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Abstract
This paper proposes a price adjustment process that converges globally for a

set of pure exchange economies, in which each agent has a Constant Elasticity of
Substitution (CES) utility function. In this process, the auctioneer approximates
demand schedules by assuming that each trader has a Cobb-Douglas utility
function. The process generates prices that cannot be represented by linear
combinations of previous prices, and hence precludes cycles. In the so-called
unstable Scarf economies, prices spiral towards the Walrasian equilibrium in the
same direction as found by Scarf. Simulation in large scale Scarf economies
suggests that the speed of convergence may be polynomial in the size of the
economy.
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1 Introduction
Scarf (1960) presents three examples of small pure exchange economies, in which
prices either converge to or orbit around the competitive equilibrium (clockwise
or counter clockwise), depending on the initial allocation. These examples have
inspired different lines of research. First and foremost, they have raised the
question which price adjustment processes do converge to Walrasian equilibria
(e.g. Uzawa (1962); Negishi (1962); Hahn and Negishi (1962); Scarf (1967);
Scarf and Hansen (1973); Smale (1976); Saari and Simon (1978); Van der Laan
and Talman (1987); Herings (1997, 2002)). But, the examples have also sparked
an interest in the stabilization of these so-called Scarf economies themselves.

Oehmke and Oehmke (1991) argues that aggregate excess demand of any
commodity must become positive if its relative price goes to zero. This require-
ment can be used to constrain the set of admissible initial allocations, ruling out
the examples of Scarf (1960). Kumar and Shubik (2004) considers the stabiliza-
tion of the Scarf economies as an exercise in designing an appropriate feedback
controller. It shows that adding higher order derivatives to the feedback mech-
anism can result in convergence. Anderson et al. (2004) is of particular interest.
It submits the Scarf examples to experimental trading in a continuous double
auction. Despite introducing a few complications, aimed at making trading more
challenging for human agents, its results resemble those of Scarf (1960). Only
in the stable example, prices closely fluctuate around the values of Walrasian
equilibrium prices. Prices in the clockwise and counter clockwise examples have
similar, unstable dynamics, in opposite directions.1 Gintis (2007) claims that
the lack of stability in Anderson et al. (2004) is due to the continuous double
auction. It presents an agent-based model with bilateral trading and learning
through imitation. In the context of the unstable Scarf examples this leads to
convergence. However, if expectations are updated in a coordinated manner,
then instability emerges.2 Goeree and Lindsay (2016) succeeds in stabilizing
an experimental Scarf economy by introducing a schedules-market, in which
traders reveal part of their demand schedules to an auctioneer, who then uses
the algorithm of Smale (1976) to compute new prices.

Following the lead of Goeree and Lindsay (2016), this paper proposes a more
parsimonious approach to obtaining demand schedules. We demonstrate that
the auctioneer can reliably approximate demand schedules by assuming that
all agents have Cobb-Douglas utility functions. Here, “reliable” means imply-
ing global convergence (i.e. convergence from any starting point) to the Wal-
rasian equilibrium. Demand at previously quoted prices suffices to identify the
hypothetical Cobb-Douglas preferences. This way, a Cobb-Douglas exchange

1Anderson et al. interpret the dynamic as a kind of orbiting. However, orbiting in the
Scarf examples is an expression of a feedback mechanism. Ruiter (2017) argues that the long
term fluctuations are due to the absence of a feedback mechanism.

2Coordination is induced by having a fraction of the agents “listen” to an auctioneer. The
claim that instability is due to coordination may be overstated to the extent that it relies on
t“atonnement.
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economy can be associated with any exchange economy under consideration.
This Cobb-Douglas economy has unique equilibrium prices, which feed into the
next iteration. We show convergence in exchange economies, in which traders
have preferences that can be represented by CES utility functions, ranging from
Leontief to Cobb-Douglas functions. This class covers the examples of Scarf
(1960). In the clockwise and counter clockwise economies, we find prices spiral-
ing towards the Walrasian equilibrium in the same direction as found by Herbert
Scarf. Convergence is due to the process generating prices that are not a linear
combination of previous prices.

If a price adjustment process converges globally and universally (i.e. for
every economy) then it is called an effective price mechanism. Saari and Simon
(1978) stipulates that effective price mechanisms require knowledge of most el-
ements of the Jacobian of the aggregate excess demand function. This result
is predicated on the trajectories of prices following a differential equation. The
amount of information required by our process, P, consists of the initial allo-
cation of commodities and individual demand at a finite number of (arbitrary)
prices. That may be more than is needed for an effective price mechanism.
However, absent any prior knowledge that a given economy is characterized by
a particular aggregate excess demand function, the latter (and possibly its Ja-
cobian) will have to be derived from individual demand before they can be used
in any algorithm. In that case, P allows a reduction of information.

The complexity of the proposed process depends on how the speed of conver-
gence relates to scale: in each iteration, solving the new prices in an associated
Cobb-Douglas economy requires at most m3/3 +m2n multiplications and addi-
tions, withm the number of commodities and n the number of agents (c.f. Eaves
(1985)). We explore the complexity of the process by simulating the maximum
number of iterations required for convergence in scaled-up versions of the Scarf
economies. The speed of convergence appears to be a polynomial function of
the size of the economy.3 If m = n is even, then large scale Scarf economies
have an infinite number of equilibria with prices p∗ = (1, α, .., 1, α), α > 0.
Here, on average, the proposed algorithm converges faster than if m = n is odd
and α = 1. However, in the even-sized unstable examples, there is also a small
probability that an excessive number of steps is required for reaching conver-
gence (depending on how the equilibrium prices in the associated Cobb-Douglas
economy are computed).

This paper is organized as follows. After deriving some auxiliary results
(section 2), we will prove convergence (section 3). In section 4, we apply our
approach to the examples proposed by Scarf (1960). Here, we also simulate the
relation between speed of convergence and scale. Finally, section 5 offers some
concluding thoughts.

