.

A saddle-loop bifurcation occurs when the stable and the unstable manifolds of a saddlepoint

connect to form a homoclinic orbit, a path that connects a steady state with itself. Because of the

neighborhood of the saddlepoint, the period of the cycle approaches infinity as the cycle approaches

the homoclinic orbit. In Hamiltonian systems (where all orbits are level curves) homoclinic orbits

are a generic phenomenon, but in systems where the trace is generically nonzero the existence of

a homoclinic orbit is not robust to small perturbations of a single parameter. In such systems

the existence of a homoclinic orbit can be proven by perturbing a Hamiltonian system, and then

the Andronov-Leontovich theorem (see e.g. Kuznetsov (2004, p. 200)) states that a limit cycle

bifurcates on one side of the homoclinic orbit. Proposition 6 extends the result of Mortensen

(1999) on the existence of a homoclinic orbit to the case of a positive value of leisure.11 The proof

is in Appendix B.3.

Proposition 6. Suppose that parameters are such that two steady states with economic activ-

ity exist for z > 0, r = 0, and β = 1 − η, and define θH and uH as market tightness and

unemployment in the saddlepoint H respectively. Suppose also that (1 − uH + αz1/α)α+1 <

(1− α)
[
(1− uH)

(
z + kθ1−η

t /(1− β)
)
− uHg (θH)

]
. Then there exist a βSL < 1− η such that for

a sufficiently small r > 0 a homoclinic orbit exists. Moreover, there exists a family of stable limit

cycles for a one-sided neighborhood of βSL.

Proposition 6 states that there exists an orbit that connects the saddlepoint with itself for

β = βSL, and (1 − uH + αz1/α)α+1 < (1 − α)
[
(1− uH)

(
z + kθ1−η

t /(1− β)
)
− uHg (θH)

]
is a

necessary and sufficient condition to guarantee that θt > 0 on this homoclinic orbit. While the

homoclinic orbit itself is not a robust phenomenon, it is of interest because it implies that a family

of limit cycles can be found in the neighborhood of βSL. However, although Proposition 6 tells

11Mortensen (1999) shows that (18) holds globally, not only in steady states, and as a result his system can be

described by a Hamiltonian function when the Hosios condition holds and r = 0. Moreover, Bendixson’s criterion

(Guckenheimer and Holmes, 1983, p. 44) then rules out limit cycles whenever both r > 0 and β ≥ 1 − η.
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us that these limit cycles are stable, it cannot tell us whether these cycles occur for β > βSL or

β < βSL. Moreover, we do not know yet whether βHopf < βSL, or the other way around.

Given the limited number of ways that limit cycles can appear or disappear, if βHopf < βSL

stable limit cycles would exist for the right-sided neighborhood of βHopf , delimited by βSL. If

βHopf > βSL, stable limit cycles would exist for the right-sided neighborhood of βSL, upon collision

(in a saddle-node bifurcation of cycles) annihilating an unstable limit cycle that would exist for

the left-sided neighborhood of βHopf . To rule out this latter case, and to show that a stable

limit cycle exists for a range of values for the workers’ bargaining power β ∈ (βHopf , βSL), I show

the occurrence of a Bogdanov-Takens bifurcation. A necessary condition for this bifurcation is

Bogdanov-Takens singularity, which requires that both eigenvalues are zero in a steady state.

Proposition 7 states that such a point in parameter space exists. The proof is in Appendix B.4.

Proposition 7. Define Bogdanov-Takens singularity as a steady state with two zero eigenvalues

but a nonzero Jacobian matrix. There exists a point in parameter space that satisfies this singularity,

and it is unique for α < 1.

Under certain genericity conditions this singularity is sufficient for the occurrence of a Bogdanov-

Takens bifurcation. These conditions require that one can ‘travel’ through the Bogdanov-Takens

point by varying the parameters. To suggest that this is the case, I present the bifurcation diagram

of Figure 4.12 The figure shows combinations of parameters α and β for which bifurcations occur.

The regions bounded by these bifurcations can be represented by qualitatively similar phase

diagrams, where (a), (b), and (d) correspond to the respective panels of Figure 3, reprinted for

convenience. The gray solid curve represents combinations of α and β for which a saddle-node

bifurcation occurs, so that above the curve (in region (0)) no steady states with economic activity

exist while below it there are two of them. The bold curve depicts the occurrence of a saddle-loop

bifurcation as in Figure 3(c). Right of this curve is the familiar region (d) in which all equilibria

are either steady states or saddlepaths, and in which the dots indicate efficient bargaining. The

dashed curve represents combinations of α and β for which a Hopf bifurcation occurs, so that

left of this curve (in region (a)) there is a continuum of equilibria spiraling towards antisaddle

L. Region (b), bounded by the Hopf and the saddle-loop bifurcations, features the Beveridge

12A formal proof requires the construction of a normal form and is too involved to present here, see e.g. Kuznetsov

(2004, p. 322).
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cycle. This region increases in r. Finally, there is a Bogdanov-Takens point BT where the Hopf

bifurcation curve and the saddle-loop bifurcation curve connect tangentially to the saddle-node

bifurcation curve, as they should for a Bogdanov-Takens bifurcation to occur.
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(b)(b)

(d )(d )

(0)(0)
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Figure 4: Bifurcation diagram of the Bogdanov-Takens bifurcation, with α and β as bifurcation parameters.

Notes: Other parameters from Table 3, first column. The gray curve corresponds to the saddle-node bifurcation, the

bold curve to the saddle-loop bifurcation, and the dashed curve to the Hopf bifurcation. Regions (a), (b), and (d)

refer to the panels of Figure 3, reprinted for convenience, and (d) extends beyond efficient bargaining at β = 0.9

(dotted curve). BT refers to the Bogdanov-Takens-point, and there are no steady states with economic activity in

region (0). The homoclinic orbit hits the u-axis for α ≈ 0.73.

Consequently, for an elasticity of the demand externalities α in the left-sided neighborhood of

the Bogdanov-Takens point, there exists a family of limit cycles enclosed by a Hopf and saddle-loop

bifurcation. The Bogdanov-Takens bifurcation rules out another bifurcation that could change the

stability of these cycles. Because Proposition 6 shows that the limit cycles born at the saddle-loop

bifurcation are stable, the entire family is stable. This implies that βHopf < βSL, because a stable

limit cycle requires a positive trace in antisaddle L, which only occurs for β > βHopf . As a result,

a stable Beveridge cycle exists for β ∈ (βHopf , βSL). Because the Beveridge cycle exists for a range

of values for the parameters, it is structurally stable. The cycle will thus continue to exist under

small perturbations of the parameters, or upon introduction of some risk aversion.
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4.3 The economics of the Beveridge cycle

The analysis above implies that for β < βSL, starting from a sufficiently low initial condition for

unemployment, expectations select which steady state will be reached in the long run. Moreover,

also for β > βSL multiple equilibria exist in the neighborhood of the antisaddle due to local

indeterminacy. Obviously, multiple self-fulfilling expectations are the result of the feedback from

aggregate employment to the revenue per match generated by the demand externality, but they

also require delays in matching. An expectation that unemployment will be low makes firms

open vacancies, because low unemployment implies a high revenue per match. This expectation is

self-fulfilling because more vacancies now result in lower future unemployment.