3That would be consistent with Codenotti and Varadarajan (2004) showing that for
economies, in which traders have Leontief utility functions, it takes polynomial time to deter-
mine whether an equilibrium exists.
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2 Preliminaries
Consider an exchange economy, ξ, consisting of n agents, i = 1, 2, .., n, and m
commodities, j = 1, 2, ..,m. Traders have non-negative endowments, wi ∈ Rm+ .4
Each agent i has preferences over commodity bundles, x ∈ Rm+ , that can be
represented by a CES utility function, ranging from Leontief to Cobb-Douglas
utility functions.5 That is, for each agent i we have:

ui(x) =

∑
j

αjix
ρi
ji

1/ρi

(2.1)

with parameters αji being weights that add up to one, ∀i :
∑
j αji = 1 and

ρi < 1, ρi 6= 0. It will be convenient to define σi = 1
1−ρi . Below, we will consider

CES preferences with σi ≤ 1.6 By assumption, prices, p, are non-negative and
add up to 1, p ∈ Sm−1 =

{
p ∈ Rm+ |

∑
j pj = 1

}
. Given prices p, trader i’s

optimal demand for commodity j can be written as:

xji (p,wi) =
ασiji p

1−σi
j∑

r α
σi
ri p

1−σi
r

p ·wi

pj
. (2.2)

The terms ασiji p1−σi
j /

∑
r
α
σi
ri
p

1−σi
r represent the fraction of the budget p·wi that

is spent on commodity j by trader i. With a CES-utility function, this fraction
can depend on all prices. If σi = 1 (i.e., if ρi → 0), then CES preferences
coincide with Cobb-Douglas preferences. In this case, the fraction of the budget
that is spent on commodity j reduces to αji. If σi → 0, the CES preferences
approximate Leontief preferences.

An equilibrium of ξ is a pair {X (p∗) ,p∗}, consisting of an allocation X (p∗),
with columns xi (p∗,wi), i = 1, 2, .., n, and a 1×m vector of equilibrium prices,
p∗. The allocation X (p∗) is such that total demand at prices p∗ equals total
supply

∑
i xi (p∗,wi) =

∑
i wi. If z (p) =

∑
i (xi (p,wi)−wi) represents the

aggregate excess demand function, then p∗ satisfies z (p∗) = 0. Walras’ Law
stipulates that for all p we have p · z (p) = 0. This is due to the fact that each
trader plans to spend his budget completely (as is clear from equation (2.2)),
∀i : p · xi (p,wi) = p ·wi.

An aggregate excess demand function satisfies the gross substitute (GS)
property if p and p′ are two price vectors such that (i) ps > p′s and (ii) pr = p′r
for r 6= s imply zr (p) > zr (p′) for r 6= s. If all individual excess demands
satisfies GS, then the aggregate excess demand function z (p) also satisfies GS.
In pure exchange economies, if z (p) satisfies GS, then the equilibrium is unique,

4By assumption, trivial cases are excluded; e.g., an economy in which each trader exclu-
sively prefers the commodity of which he is already the sole owner.

5Lemmas 1 to 5, however, do not require that agents in ξ have CES utility functions.
6Tâtonnement does well for values σi > 1, but our argument requires σi ≤ 1.
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c.f. Mas-Colell et al. (1995, 17.F.3). An aggregate excess demand function
satisfies the Weak Axiom of Revealed Preferences (WARP) if for any pair of
price vectors p and p′:

z (p) 6= z (p′) and p · z (p′) ≤ 0⇒ p′ · z (p) > 0. (2.3)

Individual excess demand always satisfies WARP, but this attribute does not
aggregate. With respect to aggregate excess demand, WARP does not imply GS,
nor does GS imply WARP. However, if the aggregate excess demand function
satisfies GS, then a restricted version of WARP applies:

z (p∗) = 0 and z (p) 6= 0⇒ p∗ · z (p) > 0 (2.4)

see Mas-Colell et al. (1995, 17.F.3).
If an arbitrary trader i responds truthfully to prices pk > 0 with demand

xi
(
pk,wi

)
, then he reveals how he wants to allocate his budget to each of the

available commodities. As a matter of fact, i spends a fraction

α̂ji =
pkjxji(pk,wi)

pk ·wi
(2.5)

of his budget pk · wi on commodity j. Hence, each trader’s demand at prices
pk reveals the parameters of a Cobb-Douglas utility function that could have
generated his observed demand at prices pk. Therefore, an auctioneer may
hypothesize that observed demand for all j and i was generated by:

xji(p,wi|pk) =
pkjxji(pk,wi)

pk ·wi

p ·wi

pj
. (2.6)

Note that indeed ∀i,∀j : xji(pk,wi|pk) = xji
(
pk,wi

)
. By comparing equations

(2.2) and (2.6) the similarity and difference between xi (p,wi) and xi(p,wi|pk)
become clear: (i) in both cases demand for commodity j depends on the fraction
of the budget that is assigned to it and on its own price pj ; (ii) but in economy
ξ the fraction depends on all weights αji and all prices pj (assuming σi < 1),
while the auctioneer takes “snapshots” of the fractions that apply at prices pk,
as expressed in equation (2.5). In effect, the auctioneer is able to associate
a specific Cobb-Douglas exchange economy to prices pk, based on observed
demand. While ξ remains fixed, each different price vector pk induces another,
specific Cobb-Douglas exchange economy. Individual excess demand in pure
exchange Cobb-Douglas economies satisfies GS, and as a result so does aggregate
excess demand. Hence, the associated Cobb-Douglas economy induced by pk
has a unique equilibrium price vector, p∗CD

(
pk
)
. This vector can be determined

by solving z
(
p∗CD

(
pk
)
|pk
)

= 0, with z
(
p|pk

)
=
∑
i xi

(
p,wi|pk

)
−
∑
i wi the

aggregate excess function of the associated Cobb-Douglas economy induced by
pk.7 Let P be the price adjustment process that maps pk to pk+1 = p∗CD

(
pk
)
.

7For proving convergence, it does not matter how the auctioneer computes pk+1 ; what
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Walras’ Law holds in the associated Cobb-Douglas economies, because each
trader in economy ξ plans to completely spend his budget. ∀p,pk ∈ Sm−1 :
p · z

(
p|pk

)
= 0. By definition, we have:

p · z
(
p|pk

)
= (2.7)∑

i

p · xi
(
p,wi|pk

)
−
∑
i

p ·wi = (2.8)

∑
i

∑
j

pj
pkjxji(pk,wi)

pk ·wi

p ·wi

pj
−
∑
i

p ·wi = (2.9)

∑
i

pk · xi(pk,wi)
pk ·wi

p ·wi −
∑
i

p ·wi = (2.10)

∑
i

pk ·wi

pk ·wi
p ·wi −

∑
i

p ·wi = 0. (2.11)

Equation (2.11) is due to pk ·xi(pk,wi) = pk ·wi for all i in economy ξ. In the
associated Cobb-Douglas economy, we also have that equilibrium prices cannot
be revealed preferred to any non-equilibrium price vector p: If pk+1 = P

(
pk
)

and if z
(
p|pk

)
6= 0, then pk+1 ·z

(
p|pk

)
> 0. By construction, (i) z

(
pk+1|pk

)
=

0 and (ii) z
(
p|pk

)
satisfies GS; hence (2.4) applies, yielding the result. Together

with z
(
pk+1|pk

)
= 0, corollary 2 implies that the hyperplane pk+1 · a = 0 is

tangential to z
(
p|pk

)
in p = pk+1. The aggregate excess demand function

z
(
p|pk

)
does not need to be convex, but for all mixtures λp + (1− λ) pk+1

with 0 < λ < 1 we have If pk+1 = P
(
pk
)
, p 6= pk+1, z

(
p|pk

)
6= 0 and if

0 < λ < 1, then
λz
(
p|pk

)
> z

(
λp + (1− λ) pk+1|pk

)
. (2.12)

Suppose the contrary, then there exists a λ∗ such that 0 < λ∗ < 1 and

λ∗z
(
p|pk

)
≤ z

(
λ∗p + (1− λ∗) pk+1|pk

)
⇒ (2.13)

λ∗ (1− λ∗) pk+1 · z
(
p|pk

)
≤ 0 (2.14)

This contradicts corollary 2. The implication is due to multiplying both sides
by λ∗p+(1− λ∗) pk+1 and by applying lemma 2 twice. Next, we show that the
intersection between the q · a = 0 hyperplane and the aggregate excess demand
function z

(
p|pk

)
is unique. If q > 0, z

(
p|pk

)
6= 0 and q · z

(
p|pk

)
= 0, then

q = p. Let p > 0, q > 0 and q 6= p; furthermore suppose that z
(
p|pk

)
6= 0

and q · z
(
p|pk

)
= 0. From the latter and from the fact that z

(
p|pk

)
satisfies

GS we have z
(
p|pk

)
6= z

(
q|pk

)
. Multiplying both sides by q would give

0 6= 0; hence q = p. The following lemma states that if z
(
q|pk

)
lies below the

matters is that pk+1 exists and that it is unique. In principle, pk+1 can be computed as
an eigen vector, pk+1 ·M = pk+1. We apply this approach to the large scale stable Scarf
economies. For the large scale unstable Scarf economies, we have closed solutions, c.f. section
4 for details on M and the solutions.
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Figure 1: The function z
(

p|pk
)
passes through the origin O at prices pk+1; pk+1 ·q = 0 is

a hyperplane that is tangential to z
(

p|pk
)
. The pk ·q = 0 hyperplane intersects z

(
p|pk

)
at

z
(

pk
)
, which is a graphical expression of lemma 2. This is also why z

(
pk+1

)
lies somewhere

on the pk+1 ·q = 0 hyperplane. Commodities u and d have the largest increase and decrease in
prices in going from iteration k to k+1. Conditions zd

(
pk
)
< zd

(
pk+1

)
≤ 0 ≤ zu

(
pk+1

)
<

zu

(
pk
)
are sufficient for having AO smaller than OB (triangles AOz

(
pk+1

)
and OBz

(
pk
)

are congruent), i.e. pk · z
(

pk+1
)

+ pk+1 · z
(

pk
)
> 0, implying that z (p) satisfies WARP

in moving from pk to pk+1:
(

pk+1 − pk
)
·
(

z
(

pk+1
)
− z
(

pk
))

< 0.

p · a = 0 hyperplane for some p, then the intersection of p · a = 0 and z
(
·|pk

)
lies above the q · a = 0 hyperplane. If p · z

(
q|pk

)
< 0 and z

(
p|pk

)
6= 0, then

q · z
(
p|pk

)
> 0. Let p be a price such that p · z

(
q|pk

)
< 0 and z

(
p|pk

)
6= 0.

From corollary 2, it follows that pk+1 · z
(
q|pk

)
> 0; hence there exists a λ∗

such that 0 < λ∗ < 1 and
(
λ∗p + (1− λ∗) pk+1) · z (q|pk) = 0. From lemma 2,

we find that λ∗p + (1− λ∗) pk+1 = q and therefore

q · z
(
p|pk

)
= (1− λ∗) pk+1 · z

(
p|pk

)
> 0. (2.15)

due to corollary 2. Figure 1 depicts a slice of z
(
p|pk

)
in Rm. Although z

(
p|pk

)
appears as a convex function in figure 1, we do not assume it to be convex.
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3 Price dynamics
The proof of convergence of P exploits the difference in the amount of substi-
tution in economy ξ and the associated Cobb-Douglas economy induced by pk,
while going from pk to pk+1. It will be shown that P generates prices that
cannot be represented by a linear combination of previous prices. This has the
immediate consequence that cycles, or orbits, cannot occur. Since the class of
exchange economies in which traders have CES preferences with ∀i : σi ≤ 1
covers the examples of Scarf, the price adjustment process P stabilizes these
examples (c.f. section 4).