However, rational expectations Beveridge cycles do not only require positive feedback and a

propagation mechanism, but also a congestion externality. Howitt and McAfee (1988) argue that

in models with only a positive externality, because of positive discounting antisaddles are unstable

and no cycles exist. However, they show that a negative externality can overturn this effect. This

negative externality is a standard ingredient in search models of the labor market, where matching

is less likely for a potential trader when many other potential traders search on the same side

of the market. The congestion externality makes firms with expectations of low unemployment

open vacancies immediately, not only because revenue per match will be higher in the future and

matching takes time, but also because hiring will be more costly in the future. Proposition 2

shows that when β = 1− η, thick-market externalities on one side of the market exactly cancel

congestion externalities on the other side of the market. It follows from Propositions 5 and 6 that

Beveridge cycles exist for a range of value for workers’ bargaining power that satisfy β < 1− η.

This condition is required because free entry of firms drives the evolution of market tightness, and

if β < 1− η, congestion occurs primarily on the firms’ side of the market. Besides, variable search

intensity is not essential for the existence of the cycle, but is only helpful for the calibration.

It follows from Proposition 4 that oscillations enclose a steady state where the unemployment

nullcline crosses the tightness nullcline from above. At this antisaddle, the strategic complementarity

from the demand externality dominates the strategic substitute from the congestion externality:

when firms increase their vacancies, this results in such a large decrease in unemployment in the

future, that revenue per match will increase so much that firms would want to open even more

vacancies. As a result, firms overshoot the steady state level of tightness of the antisaddle for
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the alluringly high revenue per match at high aggregate employment levels. However, with so

many vacancies, unemployment decreases fast and it starts to take a long time to fill an individual

vacancy. Consequently, while unemployment still decreases but firms foresee an end to the boom,

they do not want to spend valuable resources on vacancies that are hard to fill. Expecting higher

unemployment in the future and thus smaller benefits of a filled vacancy, firms reduce labor

market tightness. As a result, at some point fewer matches are made than jobs are destroyed,

and unemployment increases. Higher unemployment feeds back to lower revenue per match, so

that firms also overshoot the steady state level of tightness in the trough. With so few vacancies,

however, a single vacancy is filled very fast. So while unemployment still increases but firms foresee

an end to the trough, they are willing to spend some resources on vacancies that will be filled very

soon and pay off at the higher employment levels of the future. Job matching takes over from job

destruction again and unemployment decreases, completing the cycle.

The relative size of the discount rate r and the distortion of the Hosios condition, β < 1− η,

determines whether oscillations diverge, converge, or form a closed orbit. The asset pricing equation

of the system, (13), shows that for a high r and given flow values, equilibrium requires large capital

gains or losses, i.e. fast movements in market tightness. For that reason, for a higher r and a given

η, stability of the antisaddle requires a smaller β, or more congestion. Alternatively, for a given r

the oscillations converge for a small β, form closed orbits for an intermediate β, and diverge for a

large β, as in Figure 3. Remember that for a given r, the cycle is largest for βSL. Otherwise, fix

β ∈ (βHopf , βSL) and compare Beveridge cycles for different discount rates. The cycle is small for

a small discount rate because when firms are patient, they heavily respond to expected future

changes in the revenue per match. A limit cycle is then only consistent with equilibrium if revenue

per match does not vary too much over the cycle, thus if the cycle is small.

As the result of self-fulfilling expectations, the model features multiple equilibria, which results

in the problem of equilibrium selection. Because of the evidence on the cyclical dynamics as

presented in Figure 1(a), I take the dynamics of the Beveridge cycle to be the relevant dynamics

to explain the actual data. The stability of the limit cycle further supports its plausibility as a

data-generating process, although its basin of attraction may be small. Figure 4 shows that the set

of β’s that give rise to a Beveridge cycle has a positive but small measure, so that the proposed

data-generating process is not very robust to changes in β. On the other hand, for virtually all
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β < βHopf the dynamics oscillate but eventually settle down in the antisaddle, as in Figure 3(a).

Especially if β is smaller than but close to βHopf , it may take a very long time to reach the steady

state, so that many business cycles could be explained with one exogenous shock in fundamentals

or beliefs. Kaplan and Menzio (2016) provide an example of the latter. I focus on the limit cycle

and therefore I do not exploit the additional degrees of freedom that exogenous shocks provide.

Instead, I use the fixed period of the limit cycle to calibrate the model. The next section presents

the quantitative contribution of this paper.

5 Quantitative results

In this section I calibrate the model to the average duration of the business cycle and assess its

quantitative performance in describing unemployment and vacancies over the business cycle. I

compare the model-generated data to the actual data and to data generated by the canonical

search and matching model of Pissarides (1985) with productivity shocks. Because the latter

features constant search intensity, I also calibrate a model of the Beveridge cycle without variable

search intensity. Next, I discuss robustness to alternative calibrations, including alternative targets

for the duration of the business cycle. Finally, I show that the model-generated data move in the

expected direction upon changes in unemployment benefits.

5.1 Calibration

I calibrate the parameters of the model using data on the duration of the business cycle. Depending

on its measurement, the typical cycle in Figure 1(a) lasts between 18 and 28 quarters. Because

productivity in the model moves with employment, the duration of the NBER business cycle

provides an alternative calibration target that avoids some arbitrary choices. Figure 5 shows the

duration of the NBER business cycles falling entirely in the sample period from 1951 to 2014.

Irrespective of whether the cycle is measured from peak to peak or from trough to trough, the

average cycle lasts roughly 24 quarters.

The parameters that describe workers’ preferences are discount rate r, gross value of leisure z,

and the elasticity of the search cost function γ. Firms’ technology is described by the elasticity of

revenue per match with respect to aggregate employment α, the vacancy creation cost k, and the

job destruction rate δ. Matching and bargaining are described by the elasticity of the matching
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Figure 5: Duration in quarters of all completed NBER business cycles between 1951 and 2014.

Source: http://www.nber.org/cycles.html

function with respect to vacancies η, and workers’ bargaining power β.

The bifurcation analysis of the preceding section makes clear that β is important for the

existence of the Beveridge cycle. I choose the β that is closest to efficient bargaining but still

gives rise to a limit cycle with a computationally significant basin of attraction outside its path.

This limit cycle is close to the homoclinic orbit, the largest closed orbit possible taking the other

parameters as given.13 By moving β further away from efficient bargaining in the direction of

the Hopf bifurcation, the limit cycle can be made arbitrarily small, but then the Beveridge cycle

can explain little volatility. My calibration strategy therefore approaches an upper bound to

deterministic volatility.

I choose a period in the model to be one quarter. Given β, I set α such that the duration of the

Beveridge cycle corresponds to the average duration of the NBER business cycle over the sample

period. The value of r corresponds to an annual interest rate of 4 percent. I choose the value for

δ to equal the observed average quarterly job destruction rate, and the value for k so that the

average unemployment rate is the same in the model and in the data.

In the model, the elasticity ε of the job finding rate with respect to the vacancy-to-unemployment

ratio is ε = η + (1− η)/γ. Therefore I choose η and γ such that their combination results in an

estimated elasticity of 0.46. To distinguish the role of variable search intensity from the role of

13As pointed out in section 4, the period of the homoclinic orbit approaches infinity, but because it has no basin

of attraction outside itself, sampling from this cycle is computationally unstable.
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the matching function, I exploit that (by definition) non-participants do not search for jobs but

still find jobs at cyclical rates. Assuming that non-participants and unemployed workers find jobs

via the same matching function, and that the higher job finding rate of the unemployed is the

result of their search effort, allows me to disentangle η and γ. I use a matching function with

ranking (similar to Blanchard and Diamond (1994)) to ensure that non-participants do not create

congestion for unemployed workers, as in the model. Appendix A.1 describes this procedure and

the data used in more detail.