Lemma 3 shows that convergence of the price adjustment process P occurs
in an equilibrium of the economy ξ. Furthermore, if P hits an equilibrium price
vector p∗ of ξ, then the process remains in p∗. Let ξ = {(ui,wi)ni=1} be an
exchange economy, and let pk+1 = P

(
pk
)
. If pk+1 = pk, then

{
X
(
pk
)
,pk
}

is a Walrasian equilibrium of ξ. Furthermore, if {X (p∗),p∗} is a Walrasian
equilibrium of ξ, and if ∃k : pk = p∗, then pk+1 = p∗. If pk+1 = pk, then∑
i wi =

∑
i xi(pk+1,wi|pk) =

∑
i xi(pk,wi|pk) =

∑
i xi(pk,wi). Since opti-

mal demand at pk clears all markets in ξ,
{

X
(
pk),pk} is a Walrasian equi-

librium of ξ. If p∗ is an equilibrium price vector of ξ and if ∃k : pk = p∗,
then z (p∗|p∗) =

∑
i xi (p∗,wi|p∗) −

∑
i wi =

∑
i xi (p∗,wi) −

∑
i wi = 0;

pk+1 = p∗, because z
(
pk+1|p∗

)
= 0 has a unique solution. After starting with

strictly positive prices, the price adjustment process keeps generating strictly
positive prices, implying that P cannot result in a boundary solution. Let
p0 > 0; if pk+1 = P

(
pk
)
, then pk+1 > 0. By definition, prices pk+1 clear

an associated Cobb-Douglas economy induced by pk. Suppose pk+1
j = 0, then

demand for commodity j in the associated Cobb-Douglas economy would be in-
finite, which is inconsistent with an equilibrium; hence, ∀j : pk+1

j > 0. Lemma
3 is the base case of an inductive argument in lemma 3. By substituting p = pk
into corollary 2, we see that aggregate demand at pk is no longer feasible at
pk+1. Lemma 3 states that aggregate demand at pk+1 in economy ξ is feasible
at prices pk. In going from pk to pk+1, agents take advantage of the possibility
to substitute. Having a CES utility function with 0 ≤ σi ≤ 1, the preferred
amount of substitution for trader i is bounded by the limiting cases of Leontief
and Cobb-Douglas utility functions. This provides us with a useful inequality,
(3.7). If all agents have CES preferences with 0 ≤ σi ≤ 1, pk+1 = P

(
pk
)

and if pk+1 6= pk, then pk · z
(
pk+1) ≤ 0, with equality applying if and only

if all agents have Cobb-Douglas preferences. If a utility function is CES with
0 ≤ σi ≤ 1, then xi

(
pk+1,wi

)
lies on the pk+1 budget constraint between de-

mand at pk+1 that would apply if σi = 0 and if σi = 1. The latter corresponds
with xi

(
pk+1,wi|pk

)
, and the former can be written as

xLi
(
pk+1,wi

)
= pk+1 ·wi

pk+1 · xi (pk,wi)
xi
(
pk,wi

)
. (3.1)

This is simply re-scaling xi
(
pk,wi

)
so that xLi

(
pk+1,wi

)
lies on the pk+1
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budget constraint. We have

xi
(
pk+1,wi

)
= (1− θi) xLi

(
pk+1,wi

)
+ θixi

(
pk+1,wi|pk

)
(3.2)

with 0 ≤ θi ≤ 1. We can rewrite xLji
(
pk+1,wi

)
as

xLji
(
pk+1,wi

)
=

pkjxji
(
pk,wi

)
pk ·wi

pk+1·wi

pk+1·xi(pk,wi) pk · xi
(
pk,wi

)
pkj

. (3.3)

=
pkjxji

(
pk,wi

)
pk ·wi

pk · xLi
(
pk+1,wi

)
pkj

(3.4)

= xji
(
pk,xLi

(
pk+1,wi

)
|pk
)

(3.5)

That is, xLi
(
pk+1,wi

)
is the optimal demand at pk for a trader who (i) is

endowed with xLi
(
pk+1,wi

)
and (ii) who has Cobb-Douglas preferences with pa-

rameters defined by (2.5). At pk+1, however, this trader prefers xi
(
pk+1,wi|pk

)
,

even though xLi
(
pk+1,wi

)
is also affordable. Since xi

(
pk+1,wi|pk

)
is revealed

preferred to xLi
(
pk+1,wi

)
, it must be the case that xi

(
pk+1,wi|pk

)
is not

affordable at prices pk. Hence,

pk · xLi
(
pk+1,wi

)
< pk · xi

(
pk+1,wi|pk

)
. (3.6)

For a graphical version of the proof of inequality (3.6), see figure 2. Combining
equations (3.2) and (3.6) we obtain for all i:

pk · xi
(
pk+1,wi

)
≤ pk · xi

(
pk+1,wi|pk

)
(3.7)

with equality applying if σi = 1. Summing over i yields:

pk ·
∑
i

xi
(
pk+1,wi

)
≤ pk ·

∑
i

xi
(
pk+1,wi|pk

)
⇔ (3.8)

pk ·
∑
i

xi
(
pk+1,wi

)
≤ pk ·

∑
i

wi ⇔ (3.9)

pk · z
(
pk+1) ≤ 0. (3.10)

The second inequality is due to the fact that pk+1 is an equilibrium price vector
of the associated Cobb-Douglas economy. If ∀i : θi = 1, then the inequality in
(3.10) becomes an equality; otherwise the inequality is strict.

The following lemma shows that z
(
pk+1) is constrained by all previous

prices. This rules out cycles and allows us to prove global convergence in propo-
sition 3. If pk+1 = P

(
pk
)
, pk+1 6= pk, and some traders do not have Cobb-

Douglas preferences, then ∀r ≤ k : pr · z
(
pk+1) < 0. For r = k, the result

follows directly from lemma 3. Suppose z
(
pk+1) 6= 0 and pk−1 · z

(
pk+1) ≥ 0;

if 0 < pk−1 6= pk+1, then according to lemma 2 pk−1 · z
(
pk+1) > 0. Therefore,

there exists a θ∗, 0 < θ∗ < 1, for which(
θ∗pk−1 + (1− θ∗) pk

)
· z
(
pk+1) = 0. (3.11)
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Figure 2: Graphical explanation of the proof of inequality 3.6. In response to prices pk,
a trader demands A. The auctioneer constructs hypothetical Cobb-Douglas preferences that
rationalize this choice, represented by the solid indifference curve I1. The auctioneer expects
that the trader will demand C at the new prices pk+1: The dotted indifference curve I3

is tangential to the new budget constraint. Point B is the demand at prices pk+1 if the
trader would have Leontief preferences (instead of the unknown CES or the hypothetical Cobb-
Douglas preferences). Inequality 3.6 expresses the fact that C is not affordable at prices pk

for any trader, with endowments B and with the hypothetical Cobb-Douglas preferences. The
point is proved by observing that such a trader prefers B at prices pk and that he prefers C
if prices are equal to pk+1 (i.e., while B is also affordable at pk+1). Hence, C is revealed
preferred to B. The implication is that C is not affordable at pk (otherwise C would have
been have chosen instead of B). Hence, the dashed budget constraint through B is part of a
hyperplane that separates B and C.
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But then, also due to lemma 2, θ∗pk−1 + (1− θ∗) pk = pk+1 . This implies for
z
(
pk
)
6= 0

pk+1 · z
(
pk
)

= (3.12)(
θ∗pk−1 + (1− θ∗) pk

)
· z
(
pk
)

= (3.13)
θ∗pk−1 · z

(
pk
)

< 0 (3.14)

which contradicts corollary 2. Hence, pk−1 ·z
(
pk+1) < 0. This argument can be

repeated to obtain pr · z
(
pk+1) < 0 for other r < k − 1. Let ξ = {(ui,wi)ni=1}

be a CES exchange economy with ∀i : 0 ≤ σi ≤ 1. Assume that at least
one Walrasian equilibrium exists, then price adjustment process P converges
globally. We have ∀r ≤ k : pr · z

(
pk+1) < 0 from lemma 3. This implies

pk+1 6=
∑k
r=0 θ

rpr for any {θr}r with 0 < θr < 1 and
∑
r θ

r = 1. To see
this, suppose pk+1 =

∑
r θ

rpr for appropriate {θr}r, then pk+1 · z
(
pk+1) =∑

r θ
rpr · z

(
pk+1) < 0, because, by assumption, each term pr · z

(
pk+1) < 0;

however, this violates Walras’ Law in economy ξ. Note that this also rules out
the occurrence of cycles: pk 6= pk+j for all k and j. Let

F (k) =
{

p|p =
k∑
r=0

θrpr, 0 < θr < 1,
k∑
r=0

θr = 1
}
⊂ Sm−1 (3.15)

be the set of “forbidden” subsequent prices. For as long as P has not yet
converged, a new pk+1 ∈ Sm−1 − F (k) will be selected. We have F (k) ⊆
F (k + 1), with equality applying only if pk+1 = pk. In that case, pk is a
Walrasian equilibrium price vector, and P remains at pk , due to lemma 3.
Convergence of F (k) implies that pk converges.

To the contrary, assume that F (k) converges, but that prices do not con-
verge; then there exist {θr}r with 0 < θr < 1 and

∑
r θ

r = 1, such that
pk+1 =

∑k
r=0 θ

rpr + δk+1 and where ||δk+1|| can be made arbitrarily small. As
a result we would have pk+1 ·z

(
pk+1) =

∑
r θ

rpr ·z
(
pk+1)+δk+1 ·z

(
pk+1) < 0

because the sum is strictly negative and δk+1 ·z
(
pk+1) can be made arbitrarily

small for suitable values of k, because z
(
pk+1) is bounded. This violates Wal-

ras’ Law in ξ and hence prices must converge whenever F (k) converges. Since
F (k) ⊆ Sm−1 this set cannot increase beyond bounds; it must converge and so
prices converge to some Walrasian equilibrium price vector pk.

4 Application to the Scarf economies
Herbert Scarf has demonstrated that tâtonnement may fail to converge to the
Walrasian equilibrium. Scarf (1960) provides three examples of small exchange
economies with three traders, i = 1, 2, 3, and three commodities, j = 1, 2, 3.
The (Leontief) preferences of the agents with respect to commodities can be
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described as follows:
u1(x1) = min(x11, x31)
u2(x2) = min(x12, x22)
u3(x3) = min(x23, x33)

. (4.1)

The examples differ in how endowments are allocated, in particular (commodi-
ties in rows, traders in columns):

Wstb =

 0 0 1
1 0 0
0 1 0

 ; Wcw =

 1 0 0
0 1 0
0 0 1

 ; Wccw =

 0 1 0
0 0 1
1 0 0

 .

(4.2)
The superscripts refer to the price dynamics under t“atonnement (see below).
Demand for commodity j by trader i by example is given in table 2. All three
examples have the same Walrasian equilibrium, i.c.