I choose z such that I match an average flow value of leisure of 0.71 as in Hall and Milgrom

(2008). In my model, however, the flow benefit of leisure consists of a gross value of leisure z and

variable search costs sγt . On top of that, while average productivity is commonly normalized to 1,

productivity in my model never reaches 1. For that reason, the relevant calibration target of my

model is not z, but the net value of leisure relative to output:

ζ =
z − s∗ (θt)

γ

(1− ut)α
.

I calibrate the parameters of the Pissarides (1985) model using the same targets. I use the

same β as for the Beveridge cycle, because in the standard model it is unrelated to the size of

the cycle. However, I choose the parameters of the stochastic process for productivity such that

the standard deviation and autocorrelation of revenue per match are the same for the Beveridge

cycle and the Pissarides (1985) model. Following the RBC literature’s convention for stochastic

processes, I match the statistics in logs as deviations from a linear trend.14 I repeat this procedure

to match the targets of the Beveridge cycle without variable search intensity.

The calibration strategy described above results in the parameters of Table 2. All calibrations

of the Beveridge cycle result in two steady states with economic activity. My calibration procedure

to disentangle γ and η results in an estimated γ of 2.5, which is a bit higher than the quadratic

cost function that the literature (e.g. Gomme and Lkhagvasuren (2015)) generally assumes.15 The

target for ε then implies η = 0.1, so that the Hosios condition corresponds to β = 0.9. In both the

14An HP-filter with a lower smoothing parameter biases autocorrelation coefficients to such an extent that an

Ornstein-Uhlenbeck process cannot match the filtered autocorrelation of the Beveridge cycle.

15Note, however, that γ = 2 is not compatible with a positive elasticity of the matching function for an estimated

elasticity ε < 0.5.
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Pissarides (1985) model and the model of the Beveridge cycle without variable search intensity,

η = ε. When on top of that average revenue per match is equal to one, as in the Pissarides (1985)

model, z = ζ.

Description Beveridge cycle Pissarides I γ →∞ Pissarides II

r Discount rate 0.012 0.012 0.012 0.012
z Gross value of leisure 0.527 0.71 0.345 0.71
γ Elasticity search cost 2.5 - - -
α Elasticity demand externality 6.887 - 11.05 -
k Vacancy creation cost 2.079 ∗ 10−8 1.155 ∗ 10−2 4.561 ∗ 10−2 7.974 ∗ 10−2

δ Job destruction rate 0.1 0.1 0.1 0.1
η Elasticity matching function 0.1 0.46 0.46 0.46
β Workers’ bargaining power 0.893 0.893 0.536 0.536

Table 2: Calibrated parameters for the benchmark calibration, the Pissarides (1985) model (Pissarides I),

the Beveridge cycle without variable search intensity (γ →∞), and the Pissarides (1985) model that uses

the same targets as the the Beveridge cycle without variable search intensity (Pissarides II)

Notes: For Pissarides I, the Ornstein-Uhlenbeck volatility parameter is σ = 0.02139, and its persistence parameter is

γ = 0.032. For Pissarides II, σ = 0.0546 and γ = 0.0459.

To match the average unemployment rate over the cycle, my benchmark calibration results in a

demand externality of 6.9. This value is considerably higher than Kaplan and Menzio (2016)’s

estimate of shopping and demand externalities that implies α = 1.15, and lies completely out of

the range of estimates of increasing returns to scale, which provide an upper bound of α = 0.17

(Harrison, 2001). As can be seen in the last column of Table 2, this problem only deteriorates for

a fixed search intensity. The following two alternative calibration strategies show that either a

high value of leisure, or a high elasticity of the job finding rate with respect to tightness, result in

demand externalities that are of the same order of magnitude as Kaplan and Menzio (2016).

The estimation of the elasticity of the job finding rate ε is very sensitive to the choices made

and the data selected. As a result, in the literature it takes almost any value between zero and

one, see Petrongolo and Pissarides (2001). Because the quantitative results are also sensitive to ε,

I consider an alternative calibration, exploiting that from December 2000 onwards the JOLTS

provides an alternative source of the job finding probability. Regressing the log of this job finding

probability on the log of labor market tightness for the relevant sample period results in ε = 0.84.

To disentangle γ and η, I set γ = 1.29 as estimated by Burdett et al. (1984).

Similarly, the literature disagrees on the flow value of leisure. For that reason, I also consider
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Hagedorn and Manovskii (2008)’s target of 0.955 for the average ζ over the cycle. Finally, for

the benchmark calibration targets of ε = 0.46 and ζ = 0.71, I also calibrate the duration of the

Beveridge cycle to a lower and upper bound of 18 and 28 quarters, respectively, as suggested by

the evidence in Figure 1(a).

The parameters resulting from these alternative calibrations are presented in Table 3. Remember

that the estimate of Kaplan and Menzio (2016) corresponds to α = 1.15, so that for ζ = 0.955 the

calibrated demand externalities are smaller than theirs. Of course, in this case the calibrated value

for z is relatively high. For ε = 0.84, α is somewhat above the estimate of Kaplan and Menzio

(2016), but in the same order of magnitude. Besides, the calibration strategy with γ = 1.29 results

in η = 0.3, which is more common in the literature without variable search intensity. Finally, a

Beveridge cycle of shorter duration requires demand externalities that are slightly higher than the

benchmark parameter value, while a longer duration is obtained for a smaller α.

Description ζ = 0.955 ε = 0.84 18 quarters 28 quarters

r Discount rate 0.012 0.012 0.012 0.012
z Gross value of leisure 0.909 0.839 0.490 0.538
γ Elasticity search cost 2.5 1.29 2.5 2.5
α Elasticity demand externality 1.064 1.342 7.500 6.706
k Vacancy creation cost 1.936 ∗ 10−11 1.226 ∗ 10−3 2.943 ∗ 10−8 1.862 ∗ 10−8

δ Job destruction rate 0.1 0.1 0.1 0.1
η Elasticity matching function 0.1 0.3 0.1 0.1
β Workers’ bargaining power 0.893 0.695 0.893 0.893

Table 3: Calibrated parameters for four alternative targets.

Notes: ε = 0.45 and ζ = 0.71 unless specified otherwise.

A high value of leisure and a high elasticity of the job finding rate reduce the calibrated value for

α, because both decrease the unemployment rate, or increase the job finding rate, in the antisaddle.