{p∗,X∗} =

(1, 1, 1) ,

 1
2

1
2 0

0 1
2

1
21

2 0 1
2

 . (4.3)

The t“atonnement process leads to different price dynamics in each of the
three examples. In the stable version (stb), tâtonnement does converge to the
Walrasian equilibrium. The other two examples are unstable; here, tâtonnement
leads to prices orbiting around the Walrasian equilibrium values in perfect cir-
cles, either in a clockwise (cw) or counter-clockwise (ccw) direction.

Price adjustment process P always converges to the Walrasian equilibrium.
Convergence is fast: for instance, starting from p1 = (1, 3, 5), it takes 15 it-
erations to obtain the equilibrium prices in three decimal places in the stable
case and 28 and 27 iterations the clockwise and counter clockwise examples
respectively, c.f. figure 3 and table 1.8

In order to gain a deeper understanding, table 1 details the price dynamics
in the unstable economies. In the clockwise example, for k = 2, there is excess
demand for commodity 2, yet its price falls from p2

2 = 3.3333 to p3
2 = 2.9279.

This is due to the relatively large excess supply of commodity 3. Its price needs
to decrease sharply, but this causes the other prices to rise rather than to fall
(the relative price of commodity 1 also increases). Opposite changes can also
occur, e.g. in the clockwise example, for k = 9: while there is excess supply of
commodity 2 its price rises from p2

2 = 0.8330 to p3
2 = 0.8870. This cannot happen

in normal t“atonnement processes, because each change in price is determined
independently, conditional on the sign of its own aggregate excess demand. In
P, on the other hand, changes in prices are mutually dependent, because new
prices need to clear the associated Cobb-Douglas economy.9 Moreover, this

8The symmetry of the original Scarf examples contributes to the speed of convergence. In
the unstable Scarf examples, as implemented by Anderson et al. (2004), P requires about 65
iterations, c.f. Ruiter (2017).

9To put it slightly differently, a t“atonnement process applies the Law of Demand and
Supply to each individual market, while in process P this law holds at the aggregate level
(from corollary 2 it is straightforward to derive

(
pk+1 − pk

)
· z
(

pk
)
> 0).
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also implies that the auctioneer has to anticipate income effects. By comparing
equations (2.2) and (2.6) it becomes clear that he does so correctly.

Figure 3: Convergence of price adjustment process P to the equilibrium prices
(
p∗

2, p
∗
3
)

=
(1, 1), in the stable, clockwise and counter clockwise examples (from left to right). The lower
panel zooms in on the equilibrium prices. Dashed arrows indicate the approximate direction
of the t“atonnement process of Scarf (1960) at pk. Convergence clearly depends on the initial
allocation. In the unstable economies, the direction of the spirals is consistent with Scarf’s
findings.

Tables 2 and 3 give the (estimated) demand functions. A comparison shows
that demand in the associated Cobb-Douglas economy is less sensitive to prices
than demand in economy ξ. For instance, in the stable example, demand de-
pends on two instead of three prices. In the unstable examples, demand for the
one commodity that a trader already owns is kept fixed at its current value.
The reduced sensitivity of demand to prices also contributes to a more stable
evolution of prices.

The complexity of P depends on the speed of convergence and on the com-
plexity of determining equilibrium prices in an associated Cobb-Douglas econ-
omy. For each iteration of P, the equilibrium prices of an induced pure exchange
Cobb-Douglas economy have to be determined. The latter requires at most
m3/3 +m2n multiplications and additions, with m the number of commodities
and n the number of agents (c.f. Eaves (1985)). Given this result, the complex-
ity of P depends on how the speed of convergence relates to scale. We explore
this issue by simulating the maximum number of iterations that is necessary for
computing equilibrium prices of scaled-up versions of the Scarf examples, with
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Table 1: Price dynamics in the unstable Scarf examples

clockwise counter clockwise
k pk2 pk3 z1

(
pk
)

z2
(
pk
)

z3
(
pk
)

pk2 pk3 z1
(
pk
)

z2
(
pk
)

z3
(
pk
)

1 3.0000 5.0000 -0.0833 0.3750 -0.2083 3.0000 5.0000 0.0833 -0.3750 0.2083
2 3.3333 2.0833 0.0936 0.1538 -0.2911 0.9143 3.4286 0.2966 -0.2671 -0.0153
3 2.9279 1.1564 0.2091 0.0286 -0.2531 0.6271 2.1926 0.3014 -0.1630 -0.0908
4 2.1064 0.8307 0.2243 -0.0391 -0.1709 0.6031 1.4973 0.2234 -0.0891 -0.1133
5 1.4096 0.7212 0.1660 -0.0766 -0.0805 0.6409 1.1409 0.1423 -0.0309 -0.1074
6 1.0096 0.7183 0.0844 -0.0819 -0.0023 0.7094 0.9724 0.0780 0.0068 -0.0852
7 0.8401 0.7755 0.0198 -0.0635 0.0432 0.7960 0.9078 0.0326 0.0240 -0.0570
8 0.8037 0.8582 -0.0163 -0.0380 0.0546 0.8854 0.9000 0.0041 0.0263 -0.0304
9 0.8330 0.9376 -0.0295 -0.0160 0.0456 0.9610 0.9205 -0.0108 0.0207 -0.0099
10 0.8870 0.9954 -0.0288 -0.0011 0.0299 1.0116 0.9504 -0.0156 0.0127 0.0029
11 0.9413 1.0264 -0.0216 0.0065 0.0151 1.0352 0.9781 -0.0142 0.0055 0.0087
12 0.9833 1.0352 -0.0129 0.0086 0.0042 1.0383 0.9978 -0.0100 0.0006 0.0094
13 1.0088 1.0306 -0.0053 0.0075 -0.0022 1.0300 1.0084 -0.0053 -0.0021 0.0074
14 1.0195 1.0206 -0.0003 0.0051 -0.0048 1.0182 1.0116 -0.0016 -0.0029 0.0045
15 1.0201 1.0104 0.0024 0.0026 -0.0050 1.0078 1.0104 0.0006 -0.0026 0.0019
16 1.0153 1.0028 0.0031 0.0007 -0.0038 1.0007 1.0071 0.0016 -0.0018 0.0002
17 1.0090 0.9983 0.0027 -0.0004 -0.0023 0.9970 1.0037 0.0017 -0.0009 -0.0008
18 1.0037 0.9965 0.0018 -0.0009 -0.0009 0.9959 1.0011 0.0013 -0.0003 -0.0010
19 1.0001 0.9964 0.0009 -0.0009 0.0000 0.9964 0.9995 0.0008 0.0001 -0.0009
20 0.9983 0.9973 0.0002 -0.0007 0.0004 0.9975 0.9988 0.0003 0.0003 -0.0006
21 0.9978 0.9984 -0.0002 -0.0004 0.0006 0.9987 0.9988 0.0000 0.0003 -0.0003
22 0.9981 0.9994 -0.0003 -0.0002 0.0005 0.9996 0.9991 -0.0001 0.0002 -0.0001
23 0.9987 1.0000 -0.0003 0.0000 0.0003 1.0002 0.9994 -0.0002 0.0001 0.0000
24 0.9994 1.0003 -0.0002 0.0001 0.0002 1.0004 0.9998 -0.0002 0.0001 0.0001
25 0.9998 1.0004 -0.0001 0.0001 0.0000 1.0004 1.0000 -0.0001 0.0000 0.0001
26 1.0001 1.0003 -0.0001 0.0001 0.0000 1.0003 1.0001 -0.0001 0.0000 0.0001
27 1.0002 1.0002 0.0000 0.0001 -0.0001 1.0002 1.0001 0.0000 0.0000 0.0000
28 1.0002 1.0001 0.0000 0.0000 -0.0001

The table shows convergence of price adjustment process P in the unstable examples (in three
decimal places). Prices are relative to the numeraire, good 1. New prices, due to current
aggregate excess demand, appear in the next row. By construction, (i) z

(
pk|pk

)
= z
(

pk
)

and (ii) z
(

pk+1|pk
)

= 0; so these can be omitted. Prices corresponding to Scarf (1960) can
be found by taking p̃k

j = pk
j + zj

(
pk
)
(see also figure 3).
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Table 2: Demand in the Scarf examples

agent stable clockwise counter clockwise
1 (j = 1, 3) xstbj1 = p2

p1+p3
xcwj1 = p1

p1+p3
xccwj1 = p3

p1+p3

2 (j = 1, 2) xstbj2 = p3
p1+p2

xcwj2 = p2
p1+p2

xccwj2 = p1
p1+p2

3 (j = 2, 3) xstbj3 = p1
p2+p3

xcwj3 = p3
p2+p3

xccwj3 = p2
p2+p3

True demand per type of agent, by example. Trader 1 demands commodities 2 and 3. In the
stable Scarf economy, demand for each commodity depends on all three prices, while in the
unstable examples demand depends on two prices only. Demand for each commodity depends
on its own price.

Table 3: Estimated demand in the Scarf economies

agent stable clockwise counter clockwise

1 xstb11 = pk1
pk1 +pk3

p2
p1

xcw11 = pk1
pk1 +pk3

xccw11 = pk1
pk1 +pk3

p3
p1

1 xstb31 = pk3
pk1 +pk3

p2
p3

xcw31 = pk3
pk1 +pk3

p1
p3

xccw31 = pk3
pk1 +pk3

2 xstb12 = pk1
pk1 +pk2

p3
p1

xcw12 = pk1
pk1 +pk2

p2
p1

xccw12 = pk1
pk1 +pk2

2 xstb22 = pk2
pk1 +pk2

p3
p2

xcw22 = pk2
pk1 +pk2

xccw22 = pk2
pk1 +pk2

p1
p2

3 xstb23 = pk2
pk2 +pk3

p1
p2

xcw23 = pk2
pk2 +pk3

p3
p2

xccw23 = pk2
pk2 +pk3

3 xstb33 = pk3
pk2 +pk3

p1
p3

xcw33 = pk3
pk2 +pk3

xccw33 = pk3
pk2 +pk3

p2
p3

Estimated demand for commodity j by agent i, by example. In the stable economy, demand
depends on fewer (new) prices, c.f. table 2. In the unstable economies, only one commodity
is sensitive to new prices. Demand for the other commodity is fixed at its previous value.
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Table 4: Endowments in Scarf examples of size n

example endowments

stable


wi+1,i = 1 i = 1, .., n− 1
w1,n = 1 i = n

wj,i = 0 otherwise

clockwise
{
wi,i = 1 i = 1, .., n
wj,i = 0 otherwise

counter clockwise


wn,i = 1 i = 1
wi−1,i = 1 i = 2, .., n
wj,i = 0 otherwise

Endowments per trader, by example. The first subscript refers to commodities,
the second to agents. For n = 3, these formulae reduce to the original Scarf
examples, c.f. equation (4.2).

m = n commodities and agents. Let the agents have preferences

ui (x) =
{

min (x1, xn) i = 1
min (xi−1, xi) i > 1.

(4.4)

The endowments depend on the example, c.f. table 4. By maximizing utility,
given prices pk, one can determine individual demand and aggregate excess
demand, c.f. table 5.

For the unstable economies, it is possible to derive simple solutions for the
equilibrium prices of the induced associated Cobb-Douglas economies. For the
clockwise examples, we havep

k+1
j = 1 j = 1
pk+1
j = pkj−1+pkj

pk
j−1

pkn
1+pkn

j = 2, .., n
(4.5)

and for the counter clockwise economiespk+1
j = pkj+pkj+1

pk
j+1

pk1
pk1 +1 j = 1, .., n− 1

pk+1
j = 1 j = n.