Consequently, smaller demand externalities are required to target an average unemployment rate

of 0.587. A higher elasticity and more variable search intensity change the unemployment nullcline

so that the same market tightness results in lower unemployment. A higher value of leisure shifts

the tightness nullcline to the left, because for a high ζ, the surplus of a match is lower and firms

open fewer vacancies. The next subsection presents the model-generated data.
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5.2 Performance

In this subsection I present the data generated by the Beveridge cycle, and compare it to the

actual data, the data generated by the calibrated Pissarides (1985) model, and the data that result

from a Beveridge cycle without variable search intensity. To assess the quantitative performance

of the Beveridge cycle, I sample 256 (quarterly) observations from the calibrated Beveridge cycle,

and compute time series for unemployment, vacancies, the ratio of vacancies to unemployment,

the job finding rate ft = s∗ (θt) θ
η
t , and revenue per match yt = (1− ut)α. More specifically, for

each variable I draw time series for each of the 24 different starting points around the cycle, and

report the average statistics. As for the original data, I take logs and deviations from an HP

trend with smoothing parameter 105. Table 4 presents the standard deviation, autocorrelation

and cross-correlations of the variables of the model.

u v v/u f y

Standard deviation 0.043 0.060 0.101 0.047 0.019
Quarterly autocorr. 0.942 0.934 0.939 0.939 0.940

u 1 −0.938 −0.979 −0.979 −1.000
v 1 0.989 0.989 0.938

Correlation matrix v/u 1 1.000 0.979
h 1 0.979
y 1

Table 4: Summary statistics of the Beveridge cycle calibrated to ζ = 0.71 and ε = 0.45.

Notes: f stands for the job finding rate, y for revenue per match. Statistics are averages from 24 samples of 256

quarters across the cycle. All variables are in logs as deviations from an HP trend with smoothing parameter 105.

Comparing the model-generated data to the actual data in Table 1, some features stand out.

First, the endogenous fluctuations in revenue per match almost account for the full observed

volatility of productivity. However, in logs as deviations from a linear trend the standard deviation

of revenue per match is also only 0.019, compared to 0.041 in the data, so that the demand

externality amounts to less than half of the fluctuations in productivity. The HP-filtered time

series for revenue per match is somewhat more persistent than in the data, but in logs as deviations

from a linear trend the autocorrelation coefficient is also only 0.940, compared to 0.976 in the

data. These differences can be understood from the fact that the Beveridge cycle features only

fluctuations in the business cycle frequency domain. Besides, by construction, revenue per match
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is much more negatively correlated with unemployment than observed productivity.

Second, the Beveridge cycle explains about 22 per cent of the observed volatility in unemploy-

ment, and more than one-third of the observed volatility in vacancies. Due to the strong negative

correlation between vacancies and unemployment, both in the model and in the data, the standard

deviation of the ratio of vacancies to unemployment is about the same as the sum of the standard

deviations of vacancies and unemployment, both in the model and in the data. As a result, the

model-generated standard deviation of the ratio of vacancies to unemployment and the job finding

rate also fall short compared to the data.

Third, the autocorrelation of unemployment, vacancies, the ratio of vacancies to unemployment,

and the job finding rate are about the same in the model and in the data. It is important to note

that this persistence is an endogenous result of calibrating the Beveridge cycle to the duration of

the average business cycle, and is not generated by feeding in a persistent stochastic process. The

existence of a saddlepoint in the neighborhood of the Beveridge cycle slows down the dynamics

and therefore allows the cycle to be calibrated to the duration of the business cycle. To assess to

what extent the persistence of the labor market variables is driven by the Beveridge cycle rather

than simply the persistence of the fluctuations in revenue per match, it is useful to compare the

model-generated data of the Beveridge cycle and the Pissarides (1985) model.

Table 5 reports the summary statistics of the Pissarides (1985) model, using the code from

Shimer (2005) but the parameters from Table 2, second column. In particular, the standard

deviation and autocorrelation of revenue per match in logs as deviations from a linear trend are

the same as for the Beveridge cycle. Note that the autocorrelation of unemployment approaches

that of the Beveridge cycle and the observed data, but that vacancies, and to a smaller extent the

ratio of vacancies to unemployment and the job finding rate, are not as persistent. Similarly, the

standard deviation of unemployment lags behind that of the Beveridge cycle, in absolute terms,

but also relative to filtered productivity. The ratios of the standard deviations across the labor

market variables are the same for the Beveridge cycle and the Pissarides (1985) model, resulting in

a similar slope of the Beveridge curve. Finally, in both models the cross-correlations are generally

higher than in the data.

The differences between the Beveridge cycle and the Pissarides (1985) model can also be seen

graphically in Figure 6. Panel 6(a) contains 25 simulated quarterly observations that complete a
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u v v/u f y

Standard deviation 0.018 0.027 0.044 0.02 0.013
Quarterly autocorr. 0.931 0.781 0.873 0.873 0.873

u 1 −0.900 −0.963 −0.963 −0.962
v 1 0.984 0.984 0.983

Correlation matrix v/u 1 1.000 0.999
f 1 0.999
y 1

Table 5: Summary statistics of the Pissarides (1985) model calibrated to the same targets as the Beveridge

cycle.

Notes: Code from Shimer (2005), where the Ornstein-Uhlenbeck volatility parameter is σ = 0.02139 and its

persistence parameter is γ = 0.032, to target the standard deviation and autocorrelation of productivity in logs as

deviations from a linear trend of the 24 quarter Beveridge cycle. All variables are in logs as deviations from an HP

trend with smoothing parameter 105. The table reports averages across 10000 simulations.

Beveridge cycle, HP-filtered and connected by straight lines. The shape of the Beveridge cycle is

similar to the observed cycles in Figure 1(a), and it rotates counterclockwise. Panel 6(b) plots a

representative realization of 256 quarters of the Pissarides (1985) model. The model-generated

Beveridge curve is somewhat less volatile than the Beveridge cycle, but, most importantly, lacks

cyclical dynamics. Although there are some swings parallel to the inverse relationship between

vacancies and unemployment, most of the dynamics is almost vertical.

Figure 6 also shows that the Beveridge curve generated by both the Beveridge cycle and the

Pissarides (1985) model is too steep compared to the data. It is important to note, however, that

both the Beveridge cycle and the Pissarides (1985) model feature a constant job destruction rate

and no transitions into employment from employment or non-participation. It is well known that

job destruction shocks can flatten out the Beveridge curve, but only at the cost of a counterfactually

low correlation between vacancies and unemployment. Other mechanisms can also increase the

volatility of unemployment relative to the volatility of vacancies. It follows from Elsby et al. (2015)

that the participation margin contributes to unemployment volatility and thus reduces the slope of

the Beveridge curve. Menzio and Shi (2011) show that on-the-job search affects firms’ incentives to

post vacancies and can sharply reduce the volatility of vacancies over the cycle. However, Eeckhout

and Lindenlaub (2015) show that in the presence of sorting, on-the-job search can also contribute

to the volatility of vacancies and even result in self-fulfilling fluctuations.
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(b) The Pissarides model (256 quarters)

Figure 6: Simulated dynamics of unemployment and vacancies.

Notes: Panel (a) plots 25 quarterly datapoints from the calibrated Beveridge cycle. Panel (b) plots one simulation

of 256 quarters based on code from Shimer (2005), calibrated to the same targets as the Beveridge cycle. Simulated

data are in logs as deviations from an HP trend with smoothing parameter 105, connected by straight lines.

Both the absence of fluctuations in job destruction, and the absence of transitions into employ-

ment from employment or non-participation in the model of the Beveridge cycle imply that the

model-generated data should not exactly match the observed volatility of both unemployment

and vacancies. For instance, Pissarides (2009) argues that in reality one-third to one-half of the

volatility in unemployment is driven by fluctuations in the inflow into unemployment rather than

the outflow. As a result, a model with constant job destruction should explain at most two-thirds

of the volatility in unemployment.

Summing up, vacancies are more persistent over the Beveridge cycle than in the Pissarides (1985)

model, without being less volatile. In fact, both unemployment and vacancies are somewhat more

volatile over the Beveridge cycle than in the Pissarides (1985) model, also relative to HP-filtered

productivity. To investigate the source of additional volatility, I also compare the data generated

by the Pissarides (1985) model with data generated by the Beveridge cycle without variable search

intensity. Table 6 presents the standard deviations and autocorrelations from the Beveridge cycle
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without variable search intensity, and the Pissarides (1985) model calibrated to the same targets.16

The former features counterfactually large fluctuations in revenue per match as the result of the

large demand externalities. However, the table shows that relative to the HP-filtered volatility of

revenue per match, the volatility of the labor market variables is about the same for the Pissarides

(1985) model and the Beveridge cycle without variable search intensity. As a result, the Beveridge

cycle does not feature any new amplification mechanisms. Variable search intensity contributes to

amplification because it makes the net flow value of leisure countercyclical and because search and

recruiting activity are strategic complements.

u v v/u f y

Beveridge cycle, γ →∞ Standard deviation 0.061 0.087 0.145 0.067 0.044
Quarterly autocorr. 0.931 0.918 0.926 0.926 0.927

Pissarides II
Standard deviation 0.045 0.066 0.109 0.05 0.031
Quarterly autocorr. 0.926 0.763 0.864 0.864 0.863

Table 6: Summary statistics of the Beveridge cycle without variable search intensity (γ → ∞), and

the Pissarides (1985) model recalibrated to feature the same β and the same standard deviation and

autocorrelation of revenue per worker in logs as deviations from a linear trend (Pissarides II).

Regarding persistence, in both the Pissarides (1985) model and the Beveridge cycle (with or

without variable search intensity), the autocorrelation of labor market tightness and the job finding

rate is about the same as the autocorrelation of the (HP-filtered) revenue per match. As a result,

the higher persistence of these variables may be attributed to the higher persistence of revenue per

match after filtration. However, in the Pissarides (1985) model the autocorrelation of vacancies

is substantially smaller than that of labor market tightness and the job finding rate, unlike the

Beveridge cycle. The feature of the Beveridge cycle that vacancies are almost as persistent as

unemployment (and the other variables) is exactly what results in the counterclockwise cycles in

unemployment and vacancies. The next subsection shows that this feature is robust to alternative

targets for the duration of the cycle.

16The cross-correlations for this and all subsequent calibrations can be found in Appendix A.2.
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5.3 Robustness

This subsection presents the model-generated data resulting from the four alternative calibration

strategies. Table 7 presents the standard deviation and autocorrelations of the data generated by

the Beveridge cycle calibrated to 18 and 28 quarters. Not surprisingly, the 18-quarter Beveridge

cycle results in a smaller autocorrelation coefficient than the 24-quarter cycle, and larger demand

elasticities result in a smaller standard deviation. Equivalently, the 28-quarter Beveridge cycle

features smaller volatility but more persistence. Note, however, that the relative persistence of

vacancies compared to the other variables survives under alternative targets for the duration of

the cycle, although it is higher for longer cycles.

u v v/u f y

18 quarters
Standard deviation 0.095 0.143 0.231 0.106 0.047
Quarterly autocorr. 0.888 0.855 0.875 0.875 0.879

28 quarters
Standard deviation 0.027 0.037 0.063 0.029 0.011
Quarterly autocorr. 0.960 0.957 0.959 0.959 0.960

Table 7: Summary statistics of the Beveridge cycle calibrated to 18 and 28 quarters, respectively.

The calibration results in Table 3 have shown that either a high value of leisure, or a high

elasticity of the job finding rate with respect to tightness, result in demand externalities that

are of the same order of magnitude as Kaplan and Menzio (2016). The summary statistics of

Table 8 show the familiar result that both also contribute to amplification. Although smaller

demand externalities result in only a fraction of the volatility in revenue per match, the volatility

of unemployment falls to a much smaller extent. The standard deviation of unemployment is

about the same in the benchmark calibration and the calibration with ε = 0.84, and still more

than three-quarters of the benchmark result in the calibration with ζ = 0.955. Moreover, the

persistence of vacancies does not suffer from additional amplification. Note, however, that a high

elasticity of the job finding rate with respect to tightness results in a low volatility of vacancies

compared to unemployment.

As discussed above, a high value of leisure reduces the required externalities because it lowers the

steady state L unemployment rate. Although such comparative statics might seem counterintuitive,

I show that the dynamics of the Beveridge cycle move in the opposite ‘intuitive’ direction.

Increasing the value of leisure to z = 0.5277 while keeping all other parameters fixed, steady state
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u v v/u f y

ζ = 0.955; ε = 0.45
Standard deviation 0.033 0.046 0.079 0.036 0.002
Quarterly autocorr. 0.946 0.940 0.944 0.944 0.945

ζ = 0.71; ε = 0.84
Standard deviation 0.042 0.015 0.054 0.045 0.004
Quarterly autocorr. 0.952 0.934 0.951 0.951 0.951

Table 8: Summary statistics of the Beveridge cycle calibrated to ζ = 0.955 and ε = 0.45, and ζ = 0.71 and

ε = 0.84, respectively.

unemployment decreases from 0.062 to 0.060. This is the comparative statics effect described

above. However, I claim that the dynamical system of the Beveridge cycle is the data-generating

process. Sampling from the slightly displaced Beveridge cycle, the average unemployment rate

over the cycle increases from 0.059 to 0.060. Consequently, my model predicts a positive effect of

the unemployment benefit on observed unemployment, as most economists would expect.

This argument does not rely on adjustment dynamics, but compares datapoints on two different

Beveridge cycles. Figure 7 shows a time series of unemployment over 256 quarters, connected

by straight lines, resulting from the Beveridge cycle with the calibrated value of leisure. As can

be seen in this figure, the calibrated cycle spends most of its time on segments of the cycle with

low unemployment rates. A Beveridge cycle for a higher value of leisure spends its time more

evenly over the cycle. This nonlinear effect dominates the displacement of steady state L and its

enclosing Beveridge cycle. As a result, a Beveridge cycle with a high value of leisure produces a

lower average unemployment rate than a cycle with a high value of leisure, even though steady

state L moves in the opposite direction.

Finally, the time series in Figure 7 is very regular, much more so than actual data. However,

exogenous shocks in fundamentals or beliefs can cause variations in amplitude and period of the

cycle, without altering its driving mechanism. Beaudry et al. (2015) show that adding exogenous

shocks on top of a deterministic cycle can reproduce the spectrum of business cycle fluctuations in

output and employment. Whether the persistence of vacancies survives such additional shocks is a

question for future research.

6 Conclusion

Mortensen (1999) presents a parsimonious model to show that multiple Pareto-ranked cycles and
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Figure 7: Simulated time series of unemployment.

Notes: 256 quarterly datapoints from the calibrated Beveridge cycle, connected by straight lines.

steady states can coexist, and that different expectations can be self-fulfilling and result in each of

these equilibria. By presenting a Bogdanov-Takens bifurcation, I show that a stable limit cycle -

the Beveridge cycle - exists for a range of values for the workers’ bargaining power enclosed by a

Hopf and a saddle-loop bifurcation. I calibrate this Beveridge cycle to the average duration of the

business cycle. The calibrated cycle looks qualitatively similar to the observed counterclockwise

cycles in the unemployment, vacancy rate-plane. In addition, it can account for the persistence of

unemployment and vacancies for plausible parameter values, but suffers from the same lack of

amplification as the Pissarides (1985) model. However, volatility can be generated endogenously

by the interplay of demand and congestion externalities.