(4.6)

For the generalized stable Scarf economies, it is possible to derive recursive
formulae that have a fixed point that corresponds with the equilibrium prices.
However, this recursive process is not convergent. Setting z

(
p|pk

)
= 0 defines

n equations that can be rewritten as p ·Mn = p. For each j in table 5, (i) set
the entry equal to zero; (ii) multiply both sides by pj , and (iii) carry pj to the
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right hand side. In case n = 4, M4 would then be given by

M4 =


0 0 pk3

pk3 +pk4
pk4

pk3 +pk4
pk1

pk1 +pk4
0 0 pk4

pk1 +pk4
pk1

pk1 +pk2
pk2

pk1 +pk2
0 0

0 pk2
pk2 +pk3

pk3
pk2 +pk3

0

 .

Hence, in the stable economies, the associated Cobb-Douglas economies can
be solved by computing the eigen vector of Mn corresponding to the eigen value
1. For this the R function “eigen” has been used.

It is straightforward to verify that the large scale economies of size n, with
n an even number, admit an infinite amount of equilibrium price vectors of the
form p = (1, α, .., 1, α). If the size of the economy is odd, then α = 1 and
we have a unique equilibrium price vector. We therefore distinguish economies
according to whether n is even or odd. Figure 4 shows how many iterations
at most are required for computing the unique equilibrium price in odd-sized
economies up to three decimal places.

Generally speaking, convergence is faster if the size of the large scale Scarf
economies is even, c.f. figures 5 and 6. This is due to the infinite number of
equilibria (in the stable example, new prices of both the odd- and even-sized
economies are computed as eigen vectors). In the unstable examples, there is a
remote chance that the number of iterations required for convergence in even-
sized economies is very high. As a matter of fact, in case of m = n = 4 in the
clockwise example, there was one simulation (out of 10,000) that required 47,846
iterations. This is due to using the exact solutions (4.5) and (4.6): if equilibria
in the associated Cobb-Douglas economies are determined by means of eigen
vectors, then the even-sized unstable examples also have a more concentrated
distribution of the maximum number of iterations required for obtaining con-
vergence, compared to figure 6. Apparently, the speed of convergence is quite
sensitive to accuracy in these cases .

5 Discussion
Cobb-Douglas approximation provides a parsimonious implementation of a sched-
ules market, as proposed by Goeree and Lindsay (2016). Our proof of global
convergence seems to be due to a combination of factors: (i) the determination
of prices in P is mutually dependent, because the new prices have to clear the as-
sociated Cobb-Douglas economy (ii) the auctioneer correctly anticipates income
effects and, (iii) estimated demand in the associated Cobb-Douglas economies
is less sensitive to prices than demand in the underlying economy ξ.

For practical purposes, P requires less information than algorithms that
rely on the Jacobian of the aggregate excess demand function (after all, the
aggregate excess demand function typically is not given and has to be derived
from individual demand). From a computational point of view, the speed of
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Figure 4: Simulated maximum number of iterations, by size (odd) as measured over 10,000
runs. There is no indication that the worst case speed of convergence is an exponential
function of the size of the economy, i.e. of the number of commodities and agents. At n = 3,
some 30 iterations are required; at n = 34, the maximum number of iterations has increased
to less than 302.42. The stable economies converge relatively faster.

18



Figure 5: Simulated maximum number of iterations in the stable examples of size 3 – 50
(10,000 runs). After size = 20, convergence in even-sized economies is faster than in odd-
sized economies.
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Figure 6: Simulated densities of the number of iterations in the clockwise economies of size
3 and 4. The irregularities indicate that many more runs are needed to obtain smooth density
functions. However, two salient facts already become clear: (i) on average, convergence is
faster in economies with an even number of commodities and agents; and, (ii) the expected
maximum number of iterations required to achieve convergence is greatest if the size is even.
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convergence is of greater concern than the amount of information that is needed.
It is an open question how P compares to other algorithms in this respect. We
have only shown global convergence in a class of economies that comprises the
Scarf examples.

The so-called Sonnenschein-Mantel-Debreu-result (c.f. Sonnenschein (1973),
Mantel (1974, 1976), Debreu (1974)) is often interpreted as saying that price
dynamics can be as “bad” as desired. P shows that this interpretation is not
compelling: there may exist a simple process that behaves nicely even though
the aggregate excess demand function does not satisfy the usual conditions for
convergence.
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Table 5: Aggregate excess demand in scaled-up Scarf examples

example zj
(
pk
)

stable



pk1
pk1 +pkn

p2
p1

+ pk1
pk1 +pk2

p3
p1
− 1 j = 1

pkj
pk
j−1+pk

j

pj+1
pj

+ pkj
pk
j

+pk
j+1

pj+2
pj
− 1 j = 2, .., n− 2

pkn−1
pk
n−1+pkn

p1
pn−1

+ pkn−1
pk
n−2+pk

n−1

pn
pn−1

− 1 j = n− 1
pkn

pk1 +pkn
p2
pn

+ pkn
pk
n−1+pkn

p1
pn
− 1 j = n

clockwise


pk1

pk1 +pkn
+ pk1

pk1 +pk2
p2
p1
− 1 j = 1

pkj
pk
j−1+pk

j

+ pkj
pk
j

+pk
j+1

pj+1
pj
− 1 j = 2, ..n

counter clockwise


pk1

pk1 +pkn
pn
p1

+ pk1
pk1 +pk2

− 1 j = 1
pkj

pk
j−1+pk

j

pj−1
pj

+ pkj
pk
j

+pk
j+1
− 1 j = 2, ..n
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