A limitation of this study is that the range of parameter values that results in a limit cycle is

small. Although my calibration focuses on this purely deterministic Beveridge cycle, for a much

bigger set of parameter values a single shock can result in counterclockwise fluctuations that are

able to explain many business cycles but eventually settle down into a steady state. Separation

rate and productivity shocks provide a natural complement to the endogenous mechanism of this

paper. On top of that, the indeterminacy of equilibrium allows for belief shocks, which directly

result in another level of labor market tightness by the opening or closing of vacancies by firms.

However, while additional exogenous shocks can result in more irregular time series than those

generated by my calibration, they also provide additional degrees of freedom.
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Appendix

A Calibration and cross-correlations

A.1 Data and calibration

I follow Shimer (2005) in the construction of the monthly job finding probability Ft and job

destruction probability ∆t. In particular,

Ft = 1−
ut+1 − ust+1

ut
,

∆t =
ust+1

et
(
1− 1

2Ft
) ,

where us denotes the short-term unemployment rate and e denotes the employment rate. Following

Elsby et al. (2009), I inflate the short-term unemployment rate by 1.16 from January 1994 onwards

to correct for changes in the way the CPS measures unemployment duration. These probabilities

are subsequently transformed in job finding and job destruction rates according to

ft = − log (1− Ft) ,

δt = − log (1−∆t) ,

respectively. I add three monthly rates to obtain the quarterly rate. Regressing the HP-filtered

job finding rate on the HP-filtered vacancy-to-unemployment ratio results in an estimate of 0.46.

In my model, the elasticity of the job finding rate with respect to the vacancy-to-unemployment

ratio is η + (1 − η)/γ. I exploit the cyclicality in the job finding rate of non-participants (that

by definition do not search) to isolate the elasticity of the matching function. I assume that

non-participants and unemployed workers find jobs according to a matching function with the

same parameters, but that the unemployed have a superior ranking. In particular, denoting the

number of non-participants, unemployed workers and vacancies by N , U and V , respectively, the

total number of matches in any period is given by µ0V
η(N + sU)1−η. Consistent with the model,

the number of unemployed workers finding a job is given by µ0V
η(sU)1−η, which is not affected

by the number of non-participants. Consequently, the number of non-participants finding a job is

given by µ0V
η(N + sU)1−η − µ0V

η(sU)1−η = µ0V
η
(
(N + sU)1−η − (sU)1−η). Note that unless
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η = 0, unemployed workers do create congestion for non-participants. This variant of Blanchard

and Diamond (1994), similar in spirit to Blanchard and Diamond (1989, p. 32), can be justified

by the search effort of the unemployed that allows them to form all potential matches before

non-participants arrive.

I take data on the job finding rate of non-participants from Elsby et al. (2015), using their

classification error adjusted (“deNUNified”) and time-aggregation adjusted hazard rates. These

hazard rates are based on monthly gross worker flows, which the BLS provides from February

1990 onwards. The data from June 1967 and December 1975 were tabulated by Joe Ritter and

made available by Hoyt Bleakley. This leaves a gap of fifteen years. This data was constructed by

Robert Shimer. For additional details, please see Shimer (2012). Extending the series of Elsby

et al. (2015) with recent data from the BLS, I have monthly job finding rates from 1967 to 2014.

A first-stage regression of the job finding rate of the unemployed from these same sources on the

vacancy-to-unemployment ratio results in an elasticity of 0.45, virtually the same elasticity as for

job-finding rate based on short-term unemployment available for 1951-2014. In my nonlinear second-

stage regression of the job finding rate of non-participants I therefore impose that η+(1−η)/γ = 0.45.

Moreover, I impose that the scale parameter of the matching function is the same, so that any

differences in the level of the job finding rate of the unemployed from that of non-participants

results from the search intensity and the superior ranking of the unemployed. Using the matching

function with ranking above and the expression for optimal search intensity in (8), the logarithm

of the job finding rate of non-participants is given by

µ− 1− η
γ

c+ η log(V )− log(N) + log

(U (ecV

U

)1/γ

+N

)1−η

−

(
U

(
ecV

U

)1/γ
)1−η

 ,

where µ is the estimated constant in the first-stage regression of the job finding rate of the

unemployed on the vacancy-to-unemployment ratio, and where c is a constant of the second-stage

regression that takes out the difference in the level of the job finding rates of the unemployed

and non-participants that results from the search intensity of the former. Minimizing the sum

of squared residuals under the restriction that η + (1 − η)/γ = 0.45, results in η = 0.0975 and

γ = 2.537. Rounding off at one decimal results in a combination of η and γ that is consistent with

the estimated elasticity for the job-finding rate based on short-term unemployment available for
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1951-2014: 0.1 + (1− 0.1)/2.5 = 0.46.

A.2 Cross-correlations of alternative calibrations

u v v/u f y

u 1 −0.925 −0.974 −0.974 −1.000
v 1 0.987 0.987 0.925
v/u 1 1.000 0.973
h 1 0.973
y 1

Table 9: Cross-correlations of the Beveridge cycle without variable search intensity.

u v v/u f y

u 1 −0.890 −0.960 −0.960 −0.956
v 1 0.982 0.982 0.977
v/u 1 1.000 0.995
h 1 0.995
y 1

Table 10: Cross-correlations of the Pissarides (1985) model recalibrated to the Beveridge cycle without

variable search intensity.

u v v/u f y

u 1 −0.879 −0.955 −0.955 −0.999
v 1 0.981 0.981 0.878
v/u 1 1.000 0.955
h 1 0.955
y 1

Table 11: Cross-correlations of the Beveridge cycle calibrated to 18 quarters.

u v v/u f y

u 1 −0.958 −0.986 −0.986 −1.000
v 1 0.993 0.993 0.958
v/u 1 1.000 0.986
h 1 0.986
y 1

Table 12: Cross-correlations of the Beveridge cycle calibrated to 28 quarters.
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u v v/u f y

u 1 −0.944 −0.981 −0.981 −1.000
v 1 0.990 0.990 0.943
v/u 1 1.000 0.981
h 1 0.981
y 1

Table 13: Cross-correlations of the Beveridge cycle calibrated to ζ = 0.955 and ε = 0.46.

u v v/u f y

u 1 −0.742 −0.983 −0.983 −1.000
v 1 0.853 0.853 0.742
v/u 1 1.000 0.983
h 1 0.983
y 1

Table 14: Cross-correlations of the Beveridge cycle calibrated to ζ = 0.71 and ε = 0.84.

B Proofs

B.1 Proof of Proposition 2

Social welfare is given by

(19)

∫ ∞
0

e−rt [(1− ut) y + ut(z − sγt )− kθtstut] dt.

The social planner maximizes this function by choosing both the socially efficient level of labor

market tightness and search intensity, subject to the law of motion of unemployment given in (9).

First-order conditions for the optimal θt and st, where µt denotes the co-state variable for the

constraint on the dynamics of ut, are

−e−rt [y − z + sγt + kθtst] + µt [δ + stθ
η
t ]− µ̇t = 0,(20)

−e−rtkstut + µtstutηθ
η−1
t = 0,(21)

−e−rt
[
γsγ−1

t ut + kθtut

]
+ µtutθ

η
t = 0.(22)
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Both (21) and (22) can be rewritten to yield µt, so that

µt =
e−rtθtk

ηθηt
=

e−rtkθt
ηθηt

(23)

=
e−rt

[
γsγ−1

t + kθt

]
θηt

.(24)

The efficient search intensity st is therefore given by

1− η
η

kθt = γsγ−1
t .

Comparing this expression with the privately chosen intensity in (8), search intensity is efficient if

and only if β = 1− η, the Hosios condition.

The expression for µt in (23) can be used to derive

(25) µ̇t =
e−rtkθ̇t − re−rtkθt

ηθηt
−

e−rtkθtη
2 θ

η
t
θt
θ̇t

η2(θηt )2
=

e−rtk[(1− η)θ̇t − rθt]
ηθηt

.

Substituting (23) and (25) into (20) and rearranging, yields

(1− η)kθ̇t − rkθt
ηθηt

=
kθt [δ + stθ

η
t ]

ηθηt
− [y − z + sγt + kθtst] ,

⇔ (1− η)kθ̇t
θηt

=
kθt [δ + r]

θηt
− η

[
y − z + sγt −

1− η
η

kθtst

]
,

⇔ θ̇t =
θt

1− η
[δ + r]− ηθηt

(1− η)k

[
y − z + sγt −

1− η
η

kθtst

]
.

Comparing this expression with the privately chosen tightness in (13), taking into account the

definition of g (θt) in (6), labor market tightness is efficient if and only if β = 1− η.

B.2 Proof of Proposition 3

Proof. The second derivative with respect to θt of the tightness nullcline in (15) is

d2ut
dθ2
t

= − 1

α

[
(r + δ)kθt
(1− β)θηt

+ g (θt) + z

] 1−α
α
[

kβs∗ (θt)

(γ − 1)(1− β)θt
− (r + δ)k(1− η)η

(1− β)θηt θt

]
−1− α

α2

[
(r + δ)kθt
(1− β)θηt

+ g (θt) + z

] 1
α
−2 [(r + δ)k(1− η)

(1− β)θηt
+
kβs∗ (θt)

(1− β)

]2

.
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One can see that for α ≤ 1, the tightness nullcline is concave at least on the segment of the

nullcline for which

s∗ (θt) θ
η
t > (r + δ)(1− η)η(γ − 1).

Define ξ as the job finding rate equal to (r + δ)(1− η)η(γ − 1), and χ ≡ η + (γ − 1)−1. Now note

that the unemployment nullcline is convex or has the shape of a negative logistic function. In

particular, differentiate (14) twice with respect to θ, to obtain

d2ut
dθ2
t

=

δχ
(

β
1−β

k
γ

) 1
γ−1

θχ−2
t

[
δ (1− χ) + (1 + χ)

(
β

1−β
k
γ

) 1
γ−1

θχt

]
[
δ +

(
β

1−β
k
γ

) 1
γ−1

θχt

]3 .

For χ ≤ 1 the second derivative is positive for all θt > 0, so that the unemployment nullcline

is convex. For χ > 1, the second derivative can be positive or negative, depending on θt. More

specifically, for χ > 1 there exists a unique inflection point at the positive labor market tightness

given by

θ∗ =

 δ(χ− 1)

(1 + χ)
(

β
1−β

k
γ

) 1
γ−1


1
χ

.

Consequently, for χ > 1 the unemployment nullcline is concave for 0 < θt < θ∗, and convex for all

θt > θ∗, so that as a whole it has the shape of a negative logistic function.

Given that the unemployment nullcline is convex or negative logistic, if any steady state with

economic activity exists, generically exactly two steady states with economic activity exist if the

tightness nullcline lies below the unemployment nullcline for any potential non-concave segment

of the former. In that case, the concave segment of the tightness nullcline intersects at most

twice with the unemployment nullcline. A sufficient condition for any non-concave segment of the

tightness nullcline to lie below the unemployment nullcline is the maximum unemployment rate

giving rise to any vacancy creation (uθ=0 as given by (16)) to be lower than the unemployment

rate consistent with the job finding rate ξ. Consequently, assuming the existence of a steady state

in the positive quadrant, for α ≤ 1 generically exactly two steady states exist if

z >

(
1− δ

δ + ξ

)α
.
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B.3 Proof of Proposition 6

This proof and the next can be more concisely written after a change in coordinates from labor

market tightness θt to match surplus pt. To point out the similarities with Mortensen (1999),

I also change ut to nt. Lemma 8 then first shows equivalence between Mortensen’s system in

pt and nt and the one presented here. It is proven by the recognition that there is a smooth

one-to-one correspondence between employment and unemployment, and surplus and tightness

respectively. Following the definition of Kuznetsov (2004, p. 42), two smooth systems ẋ = µ(x),

x ∈ Rn and ẏ = ν(y), y ∈ Rn are not only topologically equivalent, but also smoothly equivalent

if (1) an invertible map f : Rn → Rn exists such that y = f(x), if (2) this map is smooth

together with its inverse, and if (3) f can be used to change coordinates such that holds that

µ(x) = M−1(x)ν(f(x)), where M(x) = df(x)/dx is the Jacobian matrix of f(x) at x. As a result,

f is not only a homeomorphism, but also a diffeomorphism.

Lemma 8. The dynamical system in unemployment ut and labor market tightness θt and Mortensen

(1999)’s dynamical system in employment nt and surplus pt for β (θt) = β and a positive value of

leisure z are smoothly equivalent for all equilibria with economic activity.

Proof. My dynamical system in ut and θt is for all equilibria with economic activity given by the

two smooth differential equations in (13) and (9), for convenience reprinted below

θ̇t = (r + δ)
θt

1− η
+ (1− β)

θηt
k(1− η)

[g (θt) + z − (1− ut)α] ,

u̇t = δ (1− ut)− s∗ (θt)utθ
η
t ,

with ut ∈ [0, 1] and θt > 0. The dynamical system of Mortensen (1999) extended with z follows

from (7) and the definition of the labor force. For all interior equilibria, it is given by the following

two smooth differential equations

ṗt = (r + δ)pt + g (pt) + z − nαt ,(26)

ṅt = h (pt) (1− nt)− δnt,(27)
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with pt > 0 and nt ∈ [0, 1], and where h (pt) = s∗ (θt) θ
η
t and g (pt) = g (θt), for the invertible map

defined by

pt =
kθt

(1− β)θηt
,(28)

nt = 1− ut.(29)

Nash bargaining implies Jt = (1 − β)pt, so that the first equation follows from the free-entry

condition in (1), while the second is true by definition. Both equations are smooth together with

their inverses, so that they satisfy the second requirement as well. The Jacobian matrix of this

diffeomorphism is given by

M(x) =

 k(1−η)
(1−β)θηt

0

0 −1

 .

If we apply the map in (28) and (29), then indeed

 (r + δ) θt
1−η + (1− β)

θηt
k(1−η) [g (θt) + z − (1− ut)α]

δ (1− ut)− s∗ (θt)utθ
η
t

 =

 (1−β)θηt
k(1−η) 0

0 −1

×
 (r + δ) kθt

(1−β)θηt
+ g (θt) + z − (1− ut)α ,

s∗ (θt)utθ
η
t − δ (1− ut)

 ,

so that the two systems also satisfy the last of the three requirements. As a result, they are

smoothly equivalent as long as θ > 0.

Lemma 8 shows that the two systems is the same system written in different coordinates,

retaining the same eigenvalues of the corresponding equilibria and the same periods of the

corresponding limit cycles (Kuznetsov, 2004, p. 42). I can thus prove Proposition 6 in nt and pt.

Proof. The system in (26) and (27) is characterized by Hamiltonian dynamics if the discount rate

r is zero and the sharing rule is efficient. The Hamiltonian function is

(30) H (pt, nt) =

∫ nt

0
φ(x)dx+ (1− nt)[g (pt) + z]− δptnt,
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as can be checked by noting that ∂H/∂pt = ṅt and ∂H/∂nt = −ṗt for β = 1−η and r = 0. Indeed,

remember that h (pt) = s∗ (θt) θ
η
t and g (pt) = g (θt) for the map in (28), so that g (pt) =

∫ p
0 h(q)dq.

Although a homoclinic orbit generically exists in this Hamiltonian system, for z > 0 part of this

homoclinic orbit may fall outside the positive quadrant. Define nθ=0 ≡ 1−uθ=0 as the employment

level at the intersection of the tightness nullcline with the unemployment axis (thus with uθ=0 as de-

fined in (16)). Note that (1−uH+αz1/α)α+1 < (1−α)
[
(1− uH)

(
z + kθ1−η

t /(1− β)
)
− uHg (θH)

]
is equivalent to H (pH , nH) < H (0, nθ=0). If and only if the latter holds, the homoclinic orbit

is entirely situated in the positive quadrant. Because in a Hamiltonian system all equilibrium

paths are level curves, combinations of n and p on the homoclinic orbit have the same value of

the Hamiltonian as the saddlepoint on it. The laws of motion in (26) and (27) show that the

antisaddle L is a local minimum in the system. Moving along the continuum of surrounding closed

orbits, the largest possible closed orbit in the positive quadrant lies on nθ=0. Consequently, with

H (pH , nH) < H (0, nθ=0), a homoclinic orbit connecting H to itself lies entirely in the positive

quadrant.17

For a small perturbation towards positive discounting and a smaller than efficient β two steady

states with economic activity continue to exist by continuity. Melnikov perturbation (see e.g.

Guckenheimer and Holmes (1983, p. 184)) shows that the same holds for the homoclinic orbit.

The differential vector system allowing for a small distortion such that r > 0 and β < 1 − η is

defined by

ẋt = F (xt) + εG (xt) with xt =

pt
nt

 ,

F (xt) =

F1 (xt)

F2 (xt)

 =

−∂H(pt,nt)
∂nt

∂H(pt,nt)
∂pt

 =

δpt +
∫ pt

0 h(q)dq − nαt + z

h (pt) [1− nt]− δnt

 ,

G(x) =

G1(x)

G2(x)

 =

rpt + g (pt)−
∫ pt

0 h(q)dq

0

 ,
where ε is a small positive number. F (xt) is the Hamiltonian vector field, and εG (xt) is a

17Substituting (16) into (B.3) it can be checked for z, α > 0 that H (0, nθ=0) < H(0, 0) = z, so that H (pH , nH) <

H (0, nθ=0) implies H (pH , nH) < H(0, 0). The latter ensures that the saddlepoint on the homoclinic orbit is steady

state H rather than the no-trade steady state.
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perturbation attributable to positive discounting and a smaller than efficient bargaining power.

Because the perturbation is time independent, the Melnikov function M (pt, nt) is simply

M (pt, nt) =

∫
Γ

[
r + h (pt) (

β

1− η
− 1)

]
dptdnt,

where Γ =
{
x ∈ R2|H (x) ≤ H (pH , nH)

}
is the area enclosed by the homoclinic orbit in the

Hamiltonian system. Note that the Melnikov function is independent of ε. Now βSL < 1− η can

be chosen to target any sufficiently small r = r̂ > 0 with

r̂ =

∫
Γ

[
h (pt)

(
1− βSL

1−η

)]
dptdnt∫

Γ dptdnt
.

For r = r̂ the Melnikov function has a simple zero at βSL, so that for a sufficiently small distortion

a homoclinic orbit in pt and nt continues to exist and remains in the positive quadrant. By Lemma

8 the same must hold for the system in θt and ut.

According to the Andronov-Leontovich theorem, a family of limit cycles bifurcates on one side

of this homoclinic orbit, and these are stable if the trace of the Jacobian matrix at saddlepoint

H is negative. Because the homoclinic orbit is proven for a perturbed Hamiltonian system, the

trace is only based on the distortion, and is simply equal to ε times the integrand of the Melnikov

function at H:

tr(H) = ε

[
r + h(pH)

(
β

1− η
− 1

)]
.

Given that β < 1− η, the integrand of the Melnikov function is monotonically decreasing in pt.

Consequently, when the Melnikov function is zero, the tr(H) is negative for values of β in the

neighborhood of βSL, so that the limit cycles are stable.

B.4 Proof of Proposition 7

Proof. Because the proof is more concisely written in surplus than in tightness, I present it for

Mortensen (1999)’s system extended with z > 0. Remember that by Lemma 8 the two systems

are smoothly equivalent so that the eigenvalues are the same. The nullclines of the dynamical
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system in (26) and (27) are

(r + δ)pt + g (pt) + z = (nt)
α(31)

nt =
h (pt)

h (pt) + δ
,(32)

and its nonzero Jacobian matrix is

J =

 r + δ + g′ (pt) −α (nt)
α

nt

h′ (pt) (1− nt) −h (pt)− δ

 .

Both eigenvalues are zero if and only if both the determinant and the trace are zero, so that

tr = r + g′ (pt)− h (pt) = 0,(33)

det = α
(nt)

α

nt
h′ (pt) (1− nt)− (r + δ + g′ (pt))(h (pt) + δ) = 0.(34)

Remember that g (pt) = β/(1− η)
∫ pt

0 h(q)dq, and moreover that h (pt) = s∗ (θt) θ
η
t so that using

the map in (28) h′ (pt) pt/h (pt) = (1− η + ηγ)/((1− η)(γ − 1)) ≡ κ. Substituting (33) and the

elasticities into (34) yields

α
(nt)

α

nt
κ
h (pt)

p
(1− n) = (h (pt) + δ)2.

Substituting the nullclines of (31) and (32),

ακδ
(r + δ)pt + g (pt) + z

pt
= (h (pt) + δ)2.

Consequently, both eigenvalues are non-degenerately zero in steady state if the function

(35) B(pt) = (h (pt) + δ)2 − ακδ
[
r + δ +

h (pt)− r
1 + κ

+
z

pt

]
,

has a simple zero. Because limpt→∞B(pt) = ∞, limpt→0B(pt) = −∞, and B(pt) is continuous,

this condition is satisfied by the Intermediate Value Theorem. Moreover, for α < 1 the condition

is satisfied only once, because B′(pt) > 0 if 2 > ακ/(1 + κ).18

18The same holds if z = 0, but then limpt→0B(pt) = δ2 − αδκ (δ + κr/(κ+ 1)), so that (35) can only be zero for
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